
ARTICLE IN PRESS

JID: EOR [m5G; January 15, 2021;8:37]

European Journal of Operational Research xxx (xxxx) xxx

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

Partitioning a graph into balanced connected classes: Formulations,

separation and experiments

Flávio K. Miyazawa

a , Phablo F. S. Moura

b , ∗, Matheus J. Ota

a , Yoshiko Wakabayashi c

a Instituto de Computação, Universidade Estadual de Campinas, Brazil
b Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Brazil
c Instituto de Matemática e Estatística, Universidade de São Paulo, Brazil

a r t i c l e i n f o

Article history:

Received 18 July 2020

Accepted 29 December 2020

Available online xxx

Keywords:

Integer programming

Branch-and-cut

Separation algorithm

Balanced partition

Connected partition

a b s t r a c t

This work addresses the balanced connected k -partition problem (BCP k), which is formally defined as fol-

lows. Given a connected graph G = (V, E) with nonnegative weights on the vertices, find a partition { V i } k i =1

of V such that each class V i induces a connected subgraph of G, and the weight of a class with the min-

imum weight is as large as possible. This problem, known to be NP -hard, has been largely investigated

under different approaches and perspectives: exact algorithms, approximation algorithms for some val-

ues of k or special classes of graphs, and inapproximability results. On the practical side, BCP k is used to

model many applications arising in image processing, cluster analysis, operating systems and robotics. We

propose three linear programming formulations for BCP k . The first one contains only binary variables and

a potentially large number of constraints that can be separated in polynomial time in the corresponding

linear relaxation. We introduce new valid inequalities and design polynomial-time separation algorithms

for them. The other two formulations are based on flows and have a polynomial number of constraints

and variables. Our computational experiments show that the exact algorithms based on the proposed

formulations outperform the other exact approaches presented in the literature.

© 2021 Elsevier B.V. All rights reserved.

1

(

n

t

u

s

o

s

i

a

i

t ∑
w

t

M

a

p

i

S

P

(

d

a

n

S

&

S

h

0

. Introduction

We adopt the standard notation for (di)graphs. For a

di)graph G, V (G) denotes its vertex set; and E(G) (resp. A (G)) de-

otes its edge set (resp. arc set). To simplify notation, we assume

hat the input graph G has vertex set V and edge set E; moreover,

nless otherwise stated, n = | V | and m = | E| . For an integer k, the

ymbol [k] denotes the set { 1 , 2 , . . . , k } if k ≥ 1 , and the empty set,

therwise. A k -partition of G is a collection { V i } i ∈ [k] of nonempty

ubsets of V such that
⋃ k

i =1 V i = V, and V i ∩ V j = ∅ for all i, j ∈ [k] ,

 � = j. We refer to each set V i as a class of the partition. We say that

 k -partition { V i } i ∈ [k] of G is connected if G [V i] , the subgraph of G

nduced by V i , is connected for each i ∈ [k] .

Let w : V → Q ≥ be a function that assigns nonnegative weights

o the vertices of G . For every subset V ′ ⊆ V, we define w (V ′) =

v ∈ V ′ w (v) . For simplicity, if H is a subgraph of G, instead of

 (V (H)) , we write w (H) . For a set S ⊆ R

� , we denote by conv S ,

he convex hull of S.
∗ Corresponding author.

E-mail addresses: fkm@ic.unicamp.br (F.K. Miyazawa), phablo@dcc.ufmg.br (P.F.S.

oura), matheus.ota@students.ic.unicamp.br (M.J. Ota), yw@ime.usp.br (Y. Wak-

bayashi).

i

t

l

m

n

ttps://doi.org/10.1016/j.ejor.2020.12.059

377-2217/© 2021 Elsevier B.V. All rights reserved.

Please cite this article as: F.K. Miyazawa, P.F.S. Moura, M.J. Ota et al., Pa

separation and experiments, European Journal of Operational Research,
We are now ready to define the balanced connected k -partition

roblem (BCP k), where k is a fixed positive integer. As we mention

n what follows, studies on this problem, firstly on trees (Perl &

chach, 1981), trace back to 1981.

roblem 1. Balanced Connected k -Partition (BCP k)

Instance: a pair (G, w) consisting of a connected graph G =

V, E) , and a vertex-weight function w : V → Q ≥.

Find: a connected k -partition { V i } i ∈ [k] of G .

Goal: maximize min i ∈ [k] { w (V i) } .
There are several applications in logistics, image processing,

ata base, operating systems, cluster analysis, education, robotics

nd metabolic networks that can be modeled as a balanced con-

ected partition problem (Becker & Perl, 1983; Lucertini, Perl, &

imeone, 1989; 1993; Maravalle, Simeone, & Naldini, 1997; Mati ́c

 Boži ́c, 2012; Mati ́c & Grbi ́c, 2020; Zhou, Wang, Ding, Hu, &

hang, 2019). These different real-world applications indicate the

mportance of designing algorithms for BCP k , and reporting on

he computational experiments with their implementations. Not

ess important are the theoretical studies of the rich and diverse

athematical formulations.

Problems on partitioning a vertex-weighted graph into a fixed

umber of connected subgraphs with similar weights have been
rtitioning a graph into balanced connected classes: Formulations,

https://doi.org/10.1016/j.ejor.2020.12.059

https://doi.org/10.1016/j.ejor.2020.12.059
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
mailto:fkm@ic.unicamp.br
mailto:phablo@dcc.ufmg.br
mailto:matheus.ota@students.ic.unicamp.br
mailto:yw@ime.usp.br
https://doi.org/10.1016/j.ejor.2020.12.059
https://doi.org/10.1016/j.ejor.2020.12.059

F.K. Miyazawa, P.F.S. Moura, M.J. Ota et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; January 15, 2021;8:37]

l

p

f

T

t

a

B

m

i

t

(

f

t

w

1

v

s

2

t

g

L

o

(

s

a

o

B

f

g

a

t

s

t

a

s

i

i

a

i

(

b

t

(

o

p

t

C

g

e

M

t

e

(

a

p

(

Z

w

p

t

b

a

1

r

e

t

s

d

i

b

i

o

c

b

o

i

i

a

p

(

t

a

a

m

a

a

S

c

t

m

2

T

p

n

i

o

s

f

t

m

c

argely investigated in the literature since the early eighties. Such

artitions are generally called balanced, and a number of dif-

erent functions have been considered to measure this feature.

he balanced connected k -partition problem (BCP k) is one of

hese problems. It is closely related to another one, referred to

s min-max BCP k , defined as follows. Given a pair (G, w) , as in

CP k , find a connected k -partition { V i } i ∈ [k] of G that minimizes

ax i ∈ [k] { w (V i) } .
When k = 2 , for any instance, an optimal 2-partition for BCP k

s also an optimal solution for min-max BCP k ; but it is easy to see

hat when k > 2 the corresponding optimal k -partitions may differ

see Lucertini, Perl, & Simeone (1993)). Another possible objective

unction is to minimize the maximum difference of weights be-

ween the classes. All of them can be treated with the formulations

e propose here (by changing only the objective function).

.1. Some known results

The unweighted BCP k (to be denoted by 1-BCP k) is the restricted

ersion of BCP k in which all vertices have unit weight. This re-

tricted problem is NP -hard on bipartite graphs for every fixed k ≥
 , as proven by Dyer and Frieze (1985) . Chlebíková (1996) showed

hat 1-BCP 2 is NP -hard to approximate within an absolute error

uarantee of n 1 −ε , for all ε > 0 . For the weighted case, Becker, Lari,

ucertini, and Simeone (1998) proved that BCP 2 is already NP -hard

n (nontrivial) grid graphs. Chataigner, Salgado, and Wakabayashi

2007) showed that, for each k ≥ 2 , BCP k is NP -hard in the strong

ense, even on k -connected graphs, and therefore does not admit

 FPTAS, unless P = NP . Wu (2012) observed that BCP k is NP -hard

n interval graphs for any fixed k ≥ 2 .

Chlebíková (1996) designed a 4 / 3 -approximation algorithm for

CP 2 . Recently, Chen et al. (2020) presented a 5 / 3 -approximation

or BCP 3 and a 3 / 2 -approximation for min-max BCP 3 on arbitrary

raphs. Approximation algorithms for BCP 4 on 4-connected graphs

nd for 1-BCP k on special classes of graphs have also appeared in

he literature.

Wu (2012) designed a fully polynomial-time approximation

cheme (FPTAS) for BCP 2 on interval graphs. When k is part of

he input, Borndörfer, Elijazyfer, and Schwartz (2019) designed �-

pproximation algorithms for both max-min and min-max ver-

ions of the balanced connected partition problem, where �

s the maximum degree of an arbitrary spanning tree of the

nput graph G . Specifically for the max-min version, their �-

pproximation only holds for instances in which the largest weight

s at most w (G) / (� k) . For this case (k not fixed), Chataigner et al.

2007) proved that BCP k cannot be approximated within a ratio

etter than 6 / 5 .

Both BCP k and min-max BCP k can be solved in linear time on

rees as shown by Perl and Schach (1981) , Becker, Schach, and Perl

1982) and Frederickson (1991) . One may easily check that 1-BCP 2

n 2-connected graphs can be solved in polynomial time. This

roblem also admits polynomial-time algorithms on graphs such

hat each block has at most two articulation vertices Alimonti and

alamoneri (1999) ; Chlebíková (1996) . In special, when the input

raph is k -connected, polynomial-time algorithms and other inter-

sting structural results have been obtained for BCP k by Ma and

a (1994) , Györi (1978) , and Lovász (1977) . Many other results on

he mentioned problems and variants have appeared in the lit-

rature Andersson, Gudmundsson, Levcopoulos, and Narasimhan

2002) ; Nakano, Rahman, and Nishizeki (1997) ; Soltan, Yannakakis,

nd Zussman (2020) .

Mixed integer linear programming formulations for BCP 2 were

roposed by Mati ́c (2014) and for min-max BCP k by Zhou et al.

2019) . Mati ́c also presented a VNS-based heuristic for BCP 2 , and

hou et al. devised a genetic algorithm for min-max BCP k . Both

orks reported on the computational results obtained with the
2
roposed formulations and heuristics. Such results indicate that

he solving method due to Zhou et al. outperforms the one showed

y Mati ́c, and, to the best of our knowledge, it is the fastest exact

lgorithm for BCP k described in the literature.

.2. Contributions

In this work, we advance the state of the art on exact algo-

ithms for BCP k . In Section 2 , we introduce a cut-based integer lin-

ar programming (ILP) formulation which models BCP k , and show

wo strong valid inequalities for this formulation. Polynomial-time

eparation routines for some of the proposed valid inequalities are

iscussed in Section 3 . These separation routines are implemented

n a branch-and-cut algorithm we have designed.

In Section 4 , we present a flow and a multicommodity flow

ased formulations for BCP k . Both formulations are compact, that

s, they have a polynomial number (on the size of the input graph)

f variables and constraints. All proposed formulations for BCP k

an be used to model min-max BCP k (and some other variants) just

y slightly changing the objective function. We discuss the details

f the implementations in Section 5 , and describe the set of test

nstances in Section 6 . Lastly, we report on computational exper-

ments in Section 7 . Our computational results show that the ex-

ct algorithms based on the proposed formulations outperform the

revious exact methods designed by Mati ́c (2014) , and Zhou et al.

2019) . Particularly, we are able to solve instances of size over 400

imes larger than the size of the largest instances solved by the ex-

ct algorithms described in the literature. Moreover, our algorithms

re on average 5 times faster than the previously known solving

ethods.

A short version of this work Miyazawa, Moura, Ota, and Wak-

bayashi (2020) containing preliminary experimental results was

ccepted for publication in the proceedings of the International

ymposium on Combinatorial Optimization (ISCO 2020). This paper

ontains an additional formulation, more details on the implemen-

ations, and further computational experiments, including experi-

ents on real-world instances.

. Cut-based formulation

In this section, we consider that (G, w) is an input for BCP k .

he ILP formulation we propose for BCP k , called C k (G, w) , or sim-

ly C, is based on the following central concept. Let u and v be two

on-adjacent vertices in a graph G . We say that a set S ⊆ V \ { u, v }
s a (u, v) - separator if u and v belong to different components

f G − S. We denote by �(u, v) the collection of all minimal (u, v) -
eparators in G . In the formulation, we use a binary variable x v ,i ,

or every v ∈ V and i ∈ [k] , that is set to one if and only if v belongs

o the i -th class.

ax
∑

v ∈ V
w (v) x v , 1

s.t.
∑

v ∈ V
w (v) x v ,i ≤

∑

v ∈ V
w (v) x v ,i +1 ∀ i ∈ [k − 1] , (1)

∑

i ∈ [k]
x v ,i ≤ 1 ∀ v ∈ V, (2)

x u,i + x v ,i −
∑

z∈ S
x z,i ≤ 1 ∀ u v / ∈ E, S ∈ �(u, v) , i ∈ [k] , (3)

x v ,i ∈ { 0 , 1 } ∀ v ∈ V and i ∈ [k] . (4)

Inequalities (1) impose a non-decreasing weight ordering of the

lasses. Inequalities (2) require that every vertex is assigned to at

F.K. Miyazawa, P.F.S. Moura, M.J. Ota et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; January 15, 2021;8:37]

m

a

i

e

L

s

h

d

c

c

a

t

b

c

s

B

c

t

w

P

W

T

m

P

P

P

[

f

s

t

t

t

o

t

t

s

i

n

h

s

P

a

w

t

x

P

{

t

(

T

a

a

b

l

P

v

m

o

[

t

i

P

p ∑
i

B

B

d

i

T

i

a

p

l

f

p

3

b

w

s

S

o

3

h

r

n

t

f

A

W

{

c

e

o

x̃

t

fi

d

e

c

c

m

ost one class. Inequalities (3) guarantee that every class induces

 connected subgraph.

In Section 3 , we show that the separation problem for inequal-

ties (3) can be solved in polynomial time. Thus, in view of the

quivalence of separation and optimization problems Grötschel,

ovász, and Schrijver (2012) , the linear relaxation of C can be

olved in polynomial time.

Because of (2) , feasible solutions of formulation C k (G, w) may

ave vertices not assigned to any of the k nonempty classes. To

eal with this, we introduce the following concept. We say that a

ollection V = { V i } k i =1
is a connected k -subpartition of G, if it is a

onnected k -partition of a subgraph (not necessarily proper) of G,

nd additionally, w (V i) ≤ w (V i +1) for all i ∈ [k − 1] .

Note that one can extend any optimal connected k -subpartition

o a connected k -partition with the same objective value. This can

e done by greedily putting unassigned vertices into the same

lass of one of its neighbors that belongs to a nonempty class (as-

ign first those which are at distance 1 and repeat the process).

For any connected k -subpartition V, we denote by ξ (V) ∈

nk the binary vector such that its non-null entries are pre-

isely ξ (V) v ,i = 1 for all i ∈ [k] and v ∈ V i (that is, ξ (V) denotes

he incidence vector of V). We now define the polytope associated

ith C k (G, w) as

 k (G, w) = conv { x ∈ B

nk : x satisfies inequalities (1) − (3)

of C k (G, w) } .
e next prove that formulation C k (G, w) correctly models BCP k .

hen, we present classes of valid inequalities that strengthen for-

ulation C k (G, w) .

roposition 1.

 k (G, w) = conv { ξ (V) ∈ B

nk : V is a connected k -subpartition

of G } .
roof. Consider first an extreme point x ∈ P k (G, w) . For each i ∈
 k] , we define the set of vertices U i = { v ∈ V : x v ,i = 1 } . It follows

rom inequalities (1) and (2) that U := { U i } k i =1
is a k -partition of a

ubgraph of G such that w (U i) ≤ w (U i +1) for all i ∈ [k − 1] . To prove

hat U is a connected k -subpartition, we suppose to the contrary

hat there exists i ∈ [k] such that G [U i] is not connected. Hence,

here exist vertices u and v belonging to two different components

f G [U i] . In this case, there is a minimal (u, v) -separator S such

hat S ∩ U i = ∅ . Thus, vector x violates inequalities (3) , a contradic-

ion.

To show the converse, consider now a connected k -

ubpartition V = { V i } k i =1
of G . Clearly, ξ (V) satisfies inequal-

ties (1) and (2) . Take a fixed i ∈ [k] . For every pair u, v of

on-adjacent vertices in V i , and every (u, v) -separator S in G, it

olds that S ∩ V i � = ∅ , because G [V i] is connected. Therefore, ξ (V)

atisfies inequalities (3) . �

The following inequalities dominate inequalities (3) of C(G, w) .

roposition 2. Let u and v be non-adjacent vertices of G, let S be

 minimal (u, v) -separator, and let i ∈ [k] . Let Z = { z ∈ S : w (P z) >

 (G) / (k − i + 1) } , where P z is a minimum-weight (u, v) -path in G

hat contains z. The following inequality is valid for P k (G, w) :

 u,i + x v ,i −
∑

s ∈ S\ Z
x s,i ≤ 1 . (5)

roof. Consider an extreme point x of P k (G, w) , and define V j =
 v ∈ V : x v , j = 1 } for each j ∈ [k] \ [i − 1] . Since x satisfies inequali-

ies (1) , it holds that

k − i + 1) w (V i) ≤
∑

j∈ [k] \ [i −1]

w (V j) ≤ w (G) .
3
hus, w (G) / (k − i + 1) is an upper bound for w (V i) . Hence, if u

nd v belong to V i , then there exists a vertex s ∈ S \ Z such that s

lso belongs to V i . Therefore, x satisfies inequality (5) . �

The next class of inequalities was inspired by a result proposed

y De Aragão and Uchoa (1999) for a connected assignment prob-

em.

roposition 3. Let q ≥ 2 be a fixed integer, and let S be a subset of

ertices of G containing q distinct pairs of vertices { s i , t i } , i ∈ [q] , all

utually disjoint. Let N(S) be the set of neighbors of S in V \ S. More-

ver, let σ : [q] → [k] be an injective function, and let I = { σ (i) : i ∈
 q] } . If there is no collection of q vertex-disjoint (s i , t i) -paths in G [S] ,

hen the following inequality is valid for P k (G, w) : ∑

 ∈ [q]

(
x s i ,σ (i) + x t i ,σ (i)

)
+

∑

v ∈ N(S)

∑

i ∈ [k] \ I
x v ,i ≤ 2 q + | N(S) | − 1 . (6)

roof. Suppose, to the contrary, that there exists an extreme

oint x of P k (G, w) that violates inequality (6) . Let A =

i ∈ [q]
(
x s i ,σ (i) + x t i ,σ (i)

)
and B =

∑

v ∈ N(S)

∑

i ∈ [k] \ I x v ,i . From inequal-

ties (2) , we have that A ≤ 2 q . Since x violates (6) , it follows that

 > | N(S) | − 1 . Thus, since x satisfies inequalities (2) , it follows that

 = | N(S) | . Hence, every vertex in N(S) belongs to a class that is

ifferent from those indexed by I. This implies that every class

ndexed by I contains precisely one of the q distinct pairs { s i , t i } .
herefore, there exists a collection of q vertex-disjoint (s i , t i) -paths

n G [S] , a contradiction. �

Kawarabayashi, Kobayashi, and Reed (2012) proved that, given

n n -vertex graph G and a set of q pairs of terminals in G, the

roblem of deciding whether G contains q vertex-disjoint paths

inking the given pairs of terminals can be solved in time O(n 2) ,

or a fixed value of q . Hence, inequalities (6) can be separated in

olynomial time when S = V .

. Separation algorithms

We implemented a branch-and-cut algorithm to solve the cut-

ased formulation that we introduced in Section 2 . In this section,

e describe the separation routines for inequalities (5) and for a

ubclass of inequalities (6) that are embedded in this algorithm. In

ection 7 , we report on the computational results obtained with

ur implementation.

.1. Connectivity inequalities

We focus first on the class of inequalities (3) of Section 2 ,

enceforth called connectivity inequalities . We address here its cor-

esponding separation problem: given a vector ˜ x ∈ R

nk , find con-

ectivity inequalities that are violated by ̃ x or prove that this vec-

or satisfies all such inequalities.

To tackle this problem, given the input graph G = (V, E) ,

or each i ∈ [k] , we define a digraph D i with capacities c i :

 (D i) → Q ≥ ∪ {∞} assigned to its arcs, in the following manner.

e set V (D i) = { v 1 , v 2 : v ∈ V } and A (D i) = A 1 ∪ A 2 , where A 1 =
 (u 2 , v 1) , (v 2 , u 1) : { u, v } ∈ E} and A 2 = { (v 1 , v 2) : v ∈ V } . We define

 i (a) = ̃

 x v ,i if a = (v 1 , v 2) ∈ A 2 ; and c i (a) = ∞ , otherwise. Note that

ach arc in D i with a finite capacity is associated with a vertex

f G . Now, for every pair of non-adjacent vertices u, v ∈ V such that

 u,i + ̃

 x v ,i > 1 , we find in D i a minimum (u 1 , v 2) -separating cut. If

he weight of such a cut is smaller than

˜ x u,i + ̃

 x v ,i − 1 , then it is

nite and the vertices of G associated with the arcs in this cut

efines a (u, v) -separator S in G that violates the connectivity in-

quality ̃ x u,i + ̃

 x v ,i −
∑

z∈ S ̃ x z,i ≤ 1 .

Given a (u, v) -separator S, let H u (resp. H v) be the connected

omponent of G − S containing u (resp. v). We now describe a pro-

edure to perform a lifting of the connectivity inequalities by re-

oving iteratively unnecessary vertices from S. First, we remove

F.K. Miyazawa, P.F.S. Moura, M.J. Ota et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; January 15, 2021;8:37]

e

t

c

t

S

d

G

j

n

e

t

t

t

s

w

i

i

h

a

3

g

e

4

t

i

s

x

i

t

t

B

m

a

l

i

F

o

e

m

s

b

C

fi

M

m

a

i

R

(

m

Fig. 1. An instance for BCP 2 and its unique optimal solution { V 1 , V 2 } of value 8,

where V 1 = { v 1 , . . . , v 5 } and V 2 = { v 6 , v 7 , v 8 } .

4

f

(

l

s

{

v

o

E

t

f

t

fl

s

c

s

w

a

n

i

t

m

m

a

m

s

p

v

a

a
very vertex z from S such that the neighborhood of z does not in-

ersect with H u and H v . Since removing a vertex from S changes the

omponents of G − S, we use a Union-Find data structure to update

he components. Then, we use Dijkstra’s algorithm to remove from

the set Z, as defined in Proposition 2 .

The time complexity to separate the connectivity inequalities

epends on the algorithm used to find a minimum cut. We use

oldberg’s preflow algorithm for maximum flow Goldberg and Tar-

an (1988) , whose time complexity is O(̃ n 2
√

˜ m) , for a digraph with

˜ vertices and ˜ m arcs. Thus, in the worst-case, checking for ev-

ry i ∈ [k] , and candidate pairs u, v in D i , the time complexity of

his separation algorithm is O(kn 4
√

n + m) .

Despite the high time complexity, we noted in the computa-

ional experiments that the number of fractional vertices is rela-

ively small. Thus, we perform arc contractions on all arcs of D i

uch that both of its endpoints correspond to vertices associated

ith variables of integer value. More precisely, an arc (u 2 , v 1) ∈ A 1

s contracted if ̃ x u,i = ̃

 x v ,i = 1 , and an arc (u 1 , u 2) ∈ A 2 is contracted

f ˜ x u,i = 1 . After such contractions, the resulting graphs usually

ave a small number of vertices and arcs, and so the proposed sep-

ration algorithm runs very quickly in practice.

.2. Cross inequalities

Now we turn to the separation of inequalities (6) on planar

raphs G = (V, E) , restricted to the case S = V . Consider a plane

mbedding of G, and let F be the boundary of a face with at least

 vertices and with no repeated vertices. Take four different ver-

ices in F , say s 1 , s 2 , t 1 , t 2 , in clockwise order. Since G is planar,

t does not contain vertex-disjoint paths P 1 and P 2 , with endpoints

 1 , t 1 and s 2 , t 2 , respectively. For S = V, inequalities (6) simplifies to

 s 1 ,σ (1) + x s 2 ,σ (2) + x t 1 ,σ (1) + x t 2 ,σ (2) ≤ 3 . We refer to these inequal-

ties as cross inequalities .

For the separation problem of the cross inequalities induced by

he vertices in F , where | V (F) | = f, we implemented a O(f k 2)

ime complexity algorithm (the same complexity mentioned by

arboza (1997) , without providing much detail; the algorithms

ay possibly be different). Next, we give more details on this sep-

ration algorithm.

Let ̃ x ∈ R

nk be a fractional solution of formulation C. Consider a

inear ordering of the vertices in F which is obtained by travers-

ng its vertices in clockwise order from an arbitrary fixed vertex.

or every j ∈ [f] , we denote by F (j) the jth vertex of F in such

rdering. Furthermore, we define matrices L and R such that, for

ach j ∈ [f] and each i ∈ [k] , L (j, i) = max j ′ ∈ [j] { ̃ x F (j ′) ,i } and R (j, i) =
ax j ′ ∈ [f] \ [j−1] { ̃ x F (j ′) ,i } . In other words, L (j, i) (resp. R (j, i)) corre-

ponds to the maximum value in an entry of ˜ x indexed by i and

y a vertex that appears before (resp. after) F (j) in the ordering.

learly, the construction of L and R takes time O(f k) .

For every j ∈ [f] \ { 1 } , and every i 1 , i 2 ∈ [k] with i 1 � = i 2 , we de-

ne:

(j, i 1 , i 2) =

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

˜ x F (1) ,i 1 + ̃

 x F (2) ,i 2 , if j = 2 ,

max { M(j − 1 , i 1 , i 2) ;

L (j − 1 , i 1) + ̃

 x F (j) ,i 2 } , otherwise .

Note that, given j ≥ 2 and i 1 , i 2 ∈ [k] , M(j, i 1 , i 2) is the maxi-

um value of ̃ x F (j 1) ,i 1
+ ̃

 x F (j 2) ,i 2
for all j 1 , j 2 ∈ [j] with j 1 < j 2 . Our

lgorithm works as follows: for every j ∈ { 3 , . . . , f − 1 } and every

 1 , i 2 ∈ [k] with i 1 � = i 2 , it checks whether M(j − 1 , i 1 , i 2) + ̃

 x F (j) ,i 1
+

 (j + 1 , i 2) > 3 , that is, whether there is a violated cross inequality

w.r.t. F) such that σ (1) = i 1 , σ (2) = i 2 and t 1 = F (j) . Clearly, one

ay also keep track of the violated inequalities.
4
. Flow-based formulations

We present in this section a mixed integer linear programming

ormulation for BCP k based on flows in a digraph. Given an input

G, w) for BCP k , with G = (V, E) , we construct a digraph D as fol-

ows. First, we replace every edge of G with two arcs with the

ame endpoints and opposite directions; then we add a set S =

 s 1 , . . . , s k } of k new vertices (sources), and add an arc from each

ertex in S to each vertex of G . More formally, the vertex set

f D is V (D) = V ∪ S and its arc set is A (D) = { (u, v) , (v , u) : { u, v } ∈
} ∪ { (s i , v) : i ∈ [k] , v ∈ V } .

In Fig. 2 (a) we illustrate the construction of the digraph D for

he instance (G, w) of BCP 2 shown in Fig. 1 . The idea behind the

ormulation is the following. In the digraph D we impose that, al-

ogether, the k sources in S distribute a total of w (G) amount of

ow to the other vertices. Moreover, we impose that every non-

ource vertex v receives flow only from a single vertex of D and

onsumes w (v) of the received flow. In this way, we have that each

ource s i sends a positive flow to a single non-source vertex, which

ill in turn spread to other vertices defining precisely the vertices

ssigned to the i th class of the partition. (See Fig. 2 (b).)

To model this idea, with each arc a ∈ A (D) , we associate a non-

egative real variable f a that represents the amount of flow pass-

ng through a, and a binary variable y a (such that y a = 1 if f a > 0)

hat allow us to impose that flows from different sources do not

ix. We denote by F k (G, w) , or simply F , the corresponding for-

ulation. In this formulation, the notation y (A

′) (resp. f (A

′)) for

rc sets A

′ ⊆ A (D) stands for
∑

a ∈ A ′ y a (resp.
∑

a ∈ A ′ f a).

ax f (δ+ (s 1))

s.t. f (δ+ (s i)) ≤ f (δ+ (s i +1)) ∀ i ∈ [k − 1] , (7)

f (δ−(v)) − f (δ+ (v)) = w (v) ∀ v ∈ V, (8)

f a ≤ w (G) y a ∀ a ∈ A (D) , (9)

y (δ+ (s i)) ≤ 1 ∀ i ∈ [k] , (10)

y (δ−(v)) ≤ 1 ∀ v ∈ V, (11)

y a ∈ { 0 , 1 } ∀ a ∈ A (D) , (12)

f a ∈ R ≥ ∀ a ∈ A (D) . (13)

Inequalities (7) impose that the flows sent by

ources s 1 , s 2 , . . . , s k are in a non-decreasing order. This ex-

lains the objective function. Inequalities (8) guarantee that each

ertex v ∈ V consumes w (v) of the flow that it receives. By (9) ,

 positive flow can only pass through arcs that are chosen (arcs

 for which y (a) = 1). Inequalities (10) impose that from every

F.K. Miyazawa, P.F.S. Moura, M.J. Ota et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; January 15, 2021;8:37]

Fig. 2. (a) Digraph D obtained from the input graph (G, w) shown in Fig. 1 , now with weights at the vertices, w (G) = 17 . (b) An optimal solution for formulation F 2 (G, w)

in which only arcs with non-zero flow (shown on their side) are indicated.

Fig. 3. A police patrolling instance, based on the map of the University of Campinas

campus, and an optimal solution for k = 3 . The radius of each vertex is proportional

to its weight; the vertices in the lightest class are colored red.

s

s

v

s

s

a

V

a

w

n

s

o

m

l

v

t

t

c

d

w

o

o

a

o

t

t

fl

m

t

u

b

a

4

i

t

c

V

A

M

v

c

r

o

e

(

c

c

o

e

u

v

l

i

t

a

i

v

i

e

m

s

s

m

ource s i at most one arc leaving it transports a positive flow to a

ingle vertex in V . Inequalities (11) require that every non-source

ertex receives a positive flow from at most one vertex of D .

Because of inequalities (11) , the flows sent by any two distinct

ources do not pass through a same vertex. That is, if a source s i
ends an amount of flow, say w i , this amount w i is distributed to

 subset of vertices, say V i (with total weight w i); and all subsets

 i , for i ∈ [k] , are mutually disjoint (each one being defined by an

rborescence rooted at s i). Moreover, w i is exactly the sum of the

eights of the vertices that receive flow from s i , and G [V i] is a con-

ected subgraph of G . By summing up the inequalities (8) we can

ee that the k sources, altogether, distribute a total of w (G) amount

f flow.

We note that, in a feasible solution, vertices with weight zero

ay possibly do not receive any flow, and thus they may not be-

ong to any of the k arborescences. If this happens, each such a

ertex can be added to one of the classes found by the formula-

ion (including first those at distance 1 to one of the classes, then

he remaining ones with the same procedure w.r.t. the connected

lasses that are obtained). This inclusion leads to a solution that

efines a connected k -partition as desired, without increasing the

eight of each class. It follows from these remarks that a solution

btained with formulation F k (G, w) leads to a solution of BCP k .

The proposed formulation has a total of 2 nk + 4 m variables (half

f them binary), and only O(n + m + k) constraints, where n = | V |
nd m = | E| . Possibly, some of its drawbacks are the large amount

f symmetric solutions and the dependency of inequalities (9) on

he weights assigned to the vertices. To overcome such disadvan-
5
ages, we introduce in the next section another model based on

ows that considers a total order of the vertices to avoid sym-

etries and uncouples the weights assigned to the vertices from

he flow circulating in the digraph. As one may expect, such model

ses additional variables and constraints. However, its size is still

ounded by a polynomial function on the size of the input graph

nd k .

.1. Asymmetric flow-based formulation

Our second compact formulation for BCP k is also based on flows

n a digraph D, this time used in a different way, independent from

he vertex-weights. Given an input (G, w) , where G = (V, E) , we

onstruct a digraph D with a single source s, as follows. We have

 (D) = V ∪ { s } and

 (D) = { (u, v) , (v , u) : { u, v } ∈ E} ∪ { (s, v) : v ∈ V } .
oreover, we assume there is a total ordering � defined on the

ertices of G .

In this formulation, we consider flows of type i, for each i ∈ [k] ,

orresponding to the classes i ∈ [k] (that they will define). We use

eal variables f a,i for a ∈ A (D) and i ∈ [k] , where f a,i is the amount

f flow of type i that passes through arc a : if non-zero and both

nds of arc a are distinct from s, then these ends belong to class i

of the subpartition). Basically, a class i with vertex set, say V i , will

onsist of an arborescence
−→

T i rooted at a vertex, which will re-

eive a flow of value | V i | from s . Then, this root consumes one unit

f flow and sends | V i | − 1 amount of flow to its neighbors; then

ach of the vertices that receives a non-null flow consumes one

nit of flow and sends the remaining flow to its neighbors, until

ertices that receive one unit of flow are reached (they become

eaves of the arborescence). The ordering of the vertices is used to

mpose that, among the vertices of each arborescence, the root is

he smallest one (this helps breaking symmetries).

To control the spreading of the flows, we also use binary vari-

bles y a,i , for a ∈ A (D) and i ∈ [k] , such that y a,i = 1 if and only if

n arc a a non-null flow of type i passes through it. Using these

ariables, we are able to write restrictions to impose an ordering

n the classes, according to their weights, being class 1 the light-

st one (which explains the objective function). In the next for-

ulation, the notation y (A

′ , i) (resp. f (A

′ , i)) for arc sets A

′ ⊆ A (D)

tands for
∑

a ∈ A ′ y a,i (resp.
∑

a ∈ A ′ f a,i). We denote by F

′
k (G, w) , or

imply, F

′ , the corresponding formulation.

ax
∑

v ∈ V (D)

w (v) y (δ−(v) , 1)

s.t.
∑

v ∈ V
w (v) y (δ−(v) , i) ≤

∑

v ∈ V
w (v) y (δ−(v) , i + 1) ∀ i ∈ [k − 1] ,

(14)

F.K. Miyazawa, P.F.S. Moura, M.J. Ota et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; January 15, 2021;8:37]

c

Q

w

i

a

A

o

l

s

ρ

τ

P

P

e

a

T

o

t

a

m

i

l

a

p

w

a

m

o

i

f

t

e

a

o

i

i

t

c

5

I

a

g

b

e

a

t

s

t

t

G

M

p

T

t

r

t

s

t

5

o

a

t∑

i

H

s

e

W

e

f

t

t

t

5

b

t

y (δ+ (s) , i) ≤ 1 ∀ i ∈ [k] , (15)

∑

i ∈ [k]
y (δ−(v) , i) ≤ 1 ∀ v ∈ V, (16)

y s v ,i + y (δ−(u) , i) ≤ 1 ∀ u, v ∈ V, v � u, i ∈ [k] , (17)

f a,i ≤ n y a,i ∀ a ∈ A (D) , i ∈ [k] , (18)

f (δ+ (v) , i) ≤ f (δ−(v) , i) ∀ v ∈ V, i ∈ [k] , (19)

∑

i ∈ [k]
f (δ−(v) , i) −

∑

i ∈ [k]
f (δ+ (v) , i) = 1 ∀ v ∈ V, (20)

y a,i ∈ { 0 , 1 } ∀ a ∈ A (D) , i ∈ [k] , (21)

f a,i ≥ 0 ∀ a ∈ A (D) , i ∈ [k] . (22)

To show that F

′
k (G, w) indeed models BCP k correctly, let us

onsider the following polytope.

 k (G, w) = conv { (y , f)

∈ B

(n +2 m) k × R

(n +2 m) k : (y, f) satisfies (14) − (22) } .
Let V be a connected k -subpartition of G such that w (V i) ≤

 (V i +1) for all i ∈ [k − 1] . Then, for each integer i ∈ [k] , there ex-

sts in D an arborescence
−→

T i rooted at r i such that V (
−→

T i) = V i
nd v � r i for all v ∈ V i \ { r i } . Now, let g i be the function g i :

 (
−→

T i) ∪ { (s, r i) } → R ≥ defined as follows: g i ((u, v)) = 1 if v is a leaf

f
−→

T i , and g i ((u, v)) = 1 +

∑

(v ,z) ∈ A (−→

T i)
g i ((v , z)) , otherwise. It fol-

ows from this definition that g i ((s, r i)) = | V i | .
We now define vectors ρ(V) ∈ B

(n +2 m) k and τ (V) ∈ R

(n +2 m) k

uch that, for every arc a ∈ A (D) and i ∈ [k] , we have

(V) a,i =

{
1 , if a ∈ A (

−→

T i) ∪ { (s, r i) }
0 , otherwise,

(V) a,i =

{
g i (a) , if a ∈ A (

−→

T i) ∪ { (s, r i) }
0 , otherwise.

We are now ready to prove the claimed statement on Q k (G, w) .

roposition 4. The polytope Q k (G, w) is precisely the polytope

conv { (ρ(V) , τ (V)) ∈ B

(n+2m)k × R

(n+2m)k : V is a connected

k -partition of G } .
roof. Let (y, f) be an extreme point of Q k (G, w) ; and for ev-

ry i ∈ [k] , let U i = { v ∈ V : y (δ−(v) , i) = 1 } . Inequalities (15) guar-

ntee that, for each type i, at most one arc leaving s is chosen.

herefore, we have that { U i } i ∈ [k] is a connected k -partition of G .

Inequalities (16) impose that, for every vertex v ∈ V, at most

ne of the arcs entering it is chosen. Observe that inequali-

ies (18) force that a flow of type i can only pass through an

rc of type i if this arc is chosen. Hence, every vertex receives at

ost one type of flow from its in-neighbors. Furthermore, inequal-

ties (19) and (20) guarantee that the flow that enters a vertex and

eaves it are of the same type, and that each vertex consumes ex-

ctly one unit of such flow.

To prove the converse, let V = { V i } i ∈ [k] be a connected k -

artition of G . We assume without loss of generality that w (V i) ≤
 (V i +1) for all i ∈ [k − 1] . Let (y, f) be a vector such that y = ρ(V)

nd f = τ (V) . For each i ∈ [k] , every vertex in

−→

T i has in-degree at

ost one, and r is the smallest vertex in V (
−→

T) with respect to the
i i

6
rder �. Thus, inequalities (16) and (17) hold for y . From the def-

nition of ρ(V) , the entry of y indexed by (s, r i) and i equals one,

or all i ∈ [k] . Consequently, y also satisfies inequalities (15) . Recall

hat g i ((s, r i)) = | V i | for every i ∈ [k] . This clearly implies that in-

qualities (18) are satisfied by (y, f) .

Note that, for every i ∈ [k] , the function g i assigns to each

rc (u, v) ∈ A (
−→

T i) ∪ { (s, r i) } the value one plus the sum of the sizes

f the sub-arborescences of
−→

T i rooted at the out-neighbors of v
n

−→

T i . Hence, inequalities (19) and (20) hold for y . Finally, inequal-

ties (14) are satisfied, as we assumed that the elements of par-

ition V are in a non-decreasing order of weights. Therefore, we

onclude that (y, f) belongs to Q k (G, w) . �

. Implementation details

The computational experiments were carried out on a PC with

ntel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz, 40 cores, 64 GB RAM

nd Ubuntu 18.04.2 LTS. The code was written in C ++ using the

raph library Lemon (Dezs ̋o, Jüttner, & Kovács, 2011).

We implemented a branch-and-cut algorithm to solve the cut-

ased formulation C using SCIP Optimization Suite 6.0 (Gleixner

t al., 2018) and Gurobi 9.0 as the LP solver. Unlike Gurobi, SCIP

llows for multiple rounds of cut generation in non-root nodes of

he branch-and-bound tree. Moreover, it has built-in routines for

eparating the lifted minimal cover inequalities, and supports cus-

omized domain propagation routines. We give more details about

hese features later in this section.

We implemented branch-and-bound algorithms (using only

urobi 9.0) to solve our flow-based formulations F and F

′ . Since

ati ́c (2014) and Zhou et al. (2019) implementations were not

ublicly available, we also implemented their models using Gurobi.

his way, we executed all the experiments in the same computa-

ional environment.

Due to small improvements in the preliminary experiments, we

eplace inequalities (1), (7) and (14) with equalities. Furthermore,

o evaluate the performance of the mentioned formulations, all

tandard cuts used by SCIP and Gurobi are deactivated, except for

he lifted minimal cover inequalities.

.1. Cover inequalities

Consider an input instance (G, w) of BCP k . As we have previ-

usly mentioned, the following inequalities are valid for P k (G, w)

nd may be easily derived from constraints (1) of formula-

ion C k (G, w) .

v ∈ V
w (v) x v ,i ≤

w (G)

k − i + 1

, ∀ i ∈ [k − 1] . (23)

Note that, for each i ∈ [k − 1] , the corresponding inequal-

ty (23) defines a knapsack problem of budget w (G) / (k − i + 1) .

ence, we can take advantage of the extensive work regarding

trong inequalities for the 0 / 1 knapsack polytope as follows. For

ach inequality of class (23) , we use the heuristics mentioned by

olter (2006) to separate lifted minimal cover inequalities and

xtended weight inequalities. Such valid inequalities are obtained

rom a sequence of up- and down-lifting operations on inequali-

ies that are valid for projections of the initial 0 / 1 knapsack poly-

ope. For more details about this procedure, the reader is referred

o Wolter’s thesis.

.2. Domain propagation

Suppose that our algorithm is currently exploring a node in the

ranch-and-bound tree, domain propagation refers to the technique

hat tries to tighten the variable bounds based on the domain of

F.K. Miyazawa, P.F.S. Moura, M.J. Ota et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; January 15, 2021;8:37]

t

t

s

p

m

s

T

(

m

a

e

t

F

t

t

d

a

e

v

r

p

6

g

Z

p

g

g

f

t

t

d

e

(

t

E

a

n

(

r

r

r

p

s

t

p

O

g

t

2

t

P

Y

P

C

n

g

a

p

b

p

Q

c

s

W

w

fi

T

w

T

p

G

o

C

7

o

n

t

i

f

r

c

c

e

b

a

t

w

b

p

a

r

s

t

t

(

i

c

o

1

t

o

t

c

e

c

fl

t

Section 7.1 .

1 https://www.loco.ic.unicamp.br/files/instances .
he variables in the current node. When a complete description of

he problem formulation is available to the solver, the solver it-

elf can reduce the domain of the variables. However, when im-

lementing a branch-and-cut algorithm, for example, the solver

ay not be able to effectively reduce the domain of the variables,

ince only a small part of the inequalities might be available to it.

hus, based on the work of Hojny, Joormann, Lüthen, and Schmidt

2020) , we implemented an algorithm to effectively reduce the do-

ains of the variables of formulation C.

For completeness, we now briefly describe the domain prop-

gation technique (see Hojny et al. (2020) for more details). For

very j ∈ [k] , let F j ⊆ V be the set of vertices fixed on class j in

he current node of the branch-and-bound tree; in other words,

 j = { v ∈ V : x v , j = 1 } . Let us fix i ∈ [k] and assume F i � = ∅ . Consider

he graph G i = G

[
V \ (⋃

i ′ ∈ [k] \{ i } F i ′
)]

, that is, G i is the graph ob-

ained from G by removing the vertices that were fixed in classes

istinct from i . Let { C j } j∈ [t] be the connected components of G i ,

nd suppose, without loss of generality, that F i ∩ V (C t) � = ∅ . Now for

very vertex u ∈ V (C j) , with j ∈ [t − 1] , we either set x u,i = 0 ; or, if

ariable x u,i was already fixed to one, we consider that the cur-

ent branch-and-bound node is infeasible and therefore it can be

runed.

. Benchmark instances

Computational experiments on instances consisting of grid

raphs and random connected graphs are reported in Mati ́c (2014) ;

hou et al. (2019) . In this work, besides considering instances

reviously proposed in the literature, we also considered larger

raphs, different weight distributions and real world instances.

The grid instances are named in the format

g_height_width_ [a|b]. The random instances are named in the

ormat rnd_n_m_ [a|b], where n is the number of vertices and m is

he number of edges in the graph. In both cases, a and b indicate

he intervals in which the weights (all integers) are uniformly

istributed: a = [1 , 100] and b = [1 , 500] .

To generate a random connected graph with n vertices and m

dges (with m > n − 1), we first use Wilson’s algorithm Wilson

1996) to generate a random spanning tree T on n vertices, and

hen add m − n + 1 distinct new edges randomly selected from

(K n) \ E(T) with uniform probability. Wilson’s algorithm returns

 spanning tree T sampled from the set τn — of all possible span-

ing trees of K n — with probability 1 / | τn | .
For the experiments, for each format indicated in the tables

considered a graph class), we generated 10 random instances. The

andomness of grid instances refers to the their weights, and of

andom graphs refers to the graphs and the weights.

Finally, we also considered instances for BCP k coming from a

eal-world application, namely demarcation of preventive police

atrol areas (Assunção & Furtado, 2008). This problem consists in

ubdividing a given map into k contiguous regions with roughly

he same crime rate (in order to balance the work load of k police

atrol teams).

Using OSMnx (Boeing, 2017) library, we transformed maps from

penStreetMap (https://www.openstreetmap.org) into undirected

raphs. The edges in the graphs generated by OSMnx corresponds

o sections of the streets. As some edges may be too “long” (over

00meters), we subdivide these long edges into smaller edges so

hat the length of each edge is limited to 200 meters.

Working with the Socrata Open Data API, we downloaded the

ublic Safety data for the cities of Chicago, Los Angeles and New

ork; and using the transparency website of the Department of

ublic Safety of São Paulo, we downloaded data for the city of

ampinas. The police patrolling instances that we generated have

ames in the format name_n_m , where name refers to the geo-

raphic region, n = | V | and m = | E| .
7
For each vertex v of a graph generated from a map, we assign

 weight proportional to the crime rate geographically close to the

oint in the map associated with v . More precisely, let G = (V, E)

e a graph corresponding to a region of a city and C be a set of

oints of this region where crimes have occurred. Let d : C × V →

 ≥ be a function that computes the distance (in meters) of a

rime to a vertex, and f : R → R be the normal probability den-

ity function with mean μ = 0 and standard deviation σ = 0 . 5 .

e consider that a crime has influence on the vertices that are

ithin a radius of 200 m from it. So, for each point c ∈ C, we de-

ne V c = { v ∈ V : d(c, v) ≤ 200 } , and let F c =

∑

v ∈ V c f (d(c, v) / 200) .

hen, for each vertex v ∈ V, we set its weight as

 (v) =

⌊

10 0

∑

c: v ∈ V c

f (d(c, v) / 20 0)

F c

⌋

.

he formula we have used to assign weights to the vertices ex-

resses the idea that the influence of a crime over a region is a

aussian distribution on the distance to the crime.

The generated instances are available at the website of the Lab-

ratory of Optimization and Combinatorics at the University of

ampinas 1 .

. Computational results

The running time limit for our experiments was set to 1800 sec-

nds. In the following tables, we show the average number of

odes explored in the branch-and-bound tree (column Nodes) and

he average time, in seconds, to solve the instances (column Time),

gnoring the unsolved instances. When the time limit is exceeded

or all 10 instances of a graph class, we use a dash (-) in the cor-

esponding table entry. In a row, when all 10 instances of a graph

lass could be solved, the (average) time that is minimum is indi-

ated in boldface. Similarly, when the number of nodes that were

xplored is minimum, we underline the corresponding value.

Henceforth, when we refer to any of the formulations, it should

e understood that we are referring to the corresponding exact

lgorithms that we have implemented for them. Thus, cut refers

o the branch-and-cut algorithm for the cut-based formulation C,

hile flow and flow2 refer to the corresponding branch-and-

ound algorithms for the flow-based formulations F and F

′ .
We omit the results for flow2 because, according to our ex-

eriments, it is (on average) over 10 times slower than flow . We

lso omit the results obtained with the branch-and-bound algo-

ithm for Mati ́c’s formulation since it was, on average, four times

lower than Zhou et al. Furthermore, it solved fewer instances than

he other implemented algorithms.

In Table 1 we show the impact of separating cross inequali-

ies. cut-cross refers to cut with the cross inequalities. Conn Cuts

resp. Cross Cuts) show the number of connectivity (resp. cross)

nequalities separated by the algorithm. We note that, on average,

ut-cross was much faster than cut on all grid instances. More-

ver, only cut-cross was able to solve all instances with more than

00 vertices within the time limit.

However, as it can be seen in Table 2 , flow had better execu-

ion times than cut-cross on most of the grid instances. More-

ver, on grids with over 100 vertices, Mati ́c and Zhou formula-

ions were not able to solve the majority of the instances, while

ut-cross and flow solved all of them. Examining carefully the

xperimental results, we noted that, when the optimal solution

osts deviates reasonably from the trivial upper bound of w (G) /k,

ow frequently fails to find a provably optimal solution within the

ime limit. A more in-depth analysis of this behavior is provided in

https://www.openstreetmap.org
https://www.loco.ic.unicamp.br/files/instances

F.K. Miyazawa, P.F.S. Moura, M.J. Ota et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; January 15, 2021;8:37]

Table 1

Computational results for BCP 2 on grid graphs showing the efficiency of the cross inequali-

ties.

Instance cut cut-cross

Sol Conn Cuts Time Sol Conn Cuts Cross Cuts Time

gg_05_05_a 10 3504 0.50 10 449 478 0.15

gg_05_05_b 10 24,252 3.32 10 2817 3841 0.84

gg_05_06_a 10 6184 0.80 10 1056 1286 0.32

gg_05_06_b 10 21,125 2.76 10 3311 4536 1.02

gg_05_10_a 10 44,635 5.63 10 2187 2147 0.55

gg_05_10_b 10 67,926 9.37 10 3776 3884 1.10

gg_05_20_a 6 2,821,710 521.39 10 9578 8768 2.43

gg_05_20_b 10 1,836,157 325.73 10 23,832 23,613 6.47

gg_07_07_a 10 41,279 6.84 10 2128 2220 0.78

gg_07_07_b 10 184,730 30.99 10 3035 3647 1.29

gg_07_10_a 10 301,289 57.34 10 2154 1942 0.81

gg_07_10_b 10 427,441 87.24 10 5954 6243 2.69

gg_10_10_a 10 1,373,429 389.42 10 2987 2432 1.20

gg_10_10_b 9 1,289,465 370.06 10 3652 3343 2.12

gg_15_15_a 0 - - 10 13,032 7371 8.97

gg_15_15_b 0 - - 10 15,411 10,182 13.88

Table 2

Computational results for BCP 2 on grid graphs.

Instance cut-cross flow Zhou et al.

Sol Nodes Time Sol Nodes Time Sol Nodes Time

gg_05_05_a 10 56 0.15 10 919 0.09 10 2564 0.45

gg_05_05_b 10 913 0.84 10 320,162 19.17 10 7341 1.22

gg_05_06_a 10 189 0.32 10 460 0.07 10 1843 0.43

gg_05_06_b 10 844 1.02 10 1592 0.13 10 4454 0.91

gg_05_10_a 10 151 0.55 10 500 0.15 10 12,542 3.27

gg_05_10_b 10 468 1.10 10 806 0.17 10 18,258 5.13

gg_05_20_a 10 246 2.43 10 454 0.25 2 116,374 42.32

gg_05_20_b 10 950 6.47 10 1146 0.34 4 2,221,308 522.95

gg_07_07_a 10 200 0.78 10 645 0.14 10 10,346 2.66

gg_07_07_b 10 497 1.29 10 784 0.18 10 15,657 3.60

gg_07_10_a 10 136 0.81 10 366 0.16 10 529,336 116.87

gg_07_10_b 10 650 2.69 10 1304 0.29 9 400,859 66.10

gg_10_10_a 10 100 1.20 10 186 0.20 6 1,472,514 396.10

gg_10_10_b 10 301 2.12 10 905 0.36 5 544,515 141.69

gg_15_15_a 10 125 8.97 10 184 0.40 0 - -

gg_15_15_b 10 458 13.88 10 696 0.59 0 - -

(

t

l

t

f

t

b

s

o

f

f

v

s

n

b

w

t

o

t

i

a

m

c

m

b

n

i

(

s

o

l

b

o

p

e

a

s

t

7

m

c

W

Table 3 shows that both of our formulations are also faster

on average) on random graphs instances. Moreover, the execution

ime for cut was better than flow on some instances. A closer

ook at the number of vertices and edges of the instances, revealed

hat the density of edges of the input graphs was a crucial factor

or the performance of both algorithms. In order to further explore

his observation, we generated random graphs with a larger num-

er of vertices (n = 500 and n = 1000) and different values of den-

ity (m = n α, where α ∈ { 1 . 1 , 1 . 2 , 1 . 3 , 1 . 4 , 1 . 5 }). The experiments

n these instances are shown in Table 4 and indicate that cut per-

orms better than flow when m ≥ n 1 . 2 . One possible explanation

or these results is that, in such dense instances, as many pairs of

ertices are adjacent, the algorithm might spend less time in the

eparation routines since the connectivity inequalities are only for

on-adjacent pairs of vertices (see inequalities (3)). Another possi-

ility is that the flow-based formulation F has variables associated

ith the edges of the input graph, which means that this formula-

ion has additional symmetries for all the different spanning trees

f the classes.

In our experiments, flow was the only algorithm able to solve

he police patrolling instances within the time limit. As Table 5

ndicates, the problem becomes much harder to solve when k > 2 .

The experiments that we carried out for k > 2 on grid graphs

nd random graphs are shown in Table 6 . To compare with the for-

ulation due to Zhou et al. (2019) , designed for min-max BCP k , we

onsidered our cut-based and flow-based formulations with min-
o

8
ax objective (i.e. minimizing the weight of the k th class), denoted

y cut (min-max) and flow (min-max). Since cut (min-max) was

ot able to solve most of the tested instances within the time limit,

ts running times are omitted. We remark that the unique instance

out of 10) that Zhou et al.’s branch-and-bound solved in 508.93

econds, flow solved in 388.67 seconds (and additionally solved

ther 5 instances).

Table 7 shows some instances consisting of grid graphs with

arge number of vertices, and different weight distributions (a and

), that could only be solved by flow .

Our computational experiments show that the algorithms based

n the formulations we presented in this work substantially out-

erform the algorithms based on the previous models in the lit-

rature. On most of the tested instances, flow had the best aver-

ge running time. On the other hand, cut explored (on average) a

maller number of nodes in the branch-and-bound tree, and it is

he fastest on instances consisting of dense graphs.

.1. Integrality gap

To evaluate the strength of ILP and MILP formulations it is com-

on to compare the cost of optimal (integral) solutions with the

ost of optimal solutions of the corresponding linear relaxations.

e now briefly discuss about the quality of the linear relaxation

f formulations C and F .

F.K. Miyazawa, P.F.S. Moura, M.J. Ota et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; January 15, 2021;8:37]

Table 3

Computational results for BCP 2 on random graphs.

Instance cut flow Zhou et al.

Sol Nodes Time Sol Nodes Time Sol Nodes Time

rnd_50_70_a 10 201 0.57 10 256 0.08 10 958 0.46

rnd_50_70_b 10 847 1.89 10 928 0.12 10 1872 0.65

rnd_50_100_a 10 46 0.16 10 203 0.10 10 399 0.43

rnd_50_100_b 10 251 0.51 10 683 0.16 10 648 0.45

rnd_50_400_a 10 15 0.05 10 11 0.18 10 58 1.07

rnd_50_400_b 10 129 0.24 10 11 0.19 10 177 1.52

rnd_70_100_a 10 121 0.69 10 119 0.09 10 1185 0.78

rnd_70_100_b 10 389 1.56 10 876 0.21 10 1710 0.79

rnd_70_200_a 10 13 0.07 10 23 0.14 10 156 0.97

rnd_70_200_b 10 168 0.40 10 66 0.17 10 357 0.85

rnd_70_600_a 10 10 0.06 10 1 0.21 10 19 1.90

rnd_70_600_b 10 71 0.20 10 12 0.27 10 160 2.28

rnd_100_150_a 10 244 1.84 10 206 0.20 10 1918 2.06

rnd_100_150_b 10 1614 9.46 10 531 0.25 10 1711 1.77

rnd_100_300_a 10 30 0.20 10 69 0.21 10 247 1.44

rnd_100_300_b 10 91 0.39 10 57 0.23 10 565 2.32

rnd_100_800_a 10 3 0.04 10 1 0.30 10 29 3.29

rnd_100_800_b 10 41 0.18 10 83 0.35 10 71 3.01

rnd_200_300_a 10 80 2.35 10 519 0.41 10 1951 7.04

rnd_200_300_b 10 397 8.96 10 849 0.49 10 2857 10.71

rnd_200_600_a 10 14 0.35 10 356 0.56 10 728 9.65

rnd_200_600_b 10 107 1.02 10 515 0.62 10 995 9.81

rnd_200_1500_a 10 1 0.06 10 1 0.64 10 3 7.34

rnd_200_1500_b 10 8 0.13 10 303 1.05 10 241 14.85

rnd_300_500_a 10 62 5.08 10 732 0.72 10 2811 28.61

rnd_300_500_b 10 303 8.88 10 1029 0.84 10 3629 21.84

rnd_300_1000_a 10 8 0.47 10 614 1.07 10 982 20.34

rnd_300_1000_b 10 57 1.08 10 1113 1.39 10 1030 19.75

rnd_300_2000_a 10 1 0.10 10 1 1.05 10 35 25.69

rnd_300_2000_b 10 28 0.60 10 754 1.90 10 54 80.63

Table 4

Computational results for BCP 2 on dense random graphs.

Instance cut flow

m Sol Nodes Time Sol Nodes Time

rnd_500_931_a n 1 . 1 10 35 12.41 10 1397 2.01

rnd_500_931_b n 1 . 1 10 309 26.86 10 1100 1.67

rnd_500_1733_a n 1 . 2 10 7 1.16 10 1243 2.98

rnd_500_1733_b n 1 . 2 10 42 2.58 10 2101 3.45

rnd_500_3226_a n 1 . 3 10 2 0.31 10 99 2.17

rnd_500_3226_b n 1 . 3 10 22 0.79 10 495 3.72

rnd_500_6005_a n 1 . 4 10 1 0.30 10 42 4.74

rnd_500_6005_b n 1 . 4 10 9 0.77 10 1257 13.55

rnd_500_11180_a n 1 . 5 10 1 0.53 10 40 3.08

rnd_500_11180_b n 1 . 5 10 4 0.86 10 1666 23.59

rnd_1000_1995_a n 1 . 1 10 31 54.04 10 2163 6.48

rnd_1000_1995_b n 1 . 1 10 64 77.14 10 2726 6.27

rnd_1000_3981_a n 1 . 2 10 12 4.56 10 1942 14.19

rnd_1000_3981_b n 1 . 2 10 12 5.29 10 3545 20.95

rnd_1000_7943_a n 1 . 3 10 1 0.91 10 800 24.32

rnd_1000_7943_b n 1 . 3 10 1 0.88 10 2891 48.37

rnd_1000_15849_a n 1 . 4 10 1 1.13 10 148 27.59

rnd_1000_15849_b n 1 . 4 10 1 1.08 10 10,155 134.55

rnd_1000_31623_a n 1 . 5 10 1 1.94 10 523 58.47

rnd_1000_31623_b n 1 . 5 10 1 1.98 10 2343 144.46

Table 5

Performance of flow to solve BCP k on police patrolling instances when k ∈ { 2 , 3 , 4 , 5 , 6 } .
Instance 2 3 4 5 6

barao_1913_2752 7.31 429.72 - - -

campinas_centro_579_942 6.60 159.88 - - -

chicago_englewood_1560_2579 8.18 118.24 - - -

chicago_lakeview_1004_1563 3.43 34.73 251.97 - -

chicago_loop_624_971 1.93 31.13 459.44 - -

la_hollywood_1368_2030 19.75 102.91 739.39 587.44 -

la_skidrow_1667_2459 41.59 46.84 1314.81 - -

nyc_chelsea_822_1228 2.28 72.75 109.59 861.67 -

nyc_hellskitchen_498_746 1.30 8.82 3.13 - -

unicamp_624_901 1.17 83.52 - - 710.68

9

F.K. Miyazawa, P.F.S. Moura, M.J. Ota et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; January 15, 2021;8:37]

Table 6

Computational results for min-max BCP k when k ∈ { 3 , 4 , 5 , 6 } .
Instance flow (min-max) Zhou et al.

k Sol Nodes Time Sol Nodes Time

gg_07_10_a 3 10 4,177 0.93 2 1,072,107 603.97

gg_07_10_a 4 10 25,242 3.86 1 99,880 68.95

gg_07_10_a 5 10 1,578,669 247.61 0 - -

gg_07_10_a 6 3 3,077,826 482.45 0 - -

rnd_100_150_a 3 10 1,933 0.74 9 109,799 70.04

rnd_100_150_a 4 10 13,404 3.14 4 1,019,886 641.36

rnd_100_150_a 5 10 627,636 149.27 0 - -

rnd_100_150_a 6 6 2,268,233 682.23 1 205,247 508.93

Table 7

Performance of flow to solve BCP 2 on large grids.

Instance a b

Sol Nodes Time Sol Nodes Time

gg_30_30 10 466 2.71 10 731 3.14

gg_60_60 10 420 20.06 10 751 19.49

gg_90_90 10 727 89.21 10 874 88.78

gg_120_120 10 575 148.93 10 736 207.57

gg_150_150 10 546 302.97 10 1087 334.19

gg_180_180 10 305 571.58 10 451 599.53

gg_210_210 10 400 1100.32 9 325 1064.07

gg_240_240 3 467 1709.85 6 138 1422.05

Fig. 4. Instance (G, w) of BCP 2 , with w (v 1) = w (v 5) = w (v 6) = 100 and w (v 2) =

w (v 3) = w (v 4) = 1 .

s

h

F

fi

s

c

s

a

e ∑

t

i

i

c

e

w

o

w

c

g

c

w

a

c

s

w

w

c

f

a

t

8

a

d

a

g

w

t

c

p

g

r

fl

t

a

v

t

s

t

t

t

g

f

t

w

i

s

o

a

m

w

t

m

s

c

y

v

n

t

It is not difficult to see that for any instance of BCP k , an optimal

olution for the linear relaxation of F k (G, w) and also of C k (G, w)

as cost w (G) /k, a trivial upper bound for the optimal value.

Let us first show that this happens for the linear relaxation of

 k (G, w) . For that, take the vector (f ′ , y ′) ∈ R

kn +2 m × B

kn +2 m , de-

ned as follows. For each source s i , i ∈ [k] , and each arc (s i , v) , we

et f ′ s i v = w (v) /k and y ′ s i v = w (v) / (kw (G)) . For every arc a not in-

ident to a source, we set f ′ a = y ′ a = 0 . Clearly, (f ′ , y ′) is a feasible

olution, and f ′ (δ+ (s i)) = w (G) /k for every i ∈ [k] .

Now, consider the linear relaxation of C k (G, w) . It is immedi-

te that the vector x ∈ R

nk defined as x v ,i = 1 /k, for each v ∈ V and

ach i ∈ [k] , is a feasible solution for this relaxation, and moreover,

v ∈ V w (v) x v ,i = w (G) /k for each i ∈ [k] . Thus, x is an optimal solu-

ion.

This linear relaxation may be strengthened by adding the cover

nequalities mentioned in Section 5.1 . As an example, consider the

nstance (G, w) of BCP 2 illustrated in Fig. 4 . Note that { v 1 , v 5 } is a
over since w (v 1) + w (v 5) > w (G) / 2 , and thus the lifted cover in-

quality x v 1 , 1 + x v 5 , 1 + x v 6 , 1 ≤ 1 is valid for the polytope associated

ith the linear relaxation of C 2 (G, w) . Such inequality cuts off any

ptimal solution for the linear relaxation of C 2 (G, w) whose cost is

 (G) / 2 = 151 . 5 , as we observed before.

To get a better understanding of the effectiveness of the lifted

over inequalities, we constructed instances for BCP k consisting of

rid graphs in which all the vertices are assigned unit weights, ex-

ept for exactly (k + 1) random vertices that have a given (large)

eight p > 1 . Hence, the gap between an optimal integer solution

nd an optimal fractional solution for the flow-based formulation

an be arbitrarily large on these instances. In our experiments, we
10
et p = 100 and generated 10 instances consisting of grid graphs

ith height 5 and width 10. flow could not solve these instances

ithin a time limit of 1800 seconds, while cut (with the lifted

over inequalities) solved each of them in less than 1 second.

This gives an evidence that the lifted cover inequalities are use-

ul in cutting off fractional optimal solutions of the linear relax-

tion of the cut-based formulation, and yield a better approxima-

ion of the convex hull.

. Concluding remarks

We proposed an ILP and two MILP formulations for the Bal-

nced Connected k -Partition Problem. The first of our formulations,

enoted by C, has an exponential number of inequalities to guar-

ntee connectivity. We presented a polynomial-time separation al-

orithm and a lifting procedure for these inequalities. Moreover,

e introduced a new class of valid inequalities for this formula-

ion, and showed how to separate a special case of them (namely,

ross inequalities) on planar graphs in polynomial time. The ex-

eriments showed that the addition of these inequalities improved

reatly the performance of the corresponding branch-and-cut algo-

ithm.

Then, we introduced two compact MILP formulations based on

ows in a digraph constructed from the input graph. The first of

hem, F , has a polynomial number of variables and constraints,

nd is based on flows whose values depend on the weights of the

ertices. To overcome the apparent disadvantages of this formula-

ion, like symmetries and vertex-weight dependent flows, we de-

igned F

′ . Although more complex than the former, this formula-

ion avoids some symmetries and uses flows of small values just

o control connectedness of the classes. However, in our computa-

ional experiments, the performance of the branch-and-bound al-

orithm for formulation F was significantly superior to the one

or F

′ .
Our formulations impose a non-decreasing weight ordering of

he classes of a balanced connected k -partition { V i } i ∈ [k] , that is,

 (V i) ≤ w (V i +1) for all i ∈ [k − 1] . Therefore, one may easily mod-

fy the objective function to capture other concepts of “balance”

uch as minimize the heaviest class or the maximum difference

f weights between the classes. Recall that all these problems

re equivalent for k = 2 , but they are not when k > 2 . Further-

ore, the addition of the constraints that order the classes by

eights reduces the symmetry of our formulations. In the case of

he asymmetric flow-based formulation F

′ , tests showed that re-

oving symmetrical solutions does not necessarily imply better re-

ults in practice. Preliminary experiments with other formulations

orroborate with the idea that allowing symmetric solutions may

ield faster algorithms on some classes of instances. Further in-

estigation is still needed to fully understand the effectiveness (or

ot) of breaking symmetries.

Table 8 summarizes the number of variables and constraints in

he formulations that we have considered here. In comparison with

F.K. Miyazawa, P.F.S. Moura, M.J. Ota et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; January 15, 2021;8:37]

Table 8

Comparison of formulations for BCP k in terms of number of variables and con-

straints on an input graph with n vertices and m edges.

Formulation # Binary Variables # Real Variables # Constraints

Cut C kn 0 O(2 n)

Flow F kn + 2 m kn + 2 m O(n + m + k)

Asym. flow F ′ k (n + 2 m) kn + 2 km O(k (n 2 + m))

Zhou et al. (2019) 2 k (n + m) n + 2 m + 1 O(km)

Z

b

c

i

w

t

t

a

t

M

t

A

R

(

M

C

M

a

9

R

A

A

A

B

B

B

B

B

B

C

C

C

D

D

D

F

G

G

G

G

H

K

L

L

L

M

M

M

M

M

M

N

P

S

W

W

W

Z
hou et al. formulation, our Flow formulation has a smaller num-

er of binary variables and constraints.

The computational experiments show that cut and flow have a

onsiderably better performance than all previous exact algorithms

n the literature. For the instances consisting of grid graphs, flow

as able to solve (within the time limit) instances of size over 400

imes larger than the size of the instances that could be solved by

he previous exact methods in the literature. On average, cut was

pproximately 8 and 2 times faster than the algorithms based on

he formulations proposed by Mati ́c and Zhou et al., respectively.

oreover, flow was 22 times faster than Mati ́c’s algorithm and 5

imes faster than Zhou et al’s algorithm.

cknowledgments

Research partially supported by grant 2015/11937-9, São Paulo

esearch Foundation (FAPESP). Miyazawa is supported by CNPq

314366/2018-0 and 425340/2016-3) and FAPESP (2016/01860-1).

oura is supported by FAPESP (2016/21250-3 and 2017/22611-2),

APES, and Pró-Reitoria de Pesquisa da Universidade Federal de

inas Gerais. Ota is supported by CNPq (167242/2018-0). Wak-

bayashi is supported by CNPq (306 46 4/2016-0 and 423833/2018-

).

eferences

limonti, P. , & Calamoneri, T. (1999). On the complexity of the max balance prob-
lem. In Proceedings of the Argentinian workshop on theoretical computational sci-

ence (WAIT’99) (pp. 133–138) .
ndersson, M. , Gudmundsson, J. , Levcopoulos, C. , & Narasimhan, G. (2002). Bal-

anced partition of minimum spanning trees. In P. M. A. Sloot, A. G. Hoekstra,

C. J. K. Tan, & J. J. Dongarra (Eds.), Proceedings of the computational science (ICCS
2002) (pp. 26–35). Springer Berlin Heidelberg .

ssunção, T. , & Furtado, V. (2008). A heuristic method for balanced graph parti-
tioning: An application for the demarcation of preventive police patrol areas.

In H. Geffner, R. Prada, I. M. Alexandre, & N. David (Eds.), Proceedings of the
advances in artificial intelligence (IBERAMIA 2008) (pp. 62–72) .

arboza, E. U. (1997). Problemas de classificação com restrições de conexidade flexibi-

lizadas . Master’s thesis Universidade Estadual de Campinas .
ecker, R. I. , Lari, I. , Lucertini, M. , & Simeone, B. (1998). Max-min partitioning of

grid graphs into connected components. Networks, 32 , 115–125 .
ecker, R. I. , & Perl, Y. (1983). Shifting algorithms for tree partitioning with general

weighting functions. Journal of Algorithms, 4 , 101–120 .
ecker, R. I. , Schach, S. R. , & Perl, Y. (1982). A shifting algorithm for min-max tree

partitioning. Journal of ACM, 29 , 58–67 .

oeing, G. (2017). OSMnx: New methods for acquiring, constructing, analyzing, and
visualizing complex street networks. Computers, Environment and Urban Systems,

65 , 126–139 .
orndörfer, R., Elijazyfer, Z., & Schwartz, S. (2019). Approximating balanced graph par-

titions. technical report . ZIB. http://nbn- resolving.de/urn:nbn:de:0297- zib- 73675 .
hataigner, F. , Salgado, L. R. B. , & Wakabayashi, Y. (2007). Approximation and inap-

proximability results on balanced connected partitions of graphs. Discrete Math-

ematics & Theoretical Computer Science, 9 .
11
hen, G., Chen, Y., Chen, Z.-Z., Lin, G., Liu, T., & Zhang, A. (2020). Approxi-
mation algorithms for the maximally balanced connected graph tripartition

problem. Journal of Combinatorial Optimization , 1–21. https://doi.org/10.1007/
s10878- 020- 00544- w .

hlebíková, J. (1996). Approximating the maximally balanced connected partition
problem in graphs. Information Processing Letters, 60 , 225–230 .

e Aragão, M. P. , & Uchoa, E. (1999). The γ -connected assignment problem. Euro-
pean Journal of Operational Research, 118 , 127–138 .

ezs ̋o, B. , Jüttner, A. , & Kovács, P. (2011). Lemon – an open source c++ graph tem-

plate library. Electronic Notes in Theoretical Computer Science, 264 , 23–45 .
yer, M. , & Frieze, A. (1985). On the complexity of partitioning graphs into con-

nected subgraphs. Discrete Applied Mathematics, 10 , 139–153 .
rederickson, G. N. (1991). Optimal algorithms for tree partitioning. In Proceedings

of the ACM-SIAM symposium on discrete algorithms SODA ’91 (pp. 168–177) .
leixner, A., Bastubbe, M., Eifler, L., Gally, T., Gamrath, G., Gottwald, R. L., &

Witzig, J. (2018). The SCIP optimization suite 6.0. ZIB-Report . Zuse Institute Berlin.

http://nbn- resolving.de/urn:nbn:de:0297- zib- 69361 .
oldberg, A. V. , & Tarjan, R. E. (1988). A new approach to the maximum-flow prob-

lem. Journal of the ACM, 35 , 921–940 .
rötschel, M. , Lovász, L. , & Schrijver, A. (2012). Geometric algorithms and combinato-

rial optimization : 2 (1st). Springer .
yöri, E. (1978). On division of graph to connected subgraphs. In Combinatorics

(proc. fifth hungarian colloq., koszthely, 1976) . In Colloq. Math. Soc. János Bolyai:

vol. 18 (pp. 4 85–4 94) .
ojny, C. , Joormann, I. , Lüthen, H. , & Schmidt, M. (2020). Mixed-integer program-

ming techniques for the connected max- k -cut problem. Mathematical Program-
ming Computation , 1–58 .

awarabayashi, K. , Kobayashi, Y. , & Reed, B. (2012). The disjoint paths problem in
quadratic time. Journal of Combinatorial Theory, Series B, 102 , 424–435 .

ovász, L. (1977). A homology theory for spanning tress of a graph. Acta Mathemat-

ica Academiae Scientiarum Hungarica, 30 , 241–251 .
ucertini, M. , Perl, Y. , & Simeone, B. (1989). Image enhancement by path partition-

ing. In V. Cantoni, R. Creutzburg, S. Levialdi, & G. Wolf (Eds.), Recent issues in
pattern analysis and recognition . In Lecture Notes in Computer Science: vol. 399

(pp. 12–22) .
ucertini, M. , Perl, Y. , & Simeone, B. (1993). Most uniform path partitioning and its

use in image processing. Discrete Applied Mathematics, 42 , 227–256 .

a, J. , & Ma, S. (1994). An o(k 2 n 2) algorithm to find a k -partition in a k -connected
graph. Journal of computer science and technology, 9 , 86–91 .

aravalle, M. , Simeone, B. , & Naldini, R. (1997). Clustering on trees. Computational
Statistics & Data Analysis, 24 , 217–234 .

ati ́c, D. (2014). A mixed integer linear programming model and variable neigh-
borhood search for maximally balanced connected partition problem. Applied

Mathematics and Computation, 237 , 85–97 .

ati ́c, D. , & Boži ́c, M. (2012). Maximally balanced connected partition problem in
graphs: Application in education. The Teaching of Mathematics, XV , 121–132 .

ati ́c, D. , & Grbi ́c, M. (2020). Partitioning weighted metabolic networks into max-
imally balanced connected partitions. In Proceedings of the 19th international

symposium INFOTEH-JAHORINA (INFOTEH) (pp. 1–6) .
iyazawa, F. K. , Moura, P. F. S. , Ota, M. J. , & Wakabayashi, Y. (2020). Cut and

flow formulations for the balanced connected k -partition problem. In M. Baïou,
B. Gendron, O. Günlük, & A. R. Mahjoub (Eds.), Combinatorial optimization . In

Lecture Notes in Computer Science: vol. 12176 (pp. 128–139) .

akano, S. , Rahman, M. , & Nishizeki, T. (1997). A linear-time algorithm for four–
partitioning four-connected planar graphs. Information Processing Letters, 62 ,

315–322 .
erl, Y. , & Schach, S. R. (1981). Max-min tree partitioning. Journal of the ACM, 28 ,

5–15 .
oltan, S. , Yannakakis, M. , & Zussman, G. (2020). Doubly balanced connected graph

partitioning. ACM Transactions on Algorithms, 16 .

ilson, D. B. (1996). Generating random spanning trees more quickly than the cover
time. In Proceedings of the twenty-eighth annual ACM symposium on theory of

computing STOC ’96 (pp. 296–303) .
olter, K. (2006). Implementation of cutting plane separators for mixed integer pro-

grams . Master’s thesis Technische Universität Berlin .
u, B. Y. (2012). Fully polynomial-time approximation schemes for the max-min

connected partition problem on interval graphs. Discrete Mathematics, Algo-

rithms and Applications, 04 , 1250 0 05 .
hou, X. , Wang, H. , Ding, B. , Hu, T. , & Shang, S. (2019). Balanced connected task

allocations for multi-robot systems: An exact flow-based integer program and
an approximate tree-based genetic algorithm. Expert Systems with Applications,

116 , 10–20 .

http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0001
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0001
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0001
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0001
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0002
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0002
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0002
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0002
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0002
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0002
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0003
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0003
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0003
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0003
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0004
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0004
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0005
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0005
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0005
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0005
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0005
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0005
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0006
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0006
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0006
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0006
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0007
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0007
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0007
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0007
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0007
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0008
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0008
http://nbn-resolving.de/urn:nbn:de:0297-zib-73675
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0010
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0010
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0010
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0010
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0010
https://doi.org/10.1007/s10878-020-00544-w
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0012
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0012
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0013
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0013
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0013
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0013
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0014
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0014
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0014
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0014
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0014
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0015
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0015
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0015
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0015
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0016
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0016
http://nbn-resolving.de/urn:nbn:de:0297-zib-69361
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0018
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0018
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0018
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0018
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0019
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0019
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0019
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0019
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0019
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0020
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0020
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0021
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0021
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0021
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0021
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0021
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0021
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0022
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0022
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0022
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0022
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0022
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0023
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0023
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0024
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0024
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0024
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0024
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0024
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0025
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0025
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0025
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0025
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0025
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0026
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0026
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0026
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0026
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0027
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0027
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0027
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0027
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0027
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0028
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0028
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0029
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0029
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0029
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0029
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0030
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0030
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0030
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0030
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0031
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0031
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0031
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0031
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0031
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0031
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0032
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0032
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0032
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0032
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0032
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0033
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0033
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0033
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0033
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0034
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0034
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0034
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0034
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0034
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0035
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0035
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0036
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0036
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0037
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0037
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0038
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0038
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0038
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0038
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0038
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0038
http://refhub.elsevier.com/S0377-2217(20)31121-8/sbref0038

	Partitioning a graph into balanced connected classes: Formulations, separation and experiments
	1 Introduction
	1.1 Some known results
	1.2 Contributions

	2 Cut-based formulation
	3 Separation algorithms
	3.1 Connectivity inequalities
	3.2 Cross inequalities

	4 Flow-based formulations
	4.1 Asymmetric flow-based formulation

	5 Implementation details
	5.1 Cover inequalities
	5.2 Domain propagation

	6 Benchmark instances
	7 Computational results
	7.1 Integrality gap

	8 Concluding remarks
	Acknowledgments
	References

