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This work addresses the balanced connected k-partition problem (BCP,), which is formally defined as fol-
lows. Given a connected graph G = (V, E) with nonnegative weights on the vertices, find a partition {V,v}ﬂ‘:1
of V such that each class V; induces a connected subgraph of G, and the weight of a class with the min-
imum weight is as large as possible. This problem, known to be NP-hard, has been largely investigated
under different approaches and perspectives: exact algorithms, approximation algorithms for some val-
ues of k or special classes of graphs, and inapproximability results. On the practical side, BCP is used to
model many applications arising in image processing, cluster analysis, operating systems and robotics. We
propose three linear programming formulations for BCP,. The first one contains only binary variables and
a potentially large number of constraints that can be separated in polynomial time in the corresponding
linear relaxation. We introduce new valid inequalities and design polynomial-time separation algorithms
for them. The other two formulations are based on flows and have a polynomial number of constraints
and variables. Our computational experiments show that the exact algorithms based on the proposed
formulations outperform the other exact approaches presented in the literature.
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1. Introduction We are now ready to define the balanced connected k-partition
problem (BCP,), where k is a fixed positive integer. As we mention
in what follows, studies on this problem, firstly on trees (Perl &

Schach, 1981), trace back to 1981.

We adopt the standard notation for (di)graphs. For a
(di)graph G, V(G) denotes its vertex set; and E(G) (resp. A(G)) de-
notes its edge set (resp. arc set). To simplify notation, we assume
that the input graph G has vertex set V and edge set E; moreover,
unless otherwise stated, n = |V| and m = |E|. For an integer k, the
symbol [k] denotes the set {1,2,...,k} if k > 1, and the empty set,
otherwise. A k-partition of G is a collection {V;};cx; of nonempty

subsets of V such that Uf‘:] Vi=V, and V;nV; =¢ for all i, j  [K],

Problem 1. BALANCED CONNECTED k-PARTITION (BCP})

INSTANCE: a pair (G,w) consisting of a connected graph G =
(V,E), and a vertex-weight function w: V — Q.

FIND: a connected k-partition {V;};cy; of G.

GoAL: maximize min;g {w(V)}.

i # j. We refer to each set V; as a class of the partition. We say that
a k-partition {Vi};( of G is connected if G[V;], the subgraph of G
induced by V;, is connected for each i € [k].

Let w:V — Q- be a function that assigns nonnegative weights
to the vertices of G. For every subset V' CV, we define w(V’) =
Y vew W(v). For simplicity, if H is a subgraph of G, instead of
w(V(H)), we write w(H). For a set S C R¢, we denote by convs,
the convex hull of S.
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There are several applications in logistics, image processing,
data base, operating systems, cluster analysis, education, robotics
and metabolic networks that can be modeled as a balanced con-
nected partition problem (Becker & Perl, 1983; Lucertini, Perl, &
Simeone, 1989; 1993; Maravalle, Simeone, & Naldini, 1997; Matic
& Bozi¢, 2012; Mati¢ & Grbi¢, 2020; Zhou, Wang, Ding, Hu, &
Shang, 2019). These different real-world applications indicate the
importance of designing algorithms for BCP,, and reporting on
the computational experiments with their implementations. Not
less important are the theoretical studies of the rich and diverse
mathematical formulations.

Problems on partitioning a vertex-weighted graph into a fixed
number of connected subgraphs with similar weights have been
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largely investigated in the literature since the early eighties. Such
partitions are generally called balanced, and a number of dif-
ferent functions have been considered to measure this feature.
The balanced connected k-partition problem (BCP,) is one of
these problems. It is closely related to another one, referred to
as MIN-MAX BCPy, defined as follows. Given a pair (G, w), as in
BCP, find a connected k-partition {Vi};cx of G that minimizes
maXie( {w(Vp)}.

When k =2, for any instance, an optimal 2-partition for BCP,
is also an optimal solution for MIN-MAX BCP,; but it is easy to see
that when k > 2 the corresponding optimal k-partitions may differ
(see Lucertini, Perl, & Simeone (1993)). Another possible objective
function is to minimize the maximum difference of weights be-
tween the classes. All of them can be treated with the formulations
we propose here (by changing only the objective function).

1.1. Some known results

The unweighted BCP,, (to be denoted by 1-BCP}) is the restricted
version of BCP, in which all vertices have unit weight. This re-
stricted problem is NP-hard on bipartite graphs for every fixed k >
2, as proven by Dyer and Frieze (1985). Chlebikova (1996) showed
that 1-BCP, is NP-hard to approximate within an absolute error
guarantee of n!=¢, for all £ > 0. For the weighted case, Becker, Lari,
Lucertini, and Simeone (1998) proved that BCP, is already NP-hard
on (nontrivial) grid graphs. Chataigner, Salgado, and Wakabayashi
(2007) showed that, for each k > 2, BCP, is NP-hard in the strong
sense, even on k-connected graphs, and therefore does not admit
a FPTAS, unless P = NP. Wu (2012) observed that BCP; is NP-hard
on interval graphs for any fixed k > 2.

Chlebikova (1996) designed a 4/3-approximation algorithm for
BCP,. Recently, Chen et al. (2020) presented a 5/3-approximation
for BCP; and a 3/2-approximation for MIN-MAX BCP3; on arbitrary
graphs. Approximation algorithms for BCP4 on 4-connected graphs
and for 1-BCP, on special classes of graphs have also appeared in
the literature.

Wu (2012) designed a fully polynomial-time approximation
scheme (FPTAS) for BCP, on interval graphs. When k is part of
the input, Borndorfer, Elijazyfer, and Schwartz (2019) designed A-
approximation algorithms for both MAX-MIN and MIN-MAX ver-
sions of the balanced connected partition problem, where A
is the maximum degree of an arbitrary spanning tree of the
input graph G. Specifically for the MAX-MIN version, their A-
approximation only holds for instances in which the largest weight
is at most w(G)/(A k). For this case (k not fixed), Chataigner et al.
(2007) proved that BCP, cannot be approximated within a ratio
better than 6/5.

Both BCP; and MIN-MAX BCP, can be solved in linear time on
trees as shown by Perl and Schach (1981), Becker, Schach, and Perl
(1982) and Frederickson (1991). One may easily check that 1-BCP,
on 2-connected graphs can be solved in polynomial time. This
problem also admits polynomial-time algorithms on graphs such
that each block has at most two articulation vertices Alimonti and
Calamoneri (1999); Chlebikova (1996). In special, when the input
graph is k-connected, polynomial-time algorithms and other inter-
esting structural results have been obtained for BCP, by Ma and
Ma (1994), Gyori (1978), and Lovasz (1977). Many other results on
the mentioned problems and variants have appeared in the lit-
erature Andersson, Gudmundsson, Levcopoulos, and Narasimhan
(2002); Nakano, Rahman, and Nishizeki (1997); Soltan, Yannakakis,
and Zussman (2020).

Mixed integer linear programming formulations for BCP, were
proposed by Mati¢ (2014) and for MIN-mMAX BCP, by Zhou et al.
(2019). Matic also presented a VNS-based heuristic for BCP,, and
Zhou et al. devised a genetic algorithm for MIN-MAX BCP,. Both
works reported on the computational results obtained with the
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proposed formulations and heuristics. Such results indicate that
the solving method due to Zhou et al. outperforms the one showed
by Mati¢, and, to the best of our knowledge, it is the fastest exact
algorithm for BCP;, described in the literature.

1.2. Contributions

In this work, we advance the state of the art on exact algo-
rithms for BCP,. In Section 2, we introduce a cut-based integer lin-
ear programming (ILP) formulation which models BCP;, and show
two strong valid inequalities for this formulation. Polynomial-time
separation routines for some of the proposed valid inequalities are
discussed in Section 3. These separation routines are implemented
in a branch-and-cut algorithm we have designed.

In Section 4, we present a flow and a multicommodity flow
based formulations for BCP,. Both formulations are compact, that
is, they have a polynomial number (on the size of the input graph)
of variables and constraints. All proposed formulations for BCP,
can be used to model MIN-MAX BCP, (and some other variants) just
by slightly changing the objective function. We discuss the details
of the implementations in Section 5, and describe the set of test
instances in Section 6. Lastly, we report on computational exper-
iments in Section 7. Our computational results show that the ex-
act algorithms based on the proposed formulations outperform the
previous exact methods designed by Matic¢ (2014), and Zhou et al.
(2019). Particularly, we are able to solve instances of size over 400
times larger than the size of the largest instances solved by the ex-
act algorithms described in the literature. Moreover, our algorithms
are on average 5 times faster than the previously known solving
methods.

A short version of this work Miyazawa, Moura, Ota, and Wak-
abayashi (2020) containing preliminary experimental results was
accepted for publication in the proceedings of the International
Symposium on Combinatorial Optimization (ISCO 2020). This paper
contains an additional formulation, more details on the implemen-
tations, and further computational experiments, including experi-
ments on real-world instances.

2. Cut-based formulation

In this section, we consider that (G,w) is an input for BCP,.
The ILP formulation we propose for BCP, called Ci (G, w), or sim-
ply C, is based on the following central concept. Let u and v be two
non-adjacent vertices in a graph G. We say that a set SCV \ {u, v}
is a (u,v)-separator if u and v belong to different components
of G —S. We denote by I'(u, v) the collection of all minimal (u, v)-
separators in G. In the formulation, we use a binary variable x,,;,
for every v € V and i € [k], that is set to one if and only if v belongs
to the i-th class.

max Y w(v) Xy

veV
St Y wW)x,i <Y wW) X, Vielk-1], (1)
veV veV
doxisl  VveV, (2)
iclk]
XeitXpi— %i<1 Vuvg¢E SeT(uv), ielk], (3)
zeS
x,;€{0,1} Vv eV and i e [k]. (4)

Inequalities (1) impose a non-decreasing weight ordering of the
classes. Inequalities (2) require that every vertex is assigned to at
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most one class. Inequalities (3) guarantee that every class induces
a connected subgraph.

In Section 3, we show that the separation problem for inequal-
ities (3) can be solved in polynomial time. Thus, in view of the
equivalence of separation and optimization problems Grotschel,
Lovasz, and Schrijver (2012), the linear relaxation of C can be
solved in polynomial time.

Because of (2), feasible solutions of formulation C,(G, w) may
have vertices not assigned to any of the k nonempty classes. To
deal with this, we introduce the following concept. We say that a
collection V= {V,-}if=1 is a connected k-subpartition of G, if it is a
connected k-partition of a subgraph (not necessarily proper) of G,
and additionally, w(V;) <w(V;,¢) for all i € [k — 1].

Note that one can extend any optimal connected k-subpartition
to a connected k-partition with the same objective value. This can
be done by greedily putting unassigned vertices into the same
class of one of its neighbors that belongs to a nonempty class (as-
sign first those which are at distance 1 and repeat the process).

For any connected k-subpartition V, we denote by £(V) e
B" the binary vector such that its non-null entries are pre-
cisely £(V),; =1 for all ie[k] and v eV; (that is, £(V) denotes
the incidence vector of V). We now define the polytope associated
with C (G, w) as

Py(G, w) = conv{x € B"¥ : x satisfies inequalities (1) — (3)
of C,(G,w)}.

We next prove that formulation C(G, w) correctly models BCP,.
Then, we present classes of valid inequalities that strengthen for-
mulation Ci (G, w).

Proposition 1.

P(G,w) = conv{£ (V) e B™: V is a connected k-subpartition
of G}.

Proof. Consider first an extreme point x € P (G, w). For each i€
[k], we define the set of vertices U; = {v eV :x,; =1}. It follows
from inequalities (1) and (2) that ¢/ := {U,v}f:1 is a k-partition of a
subgraph of G such that w(U;) < w(U; 1) for all i € [k — 1]. To prove
that ¢/ is a connected k-subpartition, we suppose to the contrary
that there exists i € [k] such that G[U;] is not connected. Hence,
there exist vertices u and v belonging to two different components
of G[U;]. In this case, there is a minimal (u,v)-separator S such
that SN U; = @. Thus, vector x violates inequalities (3), a contradic-
tion.

To show the converse, consider now a connected k-
subpartition V = {Vi}f:1 of G. Clearly, £(V) satisfies inequal-
ities (1) and (2). Take a fixed i< [k]. For every pair u,v of
non-adjacent vertices in V;, and every (u,v)-separator S in G, it
holds that SNV; # @, because G[V;] is connected. Therefore, & (V)
satisfies inequalities (3). O

The following inequalities dominate inequalities (3) of C(G, w).

Proposition 2. Let u and v be non-adjacent vertices of G, let S be
a minimal (u,v)-separator, and let ie [k]. Let Z={zeS: w(P) >
w(G)/(k—i+ 1)}, where P, is a minimum-weight (u,v)-path in G
that contains z. The following inequality is valid for P, (G, w):

Xy i +Xv,i - Z Xsi = 1. (5)
seS\Z

Proof. Consider an extreme point x of P, (G, w), and define V=
{veV:x,;=1} for each j e [k] \ [i — 1]. Since x satisfies inequali-
ties (1), it holds that
k—i+DHwW) < Y wVy)=<w).

JjelkN\[i-1]
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Thus, w(G)/(k—i+ 1) is an upper bound for w(V;). Hence, if u
and v belong to V;, then there exists a vertex s € S\ Z such that s
also belongs to V;. Therefore, x satisfies inequality (5). O

The next class of inequalities was inspired by a result proposed
by De Aragdo and Uchoa (1999) for a connected assignment prob-
lem.

Proposition 3. Let ¢ > 2 be a fixed integer, and let S be a subset of
vertices of G containing q distinct pairs of vertices {s;, t;}, i € [q]. all
mutually disjoint. Let N(S) be the set of neighbors of S in V \ S. More-
over, let o : [q] — [k] be an injective function, and let I = {c (i) :i ¢
[q1}. If there is no collection of q vertex-disjoint (s;, t;)-paths in G[S],
then the following inequality is valid for Py (G, w):

D Koty HXom) + Y. D Xi <20+ INGS)| - 1. (6)

ie[q] veN(S) ie[k]\I

Proof. Suppose, to the contrary, that there exists an extreme
point x of 7P, (G,w) that violates inequality (6). Let A=
Yietq] (Xspo () + Xe.0)) and B =Y yen(s) Liefig Xv.i- From inequal-
ities (2), we have that A < 2q. Since x violates (6), it follows that
B > |N(S)| — 1. Thus, since x satisfies inequalities (2), it follows that
B =|N(S)|. Hence, every vertex in N(S) belongs to a class that is
different from those indexed by I. This implies that every class
indexed by I contains precisely one of the q distinct pairs {s;, t;}.
Therefore, there exists a collection of g vertex-disjoint (s;, t;)-paths
in G[S], a contradiction. O

Kawarabayashi, Kobayashi, and Reed (2012) proved that, given
an n-vertex graph G and a set of g pairs of terminals in G, the
problem of deciding whether G contains q vertex-disjoint paths
linking the given pairs of terminals can be solved in time O(n?),
for a fixed value of q. Hence, inequalities (6) can be separated in
polynomial time when S=V.

3. Separation algorithms

We implemented a branch-and-cut algorithm to solve the cut-
based formulation that we introduced in Section 2. In this section,
we describe the separation routines for inequalities (5) and for a
subclass of inequalities (6) that are embedded in this algorithm. In
Section 7, we report on the computational results obtained with
our implementation.

3.1. Connectivity inequalities

We focus first on the class of inequalities (3) of Section 2,
henceforth called connectivity inequalities. We address here its cor-
responding separation problem: given a vector X € R, find con-
nectivity inequalities that are violated by X or prove that this vec-
tor satisfies all such inequalities.

To tackle this problem, given the input graph G= (V,E),
for each ie[k], we define a digraph D; with capacities c¢;:
A(D;) — Qs U{oo} assigned to its arcs, in the following manner.
We set V(D;) ={vy,v,:veV} and A(D;) = A1 UA;, where A; =
{(up,v1), (12, uq) : {u,v} € E} and A; = {(v1, 1) : v € V}. We define
ci(a) =X,; if a = (v1,1,) € Ay; and c;(a) = oo, otherwise. Note that
each arc in D; with a finite capacity is associated with a vertex
of G. Now, for every pair of non-adjacent vertices u, v € V such that
Xyi+X,;>1, we find in D; a minimum (uq, v,)-separating cut. If
the weight of such a cut is smaller than x,; +X,; — 1, then it is
finite and the vertices of G associated with the arcs in this cut
defines a (u, v)-separator S in G that violates the connectivity in-
equality X, ; + Xy — Y es Xz < 1.

Given a (u,v)-separator S, let H, (resp. Hy) be the connected
component of G — S containing u (resp. v). We now describe a pro-
cedure to perform a lifting of the connectivity inequalities by re-
moving iteratively unnecessary vertices from S. First, we remove
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every vertex z from S such that the neighborhood of z does not in-
tersect with Hy, and Hy. Since removing a vertex from S changes the
components of G — S, we use a Union-Find data structure to update
the components. Then, we use Dijkstra’s algorithm to remove from
S the set Z, as defined in Proposition 2.

The time complexity to separate the connectivity inequalities
depends on the algorithm used to find a minimum cut. We use
Goldberg’s preflow algorithm for maximum flow Goldberg and Tar-
jan (1988), whose time complexity is O (fi2+/1i1), for a digraph with
fi vertices and m arcs. Thus, in the worst-case, checking for ev-
ery i< [k], and candidate pairs u, v in D;, the time complexity of
this separation algorithm is O(kn*/n +m).

Despite the high time complexity, we noted in the computa-
tional experiments that the number of fractional vertices is rela-
tively small. Thus, we perform arc contractions on all arcs of D;
such that both of its endpoints correspond to vertices associated
with variables of integer value. More precisely, an arc (uy, V1) € A4
is contracted if X, ; = X,,; = 1, and an arc (uq, uy) € A, is contracted
if X,;=1. After such contractions, the resulting graphs usually
have a small number of vertices and arcs, and so the proposed sep-
aration algorithm runs very quickly in practice.

3.2. Cross inequalities

Now we turn to the separation of inequalities (6) on planar
graphs G = (V,E), restricted to the case S =V. Consider a plane
embedding of G, and let F be the boundary of a face with at least
4 vertices and with no repeated vertices. Take four different ver-
tices in F, say sp,S,t1,tp, in clockwise order. Since G is planar,
it does not contain vertex-disjoint paths P; and P,, with endpoints
s1,t1 and s, ty, respectively. For S =V, inequalities (6) simplifies to
X5, 0(1) T Xsy.02) T Xty .0 (1) T Xp0(2) < 3. We refer to these inequal-
ities as cross inequalities.

For the separation problem of the cross inequalities induced by
the vertices in F, where |V(F)| = f, we implemented a O(fk?)
time complexity algorithm (the same complexity mentioned by
Barboza (1997), without providing much detail; the algorithms
may possibly be different). Next, we give more details on this sep-
aration algorithm.

Let X € R™ be a fractional solution of formulation . Consider a
linear ordering of the vertices in F which is obtained by travers-
ing its vertices in clockwise order from an arbitrary fixed vertex.
For every j € [f], we denote by F(j) the jth vertex of F in such
ordering. Furthermore, we define matrices L and R such that, for
each j e [f] and each i € [k], L(j,i) = maxj/e[j]{)?m/),,-} and R(j,i) =
maxj/e[f]\[j,l]{YF(]-,).,A}. In other words, L(j,i) (resp. R(j,i)) corre-
sponds to the maximum value in an entry of X indexed by i and
by a vertex that appears before (resp. after) F(j) in the ordering.
Clearly, the construction of L and R takes time O(fk).

For every j € [f]\ {1}, and every iy, i € [k] with i; # i, we de-
fine:

Xe1yiy FXF )i if j =2,

M(j, i1, ip) = { max{M(j — 1,1y, ip);

L(j—1,i1) +Xp(j) ;). otherwise.

Note that, given j > 2 and iy,i, € [k], M(j,i1,ip) is the maxi-
mum value of ’7F(J'1)-i1 +>7F(j2),,42 for all ji, j, € [j] with j; < j,. Our
algorithm works as follows: for every je {3,..., f—1} and every
il’ iz S [k] with il #* iz, it checks whether M(] -1, i], 12) +§F(j),i1 +
R(j+1,iy) > 3, that is, whether there is a violated cross inequality
(w.r.t. F) such that o (1) =iy, 0(2) =iy and t; = F(j). Clearly, one
may also keep track of the violated inequalities.
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Fig. 1. An instance for BCP, and its unique optimal solution {V;,V,} of value 8,
where V; = {vy,...,vs} and V5 = {vg, v7, 1g}.

4. Flow-based formulations

We present in this section a mixed integer linear programming
formulation for BCP, based on flows in a digraph. Given an input
(G, w) for BCP;, with G = (V,E), we construct a digraph D as fol-
lows. First, we replace every edge of G with two arcs with the
same endpoints and opposite directions; then we add a set S =
{s1,...,s,} of k new vertices (sources), and add an arc from each
vertex in S to each vertex of G. More formally, the vertex set
of D is V(D) =V US and its arc set is A(D) = {(u,v), (v, u) : {u,v} e
E}u{(s,v):ielk],veV}.

In Fig. 2(a) we illustrate the construction of the digraph D for
the instance (G, w) of BCP, shown in Fig. 1. The idea behind the
formulation is the following. In the digraph D we impose that, al-
together, the k sources in S distribute a total of w(G) amount of
flow to the other vertices. Moreover, we impose that every non-
source vertex v receives flow only from a single vertex of D and
consumes w(v) of the received flow. In this way, we have that each
source s; sends a positive flow to a single non-source vertex, which
will in turn spread to other vertices defining precisely the vertices
assigned to the ith class of the partition. (See Fig. 2(b).)

To model this idea, with each arc a € A(D), we associate a non-
negative real variable f; that represents the amount of flow pass-
ing through a, and a binary variable y, (such that y, = 1 if f; > 0)
that allow us to impose that flows from different sources do not
mix. We denote by 7, (G, w), or simply F, the corresponding for-
mulation. In this formulation, the notation y(A’) (resp. f(A")) for
arc sets A" € A(D) stands for Y, Va (resp. Y sea fa)-

max (8" (s1))

st. f(8%(si)) = f(8%(si41)) Vie[k-1], (7)
f~W) - fE W) =w) VreV, (8)
fa=w(G)ys VaeAD), (9)
y@*(s)) <1 Vielk], (10)
y@é~w) <1 VveV, (11)
yae{0,1}  VaeA(D), (12)
faieR.  VaeA(D). (13)

Inequalities (7) impose that the flows sent by
sources Si,So,...,S; are in a non-decreasing order. This ex-
plains the objective function. Inequalities (8) guarantee that each
vertex v €V consumes w(v) of the flow that it receives. By (9),
a positive flow can only pass through arcs that are chosen (arcs
a for which y(a) =1). Inequalities (10) impose that from every
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Fig. 2. (a) Digraph D obtained from the input graph (G, w) shown in Fig. 1, now with weights at the vertices, w(G) = 17. (b) An optimal solution for formulation 7, (G, w)

in which only arcs with non-zero flow (shown on their side) are indicated.

Fig. 3. A police patrolling instance, based on the map of the University of Campinas
campus, and an optimal solution for k = 3. The radius of each vertex is proportional
to its weight; the vertices in the lightest class are colored red.

source s; at most one arc leaving it transports a positive flow to a
single vertex in V. Inequalities (11) require that every non-source
vertex receives a positive flow from at most one vertex of D.

Because of inequalities (11), the flows sent by any two distinct
sources do not pass through a same vertex. That is, if a source s;
sends an amount of flow, say w;, this amount w; is distributed to
a subset of vertices, say V; (with total weight w;); and all subsets
V;, for i € [k], are mutually disjoint (each one being defined by an
arborescence rooted at s;). Moreover, w; is exactly the sum of the
weights of the vertices that receive flow from s;, and G[V;] is a con-
nected subgraph of G. By summing up the inequalities (8) we can
see that the k sources, altogether, distribute a total of w(G) amount
of flow.

We note that, in a feasible solution, vertices with weight zero
may possibly do not receive any flow, and thus they may not be-
long to any of the k arborescences. If this happens, each such a
vertex can be added to one of the classes found by the formula-
tion (including first those at distance 1 to one of the classes, then
the remaining ones with the same procedure w.r.t. the connected
classes that are obtained). This inclusion leads to a solution that
defines a connected k-partition as desired, without increasing the
weight of each class. It follows from these remarks that a solution
obtained with formulation 7 (G, w) leads to a solution of BCP,.

The proposed formulation has a total of 2nk + 4m variables (half
of them binary), and only O(n + m + k) constraints, where n = |V|
and m = |E|. Possibly, some of its drawbacks are the large amount
of symmetric solutions and the dependency of inequalities (9) on
the weights assigned to the vertices. To overcome such disadvan-

tages, we introduce in the next section another model based on
flows that considers a total order of the vertices to avoid sym-
metries and uncouples the weights assigned to the vertices from
the flow circulating in the digraph. As one may expect, such model
uses additional variables and constraints. However, its size is still
bounded by a polynomial function on the size of the input graph
and k.

4.1. Asymmetric flow-based formulation

Our second compact formulation for BCP, is also based on flows
in a digraph D, this time used in a different way, independent from
the vertex-weights. Given an input (G, w), where G = (V,E), we
construct a digraph D with a single source s, as follows. We have
V(D) =V u{s} and

AD) ={(u,v), (v,u) : {u,v} cE}U{(s,v) :veV}.

Moreover, we assume there is a total ordering > defined on the
vertices of G.

In this formulation, we consider flows of type i, for each i  [k],
corresponding to the classes i € [k] (that they will define). We use
real variables f,; for a € A(D) and i € [k], where f,; is the amount
of flow of type i that passes through arc a: if non-zero and both
ends of arc a are distinct from s, then these ends belong to class i
(of the subpartition). Basically, a class i with vertex set, say V;, will
consist of an arborescence 7,) rooted at a vertex, which will re-
ceive a flow of value |V;| from s. Then, this root consumes one unit
of flow and sends |V;| — 1 amount of flow to its neighbors; then
each of the vertices that receives a non-null flow consumes one
unit of flow and sends the remaining flow to its neighbors, until
vertices that receive one unit of flow are reached (they become
leaves of the arborescence). The ordering of the vertices is used to
impose that, among the vertices of each arborescence, the root is
the smallest one (this helps breaking symmetries).

To control the spreading of the flows, we also use binary vari-
ables y,;, for a € A(D) and i € [k], such that y,; =1 if and only if
in arc a a non-null flow of type i passes through it. Using these
variables, we are able to write restrictions to impose an ordering
in the classes, according to their weights, being class 1 the light-
est one (which explains the objective function). In the next for-
mulation, the notation y(A’, i) (resp. f(A’,i)) for arc sets A’ € A(D)
stands for Y, a4 Yai (1€Sp. Y qcar fo.i)- We denote by 7' (G, w), or
simply, 7/, the corresponding formulation.

max Z w@) y(8~ (), 1)

veV (D)
SE Y w)y(@E ). <Y ww)y(@ ).i+1) Viel[k-1],
veV veV

(14)
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y(8t(s),i) <1 Vi e [K], (15)
Dy .1 VreV, (16)
ielk]

Yeri + Y6~ (u),i) <1 Yu,veV,v>u, iclk], (17)
fai<nys  VaeAD),ielk], (18)
f@T),i) < f(6~ (), 1) YveV,iclk], (19)
Y FE W)= Y fTw.)=1 VveV, (20)
ie[k] ie[k]

Yai€{0,1} Ya e A(D), i € [K], (21)
fei=0 VYaecAD),ielk]. (22)

To show that 7/ (G, w) indeed models BCP, correctly, let us
consider the following polytope.

Qk(G, w) = conv{(y, )
e B2k o p+2mk - (3, £) satisfies (14) — (22)).

Let ¥V be a connected k-subpartition of G such that w(V;) <
w(Vi,q1) for all i e [k —1]. Then, for each integer i€ [k], there ex-
ists in D an arborescence f rooted at r; such that V(Ti)) =V
and v>r; for all veV;\ {r;}. Now, let g; be the function g;:
A(T:) U{(s,r;)} — R defined as follows: g;((u,v)) =1 if vis a leaf
of f and g;((u,v)) =1 +Z(”)EA(?)gi((u,z)), otherwise. It fol-
lows from this definition that g}((s, r,-l)) = |Vi.

We now define vectors p(V) € B+2Mk apnd 1 (V) e R(H2mMk
such that, for every arc a € A(D) and i € [k], we have

1, ifaecA(T) UG m)
1, ifaeA(T J T
PWV)gi = {0, otherwise,

_a@, ifacAT)u{G. )
TW)ai = {0, otherwise.

We are now ready to prove the claimed statement on 9, (G, w).
Proposition 4. The polytope Q, (G, w) is precisely the polytope

conv{(p(V), T(V)) e B2mk  R(+2mk -y js 3 connected
k-partition of G}.

Proof. Let (y, f) be an extreme point of Q,(G,w); and for ev-
eryielk], let Uy={veV:y(§~(v),i) = 1}. Inequalities (15) guar-
antee that, for each type i, at most one arc leaving s is chosen.
Therefore, we have that {Uj};cy is a connected k-partition of G.

Inequalities (16) impose that, for every vertex v eV, at most
one of the arcs entering it is chosen. Observe that inequali-
ties (18) force that a flow of type i can only pass through an
arc of type i if this arc is chosen. Hence, every vertex receives at
most one type of flow from its in-neighbors. Furthermore, inequal-
ities (19) and (20) guarantee that the flow that enters a vertex and
leaves it are of the same type, and that each vertex consumes ex-
actly one unit of such flow.

To prove the converse, let V = {V;}i, be a connected k-
partition of G. We assume without loss of generality that w(V}) <
w(Viyq) for all i e [k —1]. Let (y, f) be a vector such that y = p(V)

and f = t(V). For each i € [k], every vertex in 7,) has in-degree at
. . N
most one, and r; is the smallest vertex in V(T; ) with respect to the
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order >. Thus, inequalities (16) and (17) hold for y. From the def-
inition of p(V), the entry of y indexed by (s, ;) and i equals one,
for all i € [k]. Consequently, y also satisfies inequalities (15). Recall
that g;((s,r;)) = |V;| for every i e [k]. This clearly implies that in-
equalities (18) are satisfied by (y, f).

Note that, for every i< [k], the function g; assigns to each
arc (u,v) € A(f) U {(s,r;)} the value one plus the sum of the sizes
of the sub-arborescences of T,) rooted at the out-neighbors of v
in 7,) Hence, inequalities (19) and (20) hold for y. Finally, inequal-
ities (14) are satisfied, as we assumed that the elements of par-
tition V are in a non-decreasing order of weights. Therefore, we
conclude that (y, f) belongs to Q(G, w). O

5. Implementation details

The computational experiments were carried out on a PC with
Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz, 40 cores, 64 GB RAM
and Ubuntu 18.04.2 LTS. The code was written in C++ using the
graph library Lemon (Dezs0, Jiittner, & Kovacs, 2011).

We implemented a branch-and-cut algorithm to solve the cut-
based formulation C using SCIP Optimization Suite 6.0 (Gleixner
et al,, 2018) and Gurobi 9.0 as the LP solver. Unlike Gurobi, SCIP
allows for multiple rounds of cut generation in non-root nodes of
the branch-and-bound tree. Moreover, it has built-in routines for
separating the lifted minimal cover inequalities, and supports cus-
tomized domain propagation routines. We give more details about
these features later in this section.

We implemented branch-and-bound algorithms (using only
Gurobi 9.0) to solve our flow-based formulations F and F’. Since
Matic (2014) and Zhou et al. (2019) implementations were not
publicly available, we also implemented their models using Gurobi.
This way, we executed all the experiments in the same computa-
tional environment.

Due to small improvements in the preliminary experiments, we
replace inequalities (1), (7) and (14) with equalities. Furthermore,
to evaluate the performance of the mentioned formulations, all
standard cuts used by SCIP and Gurobi are deactivated, except for
the lifted minimal cover inequalities.

5.1. Cover inequalities

Consider an input instance (G, w) of BCP,. As we have previ-
ously mentioned, the following inequalities are valid for P, (G, w)
and may be easily derived from constraints (1) of formula-
tion C (G, w).

w(G
Y W) x, < A9

kil Vielk-1]. (23)
veV

Note that, for each ie[k— 1], the corresponding inequal-
ity (23) defines a knapsack problem of budget w(G)/(k —i+1).
Hence, we can take advantage of the extensive work regarding
strong inequalities for the 0/1 knapsack polytope as follows. For
each inequality of class (23), we use the heuristics mentioned by
Wolter (2006) to separate lifted minimal cover inequalities and
extended weight inequalities. Such valid inequalities are obtained
from a sequence of up- and down-lifting operations on inequali-
ties that are valid for projections of the initial 0/1 knapsack poly-
tope. For more details about this procedure, the reader is referred
to Wolter’s thesis.

5.2. Domain propagation
Suppose that our algorithm is currently exploring a node in the

branch-and-bound tree, domain propagation refers to the technique
that tries to tighten the variable bounds based on the domain of
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the variables in the current node. When a complete description of
the problem formulation is available to the solver, the solver it-
self can reduce the domain of the variables. However, when im-
plementing a branch-and-cut algorithm, for example, the solver
may not be able to effectively reduce the domain of the variables,
since only a small part of the inequalities might be available to it.
Thus, based on the work of Hojny, Joormann, Liithen, and Schmidt
(2020), we implemented an algorithm to effectively reduce the do-
mains of the variables of formulation C.

For completeness, we now briefly describe the domain prop-
agation technique (see Hojny et al. (2020) for more details). For
every j e [k], let F; CV be the set of vertices fixed on class j in
the current node of the branch-and-bound tree; in other words,
Fi={veV:x,;=1} Let us fix i € [k] and assume F; # ¢. Consider
the graph G; = G[V \ (Uyepip iy Fr)]. that is, G; is the graph ob-
tained from G by removing the vertices that were fixed in classes
distinct from i. Let {C;} ¢ be the connected components of G,
and suppose, without loss of generality, that F;, NV (G;) # @. Now for
every vertex u € V(C;), with j e [t — 1], we either set x, ; = 0; or, if
variable x,; was already fixed to one, we consider that the cur-
rent branch-and-bound node is infeasible and therefore it can be
pruned.

6. Benchmark instances

Computational experiments on instances consisting of grid
graphs and random connected graphs are reported in Matic (2014);
Zhou et al. (2019). In this work, besides considering instances
previously proposed in the literature, we also considered larger
graphs, different weight distributions and real world instances.

The grid instances are named in the format
gg_height_width_[a|b]. The random instances are named in the
format rnd_n_m_[a|b], where n is the number of vertices and m is
the number of edges in the graph. In both cases, a and b indicate
the intervals in which the weights (all integers) are uniformly
distributed: a = [1, 100] and b = [1, 500].

To generate a random connected graph with n vertices and m
edges (with m >n—1), we first use Wilson’s algorithm Wilson
(1996) to generate a random spanning tree T on n vertices, and
then add m —n+1 distinct new edges randomly selected from
E(Kn) \ E(T) with uniform probability. Wilson’s algorithm returns
a spanning tree T sampled from the set 7, — of all possible span-
ning trees of K, — with probability 1/|7y|.

For the experiments, for each format indicated in the tables
(considered a graph class), we generated 10 random instances. The
randomness of grid instances refers to the their weights, and of
random graphs refers to the graphs and the weights.

Finally, we also considered instances for BCP, coming from a
real-world application, namely demarcation of preventive police
patrol areas (Assuncdo & Furtado, 2008). This problem consists in
subdividing a given map into k contiguous regions with roughly
the same crime rate (in order to balance the work load of k police
patrol teams).

Using OSMnx (Boeing, 2017) library, we transformed maps from
OpenStreetMap (https://www.openstreetmap.org) into undirected
graphs. The edges in the graphs generated by OSMnx corresponds
to sections of the streets. As some edges may be too “long” (over
200meters), we subdivide these long edges into smaller edges so
that the length of each edge is limited to 200 meters.

Working with the Socrata Open Data API, we downloaded the
Public Safety data for the cities of Chicago, Los Angeles and New
York; and using the transparency website of the Department of
Public Safety of Sdo Paulo, we downloaded data for the city of
Campinas. The police patrolling instances that we generated have
names in the format name_n_m, where name refers to the geo-
graphic region, n = |V| and m = |E|.
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For each vertex v of a graph generated from a map, we assign
a weight proportional to the crime rate geographically close to the
point in the map associated with v. More precisely, let G = (V,E)
be a graph corresponding to a region of a city and C be a set of
points of this region where crimes have occurred. Let d : C xV —
Q> be a function that computes the distance (in meters) of a
crime to a verteX, and f:R — R be the normal probability den-
sity function with mean @ =0 and standard deviation o = 0.5.
We consider that a crime has influence on the vertices that are
within a radius of 200m from it. So, for each point ¢ € C, we de-
fine Ve ={v eV :d(c,v) <200}, and let F. =Y,y f(d(c,v)/200).
Then, for each vertex v € V, we set its weight as

f(d(c.v)/200)
w(v) =|100 )" — 5
cveVe

The formula we have used to assign weights to the vertices ex-
presses the idea that the influence of a crime over a region is a
Gaussian distribution on the distance to the crime.

The generated instances are available at the website of the Lab-
oratory of Optimization and Combinatorics at the University of
Campinas’.

7. Computational results

The running time limit for our experiments was set to 1800 sec-
onds. In the following tables, we show the average number of
nodes explored in the branch-and-bound tree (column Nodes) and
the average time, in seconds, to solve the instances (column Time),
ignoring the unsolved instances. When the time limit is exceeded
for all 10 instances of a graph class, we use a dash (-) in the cor-
responding table entry. In a row, when all 10 instances of a graph
class could be solved, the (average) time that is minimum is indi-
cated in boldface. Similarly, when the number of nodes that were
explored is minimum, we underline the corresponding value.

Henceforth, when we refer to any of the formulations, it should
be understood that we are referring to the corresponding exact
algorithms that we have implemented for them. Thus, curt refers
to the branch-and-cut algorithm for the cut-based formulation C,
while FLow and rFLow2 refer to the corresponding branch-and-
bound algorithms for the flow-based formulations 7 and 7.

We omit the results for FLow2 because, according to our ex-
periments, it is (on average) over 10 times slower than FLow. We
also omit the results obtained with the branch-and-bound algo-
rithm for Mati¢'s formulation since it was, on average, four times
slower than Zhou et al. Furthermore, it solved fewer instances than
the other implemented algorithms.

In Table 1 we show the impact of separating cross inequali-
ties. cuT-cross refers to cut with the cross inequalities. Conn Cuts
(resp. Cross Cuts) show the number of connectivity (resp. cross)
inequalities separated by the algorithm. We note that, on average,
cuT-cross was much faster than cut on all grid instances. More-
over, only cUT-CROSS was able to solve all instances with more than
100 vertices within the time limit.

However, as it can be seen in Table 2, FLow had better execu-
tion times than cuT-cross on most of the grid instances. More-
over, on grids with over 100 vertices, Mati¢ and Zhou formula-
tions were not able to solve the majority of the instances, while
cuT-crosS and FLow solved all of them. Examining carefully the
experimental results, we noted that, when the optimal solution
costs deviates reasonably from the trivial upper bound of w(G)/k,
FLow frequently fails to find a provably optimal solution within the
time limit. A more in-depth analysis of this behavior is provided in
Section 7.1.

1 https://www.loco.ic.unicamp.br/files/instances.
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Table 1
Computational results for BCP, on grid graphs showing the efficiency of the cross inequali-
ties.
Instance cuT CUT-CROSS
Sol  Conn Cuts  Time Sol  Conn Cuts  Cross Cuts  Time
gg_05_05_a 10 3504 0.50 10 449 478 0.15
gg 05.05.b 10 24,252 3.32 10 2817 3841 0.84
gg_05_06_a 10 6184 0.80 10 1056 1286 0.32
gg_05_06_b 10 21,125 2.76 10 3311 4536 1.02
gg_05_10_a 10 44,635 5.63 10 2187 2147 0.55
gg_05_10_b 10 67,926 9.37 10 3776 3884 1.10
gg_05.20_.a 6 2,821,710 52139 10 9578 8768 243
gg_05_20_b 10 1,836,157 32573 10 23,832 23,613 6.47
gg 07_07_a 10 41,279 6.84 10 2128 2220 0.78
gg_07_07_b 10 184,730 30.99 10 3035 3647 1.29
gg_07_10_a 10 301,289 57.34 10 2154 1942 0.81
gg_07_10_b 10 427,441 87.24 10 5954 6243 2.69
gg_10_10_a 10 1,373,429 389.42 10 2987 2432 1.20
gg_10_10_b 9 1,289,465 370.06 10 3652 3343 2.12
gg_15_15.a 0 - - 10 13,032 7371 8.97
gg_ 1515 b 0 - - 10 15,411 10,182 13.88
Table 2
Computational results for BCP, on grid graphs.
Instance CUT-CROSS FLOW Zhou et al.
Sol  Nodes Time Sol  Nodes Time Sol  Nodes Time
gg 05_05_a 10 56 0.15 10 919 0.09 10 2564 0.45
gg_05_05_b 10 913 0.84 10 320,162 19.17 10 7341 1.22
gg_05_06_a 10 189 0.32 10 460 0.07 10 1843 0.43
gg_05_06_b 10 844 1.02 10 1592 0.13 10 4454 0.91
gg_05_10_a 10 151 0.55 10 500 0.15 10 12,542 3.27
gg_05_10_b 10 468 1.10 10 806 0.17 10 18,258 5.13
gg_05_20_a 10 246 2.43 10 454 0.25 2 116,374 42.32
gg 05.20.b 10 950 6.47 10 1146 0.34 4 2,221,308  522.95
gg_07_07_a 10 200 0.78 10 645 0.14 10 10,346 2.66
gg_07_07_b 10 497 1.29 10 784 0.18 10 15,657 3.60
gg 07_10_a 10 136 0.81 10 366 0.16 10 529,336 116.87
gg_07_10_b 10 650 2.69 10 1304 0.29 9 400,859 66.10
gg_10_10_a 10 100 1.20 10 186 0.20 6 1,472,514  396.10
gg_10_10_b 10 301 2.12 10 905 0.36 5 544,515 141.69
gg_15_15_a 10 125 8.97 10 184 0.40 0 - -
gg_15_15_b 10 458 13.88 10 696 0.59 0 - -

Table 3 shows that both of our formulations are also faster
(on average) on random graphs instances. Moreover, the execution
time for cut was better than FLow on some instances. A closer
look at the number of vertices and edges of the instances, revealed
that the density of edges of the input graphs was a crucial factor
for the performance of both algorithms. In order to further explore
this observation, we generated random graphs with a larger num-
ber of vertices (n = 500 and n = 1000) and different values of den-
sity (m =n%, where « € {1.1,1.2,1.3,1.4,1.5}). The experiments
on these instances are shown in Table 4 and indicate that cut per-
forms better than FLow when m > n!-2. One possible explanation
for these results is that, in such dense instances, as many pairs of
vertices are adjacent, the algorithm might spend less time in the
separation routines since the connectivity inequalities are only for
non-adjacent pairs of vertices (see inequalities (3)). Another possi-
bility is that the flow-based formulation F has variables associated
with the edges of the input graph, which means that this formula-
tion has additional symmetries for all the different spanning trees
of the classes.

In our experiments, FLOW was the only algorithm able to solve
the police patrolling instances within the time limit. As Table 5
indicates, the problem becomes much harder to solve when k > 2.

The experiments that we carried out for k > 2 on grid graphs
and random graphs are shown in Table 6. To compare with the for-
mulation due to Zhou et al. (2019), designed for MIN-MAX BCP;, we
considered our cut-based and flow-based formulations with min-

max objective (i.e. minimizing the weight of the kth class), denoted
by cut (MIN-MAX) and FLOW (MIN-MAX). Since CUT (MIN-MAX) was
not able to solve most of the tested instances within the time limit,
its running times are omitted. We remark that the unique instance
(out of 10) that Zhou et al.’s branch-and-bound solved in 508.93
seconds, FLow solved in 388.67 seconds (and additionally solved
other 5 instances).

Table 7 shows some instances consisting of grid graphs with
large number of vertices, and different weight distributions (a and
b), that could only be solved by FLow.

Our computational experiments show that the algorithms based
on the formulations we presented in this work substantially out-
perform the algorithms based on the previous models in the lit-
erature. On most of the tested instances, FLow had the best aver-
age running time. On the other hand, cut explored (on average) a
smaller number of nodes in the branch-and-bound tree, and it is
the fastest on instances consisting of dense graphs.

7.1. Integrality gap

To evaluate the strength of ILP and MILP formulations it is com-
mon to compare the cost of optimal (integral) solutions with the
cost of optimal solutions of the corresponding linear relaxations.
We now briefly discuss about the quality of the linear relaxation
of formulations C and F.
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Table 3
Computational results for BCP, on random graphs.

Instance cuT FLOW Zhou et al.

Sol Nodes  Time Sol Nodes  Time  Sol Nodes  Time

rnd_50_70_a 10 201 0.57 10 256 0.08 10 958 0.46
rnd_50_70_b 10 847 1.89 10 928 0.12 10 1872 0.65
rnd_50_100_a 10 46 0.16 10 203 0.10 10 399 0.43
rnd_50_100_b 10 251 0.51 10 683 0.16 10 648 0.45
rnd_50_400_a 10 15 0.05 10 11 0.18 10 58 1.07
rnd_50_400_b 10 129 0.24 10 11 0.19 10 177 1.52
rnd_70_100_a 10 121 0.69 10 119 0.09 10 1185 0.78
rnd_70_100_b 10 389 1.56 10 876 0.21 10 1710 0.79
rnd_70_200_a 10 13 0.07 10 23 0.14 10 156 0.97
rnd_70_200_b 10 168 0.40 10 66 0.17 10 357 0.85
rnd_70_600_a 10 10 0.06 10 1 0.21 10 19 1.90
rnd_70_600_b 10 71 0.20 10 12 0.27 10 160 2.28
rnd_100_150_a 10 244 1.84 10 206 0.20 10 1918 2.06
rnd_100_150_b 10 1614 9.46 10 531 0.25 10 1711 1.77
rnd_100_300_a 10 30 0.20 10 69 0.21 10 247 1.44
rnd_100_300_b 10 91 0.39 10 57 0.23 10 565 2.32
rnd_100_800_a 10 3 0.04 10 1 0.30 10 29 3.29
rnd_100_800_b 10 41 0.18 10 83 0.35 10 71 3.01
rnd_200_300_a 10 80 2.35 10 519 0.41 10 1951 7.04
rnd_200_300_b 10 397 8.96 10 849 0.49 10 2857 10.71
rnd_200_600_a 10 14 0.35 10 356 0.56 10 728 9.65
rnd_200_600_b 10 107 1.02 10 515 0.62 10 995 9.81
rnd_200_1500_.a 10 1 0.06 10 1 0.64 10 3 7.34
rnd_200_1500_b 10 8 0.13 10 303 1.05 10 241 14.85
rnd_300_500_a 10 62 5.08 10 732 0.72 10 2811 28.61
rnd_300_500_b 10 303 8.88 10 1029 0.84 10 3629 21.84
rnd_300_1000_.a 10 8 0.47 10 614 1.07 10 982 20.34
rnd_300_1000_.b 10 57 1.08 10 1113 1.39 10 1030 19.75
rnd_300_2000_.a 10 1 0.10 10 1 1.05 10 35 25.69
rnd_300_2000_b 10 28 0.60 10 754 1.90 10 54 80.63
Table 4
Computational results for BCP, on dense random graphs.
Instance cut FLOW
m Sol  Nodes Time Sol  Nodes Time
rnd_500_931_a n!1 10 35 12.41 10 1397 2.01
rnd_500_931_b nt! 10 309 2686 10 1100 1.67
rnd_500_1733_a n'2 10 7 1.16 10 1243 2.98
rnd_500_1733_b n'?2 10 42 2.58 10 2101 3.45
rnd_500_3226_a n'3 10 2 0.31 10 99 217
rnd_500_3226_b n'3 10 22 0.79 10 495 3.72
rnd_500_6005_a n4 10 1 0.30 10 42 4.74
rnd_500_6005_b n'4 10 9 0.77 10 1257 13.55
rnd_500_11180_a n'> 10 1 0.53 10 40 3.08
rnd_500_11180_b n'> 10 4 0.86 10 1666 23.59
rnd_1000_1995_a nl1 10 31 5404 10 2163 6.48
rnd_1000_1995_b nt1 10 64 77.14 10 2726 6.27

rnd_1000_3981_a n'2 10 12 4.56 10 1942 14.19
rnd_1000_3981_b n'?2 10 12 5.29 10 3545 20.95
rnd_1000_7943_a n'3 10 1 0.91 10 800 24.32
rnd_1000_7943_b n'3 10 1 0.88 10 2891 48.37
rnd_1000_15849_.a n'4 10 1 1.13 10 148 27.59
rnd_1000_15849 b n'4 10 1 1.08 10 10,155 13455
rnd_1000_31623_.a n'> 10 1 1.94 10 523 58.47
rnd_1000_31623_.b n'5 10 1 1.98 10 2343 144.46
Table 5
Performance of FLow to solve BCP; on police patrolling instances when k € {2, 3,4, 5, 6}.
Instance 2 3 4 5 6
barao_1913_2752 7.31 429.72 - - -
campinas_centro_579_942 6.60 159.88 - - -

chicago_englewood_1560_2579  8.18 11824 -
chicago_lakeview_1004_1563 343 34.73 251.97 - -

chicago_loop_624_971 1.93 31.13 459.44 - -
la_hollywood_1368_2030 19.75 10291  739.39 587.44 -
la_skidrow_1667_2459 41.59  46.84 131481 - -
nyc_chelsea_822_1228 2.28 72.75 109.59 861.67 -
nyc_hellskitchen_498_746 1.30 8.82 3.13 - -
unicamp_624_901 1.17 83.52 - - 710.68
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Table 6
Computational results for MIN-MAX BCP, when k € {3,4, 5, 6}.
Instance FLOW (MIN-MAX) Zhou et al.
k Sol Nodes Time Sol  Nodes Time
gg_07_10_a 310 4177 0.93 2 1,072,107  603.97
gg_07_10_a 4 10 25242 3.86 1 99,880 68.95
gg 07_10_a 5 10 1,578,669 247.61 0 - -
gg 07_10_a 6 3 3,077,826 48245 0 - -
rmd_100_150_.a 3 10 1,933 0.74 9 109,799 70.04
rmd_100_150_.a 4 10 13,404 3.14 4 1,019,886  641.36
md_100_150_.a 5 10 627,636 14927 0 - -
md_100_150_.a 6 6 2,268,233 68223 1 205,247 508.93
Table 7 set p= 100 and generated 10 instances consisting of grid graphs
Performance of FLOW to solve BCP, on large grids. with height 5 and width 10. FLow could not solve these instances
Instance a b within a time limit of 1800 seconds, while cut (with the lifted
sol Nodes Time Sol  Nodes Time cover inequalities) solved each of them in less than 1 second.
This gives an evidence that the lifted cover inequalities are use-
gg_30_30 10 466 2.71 10 731 3.14 . . . . . .
28 60_60 10 420 20,06 10 751 15.49 fu.l in cutting off fractional optfmal solut!ons of the linear rq?lax—
gg_90_90 10 727 89.21 10 874 88.78 ation of the cut-based formulation, and yield a better approxima-
gg_120.120 10 575 148.93 10 736 207.57 tion of the convex hull.
gg_150_150 10 546 302.97 10 1087  334.19
gg 180_180 10 305 571.58 10 451 599.53
gg.210_210 10 400 1100.32 9 325 1064.07 8. Conc]uding remarks
£g.240_240 3 467 1709.85 6 138 1422.05
We proposed an ILP and two MILP formulations for the Bal-
100 1 anced Connected k-Partition Prqblem. The first .of our fqrmulations,
denoted by C, has an exponential number of inequalities to guar-
@ @ antee connectivity. We presented a polynomial-time separation al-
gorithm and a lifting procedure for these inequalities. Moreover,
1 we introduced a new class of valid inequalities for this formula-

100@ () @1 @100

Fig. 4. Instance (G, w) of BCP,, with w(vy) =w(vs) = w(vg) = 100 and w(1,) =
w(vs3) =w(vy) = 1.

It is not difficult to see that for any instance of BCP;, an optimal
solution for the linear relaxation of 7, (G, w) and also of C(G, w)
has cost w(G)/k, a trivial upper bound for the optimal value.

Let us first show that this happens for the linear relaxation of
Fi(G,w). For that, take the vector (f,y’) e Rkn+2m 5 gkn+2m = de.
fined as follows. For each source s;, i € [k], and each arc (s;, v), we
set fs’i,, =w(v)/k and ygi,, =w(v)/(kw(G)). For every arc a not in-
cident to a source, we set f, =y, = 0. Clearly, (f',y’) is a feasible
solution, and /(5% (s;)) = w(G)/k for every i € [k].

Now, consider the linear relaxation of C (G, w). It is immedi-
ate that the vector x € R™ defined as Xy = 1/k, for each v eV and
each i e [k], is a feasible solution for this relaxation, and moreover,
Y vev W)X, ; = w(G)/k for each i € [k]. Thus, x is an optimal solu-
tion.

This linear relaxation may be strengthened by adding the cover
inequalities mentioned in Section 5.1. As an example, consider the
instance (G, w) of BCP, illustrated in Fig. 4. Note that {v{,vs} is a
cover since w(vq) +w(vs) > w(G)/2, and thus the lifted cover in-
equality x,, 1 +Xyg.1 +Xy1 < 1 is valid for the polytope associated
with the linear relaxation of C, (G, w). Such inequality cuts off any
optimal solution for the linear relaxation of C, (G, w) whose cost is
w(G)/2 = 151.5, as we observed before.

To get a better understanding of the effectiveness of the lifted
cover inequalities, we constructed instances for BCP, consisting of
grid graphs in which all the vertices are assigned unit weights, ex-
cept for exactly (k+ 1) random vertices that have a given (large)
weight p > 1. Hence, the gap between an optimal integer solution
and an optimal fractional solution for the flow-based formulation
can be arbitrarily large on these instances. In our experiments, we

10

tion, and showed how to separate a special case of them (namely,
cross inequalities) on planar graphs in polynomial time. The ex-
periments showed that the addition of these inequalities improved
greatly the performance of the corresponding branch-and-cut algo-
rithm.

Then, we introduced two compact MILP formulations based on
flows in a digraph constructed from the input graph. The first of
them, F, has a polynomial number of variables and constraints,
and is based on flows whose values depend on the weights of the
vertices. To overcome the apparent disadvantages of this formula-
tion, like symmetries and vertex-weight dependent flows, we de-
signed F'. Although more complex than the former, this formula-
tion avoids some symmetries and uses flows of small values just
to control connectedness of the classes. However, in our computa-
tional experiments, the performance of the branch-and-bound al-
gorithm for formulation F was significantly superior to the one
for 7.

Our formulations impose a non-decreasing weight ordering of
the classes of a balanced connected k-partition {Vi};c[, that is,
w(V;) <w(Viq) for all i € [k —1]. Therefore, one may easily mod-
ify the objective function to capture other concepts of “balance”
such as minimize the heaviest class or the maximum difference
of weights between the classes. Recall that all these problems
are equivalent for k=2, but they are not when k > 2. Further-
more, the addition of the constraints that order the classes by
weights reduces the symmetry of our formulations. In the case of
the asymmetric flow-based formulation 7/, tests showed that re-
moving symmetrical solutions does not necessarily imply better re-
sults in practice. Preliminary experiments with other formulations
corroborate with the idea that allowing symmetric solutions may
yield faster algorithms on some classes of instances. Further in-
vestigation is still needed to fully understand the effectiveness (or
not) of breaking symmetries.

Table 8 summarizes the number of variables and constraints in
the formulations that we have considered here. In comparison with
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Table 8

Comparison of formulations for BCP, in terms of number of variables and con-
straints on an input graph with n vertices and m edges.

Formulation # Binary Variables  # Real Variables  # Constraints
Cut C kn 0 o)
Flow F kn+2m kn +2m o(m+m+k)
Asym. flow F’ k(n +2m) kn + 2km O(k(n? + m))
Zhou et al. (2019)  2k(n+m) n+2m+1 O(km)

Zhou et al. formulation, our Flow formulation has a smaller num-
ber of binary variables and constraints.

The computational experiments show that cut and FLow have a
considerably better performance than all previous exact algorithms
in the literature. For the instances consisting of grid graphs, FLow
was able to solve (within the time limit) instances of size over 400
times larger than the size of the instances that could be solved by
the previous exact methods in the literature. On average, CUT was
approximately 8 and 2 times faster than the algorithms based on
the formulations proposed by Mati¢ and Zhou et al., respectively.
Moreover, FLOW was 22 times faster than Matic’s algorithm and 5
times faster than Zhou et al’s algorithm.
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