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The aim of this study was to build and validate an artificial neural network (ANN) algorithm to predict 
sleep using data from a portable monitor (Biologix system) consisting of a high-resolution oximeter 
with built-in accelerometer plus smartphone application with snoring recording and cloud analysis. 
A total of 268 patients with suspected obstructive sleep apnea (OSA) were submitted to standard 
polysomnography (PSG) with simultaneous Biologix (age: 56± 11 years; body mass index: 30.9± 4.6
kg/m2, apnea-hypopnea index [AHI]: 35± 30 events/h). Biologix channels were input features for 
construction an ANN model to predict sleep. A k-fold cross-validation method (k=10) was applied, 
ensuring that all sleep studies (N=268; 246,265 epochs) were included in both training and testing 
across all iterations. The final ANN model, evaluated as the mean performance across all folds, resulted 
in a sensitivity, specificity and accuracy of 91.5%, 71.0% and 86.1%, respectively, for detecting sleep. 
As compared to the oxygen desaturation index (ODI) from Biologix without sleep prediction, the bias 
(mean difference) between PSG-AHI and Biologix-ODI with sleep prediction (Biologix-Sleep-ODI) 
decreased significantly (3.40 vs. 1.02 events/h, p<0.001). We conclude that sleep prediction by an ANN 
model using data from oximeter, accelerometer, and snoring is accurate and improves Biologix system 
OSA diagnostic precision.
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Obstructive sleep apnea (OSA) is characterized by repetitive episodes of upper airway obstruction, resulting in 
sleep fragmentation and oxygen desaturation1. OSA is associated with several health consequences, including 
poor sleep quality, excessive daytime sleepiness, and increased cardiovascular risk2. Polysomnography (PSG) 
is considered the gold standard method for OSA diagnosis3. However, PSG is expensive and inconvenient for 
patients3. Portable monitoring (PM) is a simplified method that has been validated for OSA diagnosis4. In 
contrast to PSG, PM does not detect sleep. The consequence of this limitation is that the number of respiratory 
events in PM devices are reported by hour of monitoring rather than hours of sleep. Therefore, the absence 
of sleep monitoring is a potential source of variability between PSG and PM. Biologix system is a new PM 
device based on a high-resolution wireless oximeter (OxistarTM, Biologix Sistemas S.A., Brazil) with built-in 
accelerometer and a smartphone application (app) that is downloaded to the patient’s smartphone. The app 
records snoring, and all information is automatically processed in the cloud. Biologix system has been validated 
for OSA diagnosis against PSG in the sleep laboratory5 and against traditional PM at home6. However, Biologix 
system does not monitor sleep and therefore reports oxygen desaturation index (ODI) based on hours of 
monitoring rather than hours of sleep. Therefore, the objective of this study was to build and validate an artificial 
neural network (ANN) algorithm using data from oximeter, accelerometer and snoring to detect sleep. We also 
tested the hypothesis that ANN model improves the Biologix system OSA diagnostic precision.
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Methods
Patients and data collection
The study included patients recruited in the validation study of the Biologix system against PSG. Full details of 
the protocol have been published elsewhere5. The local ethics committee (Comissão de Ética para Análise de 
Projetos de Pesquisa do HCFMUSP - CAPPesq) approved the protocol (SDC 4515/17/015), and all patients gave 
their informed consent. The study has been performed in accordance with the Declaration of Helsinki. Briefly, 
we studied patients with suspected OSA referred for overnight-laboratory PSG at the Sleep Laboratory of the 
Heart Institute (InCor).

PSG included recording of the electroencephalogram (EEG) central (C) and occipital (O) channels 
referred to the auricular channel (A) (C3/A2, C4/A1, O1/A2, O2/A1), electrooculogram (EOG), submental 
electromyogram (EMG), left and right anterior tibialis EMG, electrocardiogram, thoraco-abdominal effort, 
oronasal airflow (thermistor and nasal pressure based airflow measurement), oxygen saturation (SpO2) with 
pulse oximetry, and body position (EMBLA S7000, Embla Systems, USA and Alice 5, Respironics Inc., USA)5. 
Two certified technicians independently analyzed all PSG studies. Hypopnea was defined as a drop in the peak 
signal excursion of ≥ 30% from the pre-event baseline nasal pressure signal lasting for at least 10 seconds. 
Respiratory events were scored according to the American Academy of Sleep Medicine criteria (≥ 3% reduction 
in SpO2 from the pre-event baseline or an event associated with arousal). OSA was classified based on current 
standards as follows: absence of OSA (AHI < 5 events/hour), mild OSA (5 ≤ AHI < 15 events/hour), moderate 
OSA (15 ≤ AHI < 30 events/hour), and severe OSA (AHI ≥ 30 events/hour).

Simultaneously, the patients also wore a high-resolution oximeter (OxistarTM, Biologix Sistemas S.A., Brazil) 
with built-in accelerometer linked by Bluetooth to a smartphone app that recorded snoring. The OxistarTM 
firmware captures data at a rate of 100 samples per second, providing beat-to-beat raw SpO2 measurements with 
a precision of 0.1%. To smooth the data, a moving average over 4 heartbeats was applied. Oxygen desaturations 
are calculated providing the ODI. The ODI was calculated as the number of desaturations (≥ 3% reduction in 
SpO2) per hour, using either total recording time or total sleep time. The oximeter information was sent to the 
cloud, and automatically analyzed (Fig. 1). The PSG and Biologix data were time-synchronized.

ANN algorithm
ANN are algorithms based on the biological structure of the human brain, in which several neurons are 
connected7,8. These neurons are divided into at least three layers: inputs, a variable number of hidden layers, 
and outputs. Each of these layers is connected to the next layer by an activation function, a weight associated 
with its signal, and a bias8. To build and validate our ANN algorithm, we used data derived from the Biologix 
system including oximeter (SpO2, heart rate [HR]), with built- in accelerometer (movement), and smartphone 
app (snoring). Snoring was obtained by recording the audio of the environment performed by the smartphone 
app and processed by another neural network. This algorithm provides a binary output indicating whether 
the patient is snoring or not during the audio recording stretches, similar to other approaches found in the 
literature9. The k-fold cross-validation method (k=10) was used to build and validate the ANN algorithm10,11. 

Fig. 1.  Biologix system. The wireless oximeter connects via Bluetooth to the smartphone’s Biologix application. 
The data is sent to the cloud and automatically analyzed by the algorithm.
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The sleep studies were randomly divided into 10 folds, with each fold used for cross-validation to ensure that 
all studies were both trained and tested across multiple iterations. In each fold, the training and test datasets 
were employed to optimize the weights and biases, reducing the error between the predicted value by the neural 
network results. The gold standard for sleep classification was a binary variable (sleep or awake) determined by 
PSG epochs of 30 seconds. The process starts with a forward pass for initial values of weight and bias and for pre-
defined activation functions. Outputs are then calculated, and errors are determined. In the next step, the values 
of weights and biases are redefined through a process called backpropagation12. Using the newly calculated 
values, the process is redone. This occurs recursively until a maximum number of iterations8,13. Our model 
consists of an input layer, one hidden layer and an output layer. The input layer has 97 neurons, the hidden layer 
has 128 neurons and a ReLU (rectified linear unit)14 activation function. Finally, the output layer has 1 neuron 
and a sigmoid activation function (Fig. 2). In order to test the accuracy of the accelerometer alone in predicting 
sleep, another ANN model was built using only the accelerometer channel, with 23 neurons in the input layer, 
while the other layers remained the same.

Features
The first step was the treatment of missing values (less than 1% of the data was missing), which consisted of 
replacing these values by zero, in the case of the accelerometer, and by the maximum values for the cases of SpO2 
and HR. Subsequently, the features were calculated using epochs of 30-seconds synchronize to PSG epochs. The 
features used in the model were calculated based on the signals obtained by the Biologix system and included 
SpO2, HR, movement detected by the accelerometer, and snoring detected by the smartphone app. The SpO2 
features were: (1) presence or absence of oxygen desaturation, expressed as a binary variable; (2) desaturation 
range; (3) SpO2 quartile (75th) as a measure of the tendency of the patient’s SpO2 values during sleep. The HR 
signal provided several features: (1) average pulse interval; (2) standard deviation of HR; (3) HR variability 
(HRV) time domain features (SDNN, RMSSD, PNN50, SD1, SD2); (4) HRV frequency domain features (LF 
power, HF power, LF/HF ratio). The accelerometer data generated multiple features: (1) variance; (2) root mean 
square (RMS); (3) skewness; (4) kurtosis. Other variables of interest associated with snoring, obtained by the 

Fig. 2.  Artificial neural network algorithm diagram. The 97 input features were extracted from the channels, 
processed by the hidden layer with 128 neurons, resulting in a single neuron output that predicted whether the 
patient was sleep or awake. SpO2 oxygen saturation, ReLU rectified linear unit.
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Biologix app, were also used, which improved the performance of the machine learning model. In addition, 
some of these features were considered shifted in relation to the current time step for the better composition of 
the predictive model, totaling 97 inputs for the neural network model summarized in the Table 1. Finally, the 
data was standardized by removing the mean and scaling to unit variance15,16.

	
z =

(x− u)

s

Where u is the mean value, s is the standard deviation, x is the samples and z is the new samples15,16.

Statistical analysis
Accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), Cohen’s kappa 
coefficient (κ), F1-score (weighted average between the precision score [PPV] and recall score [sensitivity]), and 
area under the curve (AUC) were calculated for evaluation of the ANN model. Because several previous studies 
used only accelerometer data to predict sleep, we used the McNemar’s test17 to compare the ANN performance 
to predict sleep using only accelerometer data with ANN performance using all Biologix channels (SpO2, 
HR, accelerometer, and snoring). Overall summary statistics were calculated in terms of means and standard 
deviations for continuous variables and counts and percentages for categorical variables. Shapiro-Wilk test was 
used for checking the data normality of the PSG and the Biologix system. Since the data distribution was not 
normal and they were not independent, the differences were analyzed by the Wilcoxon signed-rank test. In 
addition, we calculated the sensitivity, specificity, accuracy, PPV, and NPV of the Biologix system, without and 
with sleep prediction, versus PSG, in the detection of OSA severity. Mc Nemar’s test17 compared the Biologix 
system performance without and with sleep prediction. Finally, to assess the amount of agreement on OSA 
diagnosis between PSG-AHI and Biologix-ODI, without and with sleep prediction, Bland-Altman plots were 
performed. RStudio 2023.06.1 software (R Foundation for Statistical Computing) was used for all statistical 
analysis. Significance was assessed with a p-value < 0.05.

Results
Out of 304 consecutive patients previously evaluated to validate the Biologix system against PSG5, 268 had 
snoring recordings and were used for this study. The patients had typical characteristics of patients referred 
for OSA diagnosis, and were predominantly obese middle-aged adults, with comorbidities and with a high 
proportion of moderate to severe OSA (Table 2). As described in the method section, the sleep studies underwent 
10-fold cross-validation. Each fold consisted of a training set of 90% of the patients (approximately 241 patients, 
corresponding to 221,639 epochs) and a test set of 10% of the patients (approximately 27 patients, corresponding 
to 24,627 epochs).

The total sleep time determined by PSG and by the Biologix ANN model using all channels was similar 
(353± 65 min vs. 359± 56 min, respectively, p=0.15), as well as sleep efficiency (0.76± 0.12 % vs. 0.77± 0.10 
%, respectively, p=0.15). Table 3 shows the performance metrics of the ANN model using only the accelerometer 
and the ANN model using all Biologix channels to predict sleep, as assessed by k-fold cross-validation. The 
performance of the ANN when all Biologix channels were used was significantly higher than when only 
accelerometer data was used (p< 0.001), as revealed by McNemar’s test. The ANN model using data from all 
Biologix channels achieved higher AUC values of the receiver operating characteristic (ROC) curve, indicating 
superior performance in predicting sleep (Fig. 3).

Data Features  No. of features

SpO2

Desaturation events

18Desaturation range

SpO2 quartile (75th)

HR

Average pulse interval

40Standard deviation

Heart rate variability

Accelerometer

Variance

22
Root mean square

Skewness

Kurtosis

Snore
Snore events

16
Snoring proportion

Epoch position Normalized time of the epoch 1

Table 1.  Features inputted into the ANN algorithm with all Biologix channels.  Epoch position is the 
normalized time of the epoch position in relation to the duration of the entire sleep study (expressed as a 
percentage of the sleep study, being 0% and 100% the beginning and end of the study, respectively). SpO2 
oxygen saturation, HR heart rate.
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The ability to predict sleep was evaluated for its impact on OSA severity determination. AHI was classified 
using cut-offs of 5, 15, and 30 events/h. We calculated the specificity, sensitivity, accuracy, PPV, and NPV of 
the Biologix system, without and with sleep prediction (Table 4). Compared to Biologix-ODI, the specificity to 
predict OSA as defined as AHI ≥ 5 or 15 events/h increased with sleep prediction, however, the improvement 
did not reach statistical significance.

Bland-Altman analysis between PSG-AHI versus Biologix-ODI showed that the limits of agreement were 
similar without and with sleep prediction ([-20,27] vs. [-20,22], respectively), whereas the bias (mean difference) 
decreased significantly with sleep prediction (3.40 vs. 1.02, p< 0.001) (Fig. 4a and b).

Discussion
In the present study, we built and validated a new algorithm to predict sleep based on the ANN model using 
data derived from the Biologix system, including a high-resolution oximeter with built-in accelerometer, and 
snoring detected by the smartphone with the Biologix app.5,6. Firstly, the algorithm exhibited good performance 
in distinguishing sleep from awake, with a sensitivity of 91.5%, specificity of 71.0%, accuracy of 86.1%, Cohen’s 

Algorithm

ANN with only accelerometer ANN with accelerometer, SpO2, HR and snoring

Accuracy 84.5 (76.3-92.6) 86.1 (78.9-93.2)

Sensitivity 91.7 (84.0-99.5) 91.5 (84.4-98.6)

Specificity 65.4 (47.3-83.5) 71.0 (54.8-87.3)

PPV 88.0 (77.7-98.3) 89.8 (80.6-99.1)

NPV 71.2 (52.9-89.5) 72.3 (54.6-89.9)

κ 0.55 (0.39-0.71) 0.60 (0.45-0.75)

F1-score 0.89 (0.82-0.96) 0.90 (0.84-0.97)

AUC 0.88 (0.80-0.96) 0.90 (0.83-0.98)

Table 3.  Performance assessment of the ANN models to predict sleep. Data in parentheses are 95% confidence 
intervals. ANN artificial neural network, SpO2 oxygen saturation, HR heart rate, PPV positive predictive value, 
NPV negative predictive value, κ Cohen’s kappa coefficient, AUC area under the curve.

 

Total

(N = 268)

Male (%) 146 (54.5)

Age (years) 56 ± 11

Body mass index (kg/m2) 30.9 ± 4.6

Epworth sleepiness scale score 11 ± 5

Arterial hypertension (%) 132 (49.3)

Dyslipidemia (%) 76 (28.4)

Diabetes mellitus (%) 51 (19.0)

Depression (%) 24 (9.0)

Coronary artery disease (%) 18 (6.7)

Asthma/chronic obstructive pulmonary disease (%) 13 (4.9)

Polysomnography

 Total recording time (min) 465 ± 42

 Total sleep time (min) 353 ± 65

 Sleep latency (min) 43 ± 36

 Wakes after sleep onset (min) 66 ± 46

 Sleep efficiency (%) 76 ± 12

 Apnea-hypopnea index (events/h) 35 ± 30

 No OSA (%) 29 (10.8)

 Moderate to severe OSA (%) 176 (65.7)

 Oxygen desaturation index (events/h) 32 ± 29

Biologix

 Total recording time (min) 465 ± 42

 Oxygen desaturation index (events/h) 32 ± 26

Table 2.  Demographic and sleep data of the population studied. OSA obstructive sleep apnea. Apnea-
hypopnea index, using 3% desaturation criterion for hypopnea definition
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kappa coefficient of 0.60, F1-score of 0.90, and AUC of 0.90. Secondly, the algorithm performance to predict 
sleep was better using all Biologix channels compared to using only the accelerometer channel. Thirdly, Biologix 
system with sleep prediction decreased the bias between PSG-AHI and Biologix-ODI.

PM has been validated to detect OSA18,19. However, in contrast to PSG, PM does not discriminate wakefulness 
from sleep. In this context, several studies have attempted to predict sleep using a binary classification (sleep versus 
wakefulness) mainly using actigraphy. Overall, actigraphy is recognized as an accurate and sensitive method to 
detect sleep periods, but with poor specificity to identify wakefulness (ranging from 32 and 61%)20–22. A study 
carried out with 8 commercial sleep tracking devices, showed that the sensitivity to detect sleep, as compared to 
PSG, was very high (all greater than or equal to 93%). However, the specificity for predicting sleep was variable 
and generally low, ranging from 18 to 54%23. Alternatively, algorithm models based on data from several 
channels, either isolated or in combination, including accelerometer, respiratory signals, breathing sounds, and 
HRV, have been used in an attempt to improve sleep/wakefulness detection by PM22,24–31. For instance, Dafna 
et al.26 developed and validated an algorithm for detecting sleep periods in patients with OSA based on the 
analysis of respiratory sounds. Despite the high sensitivity of 92.2%, the specificity to detect wakefulness was 
low (56.6%). In turn, Montazeri et al.32 reported promising results with a sensitivity of 87.8%, specificity of 
71.4%, and accuracy of 82.3% to detect sleep using an algorithm model based on tracheal sound and movement 

PSG, AHI
 OSA
≥ 5 events/h

 Mod-Sev OSA
≥ 15 events/h

Mild
5-14.9 events/h

Moderate
15-29.9 events/h

Severe
≥ 30 events/h

Biologix ODI Sleep ODI ODI Sleep ODI ODI Sleep ODI ODI Sleep ODI ODI Sleep ODI

Specificity (%) 58.6 75.9 83.8 87.7 87.7 85.4 77.7 88.4 90.9 91.6

Sensitivity (%) 96.2 93.7 92.0 91.4 90.1 91.4 91.4 91.4 87.7 90.4

Accuracy (%) 92.2 91.8 89.2 90.0 84.4 86.8 89.5 90.7 81.7 82.5

PPV (%) 95.0 97.0 91.5 93.0 85.7 88.7 94.4 92.7 59.7 64.4

NPV (%) 65.4 59.5 84.8 87.4 73.4 84.6 84.7 91.2 88.3 87.7

Table 4.  Diagnostic performance of Biologix system without and with sleep prediction in OSA severity 
determination. PSG polysomnography, AHI apnea-hypopnea index, OSA obstructive sleep apnea, ODI oxygen 
desaturation index considering total recording time, Sleep ODI oxygen desaturation index considering total 
sleep time, PPV positive predictive value, NPV negative predictive value.

 

Fig. 3.  Receiver operating characteristic (ROC) curve. The ROC curve for the ANN using only the 
accelerometer and the ANN using all Biologix channels (SpO2, HR, accelerometer, and snoring).
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data recorded with a small wearable device attached over the trachea. The reported device is also able to predict 
the AHI based on tracheal sounds, however, it does not measure SpO2. In general, the main challenge of all 
systems that do not measure EEG is to achieve high sensitivity to detect sleep while also maintaining reasonable 
specificity. To address this challenge, our algorithm combines built-in accelerometer data with other variables, 
including SpO2, HR, and snoring. As compared to the ANN algorithm using only the accelerometer, the ANN 
algorithm using all channels had a better performance in detecting sleep. Specifically, the specificity increased 
from 65.4% to 71.0%, without compromising sensitivity (91.7% vs. 91.5%, respectively), resulting in an increase 
of the accuracy (84.5% vs. 86.1%). In addition, the AUC increased from 0.88 to 0.90, indicating a greater ability 
to discriminate between sleep and wakefulness when all Biologix channels were used.

Compared to PSG-AHI, Biologix-ODI with sleep prediction  (Biologix-Sleep-ODI) improved the 
performance of Biologix-ODI.The Bland-Altman plots (Fig. 4) showed a significant decrease in the bias between 
PSG-AHI and Biologix-ODI when sleep prediction was taken into account (Biologix-Sleep-ODI). As compared 
to Biologix-ODI, the specificity to predict OSA as defined as AHI ≥ 5 or 15 events/h increased with sleep 
prediction (Biologix-Sleep-ODI), however, the improvement did not reach statistical significance (Table 4).

Despite the strengths, our study has limitations. Firstly, the number of patients was relatively small. On the 
other hand, because sleep prediction was based on 30-second epoch, the study used a large data set to build an 
algorithm to predict sleep. Secondly, the study was carried out using data from patients with suspected OSA, 
so the accuracy of our ANN model to predict sleep in healthy subjects may be different. Another caveat is that 
in contrast to wrist actigraphy, Biologix built-in actigraphy is placed on the finger. Although we have no reason 
to believe that there is a substantial difference between wrist and finger movements, we acknowledge that this 
comparison was not performed.

Conclusion
In conclusion, we showed that an algorithm based on ANN using all Biologix channels, including SpO2, HR, 
accelerometer, and snoring is able to detect sleep with a good accuracy. Sleep prediction resulted in a reduction 
in the bias between PSG-AHI and Biologix-Sleep-ODI.

Data availability
The data that support the findings of this study are available from Biologix Sistemas S.A., but restrictions apply 
to the availability of these data, which were used under license for the current study and are not publicly availa-
ble. Data are, however, available from the authors upon reasonable request and with the permission of Biologix 
Sistemas S.A.
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