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Abstract
This paper discusses the use of a stopping criterion based on the scaling of the Karush–
Kuhn–Tucker (KKT) conditions by the norm of the approximate Lagrange multiplier
in the ALGENCAN implementation of a safeguarded augmented Lagrangian method.
Such stopping criterion is already used in several nonlinear programming solvers,
but it has not yet been considered in ALGENCAN due to its firm commitment with
finding a true KKT point even when the multiplier set is not bounded. In contrast with
this view, we present a strong global convergence theory under the quasi-normality
constraint qualification, that allows for unbounded multiplier sets, accompanied by an
extensive numerical testwhich shows that the scaled stopping criterion ismore efficient
in detecting convergence sooner. In particular, by scaling, ALGENCAN is able to
recover a solution in some difficult problems where the original implementation fails,
while the behavior of the algorithm in the easier instances is maintained. Furthermore,
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we show that, in some cases, a considerable computational effort is saved, proving the
practical usefulness of the proposed strategy.

Keywords Nonlinear optimization · Augmented Lagrangian methods · Optimality
conditions · Scaled stopping criteria

Mathematics Subject Classification 90C46 · 90C30 · 65K05

1 Introduction

In this paper, we consider the constrained nonlinear programming problem with
abstract convex constraints of the form

Minimize f (x)

s.t. hi (x) = 0, i = 1, . . . ,m

g j (x) ≤ 0, j = 1, . . . , p

x ∈ X ,

(NLP)

where the functions f : Rn → R, h : Rn → R
m , g : Rn → R

p are continuously
differentiable and X is a non-empty, closed and convex set. Nonlinear optimization
problems appear in almost all disciplines like economics and finance [12], Engineer-
ing [13,36], and Data Science [35]. Therefore, due to its paramount importance in real
world applications, it has been extensively studied.

The most used tool to characterize minimizers of (NLP) is the well known Karush-
Kuhn-Tucker (KKT) conditions [14,31]. It is based on the Lagrangian function defined
for each x ∈ R

n and (λ, μ) ∈ R
m × R

p
+ as

L(x, λ, μ) = f (x) +
m∑

i=1

λi hi (x) +
p∑

j=1

μ j g j (x).

The KKT conditions basically state that the negative of the gradient of the objective
function is normal to the feasible set at a minimizer. However, it is based on an
approximated normal cone that takes into account the algebraic formulation of the
functional constraints. For this reason, KKT conditions are widely used in algorithms,
as computer programs can more easily deal with algebraic objects than with abstract,
geometric, ones.

More precisely, denote by PX (·) the orthogonal Euclidean projection operator over
X . It is well known that, for the non-empty, closed and convex set X , we have that
PX (y) is unique for all y ∈ R

n , it is continuous in y and

x∗ ∈ X and z ∈ NX (x∗) if, and only if, PX (x∗ + z) − x∗ = 0, (1)

where NX (x∗) = {z | zT (y−x∗) ≤ 0,∀y ∈ X} is the normal cone to X at x∗ ∈ X [15,
Proposition 2.2.1]. Using this notation, we may define the KKT points for (NLP) as:
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Definition 1 We say that a feasible x∗ is a Karush-Kuhn-Tucker point for (NLP) if
there is a vector (λ, μ) ∈ R

m × R
p
+ such that

1. PX (x∗ − ∇x L(x∗, λ, μ)) − x∗ = 0;
2. μ j g j (x∗) = 0, ∀ j = 1, . . . , p.

Clearly, the first item of Definition 1 can be rewritten as 0 ∈ ∇x L(x∗, λ, μ)+ NX (x∗)
by (1) and, when X = R

n , it reduces to ∇x L(x∗, λ, μ) = 0. Note that the functional
constraints enter into these conditions via their gradientswhile the projection operation
only takes into account the abstract constraint x ∈ X .

However, since KKT uses gradients to approximate the (geometrical) normal cone
to the feasible set, such condition does not necessarily hold at a local minimizer
of (NLP). Only constrained sets that conform to conditions called Constraint Qualifi-
cations (CQs) can ensure KKT validity [14,31] for all possible objectives. There are
many such conditions. The most famous is regularity, or the linear independence of
the gradients of the constraints. In particular, it guarantees not only the existence of
the Lagrange multipliers (λ, μ) but also their uniqueness. It is also extensively used
in the development of algorithms for solving NLP.

On the other hand, regularity is very stringent as there are many other con-
straint qualifications that require less from the feasible set description. Examples are
Mangasarian-Fromovitz [29], linearity, constant rank and variations [5,28,33], cone
continuity [8,9], pseudo and quasi-normality [32], and themost general which is Guig-
nard [27]. This whole hierarchy of different conditions is then used to analyze specific
problems and the conditions for the convergence of different algorithms.

The convergence analysis of algorithms have given rise to the development of
sequential optimality conditions, see [3,9,10] and references therein. The main idea is
to replace the, pointwise, KKT condition by inexact versions that approximate KKT
only in the limit. Such conditions have a natural connection with actual algorithms
for solving NLP as they try to approximate possible solutions iteratively. Henceforth,
sequential conditions have been extensively used to unveil the condition, and in par-
ticular the CQs, that are necessary for the convergence of different methods [8,9,25].

Many state-of-the-art codes for nonlinear programming employ a scaled variation
of the KKT conditions as stopping criterion, dividing the gradient of the Lagrangian
by the norm of the multiplier estimate. This is the case of IPOPT [37], filterSQP [24],
an implementation of the augmented Lagrangian method present in MINOS [30],
among others. On the other hand, ALGENCAN [1,19], another implementation of
the augmented Lagrangian framework, employs an “absolute” stopping criterion. This
difference is one of the reasons thatmakes its convergence theory very robust, allowing
one to assert that all the limit points are indeed KKT under very mild CQs [2,4,8].
However, such stringent stopping criterion may force the method to perform an extra
effort when a scaled criterion would do.

This paper fits this framework. We introduce a scaled version of the positive
approximate-KKT condition [2] to analyze the convergence of a variation of ALGEN-
CAN that implements the respective scaled stopping criterion. We then use the
sequential condition and its companion CQ to show that the proposed variation
of ALGENCAN can converge to KKT under a condition closely related to quasi-
normality that still allows for unbounded multipliers. Then, we close the paper with
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an extensive numerical experiment showing that using the scaled version of ALGEN-
CAN does preserve the good properties of the unscaled ALGENCAN while taking
advantage of the less stringent stopping criterion in some cases.

The rest of the paper is organized as follows. In Sect. 2 we present the scaled
version of the positive approximate-KKT condition, shortly, Scaled-PAKKT. We also
discuss its relationship with quasi-normality and the Fritz-John conditions. Section 3
is devoted to the global convergence of ALGENCAN, particularly its proposed scaled
version. The numerical tests and a detailed discussion are presented in Sect. 4. Finally,
conclusions are given in Sect. 5.
Notation For each feasible x , we define

Ig(x) := { j ∈ {1, . . . , p} | g j (x) = 0},

the index set of active inequality constraints at x .
‖ · ‖, ‖ · ‖2 and ‖ · ‖∞ stand for an arbitrary, the Euclidean and the supremum

norms, respectively. For an α ∈ R, we denote α+ = max{α, 0} and for a z ∈ R
q ,

z+ = ((z1)+, . . . , (zq)+).

2 The scaled-PAKKT condition

The positive approximate KKT (PAKKT) condition for the case X = R
n was intro-

duced in [2]. In the sequel we present a slightly different definition, which we also
call PAKKT.

Definition 2 Suppose that X = R
n . We say that a feasible point x∗ fulfills the pos-

itive approximate KKT (PAKKT) condition if there are sequences {xk} ⊂ R
n and

{(λk, μk)} ⊂ R
m × R

p
+ such that limk xk = x∗,

lim
k

‖∇x L(xk, λk, μk)‖ = 0, (2a)

lim
k

‖min{−g(xk), μk}‖ = 0. (2b)

Additionally, whenever {(λk, μk)} is unbounded, this sequence together with {xk}
satisfies

lim
k

|λki |
δk

> 0 ⇒ λki hi (x
k) > 0, ∀k, and lim

k

μk
j

δk
> 0 ⇒ μk

j g j (x
k) > 0, ∀k,

(3)
where δk := ‖(1, λk, μk)‖∞. The sequence {xk} is called a PAKKT sequence.

The difference is that the original PAKKT imposed (3) even for the case where
{δk} is bounded. We separate this case because the control of signs in (3) is only ful-
filled by the safeguarded PHR augmented Lagrangian method when the dual sequence
is unbounded (see details in the proof of [2, Theorem 4.1]). This is not a concern
since when {(λk, μk)} is bounded, clearly x∗ is already KKT. Thus, the definition we
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present here is equivalent to the original one; however, with this definition of a PAKKT
sequence, these sequences are always generated by the safeguarded PHR augmented
Lagrangianmethod (the proof of a scaled version of this statement is given in Theorem
3). It is worth mentioning that condition (2) alone is known in the literature as approx-
imate KKT (AKKT) [3], which is the first sequential optimality condition employed
in the convergence analysis of the safeguarded PHR method (see [19]).

PAKKT is related to the enhanced KKT conditions (see for instance [38]), and it
was used to improve the convergence of the PHR augmented Lagrangian method [2],
encompassing the quasi-normality CQ (see Definition 4). Besides this, one of the
interesting properties of PAKKT is that every associated dual sequence {(λk, μk)}
is bounded under the quasi-normality CQ [2,21] (this property is clearly maintained
in our new definition of PAKKT). This motivates the definition of a Scaled-PAKKT
sequential optimality condition, as made in [9] for AKKT, by simply replacing (2a)
by the weaker statement

lim
k

∥∥∥∥
∇x L(xk, λk, μk)

δk

∥∥∥∥ = 0. (4)

In the next definition, we extend the notion of Scaled-PAKKT to include the abstract
constraints x ∈ X . In this definition, the case where the dual sequence is bounded is
treated separately as in Definition 2.

Definition 3 We say that a feasible point x∗ fulfills the Scaled-PAKKT condition if
there are sequences {xk} ⊂ X and {(λk, μk)} ⊂ R

m × R
p
+ such that limk xk = x∗,

lim
k

∥∥∥∥PX

(
xk − ∇x L(xk, λk, μk)

δk

)
− xk

∥∥∥∥ = 0, (5)

where δk := ‖(1, λk, μk)‖∞, and condition (2b) holds. Additionally, condition (3)
is satisfied whenever {(λk, μk)} is unbounded. The sequence {xk} is called a Scaled-
PAKKT sequence.

When X = R
n , condition (5) is simply the scalarization of (2a) by δk (expres-

sion (4)) and we recover the previous definition of Scaled-PAKKT when no abstract
constraints are present. As we already mentioned, PAKKT without (3) is exactly
AKKT. Analogously, Scaled-PAKKT resembles the Scaled-AKKT condition pre-
sented in [9] (for X = R

n), in which condition (3) is not imposed either. In that
work, the authors showed that the weakest strict CQ associated with Scaled-AKKT is
the proposition

MFCQ or

[{
∇h(x∗)λ + ∇g(x∗)μ

∣∣∣ μ ≥ 0,
μ j = 0,∀ j /∈ Ig(x∗)

}
= R

n
]

, (6)

where MFCQ stands for the Mangasarian-Fromovitz CQ. This means that every
Scaled-AKKT point x∗ satisfying (6) is KKT and, conversely, if for every objec-
tive function f , the Scaled-AKKT point x∗ is actually KKT, then x∗ conforms to (6).
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That is, in view of the KKT condition, expression (6) plays the same role with respect
to the Scaled-AKKT necessary optimality condition, as Guignard’s CQ does with
respect to a local minimizer. In this section we will show that the weakest strict con-
straint qualification associated with Scaled-PAKKT (including abstract constraints) is
the proposition

QN or

[{
∇h(x∗)λ + ∇g(x∗)μ + NX (x∗)

∣∣∣ μ ≥ 0,
μ j = 0,∀ j /∈ Ig(x∗)

}
= R

n
]

, (7)

where QN states for the quasi-normality CQ, presented next. Clearly, (7) is less
stringent than (6) since MFCQ implies QN; and QN also encompasses linear con-
straints [16], or even other weaker constraint qualifications, such as the constant
positive linear dependence (CPLD) condition [7]. In the sequel, we recall the quasi-
normality condition, stating it equivalently by means of projections, instead of using
the normal cone as in [16].

Definition 4 We say that a feasible point x∗ for (NLP) is quasi-normal (or that it
conforms to the quasi-normality CQ) if there are no vectors λ ∈ R

m , μ ∈ R
p
+, and no

sequence {xk} ⊂ X such that

1. PX (x∗ − [∇h(x∗)λ + ∇g(x∗)μ]) − x∗ = 0;
2. λ1, . . . , λm, μ1, . . . , μp are not all equal to 0;
3. {xk} converges to x∗ and for each k, λi hi (xk) > 0 for all i with λi 
= 0 and

μ j g j (xk) > 0 for all j with μ j > 0.

As we already mentioned, every PAKKT sequence has bounded dual sequences
whenever its primal limit fulfills QN (X = R

n) [2]. We show next that the same
happens with the Scaled-PAKKT condition, even when the abstract constraint x ∈ X
is present.

Theorem 1 Let x∗ be a Scaled-PAKKT point that conforms to the quasi-normality
CQ. Then every Scaled-PAKKT sequence {xk} associated with x∗ has bounded corre-
sponding dual sequences {(λk, μk)}.
Proof If {δk = ‖(1, λk, μk)‖∞} is unbounded, then by (5) we have

lim
k

PX

⎛

⎝xk −
⎡

⎣∇ f (xk)

δk
+

m∑

i=1

λ̃ki ∇hi (x
k) +

p∑

j=1

μ̃k
j∇g j (x

k)

⎤

⎦

⎞

⎠ − xk = 0,

where ‖(λ̃k, μ̃k)‖∞ = 1 for all k. Therefore, taking an appropriate subsequence and
using the continuity of the projection, we have that there are vectors λ ∈ R

n and
μ ∈ R

p
+ such that (λ, μ) 
= 0 and PX (x∗ − [∇h(x∗)λ + ∇g(x∗)μ]) − x∗ = 0, where

complementarity follows from (2b). Note that (3) implies item 3 of Definition 4.
Thus, the quasi-normality condition is violated at x∗. This proves that the sequence
{(λk, μk)} is bounded. ��

Next, we show that (7) is the weakest strict CQ associated with the Scaled-PAKKT
condition.
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Theorem 2 If x∗ is a Scaled-PAKKT point satisfying (7) then x∗ is a KKT point
for (NLP). Reciprocally, if for every continuously differentiable function f such that
x∗ is a Scaled-PAKKT point the KKT conditions also hold, then x∗ satisfies (7).

Proof Assume that x∗ is a Scaled-PAKKT point that fulfills (7). If the expression
between brackets in (7) is true then 0 ∈ ∇x L(x∗, λ, μ)+NX (x∗) for a certain (λ, μ) ∈
R
m × R

p
+ such that μ j g j (x∗) = 0 for all j . Thus, x∗ satisfies the KKT conditions

independently of the objective function. On the other hand, if QN holds at x∗ then
{(λk, μk)} is bounded by Theorem 1, which also implies the KKT conditions.

Now let us show the converse. Suppose that x∗ does not satisfy (7). In particular,
there is a non-null c ∈ R

n such that

c /∈
⎧
⎨

⎩

m∑

i=1

λ̃i∇hi (x
∗) +

∑

j∈Ig(x∗)
μ̃ j∇g j (x

∗) + NX (x∗) | μ̃ j ≥ 0,∀ j ∈ Ig(x
∗)

⎫
⎬

⎭ ,

which is equivalent to

−(−c+∇h(x∗)λ̃+∇g(x∗)μ̃) /∈ NX (x∗), ∀(λ̃, μ̃) ∈ R
m ×R

p
+ | μ̃ j g j (x

∗) = 0,∀ j,

which in turn, by (1), is equivalent to

PX (x∗ − (−c + ∇h(x∗)λ̃ + ∇g(x∗)μ̃)) − x∗ 
= 0,

∀(λ̃, μ̃) ∈ R
m × R

p
+ such that μ̃ j g j (x

∗) = 0,∀ j .
(8)

Since x∗ also does not satisfyQN, there are vectorsλ ∈ R
m ,μ ∈ R

p
+ and a sequence

{xk} ⊂ X converging to x∗ such that (λ, μ) 
= 0 where

λi hi (x
k) > 0 for all i with λi 
= 0 and μ j g j (x

k) > 0 for all j with μ j > 0 (9)

and
lim
k

PX (xk − [∇h(xk)λ + ∇g(xk)μ]) − xk = 0, (10)

where the last expression follows from the continuity of the projection. In particular,
μ j = 0 for all j /∈ Ig(x∗).We can supposewithout loss of generality that ‖(λ, μ)‖∞ =
1, since any positivemultiple of (λ, μ) also satisfies the three conditions ofDefinition 4
(note that item 1 is equivalent to−[∇h(x∗)λ+∇g(x∗)μ] ∈ NX (x∗), which is a cone).
Defining f (x) := −cT x , expression (10) implies

lim
k

PX

(
xk − 1

k
[∇ f (xk) + ∇h(xk)kλ + ∇g(xk)kμ]

)
− xk = 0.

So, x∗ is a Scaled-PAKKT point with λk := kλ and μk := kμ. In fact, δk =
‖(1, kλ, kμ)‖∞ = k, condition (3) follows from (9), and (2b) is a consequence of
kμ j = 0, j /∈ Ig(x∗). However, by (8) with −c = ∇ f (x∗), x∗ is not KKT. This
concludes the proof. ��
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We conclude this section discussing an interesting relation between scaled versions
of the sequential optimality conditions and the well known Fritz-John (FJ) conditions.
For the sake of simplicity, let us assume that X = R

n . As we already mentioned, the
Scaled-AKKT condition [9] is stated as Scaled-PAKKT without (3). The Fritz-John
conditions relax KKT by allowing a null multiplier for the gradient of the objective
function, that is, they require that

ν̃∇ f (x∗) + ∇h(x∗)λ̃ + ∇g(x∗)μ̃ = 0, (11)

where ν̃ ≥ 0, μ̃ ≥ 0, (ν̃, λ̃, μ̃) 
= 0 and μ̃ j g(x∗) = 0 for all j , and, differently from
KKT, they are satisfied at every local minimizer independently of the fulfillment of
any CQ. It is easy to see that Scaled-AKKT can be viewed as a sequential counterpart
of FJ in the sense that every Scaled-AKKT point x∗ is FJ and vice-versa. Now, let
us consider the Scaled-PAKKT condition. A related control of signs (3) was used to
improve the FJ conditions, leading to enhanced versions of it (see [38] and references
therein). The most basic version states that x∗ is an enhanced FJ point if (11) and
item 3 of Definition 4 hold for a (ν̃, λ̃, μ̃) 
= 0 and a sequence {x̃ k} converging to
x∗. We affirm that every Scaled-PAKKT point x∗ such that {δk} is unbounded is an
enhanced FJ one and, conversely, an enhanced FJ point is actually Scaled-PAKKT.
In fact, if limk δk = ∞ then, taking a subsequence if necessary, (5) imply (11) with
ν = 0 and some (λ, μ) 
= 0. The control of signs (item 3 of Definition 4) and
complementary slackness are automatically fulfilled. Conversely, let x∗ be a FJ point.
If ν > 0 then it is Scaled-PAKKT with constant sequences defined by xk := x∗ and
(λk, μk) := (λ̃/ν̃, μ̃/ν̃) for all k; and if ν = 0, it is sufficient to take the same sequence
{xk := x̃ k} that fulfills the control of signs and (λk, μk) := (kλ̃, kμ̃) for all k.

3 Safeguarded PHR augmented Lagrangianmethod with scaled
stopping criteria

Weconsider a sightlymodifiedversionof theALGENCANmethod, provided in [1,19],
which employs the commonly used Powell-Hestenes-Rockafellar (PHR), or quadratic-
like penalty, augmented Lagrangian function

Lρ,λ̄,μ̄(x) = f (x) + ρ

2

[∥∥∥∥
λ̄

ρ
+ h(x)

∥∥∥∥
2

2
+

∥∥∥∥

(
μ̄

ρ
+ g(x)

)

+

∥∥∥∥
2

2

]
, (12)

ρ > 0, μ̄ ≥ 0, on its subproblems. Our version aggregates a stopping criterion,
adequate for our purposes, and it is described in Algorithm 1.

The first order optimality conditions of Definition 1 for problem (NLP) can be
stated as

PX (x∗ − ∇x L(x∗, λ, μ)) − x∗ = 0 and

max{ ‖h(x∗)‖∞ , ‖min{−g(x∗), μ}‖∞ } = 0.

Related conditions are used to attest optimality for subproblems of ALGENCAN (see
conditions (13b)). In particular,when X is a box, let us say, X = {x ∈ R

n | � ≤ x ≤ u},
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then PX (z) can easily be computed by [PX (z)]i = min{ui ,max{�i , zi }}, i = 1, . . . , n.
For simplicity, we will refer to PX (x−∇x L(x, λ, μ))−x as projected gradient during
the rest of the paper (x , λ and μ will be clear from the context).

Scaled stopping criteria are employed in successful state-of-the-art practical imple-
mentations of different methods, such as interior point methods (IPOPT [37]), sequen-
tial quadratic programming (WORHP [22], filterSQP [24]), augmented Lagrangian
methods (MINOS [30]) and specialized interior point methods for linear and quadratic
programming [26]. Inspired by the Scaled-PAKKT condition and Theorem 2, we con-
sider a scaled stopping criterion for ALGENCAN. Algorithm 1 encompasses both
scaled and standard/non-scaled versions. For simplicity, we can refer to Algorithm 1
with different stopping criteria by “scaled/non-scaled algorithm” or “scaled/non-
scaled ALGENCAN”.

Global theoretical convergence of the non-scaled version of Algorithm 1was estab-
lished under PAKKT condition (in the sense of [2]) in Theorem4.1 of [2]. In that result,
it has been proved that every feasible accumulation point of the method is always a
PAKKT point. But for the case of bounded dual generated (sub)sequences {(λk, μk)},
we do not have the guarantee that the associated (sub)sequence {xk} is in fact a PAKKT
sequence. As we already mentioned, this is not a concern since in this case the accu-
mulation point x∗ is actually KKT, and every KKT point is indeed PAKKT [2, Lemma
2.6]. On the other hand, the theorem below states that such (sub)sequences are actu-
ally PAKKT in the sense of Definition 2, or Scaled-PAKKT for the scaled version of
the algorithm. This justifies why we separate the cases of bounded and unbounded
multipliers in Definitions 2 and 3. Following traditional results on global convergence,
we assume that Algorithm 1 never stops at step 1, allowing us to study the quality of
the accumulation points of the infinite sequences hypothetically generated by it.

Theorem 3 Suppose that Algorithm 1 never stops and let x∗ be a feasible accumulation
point of the sequence {xk} generated by it, let us say, limk∈K xk = x∗.

Then, for the scaled (respectively non-scaled) version, {xk}k∈K is a Scaled-PAKKT
(respectively PAKKT) sequence. In particular, x∗ is a Scaled-PAKKT (respectively
PAKKT) point.

Proof Let {(λk, μk)}k∈K be the dual sequence associated with {xk}k∈K . If it is
unbounded, then the statement follows the same arguments of [2, Theorem 4.1]. If not,
condition (3) does not need to be verified, only (2b), (2a) and (5) must be considered.
Conditions (2a) and (5) follows from step 2 of the respective version of Algorithm 1
with multipliers estimates λk and μk computed by the method. There are two cases
to consider: (i) {ρk} bounded and (ii) limk ρk = ∞. In the first case, step 3 of Algo-
rithm 1 ensures that limk∈K Vk = 0, which implies that limk∈K μ̄k/ρk = 0. Thus,
limk∈K μk+1

j /ρk = limk∈K [μ̄k
j/ρk + g j (xk+1)]+ = 0 whenever j /∈ Ig(x∗), which,

by the boundedness of {ρk}, implies (2b). In the second case, the limit limk ρk = ∞
implies limk∈K μk+1

j = limk∈K [μ̄k
j + ρkg j (xk+1)]+ = 0 for all j /∈ Ig(x∗). Thus,

(2b) holds, and the proof is complete. ��
Finally, we note that when Algorithm 1 converges asymptotically to an infeasible

point, the limit is stationary for the sum-of-squares infeasibility problem

Minimize ‖h(x)‖22 + ‖g(x)+‖22 s.t. x ∈ X , (14)
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Algorithm 1 Safeguarded PHR augmented Lagrangian method — ALGENCAN
Set parameters:

– bounds on projected Lagrange multipliers: λmin < λmax, μmax > 0;
– penalty parameter update: τ ∈ (0, 1), γ > 1;
– tolerances: εopt, εV ≥ 0, {εk } ⊂ R+ with limk εk = 0.

Set initial variables:

– primal point: x0 ∈ X ;
– projected Lagrange multipliers: λ̄0 ∈ [λmin, λmax]m , μ̄0 ∈ [0, μmax]p ;
– penalty parameter: ρ0 > 0.

Initialize with k ← 0, λ0 := λ̄0 + ρ0h(x0) and μ0 := [μ̄0 + ρ0g(x
0)]+.

Step 1 (Stopping criteria). Stop, declaring success if

∥∥∥∥PX
(
xk − 1

δk
∇x L(xk , λk , μk )

)
− xk

∥∥∥∥∞
≤ εopt and (13a)

max{ ‖h(xk )‖∞ , ‖min{−g(xk ), μk }‖∞ } ≤ εV, (13b)

where δk := ‖(1, λk , μk )‖∞ for the scaled version or δk := 1 for the non-scaled version.

Step 2 (Solving the subproblems). Find an approximate minimizer xk+1 of the subproblem

Minimize L
ρk ,λ̄

k ,μ̄k (x) s.t. x ∈ X ,

that is, compute a point xk+1 ∈ X satisfying

‖PX (xk+1 − ∇L
ρk ,λ̄

k ,μ̄k (xk+1)) − xk+1‖∞ ≤ εk .

The multipliers’ estimates given by the derivative of (12) with respect to x are

λk+1 := λ̄k + ρkh(xk+1) and μk+1 := [μ̄k + ρk g(x
k+1)]+.

Step 3 (Update the penalty parameter). Define

Vk := max{ ‖h(xk+1)‖∞ , ‖min{−g(xk+1), μ̄k/ρk }‖∞ }.

If k > 0 and Vk ≤ τVk−1, set ρk+1 := ρk . Otherwise, take ρk+1 := γρk .

Step 4 (Estimate new projected multipliers). Compute

λ̄k+1 := P[λmin,λmax]m (λk+1), μ̄k+1 := P[0,μmax]p (μk+1),

take k ← k + 1 and go to Step 1.

since the analysis made for the standard ALGENCAN method [1, Theorem 4.1(i)]
remains unchanged in the presence of the scaled stopping criterion (13b).
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4 Numerical tests

We implemented Algorithm 1 in Fortran 90, adapting the code of ALGENCAN pack-
age, version 3.1.1, providedby theTANGOproject (www.ime.usp.br/~egbirgin/tango)
under the GNU General Public License. This is a robust and mature implementation
which employs an active-set strategy with spectral gradients, namely GENCAN [17],
for solving the subproblems (those from step 2 of Algorithm 1). The non-scaled algo-
rithm (δk = 1 in step 1 of Algorithm 1) is exactly the original ALGENCAN package.
Thus, the onlymodificationwemade in its codewas to aggregate δk = ‖(1, λk, μk)‖∞
to the stopping criterion in the scaled version, which is available for download [34]. In
the ALGENCAN package, X is a box, for which projection, as we already mentioned,
is trivial. Tolerances are set to εopt = εV = 10−6, and the problem data is scaled once,
before starting the minimization process (see [19] for details). All other parameters
are maintained in their default values.

ALGENCAN includes by default “acceleration steps”, which consist of switching,
near a solution, to a Newtonian strategy for solving the KKT system obtained from
the original unscaled problem (NLP) by fixing the approximate active constraints
as equalities. See [18,19] for details. This strategy is employed just after step 1 of
Algorithm 1 whenever at least one of the following situations occur:

1. The non-scaled stopping criterion ((13b) with δk = 1) is almost fulfilled, in the
sense that

‖PX (xk − ∇x L(xk, λk, μk)) − xk‖∞ ≤ √
εopt = 10−3 and

max{ ‖h(xk)‖∞ , ‖min{−g(xk), μk}‖∞ } ≤ √
εV = 10−3; (15)

2. The non-scaled stopping criterion seems to be fulfilled, but the inner solver GEN-
CAN failed to get a good approximate stationary point for the subproblem in
the previous outer iteration. Specifically, ALGENCAN switches to the Newtonian
strategy at the outer iteration k if GENCANdoes not declare success at the previous
iteration k − 1,

‖PX (xk − ∇x L(xk, λk, μk)) − xk‖∞ ≤ ε
1/4
opt = 10−3/2 and

max{ ‖h(xk)‖∞ , ‖min{−g(xk), μk}‖∞ } ≤ ε
1/4
V = 10−3/2.

(16)

Conditions (15) and (16) say that the Newtonian method may be applied when-
ever the norm of the projected gradient and the feasibility measure are reasonably
small, suggesting that the current point is close enough to a solution to identify the
active constraints and allow for fast local convergence [18]. If successful, the New-
tonian acceleration should achieve the full, unscaled, stopping criterion quickly. In
particular, the Newton strategy may be triggered when the method already achieved
feasibility, but is not being able to decrease the projected gradient of the Lagrangian
for degenerate/bad-scaled problems fast enough. In such cases, the scaled stopping
criterion (13b) may be beneficial, as it is tailored to identifying whether such approx-
imate stationary point is already acceptable, giving a certificate of optimality for
degenerate/bad-scaled problems, and saving the computational time required by extra
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Newton steps. This is achieved in (13a) by relaxing optimality as the Lagrange mul-
tipliers tend to grow.

As the scaled stopping criterion may be beneficial in both situations, one that
employs acceleration steps (the hybrid strategy “augmented Lagrangian + Newton”)
and other that does not, we compare the behavior of ALGENCAN with and without
the scaled criterion in both cases. Note that the theory developed in this paper does not
apply to the Newton acceleration, hence we cannot ensure that it generates PAKKT
points. Actually, recent results show that a pure Newton strategy may not generate
even AKKT points [6]. Therefore, when this option is enabled, we limit ourselves to
scale the termination criterion of the augmented Lagrangian method itself and keep
the criterion that declares a success of the Newton heuristic unscaled.

We performed our tests in a computer equipped with an Intel® Xeon® Silver 4114
CPU 2.20GHz running the Ubuntu 18.04.4 operating system. The code was com-
piled using GNU Fortran 7.5.0 with -O3 flag. Numerical linear algebra packages
HSL MA57/MA86/MA97 (available at www.hsl.rl.ac.uk/catalogue) with Metis 4.0.3
(glaros.dtc.umn.edu/gkhome/fetch/sw/metis/OLD) and BLAS routines from Intel®
MKL 2020.0 were also employed (software.intel.com/content/www/us/en/develop/
tools/math-kernel-library.html). We considered the constrained nonlinear program-
ming problems from CUTEst (available at github.com/ralna/CUTEst), including
all from the Netlib (ftp://ftp.numerical.rl.ac.uk/pub/cutest/netlib) and the Maros &
Meszaros (bitbucket.org/optrove/maros-meszaros) libraries. Mathematical programs
with complementarity constraints from MacMPEC (available at wiki.mcs.anl.gov/
leyffer/index.php/MacMPEC) were also considered, where the complementarity con-
straints ai (x) ≥ 0, bi (x) ≥ 0, ai (x)bi (x) = 0, i = 1, . . . , q, were rewritten
equivalently as a(x) ≥ 0, b(x) ≥ 0 and a(x)T b(x) ≤ 0, as done in [11]. In our
tests, we limited the execution time for each test-problem to 5 hours (single thread
mode). For each case, with and without acceleration, problems for which both the
scaled and non-scaled algorithms exceeded the time limit have been ruled out, result-
ing in a small discrepancy in the total number of tests considered for each variation.
The total number of test-problems used in the comparisons are:

– 1,308 when acceleration Newtonian steps are disabled;
– 1,300 when acceleration is enabled.

Tables 1 to 4 present those problems where the scaled and non-scaled algorithms
behaved differently. Asterisks (*) indicate that the CPU time limit of 5 hours has been
exceeded. The description of each column is the following:

– st: output status =

– “ - ”: stop with a non-scaled approximate stationary point satisfying (13b) with
δk = 1;

– 1: stop with an (infeasible) stationary point of the infeasibility problem (14);
– 2: failure with a large ρ;
– 3: maximum number of iterations (= 50) achieved;
– 4: stop with a scaled approximate stationary point satisfying (13b);

– it: number of outer iterations performed. For scaled algorithms, the difference to
the non-scaled versions are presented between parentheses;
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– obj: value of the objective function at the final iterate;
– opt: sup-norm of the non-scaled projected gradient ((13a) with δk = 1) at the final
point;

– feas: feasibility measure ‖(h(x), g(x)+)‖∞ at the final iterate;
– compl: complementarity measure ‖min{−g(x), μ}‖∞ at the final iterate;
– multip: sup-norm of the multiplier vector at the final iterate;
– 
= obj: relative difference of the final objective of scaled algorithms in relation to
that of the non-scaled versions, defined as

| fnon-sc − fsc|
| fnon-sc| if | fnon-sc| ≥ 10−4, and | fnon-sc − fsc| otherwise.

When the acceleration based on Newtonian steps is not employed, the scaled and
non-scaled algorithms performs differently in 57 problems (4.36% of the total—
Tables 1 and 2). In the other case, when the Newtonian strategy is enabled, this total
was 26 (2.00% of the total—Tables 3 and 4). We highlight some aspects illustrated by
the numerical tests:

– There are problems for which the scaled algorithms declare success, while the non-
scaled ones fail, namely, AGG2, CRESC50, HS87, NCVXQP2 (Tables 1 and 3),
HS99EXP, NCVXQP3, NCVXQP9 and ORBIT2 (Table 1). This indicates the sit-
uation where the original non-scaled ALGENCAN reached, at some iteration, a
sufficiently feasible point with the required level of complementarity, but suffered
to achieve optimality. That is, a good primal-dual pair was probably obtained, but,
due to numerical instabilities or ill-conditioning, a small projected gradient was
not found. For those problems, non-scaled ALGENCAN tries to get optimality
increasing the penalty parameter ρ. But when feasibility almost holds, this strat-
egy may not be enough. For instance, in the problems AGG2, HS87 (Tables 1
and 3) and NCVXQP3 (Table 1), ALGENCAN fails with the same objective value
than the point obtained by the scaled algorithm, which indicates that the method
stayed “frozen” during various unsuccessful iterations or made small movements,
even losing the previously achieved feasibility (see the problems of Tables 1 and 3
with bold values in the column “feas”). In these situations, scaling optimality may
help to give a correct answer earlier, saving computational effort. Note that the
reduction in iterations was considerable in the problems cited above;

– Among all the problems where only the scaled algorithm declared success, we
compared their final objective values with those from the literature. For Netlib
problems, optimal values are available at www.netlib.org/lp/data/readme. For
other problems, we get values from numerical tests with the WORHP [22]
package available at worhp.de/content/cutest. In the problems AGG2, HS87 and
NCVXQP2 (Tables 1 and 3), the objective value is almost the same. For NCVXQP3,
NCVXQP9 and ORBIT2 (Table 1), WORHP reports a compatible objective value
(−3.04E+09, -2.10E+09 and 3.17E+02, respectively) with feasibility measures
7.18E-08, 1.78E-15 and 4.80E-10. A large relative difference occurs in the prob-
lem CRESC50 (Tables 1 and 3). The non-scaled version of Algorithm 1 fails
with a stationary point for the infeasibility problem, while the scaled algorithm
declares convergence to a feasible point. The objective value returned by the scaled
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On scaled stopping criteria for a safeguarded augmented...
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algorithm is 5.97E-01, much closer to the optimal value encountered by WORHP
(7.86E-01) than the non-scaled version. In this problem, non-scaled ALGENCAN
reaches a good feasible point, but it gets away from it trying to achieve optimality.
We were unable to find an optimal value for HS99EXP;

– For problem YAO (Table 1) the final objective value obtained by the scaled version
of Algorithm 1 has a significant difference to that of the non-scaled algorithm. This
difference does not occur when acceleration is enabled. YAO is a convex quadratic
programming problem, for which WORHP declares success returning yet another
different (worse) objective value (1.98E+02);

– The number of iterations performed by scaled versions of ALGENCAN is evi-
dently always not higher than the non-scaled versions, since they differ only
in the stopping criteria. The same reasoning is true for the computational cost.
When acceleration steps are disabled, the scaled versions in fact terminate with
fewer iterations. But when the acceleration is enabled, the number of outer
iterations between different versions of Algorithm 1 may be the same (see
problems CATENA, CMPC16, HS89, HANGING, HS89, LOBSTERZ, NCVXQP3,
QSCTAP1, STADAT2, YAO — Table 3). This happens if, at the final iteration,
the Newtonian strategy is responsible for attaining optimality for the unscaled cri-
terion after feasibility and complementarity were already achieved. In this case,
scaled algorithms may declare convergence before the Newton step was employed
saving computational time. In our tests, when this occurs, the scaled ALGENCAN
gave the same objective function value as the Newton strategy;

– We emphasize that it is impossible for the non-scaled Algorithm 1 to converge
when the scaled version does not, since the second algorithm is exactly the first
with a more flexible stopping criterion. So, Tables 1 to 4 contain all the problems
whose algorithms performed differently.

Early termination of scaled algorithms culminates in time savings.We then compare
CPU times between scaled and non-scaled algorithms in those cases where they per-
formed differently. In Tables 5 and 6, we highlight from Tables 1 to 4 those problems
satisfying at least one of the following criterion:

1. the scaled algorithm terminates at least 5 iterations earlier than the non-scaled one;
2. the non-scaled algorithm spent more than 15 seconds (single thread mode);
3. when Newtonian acceleration steps are activated (Tables 3 and 4), both scaled and

non-scaled versions converge with the same number of iterations.

The imposition of criteria 1 and2 aims at omitting caseswhere both algorithmsbehaved
very similarly, and thus the execution time are almost the same; and criterion 3 aims
at highlighting the amount of effort to execute a final useless Newtonian iteration.
Figure 1, presents a visual representation of the data in these tables using performance
profiles [23].

Columns “st” and “it” in Tables 5 and 6 are as previously defined. Columns “n”
and “m” contain, respectively, the number of variables and ordinary constraints (not
simple bounds) treated internally by the ALGENCAN package, after removing pos-
sible variables with tight bounds. Each problem was run repeatedly until 15 seconds
were reached and the arithmetic mean of the times was reported in column “time (s)”;
this minimizes the influence of system process on small problems. We observed that,
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Table 5 Comparison of CPU times for problems of Tables 1 and 2 (acceleration disabled)

Non-scaled Scaled
Problem n m st it Time (s) st it Time (s)

A2NSDSIL 25,004 20,004 − 32 311.69 4 25 (−7) 301.52

A5NSDSIL 25,004 20,004 − 26 188.91 4 25 (−1) 188.74

ACOPR118 344 844 − 41 16.17 4 12 (−29) 12.10

ACOPR300 738 2,022 − 40 40.72 4 17 (−23) 20.07

ACOPR57 128 388 − 43 1.37 4 15 (−28) 0.89

AGG2 302 516 3 50 16.98 4 22 (−28) 4.55

BRIDGEND 2734 2727 − 25 8.95 4 11 (−14) 2.37

CATENA 2999 1000 − 7 294.78 4 3 (−4) 294.74

CMPC16 1515 2351 − 32 15.07 4 22 (−10) 11.17

CRESC50 6 100 1 22 1.14 4 13 (−9) 1.10

CVXQP1_L 10,000 5000 − 22 919.38 4 19 (−3) 907.66

CVXQP3 10,000 7500 − 25 3,170.89 4 16 (−9) 2,594.42

CVXQP3_L 10,000 7500 − 42 4,481.93 4 20 (−22) 2,878.13

DISCS 33 66 − 30 0.07 4 23 (−7) 0.06

GANGES 1681 1309 − 26 7.56 4 21 (−5) 7.39

GROW22 946 440 − 12 5.13 4 5 (−7) 4.81

HANGING 3588 2330 − 14 21.08 4 13 (−1) 20.47

HS87 6 4 3 50 0.17 4 33 (−17) 0.16

HS99EXP 28 21 3 50 0.03 4 44 (−6) 0.03

LOBSTERZ 16,240 16,243 − 44 5367.52 4 18 (−26) 1,936.34

LUKVLE14 9998 6664 − 23 700.60 4 15 (−8) 698.06

NCVXQP1 10,000 5000 - 12 341.98 4 11 (−1) 339.99

NCVXQP2 10,000 5000 3 50 3219.21 4 23 (−27) 1,978.97

NCVXQP3 10,000 5000 3 50 3757.57 4 18 (−32) 2,269.82

NCVXQP7 10,000 7500 − 12 1321.63 4 11 (−1) 1,309.48

NCVXQP8 10,000 7500 − 20 2065.44 4 14 (−6) 1,954.84

NCVXQP9 10,000 7500 3 50 17,184.14 4 22 (−28) 6,550.92

ORBIT2 2692 2097 * * > 20 h 4 12 1,224.93

POWELL20 5000 5000 − 35 107.23 4 29 (−6) 104.16

QGROW22 946 440 − 17 17.53 4 9 (−8) 16.55

QGROW7 301 140 − 14 0.57 4 9 (−5) 0.49

QPCBOEI1 384 440 − 42 20.87 4 39 (−3) 20.36

QSCSD8 2750 397 − 28 2.76 4 15 (−13) 2.43

QSTAIR 385 356 − 18 7.49 4 13 (−5) 7.27

STADAT3 4001 11,999 − 22 40.35 4 16 (−6) 39.39

TRUSS 8806 1,00 − 34 263.51 4 28 (−6) 258.16

VTP-BASE 185 198 − 26 10.73 4 17 (−9) 10.41

YAO 2000 2000 − 24 36.91 4 22 (−2) 33.16
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Table 6 Comparison of CPU times for problems of Tables 3 and 4 (acceleration enabled)

Non-scaled Scaled
Problem n m st it Time (s) st it Time (s)

ACOPR118 344 844 − 39 24.89 4 12 (−27) 13.27

ACOPR300 738 2022 − 40 109.30 4 17 (−23) 41.71

ACOPR57 128 388 − 43 4.39 4 15 (−28) 1.65

AGG2 302 516 3 50 19.99 4 22 (−28) 4.82

CATENA 2999 1000 − 3 294.81 4 3 294.80

CMPC16 1515 2351 − 22 32.25 4 22 30.31

CRESC50 6 100 1 22 1.17 4 13 (−9) 1.08

HANGING 3588 2330 − 13 33.00 4 13 33.00

HS87 6 4 3 50 0.18 4 33 (−17) 0.17

HS89 3 1 - 11 0.03 4 11 0.03

LOBSTERZ 16,240 16,243 − 18 1,985.93 4 18 1980.82

LUKVLE14 9998 6664 − 23 12,932.82 4 15 (−8) 6393.10

NCVXQP1 10,000 5000 − 12 1,069.05 4 11 (−1) 781.82

NCVXQP2 10,000 5000 3 50 18,671.31 4 23 (−27) 10,008.95

NCVXQP3 10,000 5000 − 18 5,597.96 4 18 5193.74

NCVXQP7 10,000 7500 − 12 11,154.04 4 11 (−1) 7791.76

POWELL20 5000 5000 − 35 110.24 4 29 (−6) 105.24

QPCBOEI1 384 440 − 42 21.21 4 39 (−3) 20.53

QSCTAP1 480 300 − 11 0.62 4 11 0.58

QSTAIR 385 356 − 18 7.71 4 13 (−5) 7.25

STADAT2 2001 5999 − 20 51.53 4 20 50.13

STADAT3 4001 11,999 − 22 147.93 4 16 (−6) 102.82

VTP-BASE 185 198 − 22 11.14 4 17 (−5) 10.40

YAO 2000 2000 − 22 34.18 4 22 34.18

naturally, the run time of scaled algorithms are always not higher than their non-scaled
counterparts. The non-scaled algorithm in ORBIT2 takes more than 20 hours of exe-
cution, and thus it was interrupted. In order tomeasure the overall reduction in the CPU
time, we computed the geometric mean of rates “time scaled problem P”/“time non-
scaled problem P” over all problems P; this provides a measure of relative decrease
of the run time of the scaled algorithm with respect to the non-scaled one. Among
all problems where algorithms performed differently (Tables 1 to 4, which include
those from Tables 5 and 6), the reduction was 15.03% when Newtonian acceleration
steps are disabled (excluding ORBIT2, which reduction, although huge, can not be
precisely measured), and 23.67% when they are enabled. In particular, in problems
where non-scaled Algorithm 1 fails, the reduction in computing time was drastic (see
problems with nonzero status in Tables 5 and 6).Whenwe look only at the problems in
Table 6 where both scaled and non-scaled algorithms converge with the same number
of iterations, the reduction in run time decreases to 3.18%; this is the average effort
of the final Newtonian iteration in relation to the total execution time, saved by the
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Fig. 1 Visual representation of the data of Tables 5 and 6, emphasizing the problems where the nonscaled
and scaled variants performed differently

scaled algorithm. It is worth noting that the Newtonian steps do not always result in a
reduction in total CPU time, as most of the common problems between Tables 5 and 6
illustrate. In fact, it was observed in [18] that problems with a poor KKT structure
may lead to an expensive use of time in matrix factorizations. This is a situation where
scaling may help. Furthermore, no problem included in Table 6 presented a reduc-
tion in outer iterations with the Newtonian strategy compared with scaled algorithm
(Table 5). That is, in these cases even intermediate Newton steps were not really more
effective than the usual augmented Lagrangian iterations, and thus the time spent with
matrix factorizations was basically lost. We note that, in the ALGENCAN implemen-
tation, Newtonian steps do not count as outer iterations, that is, the acceleration steps
are viewed as a complementary strategy to improve the point already calculated by the
standard inner solver GENCAN. So, such Newtonian steps are mostly an additional
computational effort that did not prove useful in such tests. On the other hand, we
are not trying to claim that the Newton acceleration is not effective. Remember that
in most tests the scaled and unscaled versions behaved the same, and hence were left
out of Tables 5 and 6. In such cases, the Newton acceleration strategy proved to be
effective specially for very large scale problems.

One may say that scaling solutions simply means that a poorer solution is returned.
However, we stress that, as our tests indicate, when both scaled and non-scaled algo-
rithms stop successfully, they almost always converge to pointswith the same objective
value (probably the same point). Furthermore, the scaled criterion (13b) relaxes nei-
ther feasibility nor complementarity. In particular, the scaled algorithm gives as “true”
feasible points as the non-scaled algorithm does. In addition, scaling tends to avoid
numerical difficulties in ill-conditioned problems, typical cases where Lagrange mul-
tipliers tend to explode, attesting some level of optimality instead of declaring failure.
This situation was in fact observed in some test problems. Therefore, we believe that
the scale criterion is useful in practice. Nevertheless, if for some reason it is manda-
tory a “non-scaled” certificate of optimality, the following strategy could be adopted:
during the execution of the non-scaled version of Algorithm 1, save a scaled solution
whenever one is found. Then, if the non-scaled algorithm failed, return the last scaled
solution found if it is available. Such strategy has the same computational cost of
the original non-scaled ALGENCAN; it does not discard possible final costly itera-
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tions (they exist, as illustrated in our tests), but adds one more possibility to return a
good feasible point with some certificate of optimality in the cases where the original
ALGENCAN fails to converge.

5 Conclusions

The ALGENCAN package has received constant updates in the previous fifteen years,
being largely considered today a robust code for solving general nonlinear program-
ming problems. For instance, in [20], new strategies have been introduced inspired
by worst-case complexity results. Since its first versions, differently from most other
solvers, a non-scaled stopping criterion is implemented. This is due to its firm com-
mitment with finding true KKT points, rather than FJ points, but also motivated by its
strong global convergence results based on sequential optimality conditions and weak
constraint qualifications, that ensures, for instance, convergence to a KKT point even
in the case of an unbounded sequence of approximate Lagrange multipliers.

It was previously thought that the unboundedness of the set of Lagrange multipli-
ers (let us say, degenerate problems) was closely related to the unboundedness of the
sequence of approximate Lagrange multipliers generated by the algorithm. Thus, it
would be unreasonable to use a scaled stopping criterion for such degenerate prob-
lems. However, it has been clarified in [2,21] that even for degenerate problems, the
first-order dual update is responsible for guaranteeing that the algorithm generates a
bounded sequence of approximate Lagrange multipliers under the very general quasi-
normality CQ.

In this paper we provided an adequate global convergence theory under the quasi-
normality CQ for a scaled variant of the algorithm. In some sense, we were able to
characterize quasi-normality as the weakest CQ guaranteeing our global convergence
result, which is, generally, not possible when non-scaled algorithms are considered.
That is, for this task, one usually define new tailored CQs with these characteristics
using elements of convex analysis [9], which was surprisingly not necessary when
considering the scaled algorithm.

A thorough numerical comparison of the scaled versus the non-scaled variants
of ALGENCAN is performed, where we show that the scaled version outperforms
the non-scaled one in terms of detecting convergence sooner. Even in view of the
commitment of ALGENCAN to finding a KKT point, the scaled stopping criterion
has shown to be more robust in detecting a near-KKT point complementing current
heuristics employed by ALGENCAN of calling a Newtonian acceleration strategy.

Data Availability Statement In the tests we use “the constrained nonlinear programming problems from
CUTEst (available at github.com/ralna/CUTEst), including all from the Netlib (ftp://ftp.numerical.rl.ac.
uk/pub/cutest/netlib) and the Maros &Meszaros (bitbucket.org/optrove/maros-meszaros) libraries. Mathe-
matical programswith complementarity constraints fromMacMPEC (available at wiki.mcs.anl.gov/leyffer/
index.php/MacMPEC)” The quotation is in the manuscript, p. 12, 2nd paragraph.
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