TILTING MODULES

FLAVIO ULHOA COELHO

1. INTRODUCTION

ebra over a field k. Let modA denote the category

Let A be a finite dimensional alg
1A the subcategory of modA of the

of finitely generated right A-modules and by inc
indecomposable A-modules. Our main objective is the study of indA.
*ite dimensional k-algebra. Depending

If T €emodA, then B =(End,T) is also a |
on the conditions imposed on T', one can get useful informations on modB from the
informations one has on modA, and consequently, on B from A. In the study of the

relations between modA and mod B we can consider the following functor

F = Homyu(T,—): modA — mod B

Theorem 1. The above functor is an equivalence if and only if T is a progenerator

of modA.

It is worthwhile to mention that, as a consequence of Morita theorem, we have the

following: if Ay = " & P with Py # P whenever i # j and T = P&+~ - P,

then modA and mod(EndT)® are equivalent. Therefore, we can restrict our study
to the algebras Ay = i@ - @D P, with P # P if 1 # 7. Such algebras are called

basic
e theorem, the module T is too

On the other hand, in the case given by the abov
ker conditions in the A-module

good. The overall strategy is then to look for some wea . ‘
T in order to produce an (endomorphism) algebra B as far as possible of A, but with

modA and modB still having something in The so-called tilting modules
suit nicely for this purpose, and this will be t From now
on, all algebras are basic, indecomposable and fini

closed field k.

common.
he main subject of this note.

te dimensional over an algebraically
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2. TILTING MODULES

Let A be an algebra. The notion of tilting modules came from a search of conditions
on a module T' that helps to understand the algebra (EndaT)°? from A. Let us recall
this notion, which arises mainly from the work of‘Blfenner-l311tler—Happel-ngel [5, 8].

Definition 1. An A-module T is called tilting if satisfies:
(1) The projective dimension of T (pdT) does not exceed one;
(i) Ext}(T,T) = 0;

(iii) There exists a short exact sequence
0—>AA~>T:‘~+7’;{N>0
with 7" and 7" direct sums of direct summands of T, that is, they belong to addT'.

Examples. et Ag=Po - @ P, be an algebra.

(l) The module 7" = P - P, is clearly a tilting module.

(2) Suppose A is hereditary and let T= DA — Homy(A, k). Then, T id thé sum of
the indecomposable injective A-modules. Therefore, Exty (T, T) = 0. Also, pdT <1
because A is hereditary. C

onsider now the following short exact sequence

0— A4 T, — Coker(s) — o
where ¢ is the injective envelope of

of Ty, it also belongs to addT. T},
(3) Let A be the matrix algebra

A. Then T, €addT, and since Coker: is a quotient
erefore, 7' is a tilting module.

k
0
0

S F o=

k
k
k

The indecomposable A-modules are P, = enA, P, = eyA, Py = ep3Ad =83 8 =
Pi/radP,, S, = P, /rad Py and Py/S;, where €i 1s the matrix wit), 1 in the coordinate
(¢,2) and 0 in the other coordinates. Observe that P is t)
associated to the rows and S; is the
to see that 7' = P, @ S1 Sy is a ti

1e indecomposable projective
simple module associated to P It is not difficult
Iting module.

The next theorem is due to Brenner-Butler.

Theorem 2. (Bre‘mn(-‘r—Butler) Let A be an algebra; Ty be q tilting module and
B =FEndT. Then : :
(1) T is a tidting module and A =FEndgT
(i) The functors Hom4(T, -)
between the full subcategories

T = {M,| Ext},(T,M):O} and Y = { Ng| Tor?(N,T):O}

y canonically,

and — @ T induce mutually inyerse equivalences
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while the functors Ecty(T,~) and TorP(—,T) induce mutually inverse equivalences
between the full subcategories

F ={Ms| Homs(T,M) =0} and X ={Ng| N ®p T) =0},

In other words, this theorem says that there are subcategories F and 7 of mod A
which are equivalent to X and ) of mod B, respectively. Clearly, in our strategy to
get informations on mod B from modA, it is important that the subcategories X" and
Y were somehow significant in mod B. This will occur if we impose some conditions

on A. We shall see it in the next section.

3. TILTED ALGEBRAS

Let A be now a hereditary k-algebra and 7" € modA be a tilting module. In this
case, the algebra B =EndT is called tilted. The advantage in working in this context
was shown by Brenner-Butler-Happel-Ringel [5, 8]. They have shown the following

results. From now on we shall use the notation established in the Brenner-Butler

theorem.

(1) Each object of mod B belongs to either .V or Y (in this case, we say that (X', ))
is a splitting torsion theory). Then, the representation type of B is, in some sense,
simplier than of A.

(i1) There exists an B-module X, with the same number of indecomposable non-
isomorphic summands of the number of simple A-modules, such that: (a) the modules
from X are generated by X, that is, for each M € X', there exists an epimorphism
from a power X™ of X to M; and (b) the modules from Y are cogenerated by X,
that is, for each M € ) there exists a monomorphism from M to a power X* of X.

Example. Let A and T be as in example 3. Then

k kO
B=(End,T)”=|0 k k
00 k

Observe that indB has 5 non-isomorphic indecomposable objects. We also have
(using the notation from example 3):

f: {Sz}

T = {Pl» Fy, Ps, 5'1}

X = {e,B/rad(e,, B)}

y = {6331}, €99 b), (’gglf/‘l'(l.(l(f’.'n B), €11 B}

For more details on tilting theory we refer the reader to [1].

28



F. U. COELHO

4. HOMOLOGICAL PROPERTIES

Let B be a tilted algebra. What kind of homological properties on B one can
expect, knowing that this algebra is defined from a hereditary algebra? In [8], Happel-
Ringel have shown that the global dimension of B is at most two. Moreover, if
M € X then the injective dimension of M (idM) is at most one and if M € ) then
the projective dimension of M (pdM) is at most one. Consequently, we have the
following proposition. We say that a property holds for almost all modules if it fails
only for a finite number of non-isomorphic indecomposable modules.

Proposition 3. Let B be a tilted algebra. Then B is of finite representation type

(that is, there are only finitely many non-isomorphic indecomposable B-modules) if
and only if pdM = idM = 2 for almost all indecomposable modules.

In (2, 3], in a joint work with 1. Assem, we have studied other aspects of this
question. We shall comment in the sequel some resnlts form there.

Let A be an algebra. Given two indecomposable A-modules X and Y, and i > 1,
we denote by rad'(X,Y) the vector space generated by the morphisms from X to Y
which are composite of 2 non-invertible morphisms and by rad> (X, Y') the intersection
of all rad*(X,Y), > 1.

Let now A be a hereditary algebra and T be a tilting A-module. If rad>(—,T) = 0,
then the algebra B =EndT is called concealed. In many aspects, the concealed

algebras are those which are closer to hereditary algebras. We have proven in [2] the
following result.

Theorem 4. Let A be a representation-infinite algebra. The following are equivalent:
(i) A is concealed;

(i) rad*(—, A) = 0 and rad®(DA, -) = 0;
(iti) pdM =1 and idM = 1 for almost all indecomposable modules M

In [3], we have also characterize those tilted algebras which satisfy one of the fol-
lowing properties: (a) pdM =2 and idM =1 for almost all mdecomposable modules;
and (b) pdM=1 and idM=2 for almost all indecomposable modules. These charac-
terizations are too technicals and we shall not discuss it here.

5. GENERALIZED TILTING MODULE

We shall now comment briefly on a generalisation of the notio

n of tilti dule,
due to Miyashita [9]. ot tilting module

Definition 2. An A-module T is called a generalized tiltin
(i) pdT < oo;
(ii) Ext!, (T, T) = 0 for all i > 0.

g module provided:
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(iii) There exists a long exact sequence

00— A—>Tp—T) — - - —T,—0
with T; €add(T), for all 2 =0,1,--- ,m.

Let T' be a generalized tilting module. In general, the relations between modA
and mod(End47")°" are not as good as in the sitnation when pd7T < 1, which is the
situation we have been considering.

Let now M be an A-module satisfying conditions (1) and (ii) of definition 2 above
(we say that M is a generalized partial tilting module). If there exists a module X
such that M @ X is a generalized tilting module, then we shall call such an X a
complement to M. If pdM < 1, then M has always a complement [4]. However, in
general, there are generalized partial tilting modules without complements, as shown
by Ricark-Schofield [10]. In a joint work with Happel and Unger [7], we have given
a sufficient condition on M to have a complement. Recall that a subcategory C of
modA is said to be contravariantly finite provided for each X' €modA there exists a
morphism Y — X with Y € addC such that the induced morphism Hom4(C,Y) —
Hom 4(C, X) is surjective for all C' € C. We have proven the following.

Theorem 4. Let M be a generalized partial tilting module. If
Cy = {X € modA : pdX < oo and Erty(X,M) =0 for alli> 0}
is contravariantly finite, then M has a complement.
As a consequence of this result one can prove (see [6]) the following.
Theorem 5. Let A be an algebra such that rad®(DA,~) = 0. If M is a generalized
partial tilting module satisfying rad®(M,—) = 0, then there cuists a complement X
of M satisfying rad>(X,—) = 0.
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