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Abstract
We prove a theorem on the minimal specific energy for a ±1 charged particles system,
interacting through a class of pair potential v, that may be stated as follows: suppose v may
be represented by a scale mixtures of d-dimensional Euclid’s hat. If the number of particles
n is even, then their interacting energy Un divided by n is minimized by a constant B at
the configurations with total charge zero and all particles collapsed to a point; if n is odd,
then the ratio Un/(n − 1) is minimized by a constant B̄ = B at the configurations with total
charge ±1 and all particles collapsed to a point. The theorem is then used to investigate the
convergence of the Mayer series for a gas of ±1 charged particles interacting through the
two-dimensional Yukawa pair potential v for inverse temperatures in the collapse interval
[4π, 8π). The convergence is proved in the present paper up to the second threshold 6π using
the decomposition of theYukawa potential into scales ofmodifiedBessel functions (standard)
and into scale mixtures of Euclid’s hat. Moreover, assuming that (i) neutral subclusters of
size smaller than an odd number k > 1 do not collapse inside a cluster of size larger than k for
β in the threshold interval [8π(k− 2)/(k− 1), 8πk/(k+ 1)) and (ii) they satisfy a technical
condition, then the Mayer series, discarding the first even coefficients of order smaller than
k, converges.
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1 Introduction and Background of Tools andMethods

The present paper investigates a system of particles with ±1 charges living in a two
dimensional Euclidian space and interacting through the Yukawa pair potential v(x) =
(−�+ 1)−1 (0, x). Because of the Yukawa looks at short distances like the Coulomb poten-
tial, the two-dimensional Yukawa gas inherits the instabilities of the corresponding Coulomb
systemwhen the inverse temperatures β belongs to the interval [4π, 8π), in which a sequence
of collapses of neutral cluster of size 2n occurs at the thresholdsβ2n = 8π (1− 1/2n), n ∈ N.
It remains an open problem for this system to establish convergence of the Mayer series in
powers of activity z , with the first even terms removed from the series, how many depending
on β ∈ [4π, 8π). It is our purpose to revisit this long standing problem.

Benfatto [3] and collaborators from the Italian school (see references therein) initiate a
program using iterated Mayer series for pressure (and correlation functions) together with
ideas from the work of Gopfert–Mack [20] and Imbrie [25]. Brydges and Kennedy [8] have
also considered the Mayer expansion of the two-dimensional Yukawa gas in the context
of the Hamilton–Jacobi equation. We adopt in present investigation their continuum scaling
renormalizationmethod, adding to that approach a new ingredient. The novelty is relatedwith
the (short-range) decomposition of the Yukawa potential into scales. Instead of the standard

decomposition v(x) =
∫ 0

−∞

(
d
(−�+ e−s

)−1
(0, x)/ds

)
ds (or the discrete version of it)

considered in the previous work, we use the scale mixtures v(x) =
∫ 1

0
g(s)h(|x | /s)ds of

Euclid’s hat h(r). Using a concept introduced by Basuev [1], we first prove a theorem that the
minimal specific energy e(v) and the constrained (to nonzero total charge) modified minimal
specific energy ē(v) are equal.

Our main theorem on specific energy when applied to the two-dimensional Yukawa gas
(see paragraph Achievements and unresolved issues below) leads one step further in the
investigation given by Guidi and one of the authors (see [22, Conjecture 2.3 and Remark
7.5]) towards the convergence of the Mayer series for β in the whole interval [4π, 8π) of
collapse.

In the present paper, the convergence of the Mayer series is proven up to the second
threshold β ∈ [0, 6π).

We shall now review the tools and methods employed in present investigation. We refer
to the references for detail.
Decomposition of radial positive functions of positive type.Positive definite functions have
arisen in many areas of (pure and applied) mathematics and physics (see [32] for an historical
survey). A continuous function f defined in R

d is called positive definite (abbreviated as
p. d.) if the n × n real matrix

[
f
(
xi − x j

)]
1≤i, j≤n is positive definite for n ∈ N arbitrary

elements x1, …, xn of R
d :

∑
1≤i, j≤n

z̄i z j f
(
xi − x j

) ≥ 0 , ∀z1, . . . , zn ∈ C . (1.1)

The celebrate work of Bochner (see e.g [5]) characterizes these functions as follows: f (with
f (0) = 1) is positive definite if, and only if, it is a Fourier-Stieltjes transform μ̂(x) =∫
Rd

e−i x ·ξdμ(ξ) of a probability Borel measure μ on R
d . Although powerful, Bochner’s

theorem may be difficult to use in practice: how do we know that a given f satisfies (1.1)?
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326 W. Kroschinsky, D. H. U. Marchetti

Even when explicit computation of Fourier transform is available, how do we represent f
into a scale mixtures of suitable elementary function?

Recent investigations (see [19,23,24] and references therein) seek for concrete examples
and easy checkable criteria of p. d. function. A particularly interesting subclass of p. d.
functions, denoted in [24] by �+d , is provided by radial continuous functions: f (x) = ϕ(|x |)
for some positive continuous function ϕ onR+. A simple example of a function that vanishes
out of a ball Bs onR

d of radius s > 0 centered at origin is given by the d-dimensional Euclid’s
hat

4

1/(γd(s/2)d)
χs/2 ∗ χs/2(x) ≡ h(|x | /s)

where χr (x) ≡ χBr (x) is the indicator function of Br and γd = πd/2
(d/2 + 1) is the
volume of a unit ball. Jaming, Matolcsi and Révész [24] have identified certain compactly
supported functions, alike this one, as extrema rays of the cone �+d , playing the same role
as the family

{
eiξ ·x

}
for the Bochner’s theorem. So, if ϕ is an extremum ray of �+d then, by

Choquet representation, ∫ ∞
0

ϕ (|x | /s) dν(s) (1.2)

is an element of �+d for a suitable positive measure ν supported on the family of scales
{ϕ (|x | /s)} of ϕ.

Gneiting [19] and Hainzl-Seiringer [23], on the other hand, characterized the subclass
Hd ⊂ �+d , formed by scaling mixtures of d-dimensional Euclid’s hat (an analogue of Polya’s
criterion for radial characteristic functions on R

d has been provided for d ≥ 2 in [19]).
Hainzl-Seiringer’s representation however suffices to make our point in the present work.
Let us start with the two-dimensional Yukawa potential, which is not an element of H2 (see
Remark 2.4), given by the Green’s function v(1/

√
κ, x) = (−�+ κ)−1 (0, x) (the resolvent

kernel of the Laplacian operator � = ∂2/∂x21 + ∂2/∂x22 ). Applying Fourier transform to
solve for v, together with v(1/

√
κ, x) = v(1,

√
κx), yields (see e.g. [18, Sect. 7.2])

v(x) = 1

(2π)2

∫
R2

eiξ ·x 1

ξ2 + 1
dξ = 1

2π
K0(|x |) (1.3)

where v(x) ≡ v(1, x) and K0 is the modified Bessel function of second kind of order 0.
Hainzl-Seiringer’s formula for this function reads

v(x) =
∫ ∞
0

h(|x | /s)g(s)ds (1.4)

where (h(0) = 1)

h(w) = 2

π

(
arccosw − w

√
1− w2

)
, if 0 < w ≤ 1 (1.5)

h(w) = 0 if w > 1 and

g(s) = −s
4π

∫ ∞
s

K ′′′0 (r)
r√

r2 − s2
dr . (1.6)

The scale mixture density g(s) for the Yukawa potential in d = 1 and 3 dimensions, and
for the Coulomb potential in d-dimensions, are known in terms of elementary functions (see
Examples 1 and 2 of [23]). For the Yukawa potential in 2-dimensions, however, g(s) can only

be written in term of Meijer G-functions (see [4] for an introduction): t2G30
13

(
t
∣∣∣ −3/2−2,−1,0

)
=

G30
13

(
t
∣∣∣ 1/2
0,1,2

)
.
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We observe that h(w) is convex and its scale mixtures (1.4) preserves it. This useful
property, as we shall see, distinguishes (1.4) from another common scaling decomposition

of (1.3): together with v(s, x) = (−�+ 1/s2
)−1

(0, x) = (1/2π)K0(|x | /s), we write

v(x) =
∫ 1

0
v̇(s; x)ds

by the fundamental theorem of calculus. Taking the derivative of v(s; x) with respect to s,
yields

v(x) =
∫ 1

0
h̃(|x | /s) 1

2πs
ds (1.7)

where h̃(w) = −wK ′0(w) = wK1(w) and K1 is the modified Bessel function of second kind
of order 1. Like h(w), h̃(w) for w ∈ R+ decreases from h̃(0) = 1 to 0 monotonously as w

increases but changes from concave to convex atw0 (see Fig. 3). As theYukawa potential v(x)
behaves like the Coulomb potential (1/2π) log |x |−1 at short distances, the mixture density
g(s) for both decompositions of v, (1.4) and (1.7), behave as (2πs)−1 in a neighborhood of
s = 0.
Gaussian Processes and renormalization group. Positive definite functions plays an
important role on renormalization group (RG) methods in statistical physics. Brydges and
collaborators [7] (see also [10]) coined a term “finite range decomposition” to the mixtures
of scale (1.2) for some compactly supported radial extremal functions ϕ. They used a prob-
abilistic argument as follows: breaking up the range of integration into disjoint union of
intervals I j = [L− j , L− j+1), j ≥ 1 for L > 1 and I0 = [1,∞), (1.4) may be seen as the
“finite range” decomposition

φ =
∑
j≥0

ζ j (1.8)

of a Gaussian process φ of mean Eφ(x) = 0 and covariance Eφ(x)φ(y) = v (x − y) into a
family of independent Gaussian processes

{
ζ j
}
of mean Eζ j = 0 and covariance

Eζ j (x)ζ j (y) =
∫
I j
g(s)h (|x − y| /s) ds ≡ vI j (x − y)

(as the sum of covariances
∑
j≥0

vI j equals ( 1.4)). See [7,10] for extensions of finite range

decomposition to a large class of positive definite functions on R
d and Z

d .
When a statistical system is represented by the expectation EZ of a functionalZ (φ), the

decomposition (1.8) of the Gaussian field φ can be used to integrate out each ζ j at a time. Let
E

( j) denote the expectation with respect the Gaussian field ζ j . The renormalization group is
a method of calculating the expectation EZ through the sequence of mapsZ j �−→ Z j+1 =
E

( j+1)Z j starting from Z0 = Z . The limit lim j→∞Z j , supposing it exists, is obtained
provided Z j �−→ Z j+1 is amenable to be analyzed as a dynamical system depending on
parameters in the initial condition. For instance, the decomposition (1.8) of φ into finite range
fields ζ j corresponding to the Yukawa potential (1.4), the limit j →∞ drives the statistical
system into the short scaling limit s → 0 for which the potential diverges logarithmically. For
an infinitely many-particle system with ±1 charges, the existence of lim j→∞Z j expresses
the thermodynamical stability of the system. We shall come back to this issue below.
Hamilton–Jacobi equation and majorant method. Under the Kac–Siegert transformation
(see e.g. [9,15]), the grand partition function for the two-dimensional Yukawa gas of particles
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328 W. Kroschinsky, D. H. U. Marchetti

with ±1 charges can be written as the expectation EZ0 (with respect to the Gaussian field
φ) of

Z0 (φ) = exp (V0(φ)) ,

V0(φ) = z
∫
R2
: cos√βφ(x) :v dx

=
∑

σ∈{−1,1}

∫
R2

dx z : ei
√

βσφ(x) :v (1.9)

where the parameters β and z are, respectively, the inverse temperature and activity and : · :v
indicates Wick ordering with respect to the potential v. In the present work, we shall adopt
the continuum scale decomposition (1.3) instead of (1.8). The induced RG dynamics is thus
generated by a Hamilton–Jacobi equation as proposed in [8] by Brydges and Kennedy. Let
us expand these ideas in some detail. A scale-dependent-interaction v : R+ × R

2 −→ R is
introduced replacing (1.4) by a mixture supported in a finite interval [t0, t] of scales

v(t, x) =
∫ t

t0
h(|x | /s)g(s)ds (1.10)

where t0 > 0 is a cutoff of the short scale distances and, since g and h are continuous, we
have limt↘t0 v(t, x) ≡ 0. The renormalization group is now given by a convolution mapping
(t, φ) �−→ Z (t, φ) = E

(t)Z0(+ ·) with initial data Z (t0, φ) = Z0(), where E
(t) denotes

the expectation with respect the Gaussian field ζ with covariance v (t, x − y). Formally,
Z (t, φ) satisfies the Cauchy problem of a “heat equation”

∂Z

∂t
= 1

2
�v̇Z , lim

t↘t0
Z (t, φ) = Z0()

where v̇(t, x) := ∂v/∂t(t, x) = g(t)h(|x | /t), by the fundamental theorem of calculus, is
the Euclid’s hat weighted by the scale density g(t) and �v̇ is the “Laplacian” operator

�v̇Z =
∫
R2×R2

dxdyv̇(t, x − y)
δ2Z

δφ(x)δφ(y)
. (1.11)

Writing Z (t, φ) = exp (V (t, φ)), the heat equation turns into a nonlinear equation for V :

∂V

∂t
= 1

2
�v̇ V +1

2
(∇V ,∇V )v̇ , lim

t↘t0
V (t, φ) = V0() (1.12)

where �v̇ acts as in (1.11) and

(∇V ,∇V )v =
∫
R2×R2

dxdyv̇(t, x − y)
δV

δφ(x)

δV

δφ(y)
. (1.13)

In [8], the authors considered the random field φ on Z
d instead, for which the func-

tional derivative
∫

dx v(x) δ/δφ(x) V (φ) = lim
ε→0

(V (φ + εv)− V (φ)) /ε becomes partial

derivative ∂/∂φx with respect to the variable φx ∈ R at site x . Inserting the Taylor expansion
(multi-index formula):

V (t, φ) =
∑
n≥1

∑
α:|α|=n

1

α!
∂αV

∂φα
(t, 0) φα

into an integral equation equivalent to (1.12), a system of equations for derivatives of V
(by collecting order by order terms), together with an appropriate norm, is used to majorize
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On the Mayer Series of Two-Dimensional Yukawa Gas at Inverse... 329

V (t, φ) by the solution ν(t, ϕ) of a first order PDE equation in two independent real variables
(t, ϕ), ϕ playing the role of chemical potential. The local existence and uniqueness of the
Cauchy problem (1.12) are then proved in ref. [8] (see Theorem 2.2 and Proposition 2.6
therein) for a domain in plane (t, z) with z = eϕ (β may be included as well). Quoting the
authors, these results are “the precise version of the Mayer expansion”.

Brydges and Kennedy have also provided an equivalent system of ordinary differential
equations for the Ursell functions (Lemma 3.3 of [8]) which replaces (1.12) defined on Z

d

and can be used for systems of point particles in R
d . If (�,B, d�(ζ )) denotes the finite

measure space on {−1, 1} ×R
2 corresponding to the possible states of a single particle (we

united σ and x into ζ = (σ, x)), the solution of (1.12) may be represented formally as

V (t, φ) =
∑
n≥1

1

n!
∫

dn�ψc
n (t, ζ1, . . . , ζn) : exp

(
i
√

β
∑n

j=1 σ jφ(x j )
)
: (1.14)

where the Ursell functions ψc
n (t, ζ1, . . . , ζn) are translational invariant and invariant under

the action of the symmetric group Sn of permutations of the index set {1, . . . , n}. The present
work will take the system of equations satisfied by the ψc

n (t, ζ1, . . . , ζn) (see (3.5) and (3.6)
below), together with the scale decomposition (1.10) for the Yukawa potential, as the starting
point for our analysis.
Stability condition and minimal specific energy. Stability of the interaction v is a condition
under which there exist the thermodynamic functions describing an infinitely large statistical
system. LetUn be the total energy potential of the classical charged system of n point particles
at positions x1,…, xn ofR

2, with respective charges σ1,…, σn ∈ {−1, 1}, interacting through
a pair Yukawa potential:

Un(ζ1, . . . , ζn; v) =
∑

1≤i< j≤n
σiv

(
xi − x j

)
σ j . (1.15)

An interacting potential v satisfies the stability condition if there exists B > 0 such that

Un(ζ1, . . . , ζn; v) ≥ −nB (1.16)

holds for all (ζ1, . . . , ζn) on the configurations space
⋃

n

({−1, 1} × R
2
)n

(otherwise the
specific energy Un/n would not be bounded from below).

The standard stability theorem for charged system due to Fisher and Ruelle [14] (see
Theorem I and Eq. (III.7) therein) assures that: if v̂(ξ) = ∫

R2 v(x)e−iξ ·xdx ≥ 0 and v(0) =
(1/2π)2

∫
R2 v̂(ξ)dξ <∞, then

Un(ζ1, . . . , ζn; v) ≥ −1

2
v(0)

n∑
j=1

σ 2
j (1.17)

and, since σ 2
j = 1, (1.16) is satisfied with B = v(0)/2. The proof of (1.17) follows from the

“if” direction of Bochner’s theorem. For this, note that adding 1/2 of each i = j diagonal
terms to (1.15) (i.e., (1.17) with the right hand side passed to the left), the quadratic form

has to be positive as v is positive definite. It follows from (1.3) that v̂(ξ) = (
ξ2 + 1

)−1 ≥ 0
is a positive density but v(x) , which yields the stability constant B, grows unboundedly at
x = 0. As the self-energy v(0) diverges logarithmically, the decomposition (1.7) or (1.4) has
to be used instead.
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330 W. Kroschinsky, D. H. U. Marchetti

Let v be the scale mixtures of Euclid’s hat (1.10), cutoff on the short scales. We introduce
the minimal specific energy e = e(h) of h at the scale s

e = inf
n≥2 en

en = inf
(ζ1,...,ζn)

1

n
Un(ζ1, . . . , ζn; h(·/s)) (1.18)

and, analogously, the modified minimal specific energy ē = ē(h),

ē = inf
n≥2 inf

(ζ1,...,ζn)
non−neutral

1

n − 1
Un(ζ1, . . . , ζn; h(·/s)) (1.19)

where the infimum is now taken over all non-neutral configurations (ζ1, . . . , ζn): (x1, . . . , xn)
∈ R

2n and (σ1, . . . , σn) ∈ {−1, 1}n such that
∑n

j=1 σ j �= 0. As will become clear, the
minimal specific energy (modified or not) of the Euclid’s hat h(·/s) does not depend on the
scale s. So, replacing (1.10) into (1.15) yields

1

n
Un(ζ1, . . . , ζn; v) ≥

∫ t

t0
e (h(·/s)) g(s)ds = e (h) ·

∫ t

t0
g(s)ds

from which, taking the infimum on the left side, we have

e (v) ≥ e (h) ·
∫ t

t0
g(s)ds . (1.20)

In the present paper we determine both specific energies e and ē and characterize the config-
urations they are attained for h(·/s). Since they are independent of s, equation (1.20) holds
as an equality. By (1.17) and (1.18), we have −e(h) ≤ h(0)/2 = 1/2. We show that this is
in fact an equality and, moreover, e = ē = −1/2. More precisely, we have proven in Sec. 2
an improvement of (1.17)

Un(ζ1, . . . , ζn; h(·/s)) ≥ 1

2

(∣∣∣∑n

j=1 σ j

∣∣∣−∑n

j=1 σ 2
j

)
(1.21)

fromwhich the equality of specific energies e and ē follows at once.Observe that the inequality
(1.21) turns out to be an equality for a configuration of n charges collapsed to a single point,

with the total charge
∑n

j=1 σ j being 0 or ±1. As a consequence, equation (1.20) is as a

matter of fact an equality.
One versus iterated Mayer expansion. The Ursell functions can be written by the well
known formula introduced by Mayer (see [33]):

ψc
n (ζ1, . . . , ζn; v) =

∑
G connected

∏
〈i j〉∈E(G)

(
exp

(−βσiσ jv
(∣∣xi − x j

∣∣))− 1
)

, (1.22)

where the sum runs over all connected linear graphsG with vertices in the index set {1, . . . , n}
and E(G) denotes the set of edges of G. As far as the estimation of pressure and correlation
functions are concerned, equation (1.22) is not useful due the cardinality of its sum. To
reduce the sum over connected Mayer graphs to labeled trees, Penrose [27,28] has exploited
cancellations occurring on the formula under proper re-summation and proved that theMayer
series converge provided the potential v is stable, integrable at large distances and has, in
addition, a hard core condition which recently has shown in [29] to be unnecessary (see also
[9] for an overview and extensions). The cardinality of labeled trees of order n is nn−2 by
the famous Cayley theorem, which makes the tree graph identities suitable for the estimation
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of thermodynamical functions. Among the proposed tree graph formulas now available, we
indicate that in Theorem 3.1 of [8] as the most adequate to our purposes of representing
the Ursell functionsψc

n (t, ζ1, . . . , ζn) defined by (1.22) with the scale-dependent-interaction
(1.10) in the place of v. Such Ursell functions satisfy the system of ordinary differential
equations (3.5).

However, one particular tree graph identity due to Basuev [2] is worth mentioning in the
context of the present work. Basuev’s representation works for a radial potential φ(|x |) in
R
d of the form φ = φa + δ, where φa(r) = φ(r) for r = |x | > a, φa(r) = φ(a) for r ≤ a,

is stable and δ(r) = φ(r)−φa(r) > 0 for r ≤ a and δ(r) = 0 for r > a, which may include
hard-core: δ(r) = ∞ for r ≤ a. To estimate the Ursell functions efficiently, Basuev uses the
modified stability condition (see references [1,30])

Un(ζ1, . . . , ζn; v) ≥ −(n − 1)B̄ (1.23)

instead of (1.16), where in the majority of cases important for applications B̄ is equal or close
to B. It might appear that a slight improvement on the stability bound would not affect the
radius of convergence of Mayer series. It turns out, however, that the estimate of the Ursell
functions through the Basuev tree graph identity works so well when ( 1.23) is applied (see
particularly equations (15) and (16) of [2]) that impressive improvements on the convergence
are reported (at low temperatures) in Basuev paper, as well as in [26].

Let us now explain how the estimate on the Ursell functions gets improved by (1.23) in
our case. It is known that the Mayer series for the pressure of a two-dimensional Yukawa gas
[3,8,22]

β p(β, z) =
∑
k≥1

bkz
k ,

bk = 1

k!
∫

dk−1� ψc
k (ζ1, . . . , ζk; v) , (1.24)

converges if |z| < (4π − β)/(4πeβ), the radius of convergence being positive provided
β < 4π . Since the Yukawa potential (1.3) diverges logarithmically as |x | → 0, the proof of
such statement requires the use of Brydges–Kennedy approach or iterated Mayer expansion
(no one-scale tree expansion formula would be able to deal with this issue). The problem at
our hand is to extend the stability of 2-dimensional Yukawa gas to the inverse temperature in
the range 4π ≤ β < 8π , passing through the sequence of thresholds β2r = 8π (1− 1/2r),
r ∈ N. Here, β2r is the inverse temperature in which a clusters with r positive and r negative
charges collapse altogether at once, heuristically given by an argument of entropy–energy
(there are r2 and r(r − 1) distinct pairings of opposite and, respectively, same charges):

W2r (δ) =
∫
|x2|≤δ

dx2 · · ·
∫
|x2r |≤δ

dx2r exp

(
β
(
r2 − r(r − 1)

) ∫ 1

δ

g(s)ds

)
. (1.25)

Since g(s) � 1/(2πs) as s → 0, we have

lim
δ→0

W2r (δ) = c lim
δ→0

δ2(2r−1)−βr/(2π) =
{

0 if β < β2r

∞ if β > β2r

for some constant c > 0. The balance favors the entropy S(δ) = δ2(2r−1) if β < β2r while the
energy contribution e−βE(δ) � δ−βr/(2π) dominates if β > β2r . The same entropy–energy
argument applied to odd clusters, let us say 2r+1 particles, where r+1 particles are charged
with one sign and the remaining r with the other sign, shows that (1.25) tends to 0 as δ goes
to 0:
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lim
δ→0

W2r+1(δ) = c lim
δ→0

δ4r−β(r(r+1)−r2)/(2π) = c lim
δ→0

δ(4−β/(2π))r = 0 ,

at any inverse temperature β < 8π .
This heuristic picture suggests us that the collapse of odd clusters should be disre-

garded when we pass through the sequence of thresholds β2 = 4π , β4 = 6π , . . ., up to
the accumulation point β∞ = 8π . However, if the Mayer series (1.24) is majorized by
using the stability bound (1.16), the majorant series will diverge at the inverse temperatures
β2r+1 = 8π (1− 1/(2r + 1)) when t0 tends to 0 and will be finite up to 8π whether the
stability bound (1.23) is used instead. The confirmation of the heuristic picture by our cal-
culations according to the principles of the statistical physics is, in our opinion, the most
important contribution of the present paper. The improvement on the stability bound from
−Bn to −B̄(n − 1) with B = B̄ and n odd, although might seem of little importance, is
exactly what is needed for (1.24) to be majorized by a convergent series for β inside any
interval between two successive thresholds [β2r , β2r+2), ∀r ∈ N.
Avoiding the collapse of neutral clusters: a conjecture As a consequence of the alluded
collapses, the leading even coefficients b2 j , j = 1, . . . , n, of theMayer series (1.24) diverges
for β2n ≤ β < β2(n+1) when the short scale cutoff t0, introduced in (1.10) (or in (1.7)) to
make the system conditionally stable, is removed. A conjecture presented in [3] as an open
problem may be formulated as follows:

Conjecture 1.1 If the leading n even coefficients b2 j ’s are removed from the Mayer series
(1.24), the radius of convergence of the corresponding series remains positive as t0 goes to
0 for any β ∈ [β2n, β2(n+1)) and, consequently, for any β < β2(n+1).

Brydges-Kennedy [8] have proved convergence of (1.24) with O
(
z2
)
term omitted for

4π ≤ β < 16π/3 = β3 and have explained how it would be extended up to the second
threshold 6π . It turns out that the claimed improvement on the estimate of the three-particle
energy from U3(ξ1, ξ2, ξ3; v̇) ≥ −3v̇(t, 0)/2 to U3(ξ1, ξ2, ξ3; v̇) ≥ −v̇(t, 0) does not hold

uniformly on
({−1, 1} × R

2
)3

at each scale for the decomposition (1.7) used by the authors.
It has been shown by numerical calculation in [22] that the factor 3 (the number n of charged
particles involved) in the lower bound of U3 may be improved to 2.14..., which is enough to
extend the convergence of Mayer series to any β ∈ [4π, 6π) but insufficient to go beyond a
certain threshold (about β15 = 112π/15) up to 8π . Both statements are proven in the present
work. We have proved in addition that, if the alternative decomposition (1.4) for the Yukawa
potential is used, then the factor 3 can be replaced by 2 in the stability bound for U3. More
generally, by (1.21), (1.16) can be substituted by (1.23) with B = B̄ = v̇(t, 0)/2 for any odd
number n ≥ 3.

We intend in the present paper to provide a majorant candidate for the pressure of the
Yukawa gas at each interval β2n ≤ β < β2(n+1), uniformly in the cutoff t0. We use the
majorant construction proposed in [22], with (1.7) replaced by (1.4), which leaves the leading
even Mayer coefficients b2 j , j = 1, . . . , n, bounded by free of divergence coefficients. We
shall assume that the neutral parts of a cluster of order larger of 2n do not collapse. This
assumption has been verified in the present paper only for the neutral pairs for β < 6π .

The majorant construction is based on the idea already presented in early works (see e.g.
[6,25]), according to which the Mayer series (1.24) is dominated by an expansion in powers
of ez
eB , where 
 = ‖βv‖1 is the L1-norm of βv(x) and B = βv(0)/2 is the particle
self-energy. A one-step Mayer expansion is not suitable for potentials in which B is large
in the range that 
 contributes little, as typically occurs for the two-dimensional Yukawa
potential v at low scales (see Eqs. (3.8) and (3.9) in Proposition 3.4 and [8,20,25] for other
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applications). When v is decomposed into a continuum range of scales, the Mayer series
becomes, roughly speaking, an expansion in powers of ezτ(t0, t), where

τ(t0, t) =
∫ t

t0

(s)e2

∫ t
s B(τ )dτds (1.26)

solves a linear equation Ċ2 = 2B(t)C2 + 
(t) satisfied by the majorant C2 of two times the
second Mayer coefficient: 2 |b2| ≤ C2 (see (3.16) and (3.18)). It has been shown that the
Mayer expansion (1.24) converges providedβ ∈ [0, 4π) and e |z| τ(t0, t) < 1, uniformly in t0
(see [8, Theorem4.1 togetherwith pp. 41, 42] andProposition 3.4, Remarks 3.5 and 3.6 below,
for the decomposition (1.4)). The Mayer series past the first threshold converges, if the first

divergent term is omitted, provided β ∈ [4π, 16π/3) and e |z|
∫ t

t0

(s)e3/2

∫ t
s B(τ )dτds < 1

holds uniformly in t0. We show in the Sect. 3.4 that, for both decompositions (1.7) and (1.4),
the exponent factor 3/2 may be replaced by 4/3 and the result can be extended for β ∈
[4π, 6π).

Let us explain further how the proposed majorant series converges provided β ∈
[βk−1, βk+1) and the exponent factor 4/3 (k = 3) is in general replaced by (k + 1)/k
for any k > 1 odd. Let Cn be the n-th majorant coefficient defined in (3.17) et seq. For fixed
t0 > 0, we have (see (3.16) and (3.18))

n |bn | ≤ Cn (1.27)

where, by the hypothesis of Conjecture 1.1, the first (k − 1)/2 even Mayer coefficients
are set to 0: b2 j = 0 for 1 ≤ j ≤ (k − 1)/2. Equation (1.27) continues to holds if the
corresponding even majorant coefficients have their divergent part (as t0 tends to 0) extracted
through a Lagrange multiplier Lk . The equation satisfied by the Cn after the extraction
becomes Ċn = (n − 1) ((k + 1)/k) B(t)Cn+ nonlinear terms for n > 2, and for n = 2, the
C2 satisfies a linear equation Ċ2 = ((k + 1)/k) B(t)C2 + 
(t), whose solution τk(t0, t) =∫ t

t0

(s)e(k+1)/k ∫ t

s B(τ )dτds, generalizes (1.26). We see that C2 is finite as t0 goes to 0 up

to βk+1, by ( 3.29), and may be used to build, according to the general principle for Mayer
series, a convergent majorant expansion in powers of ezτk(t0, t). Since the modified stability
condition (1.23) applies for every n > 1 odd, the linear part of the equation satisfied by Cn

in (1.27), given by (n − 1)BCn < (n − 1) ((k + 1)/k) BCn , implies that the same equation
satisfied by Cn with n ≤ k even, improved “by hand”, also holds for n odd. To understand
why the modified stability bound (1.23) is so crucial, we observe that anything large than
(n − 1)B would prevent the convergence of the majorant series in the whole interval of
collapse [4π, 8π).
Accomplishments and unresolved issues Regarding the Conjecture 1.1, the present paper
establishes that the Mayer expansion (1.24) of the two-dimensional Yukawa gas, omitting
b2z2, ismajorized by a convergent series forβ in the first collapse interval [4π, 6π), uniformly
in t0, for standard and mixtures of Euclid’s hat decompositions of Yukawa potential v . The
challenging unresolved question is summarized by the following

Claim 1.2 Neutral subclusters of size smaller than or equal 2n inside a cluster of size larger
than 2n are prevented to collapse for β ∈ [β2n, β2(n+1)) due to the interactions of their
constituents with the remainder particles.

Two distinct facts are implicitly assumed in Claim 1.2. The contributions of the neutral
subclusters to the Mayer coefficients are supposed to be finite when the cutoff t0 tends to 0
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while the relations (1.27) hold uniformly in t0, i.e., they are bounded by the corresponding
majorant coefficients. The claim has been introduced in order to replace Conjecture 1.1 by
Claim 1.2, together with the improved stability and its implication to the majorant coefficient
Cn for n odd. We illustrate the usefulness of our strategy for a neutral pair of particles at
Sect. 3.4, in which the estimate of “tripoles” by C3 has played an important role. Until now,
we have not succeeded in proving Claim 1.2 , except in the case of a pair of opposite charges.
Although we do not intend to address Conjecture 1.1 beyond 6π , we shall argue in Sect. 3.4
that some technics available nowadays could be used to do so.

We now list what has been accomplished in the present paper:

1. An improved stability bound forU3 for the standard decomposition (1.7) of v (see Propo-
sition 2.1 and Remark 2.3). As a consequence, the convergence of the Mayer expansion
with singular part of n = 2 term omitted (see [22, Sect. 6.3]) is proven to be extended
from the interval [4π, 16π/3) to [4π, 6π), uniformly in t0. The same extension applies
to Theorem 4.3 in [8].

2. If the Yukawa potential v is represented by scale mixtures of Euclid’s hat (1.4) and n ∈ N

is odd, Theorem 2.5 establishes that Un(ξ1, . . . , ξk; v(t, ·)) is bounded from below by

−(n−1)/2
∫ t

t0
g(s)ds. This implies that clusters with an odd number of particles are not

thresholds of the two-dimensional Yukawa gas in the sense that, assuming that Claim 1.2
holds true, the j-th Mayer coefficient b j is majorized by a finite constant C j for j ≥ n
and β ∈ [βn−1, βn+1) and

∑
j≥n C j z j has a finite radius of convergence, uniformly in

t0.
3. If v is represented by a scale mixtures of Euclid’s hat (1.10), then the Mayer series (1.24)

for the two-dimensional Yukawa gas, with the singular part of n = 2 term omitted,
converges uniformly in t0 for β in the first threshold interval [4π, 6π).

The proof of these statements are given in Sects. 2 and 3.
Outlines of the present work The present paper is organized as follows. Section 2 is ded-
icated to the proof of improved stability bonds Proposition 2.1, Theorem 2.5 (main) and
Corollaries 2.7 and 2.8, together with results involved in the standard and scale mixtures
of Euclid’s hat (Proposition 2.9) representations of two-dimensional Yukawa potential v.
Details of the calculations on the standard decomposition of v, the Euclid’s hat function and
the scale density mixtures are presented, respectively, in Appendices A, B and C

The main Theorem is then used to show that, assuming that Claim 1.2 holds in the two-
dimensional Yukawa gas, then, as the heuristic picture suggests, odd number of particles
do not collapse. We dedicate Sect. 3 to the Cauchy majorant method applied to the density
function of Yukawa gas on the whole interval [4π, 8π) of collapses. In Sect. 3.4, it is proven
that the Mayer series converge for β in the first threshold interval [4π, 6π) for the standard
and scale mixtures of Euclid’s hat representation of v.

2 Minimal Specific Energies: Main Theorem and Estimates Involving
Modified Bessel Functions

We prove in this section our main theorem (1.21) and the implications of it on the minimal
specific energies e(v) and ē(v) for v a mixture of the Euclid’s hat h in R

2.
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2.1 Three Particles Minimal Specific Energy

To begin with, let Un = Un(ζ1, . . . , ζn; v) be the n-particle total energy (1.15) for a given
potential v where ζi = (σi , xi ), i = 1, . . . , n, unite the i-th particle charge σi and position
xi . Let

en(v) = 1

n
inf

(ζ1,...,ζn),

ζi∈{−1,1}×R2

Un(ζ1, . . . , ζn; v) (2.1)

and

ēn(v) = 1

n − 1
inf

(ζ1,...,ζn),ζi∈{−1,1}×R2:
σ1+···+σn �=0

Un(ζ1, . . . , ζn; v) (2.2)

be, respectively, the n-particles minimal and constrained minimal specific energies. As the
particles of our system have either+1 or−1 charges, these two quantities are related to each
other when n is an odd number as en(v) = ēn(v)(n − 1)/n. Let us first consider the case
n = 3 and let v(x) be given by the two-dimensional Yukawa potential (1.3) under the standard

decomposition (1.7), cut-off at short distances s ≤ t0: v(x) =
∫ 1

t0
h̃(|x | /s)/(2πs) ds.

Assuming ēn
(
h̃(·/s)

)
is independent of s, we have

ēn(v) ≥
∫ 1

t0

1

2πs
ēn

(
h̃(·/s)

)
ds = 1

2π
log

1

t0
ēn

(
h̃
)

,

So, it is enough to consider the minimal specific energy of 3-particles ē3(h̃) for h̃(w) =
wK1(w), where K1 is the modified Bessel function of second kind of order 1.

We shall need among other properties some general features of h̃(w), which has been
stated and proved in the Appendix A (see Fig. 1).

Because the particles interact via a pair potential, it is easy to see that the minimum
potential energy is attained to a configuration in which two of the three particles have equal
signs and the third has charge with the opposite sign. The potential energy (1.15) with n = 3
and σ1 = σ3 = −σ2 is then given by

U3(ζ1, ζ2, ζ3; h̃(·/s)) = −h̃ (|x1 − x2| /s)− h̃ (|x2 − x3| /s)+ h̃ (|x1 − x3| /s) .

To simplify the expression, we write r1 = |x1 − x2| /s, r2 = |x2 − x3| /s and r3 =
|x1 − x3| /s can be written, as the particles are located at the vertices of a triangle, by the law
of cosine:

r3(r1, r2, θ) =
√

(r1 − r2)2 + 4r1r2 sin2 θ/2 .

Since h̃(w) is a strictly decreasing positive function, theminimal specific energy of 3-particles
(2.1) thus reads

ē3(h̃(·/s)) = 1

2
min

r1,r2≥0,0≤θ≤π

(
h̃(r3(r1, r2, θ))− h̃(r1)− h̃(r2)

)

= 1

2
min

r1,r2≥0

(
h̃(r1 + r2)− h̃(r1)− h̃(r2)

)
(2.3)

and is independent on the scale s. The next proposition shows that this quantity does not

attain to the value−1/2 =
(
−∑3

i=1 σ 2
i +

∣∣∣∑3
i=1 σi

∣∣∣
)

/(2 ·(3−1)) that one would expected
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Fig. 1 Plot of h̃(w)

for a convex function h. Despite of that, its bound from bellow guarantee that “tripoles” do
not collapse for β ∈ [4π, 6π).

Proposition 2.1

− 1

2
> ē3(h̃) > −0.535 . (2.4)

Remark 2.2 As the numerical evaluations used in the proofs are sharp up to high decimal
order, we may claim that ē3 = −0.530(…).

Proof The function to minimize in (2.3) reaches the value (K1(1)− K1(1/2)) /2 =
−0.527(...) at r1 = r2 = 1/2, proving the upper bound. To prove the lower bound, it is
enough by (2.3) to show that

h̃(x + y)− h̃(x)− h̃(y)+ 1.07 > 0 (2.5)

holds for all x , y ≥ 0. Defining f (x) = h̃(x) − 1.07, equation (2.5) is equivalent to show
superadditivity of f (x):

f (x + y) > f (x)+ f (y) . (2.6)

But this is implied by the following argument. Let q(x) = f (x)/x be defined for x > 0 and
suppose that q(x) is monotone increasing. Then q(x + y) ≥ q(x), q(x + y) > q(y) and it
follows that

f (x + y) = xq(x + y)+ yq(x + y) > xq(x)+ yq(y) = f (x)+ f (y) .

The proof of (2.5) is thus reduced to prove that q(x) = (h̃(x)−1.07)/x = K1(x)−1.07/x
is monotone increasing. From (A.1) with n = 1, we deduce

K1(x)+ xK ′1(x) = (xK1(x))
′ = −xK0(x)
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which implies that

q ′(x) = K ′1(x)+
1.07

x2
= −1

x2
(
xK1(x)+ x2K0(x)− 1.07

)
> 0

for x > 0 provided
xK1(x)+ x2K0(x) < 1.07 .

This inequality, however, holds in view of Lemma A.2 in Appendix A (see Fig. 6).
The numerical estimate for the specific energy ē3(h̃) stated in Remark 2.2 is obtained

when 1.07 is replaced by the maximum values p(x0) = 1.061(…) since, at this point,
f (x0) = h̃(x0)−1.061(…) satisfies (2.6) as an equality and consequently, by (2.5), h̃(2x0)−
h̃(x0)− h̃(x0) = −1.061(. . .).

The proof of the lower bound and Proposition 2.1 is now completed. ��
Remark 2.3 It does not seem easy to extend the superadditivity method used to estimated
the (restricted) minimum specific energy of 3-particles to (2k + 1)-particles with k > 1. As

we shall see in the next section, the result on the minimal specific energy ē3
(
h̃
)
prevents

the third Mayer coefficient to be defined uniformly in the cutoff t0 in the entire collapse
interval [4π, 8π], although it is enough for concluding convergence of the Mayer series
up to the second threshold [4π, 6π). Numerical calculations performed in [22] indicate that

ē2k+1
(
h̃
)
remains for k > 1 strictly smaller than−1/2.We shouldmention that if h̃(w)were

convex, the minimal of (2.3) would be attained at r1 = r2 = 0, obtaining the expected value
ē3 = −1/2 as it is exactly the case when decomposition (1.4) is used. Since the method based
on superadditivity cannot be easily extended to k > 1, a different method will be employed
to obtain ē2k+1(h) = −1/2 with h the Euclid’s hat function (1.5).

2.2 TheMain Theorem

We shall now turn to the representation of Yukawa potential (1.3) given by v(x) =
v(0,∞)(x) = K0(|x |)/(2π) where (see (1.4)):

v(t0,t)(x) =
∫ t

t0
h(|x | /s)g(s)ds , (2.7)

is a scale mixtures of Euclid’s hat (see Fig. 2). Here, for x ∈ R
2 and s ∈ R+,

h(|x | /s) = 4

πs2
χ[0,s/2] ∗ χ[0,s/2](x) (2.8)

is the self-convolution of indicator function χ[0,s/2](x) := θ(s/2−|x |) of the 2-dimensional
disc Br ≡ Br (0) of radius r = s/2 centered at origin and g(s) is the scale mixtures density
given by Hainzl–Seiringer’s formula: [23]

g(s) = −s
4π

∫ ∞
s

K ′′′0 (r)
r√

r2 − s2
dr . (2.9)

Remark 2.4 (2.9) differs from the g(s) in equation (11) of [23] by a pre-factorπ (s/2)2 thatwe
have used in (2.8) in order to normalize h at origin: h(0) = 1. This normalization is suitable
when the radial function ϕ(|x |) = v(x) is the characteristic function of a spherically symmet-
ric probability distribution in R

d or the covariance of a stationary and isotropic random field
on d-dimensional Euclidean space. The latter is the point of view of the present paper, while
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Fig. 2 Euclid’s hat function

the former were the focus of Gneiting paper [19], for which the classes Hd of radial positive
definite functions generated by scale mixtures of d-dimensional Euclid’s hat hd(|x |) played
an important role in the proof of an analogue of Pólya’s criterion for d > 1. We observe

however that the scale mixture used in [19] is of the form ϕ(|x |) =
∫ ∞
0

hd(r |x |)dG(r),

where G(r) is a probability distribution function in (0,∞) with G(0+) = c ∈ [0, 1]. Since∫ t

t0
g(s)ds diverges logarithmically as t0 tends to 0, our measure g(s)ds, written in terms of

r = 1/s (see (2.7)), does not satisfy the properties of dG(r).

Equation (2.9) can be written in terms of a Meijer G-functions that is regular at s = 0 as

2πsg(s) = √πG30
13

(
s2/4

∣∣∣ 1/2
0,1,2

)
(2.10)

as one can check using Mathematica program together with the shift property: t2G30
13(

t
∣∣∣ −3/2−2,−1,0

)
= G30

13

(
t
∣∣∣ 1/2
0,1,2

)
.

The general features of h(w) are described in Appendix B for the reader’s convenience
and further use (see Fig. 3 for a comparison of h(w) with h̃(w)). We shall now state and
prove our main theorem and return afterwards to the asymptotic properties of (2.10) required
for the next section.

Theorem 2.5 For any integer n ≥ 2, any configuration of n-particle (ζ1, . . . , ζn), ζ j =(
σ j , x j

) ∈ {−1, 1} × R
2 and any s ∈ R+, the total energy with interacting potential h

satisfies

Un(ζ1, . . . , ζn; h(·/s)) =
∑

1≤i< j≤n
σiσ j h

(∣∣xi − x j
∣∣ /s) ≥ −1

2

(
n −

∣∣∣∑n

j=1 σ j

∣∣∣
)

. (2.11)

Proof Since h(0) = 1, we add n/2 to the total energy in order to include the i = j terms
into the sum in (2.11):
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Fig. 3 Plot of h(w/s) scaled by s = 3.07 and h̃(w) together

∑
1≤i< j≤n

σiσ j h
(∣∣xi − x j

∣∣ /s) = −1

2

n∑
j=1

σ 2
j h(0)+ 1

2

∑
1≤i, j≤n

σiσ j h
(∣∣xi − x j

∣∣ /s) .

So, the result is proven if we show that

∑
1≤i, j≤n

σiσ j h
(∣∣xi − x j

∣∣ /s) ≥
∣∣∣∑n

j=1 σ j

∣∣∣ .

Now, we use (2.8) to write

∑
1≤i, j≤n

σiσ j h
(∣∣xi − x j

∣∣ /s) = 4

πs2

∫
R2

∑
1≤i, j≤n

σiσ jχ[0,s/2](xi − x j − y)χ[0,s/2](y)dy .

Changing the integration variables for each term of the sum to z = y + x j yields

∑
1≤i, j≤n

σiσ j h
(∣∣xi − x j

∣∣ /s) = 4

πs2

∫
R2

∑
1≤i, j≤n

σiσ jχ[0,s/2](xi − z)χ[0,s/2](z − x j )dz

= 4

πs2

∫
R2

⎛
⎝ n∑

j=1
σ jχ[0,s/2](z − x j )

⎞
⎠

2

dz (2.12)

in view of the fact that χ[0,s/2](x) is even. Since
∑n

j=1 σ jχ[0,s/2](z− x j ) is always an integer
number, we have

⎛
⎝ n∑

j=1
σ jχ[0,s/2](z − x j )

⎞
⎠

2

≥
∣∣∣∣∣∣

n∑
j=1

σ jχ[0,s/2](z − x j )

∣∣∣∣∣∣
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and this together with (2.12) implies that

∑
1≤i, j≤n

σiσ j h
(∣∣xi − x j

∣∣ /s) ≥ 4

πs2

∫
R2

∣∣∣∑n

j=1 σ jχ[0,s/2](z − x j )
∣∣∣ dz

≥
∣∣∣∣ 4

πs2

∫
R2

∑n

j=1 σ jχ[0,s/2](z − x j )dz

∣∣∣∣
=

∣∣∣∣
∑n

j=1 σ j
4

πs2

∫
R2

χ[0,s/2](z − x j )dz

∣∣∣∣
=

∣∣∣∑n

j=1 σ j

∣∣∣ ,

concluding the proof. ��

Remark 2.6 The proof of Theorem 2.5 holds for any d ≥ 2 provided h(w) is replaced by the
Euclid’s hat hd(w) (see Sect. 2 of [19] for the proof of Proposition B.1 for d-dimensional
Euclid’s hat).

Theorem 2.5 implies the following

Corollary 2.7 The minimal specific energy e(h(·/s)) and the minimal constrained specific
energy ē(h(·/s)), defined by (1.18) and (1.19), are both −1/2.

Proof This result follows from the definitions (2.1) and (2.2) and the inequality (2.11). The
minimal specific energy e(h) = infn≥2 en(h) of h is attained for even number of particles

n satisfying
∑n

j=1 σ j = 0 and
∑n

j=1 σ 2
j = n when they collapse to a single point since,

in this case, the inequality (2.11) becomes an equality. Likewise, the constrained minimal
specific energy ē(h) = infn≥2 ēn(h) of h is attained for odd number of particles n satisfying∣∣∣∑n

j=1 σ j

∣∣∣ = 1 and
∑n

j=1 σ 2
j = n when they collapse to a single point. Note that, for a

calculation similar to the energy in (1.25), the potential energy ( 1.15) with n = 2r + 1,
σ1 = · · · = σr = −σr+1 = · · · = −σ2r+1 and x1 = · · · = x2r+1 = x0 ∈ R

2, is given by
(h(0) = 1)

Un(ζ1, . . . , ζn; h) = −(r + 1)r + r(r − 1)

2
+ (r + 1)r

2
= −r = −1

2
(n − 1) .

��

As e(h(·/s)) and ē(h(·/s)) do not depend on the scale s , Theorem 2.5 immediately implies

Corollary 2.8 Let the Yukawa potential v be represented as scale mixtures of Euclid’s hat
(2.7) regularized at short distances and let the potential energy of n-particles be defined by
(1.15). If n is odd, then the stability bound (1.16) can be replaced by (1.23) with

B = B̄ = 1

2

∫ t

t0
g(s)ds .

2.3 Properties of theMixture Function

Regarding the mixture function, we have the following (see Figs. 4 and 5)
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Fig. 4 Plot of m(s) together with its upper and lower functions
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1.10

1.15

1.20

Fig. 5 Plot of m(s) together with its best and linear (upper) asymptotes

Proposition 2.9 The function g : (0,∞) −→ (0,∞) given by (2.9) can be written as

g(s) = 1

2πs
m(s)
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where

m(s) = 1

2

∫ ∞
s

y2K1(y)
y√

y2 − s2
dy (2.13)

is a regular function such that m(0) = 1, increases monotonously in (0, s0), where s0 =
0.812(…) and m(s0) = m0 = 1.075(…), then decreases monotonously in (s0,∞) to 0,
exponentially fast. Globally, it is bounded from above and from below as

π

4
e−s(1+ s + s2) < m(s) <

π

4
e−s(3+ 3s + s2) , ∀ s ∈ [0,∞) . (2.14)

In the vicinity of the origin, it satisfies

m(s) ≤ 1+
(
a − 1

4
log s

)
s2, s ∈ [0, 1] (2.15)

where a = (1−3γ+log 4−ψ(−1/2))/8 = 0.07726(…), being the r.h.s. of (2.15) asymptotic
to m(s) at s = 0.

Proof We begin by showing that (2.9) multiplied by 2πs can be written as (2.13). For this,
we use K1(w) = −K ′0(w) and the representation (see [18, Sect. 7.2])

K0(w) =
∫ ∞
0

e−w
√
k2+1 dk√

k2 + 1
, (2.16)

from which we infer that K0 is regular in (0,∞). We may thus differentiate (2.16) three
times, replace it into (2.9), switch the integration order and, after multiplying by 2πs it can
be written as

m(s) =
∫ ∞
0

(
k2 + 1

)
F(s, k)dk (2.17)

where

F(s, k) = s2

2

∫ ∞
s

e−r
√
k2+1 rdr√

r2 − s2

= s3

2

∫ ∞
0

e−s
√
k2+1√z2+1dz

= − s3

2
K ′0

(
s
√
k2 + 1

)
= s3

2
K1

(
s
√
k2 + 1

)
. (2.18)

We have changed variable sz = √r2 − s2, so r = s
√
z2 + 1 and rdr/

√
r2 − s2 = sdz.

Replacing (2.18) back into (2.17), making one more change of variable: s
√
k2 + 1 = y, so

that sk = √
y2 − s2 and sdk = y/

√
y2 − s2, yields (2.13).

The sequence of operations bringing (2.9) into the form (2.13) will be applied some more
times. Let us start by finding a lower bound for (2.13). By monotonicity of the modified
Bessel functions with respect to their order (see [11]) together with partial integration, we
have

m(s) >
1

2

∫ ∞
s

y2K0(y)
y√

y2 − s2
dy

= −1
2

∫ ∞
s

(
y2K0(y)

)′√
y2 − s2dy ≡ L(s)− J (s) (2.19)

where

L(s) = 1

2

∫ ∞
s

y2K1(y)
√
y2 − s2dy = π

4

(
3+ 3s + s2

)
e−s (2.20)
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J (s) =
∫ ∞
s

yK0(y)
√
y2 − s2dy = π

2
(1+ s) e−s . (2.21)

as we shall prove in Appendix C. Observe that the boundary term in the partial integration,

y2K0(y)
√
y2 − s2/2

∣∣∣∞
y=s vanishes for all s ∈ (0,∞) because the exponential decay of K0(y)

and boundedness of y2K0(y).
Equations (2.20) and (2.21) replaced into (2.19) gives the lower bound (2.14). An upper

bound is obtained similarly. By monotonicity of the modified Bessel functions with respect
to their order (see [11]) and integration by parts, we have

m(s) <
1

2

∫ ∞
s

y2K2(y)
y√

y2 − s2
dy

= −1
2

∫ ∞
s

(
y2K2

)′
(y)

√
y2 − s2dy = L(s) (2.22)

by (A.1), where L(s) is given as in (2.20). Equation (2.22) together with (2.20) gives the
upper bound (2.14).

The asymptotic behavior (2.15) of m(s) follows from the mean value theorem

m(s)− m(0) =
∫ s

0
m′(t)dt = m′(s̃)s (2.23)

for some s̃ = s̃(s) ∈ [0, s] depending on s. The value m(0) may be calculated using the
integral representation (2.16) for K1(y) = −K ′0(y) and Fubini’s theorem:

m(0) =
∫ ∞
0

y2K1(y)dy =
∫ ∞
0

(∫ ∞
0

y2e−y
√
k2+1dy

)
dk = −

∫ ∞
0

1(
k2 + 1

)3/2 dk = 1 .

To calculate the derivative of m(s) we apply partial integration twice, before and after the
derivative with respect to s:

m(s) = −1
2

∫ ∞
s

(
y2K1(y)

)′√
y2 − s2dy

= −1
2

∫ ∞
s

(
yK1(y)− y2K0(y)

)√
y2 − s2dy ,

by (y · (yK1))
′ = yK1 + y (yK1)

′ together with (A.1). We continue

m′(s) = s

2

∫ ∞
s

(K1(y)− yK0(y))
y√

y2 − s2
dy

= −s
2

∫ ∞
s

(K1(y)− yK0(y))
′
√
y2 − s2dy ≡ s

2
(M(s)+ N (s)) (2.24)

where, by K1 + yK ′1 = (yK1)
′ = −yK0 we have −K ′1 = K1/y + K0 and

M(s) =
∫ ∞
s

K1(y)

√
y2 − s2

y
dy ≤

∫ ∞
s

K1(y)dy = s

2
K0(s) (2.25)

in view of the inequality
√
y2 − s2/y ≤ 1 for s ≤ y < ∞ , −K ′0(y) = K1(y) > 0 and the

fundamental theorem of calculus;

N (s) =
∫ ∞
s

(
2yK0(y)− y2K1(y)

) √y2 − s2

y
dy

123



344 W. Kroschinsky, D. H. U. Marchetti

≤
∫ ∞
s

(
2yK0(y)− y2K1(y)

)
dy = −s2K0(s) ≤ 0 , (2.26)

the first inequality holds provided s ∈ [0, 1] and the second equality follows from 2yK0(y)−
y2K1(y) =

(
y2K0(y)

)′
. The boundary terms in both partial integrations vanish. We observe

that

K0(s) = − ∂ Iν(s)

∂ν

∣∣∣∣
ν=0
= − log (s/2)

∞∑
n=0

(s/2)2n

(n!)2 +
∞∑
n=0

(s/2)2n

(n!)2 ψ(1+ n)

whereψ(z) = 
′(z)/
(z) is the digamma function and so, K0(s) = − log(s/2)−γ +O(s2)
where γ = −ψ(1) is the Euler-Mascheroni constant.

To obtain (2.15) and conclude the proof of Proposition 2.9 , we need to optimize the choice
of s̃(s) in (2.23). So far, by (2.23), (2.24), (2.25) and (2.26) we have

m(s) ≤ 1+ 1

2

∫ s

0
t K0(t)ds

= 1+ 1

2
(1− sK1(s)) (2.27)

by Proposition A.1 and this upper bound is asymptotic as s tends to 0: m(s) = 1 + O
(
s2
)

the s2 order term in the upper bound is (1− 2γ − 2 log(s/2))/8 = 0.1539(…) − (log s)/4.
The best upper bound up to O

(
s2
)
term is, however, stated in Proposition 2.9, given by the

asymptotic expansion of (2.10), calculated algebraically by the software Mathematica. ��

3 Majorant of the Density Function

3.1 Set Up and Ingredients

Let (�,B, �) denote the (translational invariant) σ -finite measure space on {−1, 1} × R
2;

the set � corresponds to the possible configurations of a single particle (we united σ and

x into ζ = (σ, x)) and
∫

d�(ζ ) · = 1/2
∑

σ∈{−1,1}

∫
R2

d2x · denotes the integration with

respect to ρ. Let

β p(β, z) =
∑
n≥1

zn

n!
∫

d�(ζ2) · · · d�(ζn)ψ
c
n (ζ1, . . . , ζn;βv) (3.1)

be the pressure of the Yukawa gas in the infinite volume limit, where v is the Yukawa potential
regularized at short distances s ≤ t0, given by the scale decomposition (1.10). We observe
that, as v decays exponentially fast at infinity and has its singularity at origin removed, the
finite volume pressure p�i , defined for any increasing and absorbing sequence (�i )i≥1 of
squares with limi �i = R

2, converges by standard methods (see e.g. [31]) to the expression
(3.1).

The density function ρ(β, z) = z∂ p/∂z(β, z) as a series in power of the activity z reads

β

z
ρ(β, z) =

∑
n≥1

nbnz
n−1 (3.2)

where b1 = 1 and, for n > 1,

bn = 1

n!
∫

d�(ζ2) · · · d�(ζn)ψ
c
n (ζ1, . . . , ζn;βv)
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is the so called n-th Mayer coefficient in the infinite volume limit. Note that βρ(β, z)/z = 1
is the equation of state of an ideal gas and the series (3.2) provides corrections about it to all
orders in terms of the Ursell (cluster) functions ψc

n .

Definition 3.1 A formal power series in z

�∗(β, z) =
∑
n≥1

C∗n zn−1

is said to be a majorant of βρ(β, z)/z if the C∗n = C∗n (β) are nonnegative and

n |bn | ≤ C∗n
holds for all n ∈ N. We write

βρ/z � �∗

for the majorant relation.

It follows that, if the series �∗(z) converges on the open disc D(r) := {z ∈ C : |z| < r}
for some r > 0, then ρ(β, z) is holomorphic function of z on the same disc. The largest r
provides a lower bound on the radius of convergence of the Mayer series (3.2) and (1.24).

Our construction of majorants combines (multi)scale decomposition of v together with
some basic ingredients. Beginning with the following

Lemma 3.2 Let a = (an)n≥1, b = (bn)n≥1, ã = (ãn)n≥1 and b̃ =
(
b̃n

)
n≥1 be positive

numerical sequences (a, b, ã and b̃ > 0) such that ã − a and b̃ − b are both positive
sequences (i.e., ãn−an > 0 and b̃n−bn > 0 hold for all n ≥ 1). Let the convolution product
e = c∗d and the pointwise product f = c ·d of two sequences c = (cn)n≥1 and d = (dn)n≥1
be defined by the sequences e = (en)n≥1 and f = ( fn)n≥1 where e1 = 0 and

en =
n−1∑
k=1

ckdn−k , n ≥ 2

and
fn = cndn , n ≥ 1 .

Then, (i) ã · b̃ − a · b > 0; (ii) ã ∗ b̃ − a ∗ b > 0; in particular (iii) ã ∗ ã − a ∗ a > 0 and
b̃ ∗ b̃ − b ∗ b > 0 hold.

Proof The conclusions (i), (ii) and (iii) follow immediately from the following elementary
inequality: If a, b, c and d are positive numbers such that a − c and b− d are positive, then

ab − cd = ab − 1

2
(ad + bc)−

(
cd − 1

2
(ad + bc)

)

= 1

2
((a + c) (b − d)+ (a − c) (b + d)) > 0 . (3.3)

For (i) each element of the sequence is of the form (3.3); for (ii) and (iii) each element of the
sequence is a sum of terms of the form (3.3). ��
Remark 3.3 The statements of Lemma 3.2 hold true if the assumption of positivity is replaced
by nonnegativity.
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Now, using the scale decomposition (1.10), the Ursell function in (3.1) is defined by a
scaling limit

ψc
n (ζ1, . . . , ζn;βv) = lim

t→∞ψc
n (t, ζ1, . . . , ζn;βv(t, ·)) (3.4)

where ψc
n (t, ζ1, . . . , ζn;βv(t, ·)) ≡ ψc(t, ζ{1,...,n}) is the unique solution of the infinite sys-

tem of ordinary differential equations for f I = f I (t) ≡ f (t, ζI ), where ζI =
(
ζi1 , . . . , ζik

)
is the set of variables indexed by I = {i1, . . . , ik} ⊂ {1, . . . , n} and n ∈ N: (see Lemma 3.3
of [8])

ḟ I = −
∑

i, j∈I , i< j

βv̇i j (t) f I − 1

2

∑
J⊂I

∑
i∈J , j∈I\J

βv̇i j (t) f J f I\J (3.5)

with (ideal gas) initial condition1

f I (t0) =
{
1 if |I | = 1
0 otherwise

.

Here v̇i j (t) ≡ v̇(t, ζi , ζ j ) = σiσ j g(t)h(
∣∣xi − x j

∣∣ /t) so, as v̇(t, ζi , ζ j ) is a measurable and
translational invariant functionon the2-particle configuration space,ψc(t, ζI ) is ameasurable

and translational invariant function on the k-particle configuration space
({−1, 1} × R

2
)k
.

By the variation of constants formula the system of equations (3.5 ) is equivalent to a
system of integrable equations: f I (t) = 1 if |I | = 1 and

f I (t) = −1
2

∫ t

t0
exp

⎛
⎝− ∑

i, j∈I , i< j

∫ t

s
βv̇i j (τ ) dτ

⎞
⎠∑

J⊂I

∑
i∈J , j∈I\J

βv̇i j (s) f J (s) f I\J (s) ds ,

(3.6)
if |I | > 1, which will be useful to our application.

3.2 Majorant Construction forˇ < 4�

Using (3.6), Guidi one of the authors have proven in [22] (see Theorem 2.2 and Eqs. (4.10)–
(4.12) therein) the following

Proposition 3.4 Let � = �(s, z) be the classical solution of

�t = 
(z2�2)z + B ((z�)z − 1) , (s, z) ∈ (t0,∞)× R+ (3.7)

with �(t0, z) = 1 for all z ≥ 0, where by (1.10), (1.5) and explicit calculation, 
 = 
(s) =
‖βv̇(s, ·)‖1 and B = B(s) = |βv̇(s, 0)| /2 are given by (see Proposition B.1)


 = βg(s)
∫
R2

h(|x | /s)d2x = βπ

4
s2g(s) (3.8)

and

B = β

2
g(s) . (3.9)

Then, the following majorant relations

β

z
ρ(β, z)� �(∞, z)� −1

τ(t0,∞)z
W (−τ(t0,∞)z) (3.10)

1 By (1.10), the interaction v(t, x) between particles is turned off at t = t0.
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hold for all (β, z) satisfying
ezτ(t0,∞) < 1 (3.11)

where

τ(t0, t) =
∫ t

t0

(s) exp

(
2
∫ t

s
B(τ )dτ

)
ds (3.12)

and W (x) denotes the Lambert W-function.[12]

Remark 3.5 The analogue of Proposition 3.4 in Subsec. 6.1 of [22] uses the scale decom-
position (1.7) of v, for which B = β/(4πs) and 
 = 2βs can be exactly calculated
(for comparison, we have set therein κ(s) = 1/s2 for s ∈ (0, 1]). Here v is given
by (1.10) whose g(s) agree with the scaling function 1/(2πs) of (1.7) only asymptoti-
cally as s → 0. Writing τ(t0,∞) = τ(t0, 1) exp

(
β
∫∞
1 g(τ )dτ

) + τ(1,∞) together with
0 < g(s) ≤ (1+s/5)/(2πs) if 0 ≤ s ≤ 1 and g(s) ≤ (3+3s+s2)e−s/(2πs) if 1 ≤ s <∞,
by Proposition 2.9, for any 0 < β < 4π the limit

lim
t0→0

τ(t0, 1) = βπ

4

∫ 1

0
s2g(s) exp

(
β

∫ 1

s
g(τ )dτ

)
ds

≤ βπ

4
eβ/10π

∫ 1

0

1

2π

(
s1−β/2π + 1

5
s2−β/2π

)
ds

= βπ

4
eβ/10π

(
1

4π − β
+ 1

5

1

6π − β

)
(3.13)

exists and exp
(
β
∫∞
1 g(τ )dτ

)
and τ(1,∞) are finite since g(s) decays exponentially fast as

s →∞.

Remark 3.6 The existence of τ = limt0→0 τ(t0,∞) implies by (3.10) and (3.11) that the
radius of convergence r = sup {|z| : e |z| τ < 1, z ∈ C} of the Mayer series (3.2) remains
strictly positive. This fact is already remarkable considering that v, given by (1.10) with
t0 = 0, does not satisfies the stability condition (1.16) (see also (1.17)).

We include a neat short version of the original proof in [22] for the reader’s convenience.

Proof of Proposition 3.4 By (3.4), ( 3.6) and stability (1.17), the sequence (An)n≥1 of positive
functions An : [t0,∞) −→ R, defined by

An(t) = 1

n!
∫

d�(ζ2) · · · d�(ζn)
∣∣ψc

n (ζ1, . . . , ζn;βv(t, ·))∣∣ (3.14)

satisfies a system of integral inequality equations

nAn(t) ≤ n

2

∫ t

t0
ds exp

(
n
∫ t

s
B(s′)ds′

)

(s)

n−1∑
k=1

k Ak(s)(n−k)An−k(s) , n > 1 (3.15)

with A1(t) ≡ 1. Hence, the Mayer coefficients of the series (3.2) are majorized by

n |bn | ≤ nAn(∞) . (3.16)

If �(t, z) is defined by the series

�(t, z) = 1+
∑
n≥2

Cn(t)z
n−1 (3.17)
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where the sequence (Cn)n≥1 of positive functions [t0,∞) � t �−→ Cn(t) ∈ R+ satisfies
equations (3.15) for (nAn)n≥1 as equalities, then A1(t) = C1(t) ≡ 1 and

nAn(t) ≤ Cn(t) , n ≥ 2 and t ≥ t0 . (3.18)

It can be shown (see [22, Sect. 4]) that (3.17) satisfies the quasi-linear first order PDE (3.7).
So, the first majorant relation of (3.10) holds and all one needs to determine is a domain
in (t0,∞) × R+ for which the classical solution of (3.7) exists. Observe that (3.7) can be
written as a system of first order differential equations for the coefficients (Cn)n≥1. For this,
by (3.17), we have

�t =
∑
n≥1

C ′nzn−1

(z�)z =
∑
n≥1

nCnz
n−1

(z2�2)z =
∑
n≥2

n

(
n−1∑
k=1

CkCn−k

)
zn−1 . (3.19)

Substituting these series back into the equation, yields

C ′n = nBCn + n


2

n−1∑
k=1

CkCn−k , n > 1 (3.20)

with C1(t) ≡ 1, t ∈ [t0,∞), and initial data Cn(t0) = 0 for all n ≥ 2.
The first non-trivial equation for n = 2,

C ′2 = 2BC2 + 
 (3.21)

with C2(t0) = 0, has a unique solution, τ(t0, t) given by (3.12), which can be written as

C2(t) = f1(t)
∫ t

t0

1(s)ds

where 
1(s) = 
(s)/ f1(s) and

f1(t) = exp

(
2
∫ t

t0
B(τ )dτ

)

is an integrating factor of (3.21). As we shall see C2(t) = τ(t0, t) determines the radius of
convergence of the series (3.17) for �:

e |z| τ(t0, t) < 1, (3.22)

uniformly in t0, for β < β2, 0 < t0 < t < ∞, where β2 = 4π is the first threshold (see

Remark 3.5). For this, let
(
C (1)
n (t)

)
n≥1 be a sequence of positive functions defined by

�(t, w) = �(t, w/ f1(t)) = 1+
∑
n≥2

C (1)
n wn−1 . (3.23)

Since C (1)
n = Cn/ f

n−1
1 and

C (1)′
n = C ′n

f n−11

− (n − 1)
f ′1
f1

Cn

f n−11
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= C ′n
f n−11

− 2(n − 1)B
Cn

f n−11

,

equation (3.20), in terms of the new C (1)
n ’s, reads2

C (1)′
n = −(n − 2)BC (1)

n +
n
1

2

n−1∑
k=1

C (1)
k C (1)

n−k , n > 1 (3.24)

with C (1)
1 (t) ≡ 1 and initial data C (1)

n (t0) = 0 for all n ≥ 2. Since the coefficient−(n− 2)B
of the linear term is nonpositive for all n ≥ 2, the solution of the above initial value problem

(IVP) can, in turn, be majorized by another sequence
(
C̃ (1)
n

)
n≥1:

C (1)
n (t) ≤ C̃ (1)

n (t) (3.25)

which solves the IVP

C̃ (1)′
n = n
1

2

n−1∑
k=1

C̃ (1)
k C̃ (1)

n−k , n > 1

with C̃ (1)
1 (t) ≡ 1 and initial data C̃ (1)

n (t0) = 0 for all n ≥ 2.

Proof of (3.25) Using the notation introduced in Lemma 3.2, we write a = (an)n≥1 and
b = (bn)n≥1 with a1 = b1 ≡ 0 , an(t) = (n − 2)B(t) and bn(t) = n
1(t)/2 for n > 1.

The difference sequence � = (�n)n≥1, given by �1 ≡ 0 and �n(t) = C̃ (1)
n (t)−C (1)

n (t) for
n > 1, thus satisfies

�′ = a ·�+ b ·
(
C̃ (1) ∗ C̃ (1) − C (1) ∗ C (1)

)
.

Let us assume that (3.25) holds for some t ≥ t0. Then, by Lemma 3.2 we have �′(t) ≥ 0
which, together with �(t0) ≡ 0, implies that �(t) ≥ 0. Consequently, (3.25) holds for all
t ≥ t0. ��

The proof of Proposition 3.4 is now resumed. It is shown in Sec. 5 of [22] that the power
series analogous to (3.23): �̃(t, w) = 1+

∑
n≥2

C̃ (1)
n wn−1 satisfies an equation given by (3.7)

setting B = 0, 
 = 
1 and together with ψ̃(t0, z) ≡ 1 has by the method of characteristics
the classical solution

�̃(t, w) = −1
τ̃1(t0, t)w

W (−τ̃1(t0, t)w)

provided e |w| τ̃1(t0, t) < 1 holds, where τ̃1(t0, t) =
∫ t

t0

1(s)ds. Here, W (x) denotes the

LambertW -function, implicitly defined byWeW = x , whose Taylor series about x = 0 (see
Lagrange–Bürmann theorem [13]): W (x) =

∑
n≥1

(−n)n−1 xn/n! converges for |x | < 1/e,

including the branching point at x = −1/e (see e.g. [12]).

2 The idea alluded in the introduction (see paragraph of Eq. (1.26)), of balancing large self-energies
B(s) = v̇(s)/2 against small norms 
(s) = ‖βv̇(s)‖1 is implemented in the majorant series through the
new coefficients. The choice that optimizes the interval [0, β2) for which the series converge redefines the
particle activity by the corresponding integrating factor of equation satisfied by C2.
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Joining equations (3.16), (3.18) and (3.25) together, we conclude

�(t, z) = �(t, w)� �̃(t, w) = −1
τ1(t0, t)z

W (−τ(t0, t)z)

with τ1(t0, t) given by (3.12), establishing the second majorant relation of (3.10). ��
Note that, since f1(t) > 1 for any t0 and t fixed, the radius of convergence of the majorant

series�(t, z) = �(t, w) is smaller in z than in w variable. However, in view of Remarks 3.5
and 3.6, it remains strictly positive when the cutoff t0 is removed provided β < β2 where
β2 = 4π is the first threshold.

3.3 Majorant Construction forˇ Inside the Threshold Intervals In

The procedure of finding a majorant series for the density function can be extended for
the inverse temperature β in the threshold interval In = [β2n, β2(n+1)), n ∈ N where, for
convenience, we write βk+1 = 8π (1− 1/(k + 1)) = 8πk/(k + 1). We shall present an
scheme of three stages which holds for any threshold intervals.
1st stage. For β ∈ I(k−1)/2 where k > 1 is an odd number, assuming that neutral subclusters
of size less than k do not collapse (see Claim 1.2), we remove from the system any (odd or
even) clusters of size < k. The removal of the clusters, which prevents the corresponding
terms in theMayer expansion to increase as t0 goes to 0, is implemented in themajorant series
through Lagrange multipliers added to equation (3.7). The Lagrange multipliers (Lk)k≥0 are
given by the Cesàro mean of the Taylor series of � around z = 0, i.e., Lk is the arithmetic
mean of its first k Taylor polynomials. Our choice is optimal in the sense that it subtracts
from the linear term of (3.20) an exact amount, allowing the solution of (3.7) be majorized
by a series with positive radius of convergence, uniformly on t0 for β < βk+1.

The following proposition extends the second majorant relation of (3.10). Its original
proof in Sec. 7 of [22]) is included for the reader’s benefit.

Proposition 3.7 For any k ∈ N, let � = �(t, z) be the classical solution of

�t = 
(z2�2)z + B ((z�)z − Lk) , (t, z) ∈ (t0,∞)× R+ (3.26)

with�(t0, z) = 1 for all z ≥ 0, where
 = 
(t) = ‖βv̇(t, ·)‖1 and B = B(t) = |βv̇(t, 0)| /2
are given in Proposition 3.4 and

Lk = Lk(t) = 1+
k−1∑
j=1

(
1− j

k

)
1

j ! z
j�z · · · z︸ ︷︷ ︸

j−times

(t, 0)

is a Lagrange multiplier. Then, the following majorant relation

�(t, z)� −1
τk(t0, t)z

W (−τk(t0, t)z) (3.27)

holds for all (β, z) satisfying
ezτk(t0,∞) < 1

where

τk(t0, t) =
∫ t

t0

(s) exp

(
k + 1

k

∫ t

s
B(τ )dτ

)
ds (3.28)

and W (x) denotes the Lambert W-function.[12]
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Remark 3.8 By a calculation analogous to (3.13)

lim
t0→0

τk(t0, 1) = βπ

4

∫ 1

0
s2g(s) exp

(
k + 1

k

β

2

∫ 1

s
g(τ )dτ

)
ds

≤ β

16
e2β/5βk+1

(
1

1− β/βk+1
+ 1

5

1

2− β/βk+1

)
, (3.29)

exists for β < βk+1 and the radius of convergence of the majorant series (3.27) is strictly
positive.

Proof of Proposition 3.7 Let �(t, z) be defined by the series (3.17). Observe that, by

(z�)z − Lk =
k∑

n=2

(
n − k − n + 1

k

)
Cnz

n−1 +
∑

n≥k+1
nCnz

n−1

and the remaining series of (3.19), (3.26) can be written as a system of first order differential
equations for (Cn)n≥1:

C ′n =
k + 1

k
(n − 1) BCn + n


2

n−1∑
k=1

CkCn−k , 1 < n ≤ k (3.30)

and (3.20) for n > k, with C1(t) ≡ 1 and initial data Cn(t0) = 0 for n ≥ 2. The equation for
n = 2

C ′2 =
k + 1

k
BC2 + 
 (3.31)

with C2(0) = 0 has a unique solution C2(t) = fk(t)
∫ t

t0

k(s)ds where 
k(s) = 
(s)/ fk(s)

and

fk(t) = exp

(
k + 1

k

∫ t

t0
B(τ )dτ

)
(3.32)

is an integrating factor of (3.31), given by (3.28)

As in the proof of Proposition 3.4, we introduce a sequence
(
C (k)
n (t)

)
n≥1 of positive

functions defined by

�(t, w) = �(t, w/ fk(t)) = 1+
∑
n≥2

C (k)
n (t)wn−1 . (3.33)

Since C (k)
n = Cn/ f

n−1
k and

C (k)′
n = C ′n

f n−1k

− k + 1

k
(n − 1)B

Cn

f n−1k

,

the equations (3.30) for 1 < n ≤ k and (3.20) for n > k in terms of the new C (k)
n ’s read

C (k)′
n = n
k

2

n−1∑
j=1

C (k)
j C (k)

n− j , 1 < n ≤ k

C (k)′
n = −

(
n − k − 1

k

)
BC (k)

n +
n
k

2

n−1∑
j=1

C (k)
j C (k)

n− j , n > k (3.34)
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withC (k)
1 (t) ≡ 1 and initial dataC (k)

n (t0) = 0 for n ≥ 2. Since the coefficient−(n−k−1)B/k
of the linear term of (3.34) is nonpositive for all n ≥ k + 1, the solution of the above IVP

can be majorized by another sequence
(
C̃ (k)
n

)
n≥1:

C (k)
n (t) ≤ C̃ (k)

n (t) (3.35)

which solves the IVP

C̃ (k)′
n = n
k

2

n−1∑
j=1

C̃ (k)
j C̃ (k)

n− j , n > 1 (3.36)

with C̃ (k)
1 (t) ≡ 1 and initial data C̃ (k)

n (t0) = 0 for n ≥ 2. For (3.35), one may apply the
same proof of (3.25) based in Lemma 3.2. It follows that (see [22, Sect. 7]) the power series
�̃(t, w) = 1 +

∑
n≥2

C̃ (k)
n wn−1 satisfies (3.7) setting B = 0, 
 = 
k and together with

ψ̃(t0, z) ≡ 1 has the classical solution

�̃(t, w) = −1
τ̃k(t0, t)w

W (−τ̃k(t0, t)w)

provided e |w| τ̃k(t0, t) < 1 holds, where τ̃k(t0, t) =
∫ t

t0

k(s)ds and W (x) =

∑
n≥1

(−n)n−1 xn/n! denotes the Lambert W -function.

We thus have

�(t, z) = �(t, w)� �̃(t, w) = −1
τk(t0, t)z

W (−τk(t0, t)z) ,

concluding the proof of Proposition 3.7. ��
2ndstage. Non neutral clusters of size smaller or equal to k wasn’t properly estimated in the
majorant equation ( 3.7) because the stability bound (1.16) has indistinctly used in (3.15) for
n odd or even. The consequences of applying the stability bound (1.23) in equation (3.15)
are now exploited. The apparently insignificant improvement replaces equation (3.7) by

�t = 
(z2�2)z + Bz�z (3.37)

and the coefficient nB of the linear term of (3.20) by (n−1)B. To verify these statements, let
the argument n of the exponential in (3.15) be replaced by n − 1. The modified coefficients
(Cn)n≥1 of the power series (3.17) thus satisfy a system of integral equations

Cn(t) = n

2

∫ t

t0
dse(n−1)γ (s,t)
(s)

n−1∑
k=1

Ck(s)Cn−k(s) , n > 1 (3.38)

with C1(t) ≡ 1 where γ (s, t) =
∫ t

s
B(τ )dτ . Summing equation (3.38) multiplied by zn−1

over n yields an integral equation for �:

�(t, z) = 1+ 1

2

∫ t

t0
dse−γ (s,t)
(s)

(
z2e2γ (s,t)�2(s, zeγ (s,t))

)
z

(3.39)

and from this we deduce (3.37). Observe that an extra factor e−γ (s,t) inside the integration
results from the stability improvement (1.23) and the derivative with respect to t applied
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to this factor produces an additional term B (�− 1) which has to be subtracted (due to the
minus sign of the exponent) from the last term on the right hand side of (3.7): B ((z�)z − 1)−
B (�− 1) = Bz�z .

Equation (3.37) yields a significant improved regarding the convergence of the Mayer
series (3.2) for β inside the threshold interval I(k−1)/2 = [βk−1, βk+1), for all k > 1 odd.
The proof of the following result shows that, as far as majorant coefficients Cn with n < k
are concerned, if neutral clusters of size smaller than k are all discarded then (3.20) may be
replaced by (3.30) for any threshold interval I(k−1)/2.

Proposition 3.9 Let � = �(t, z) be the classical solution of (3.37) with B and 
 as in
Proposition 3.4. Then the following majorant relation

�(t, z) ≤ −1
τk(t0, t)z

W (−τk(t0, t)z)

holds for all k ∈ N and (β, z) satisfying ezτk(t0, t) < 1, where τk is given by (3.28).

Proof Let �(t, z) be defined by the series (3.17) and observe that, by

z�z =
∞∑
n=2

(n − 1)Cnz
n−1 ,

(3.37) can be written as a system of first order differential equations for (Cn)n≥1:

C ′n = (n − 1) BCn + n


2

n−1∑
k=1

CkCn−k , 1 < n ≤ k (3.40)

with C1(t) ≡ 1 and initial data Cn(t0) = 0 for n ≥ 2. Since the coefficient (n − 1)B of the
linear term of (3.40) is smaller than (n − 1)(k + 1)B/k for 2 ≤ n ≤ k and smaller than nB
for all n ≥ k + 1,3 for any k ∈ N, the solution of the above IVP can be majorized, in view of
Lemma 3.2, by the solution of the IVP in (3.30), which by Proposition 3.7 satisfies (3.27).
The proof of Proposition 3.9 is concluded. ��

3.4 Stability of a Neutral Pair in the Presence of Other Particles

3rdstage. The last stage of our scheme deals with neutral subclusters of size smaller than k
that are part of a cluster of size larger or equal to k. So far, we have proved the Conjecture 1.1
assuming that Claim 1.2 holds true. Let k > 1 be an odd number and suppose in addition to
Claim 1.2 that all neutral clusters of size smaller than k have their singularities been removed.
Then, the density function (3.2) satisfies

β

z
|ρ(β, z)| � −1

τk(t0,∞)z
W (−τk(t0,∞)z) , (3.41)

with the radius of convergence of the majorant series strictly positive, uniformly in the cutoff
t0 for β < βk+1. From the point of view of theMayer coefficients bn with n ≥ k however, the
contribution coming from their neutral subclusters of size smaller than k has to be reevaluated
from an equation analogous to (3.15) and its limit as t0 → 0 has to be shown to exist.

3 This part would not be necessary for keeping the radius of convergence positive, uniformly in t0, at
β < βk+1.
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To deal with the new situation, we introduce a sequence
(
Ãm

)
m≥1 of appended at ζ0

functions analogous to the sequence (An)n≥1 defined by (3.14). Recalling the role of v̇i j (s) =
σi g(s)h(

∣∣x j − xi
∣∣ /s)σ j played in (3.6), Ã1 ≡ 1 and for m ≥ 2

Ãm(s, σ1, . . . , σm) = 1

m!
∫
R2×···×R2

dx1 · · · dxm
∣∣∣∣∣∣
m∑
j=1

σ0g(s)h(
∣∣x j − x0

∣∣ /s)σ jψ
c
m(s, ζ1, . . . , ζm)

∣∣∣∣∣∣
(3.42)

is choosing to be dependent on the charges of the m-particle subcluster but independent on
ζ0 = (x0, σ0) by translational invariance and |σ0| = 1. The Ãm functions might satisfy a
system of integral inequality equations similar to (3.15) but we shouldn’t write it down here
since we restrict ourselves in the present paper to the simplest case of smallest size m = 2.

Referring to (3.6), let I be an index set of a cluster of size |I | = n and let J be the index
set of a pair |J | = 2 of particles with opposite charges: σ1σ2 = −1 located at x1 and x2. The
second Ursell function at scale s is given by

ψc
2 (s, ζ1, ζ2) = β

∫ s

t0
g(s̃)h(r/s̃) exp

(
β

∫ s

s̃
g(τ )h(r/τ)dτ

)
ds̃ . (3.43)

where r = |x2 − x1|. Let � = �(s, s̃, x0, x1, x2) be the function that gather the h part of
(3.42) with m = 2 together with the h in (3.43):

� = (h(|x0 − x1| /s)− h(|x0 − x2| /s)) h(|x1 − x2| /s̃) , (3.44)

for s > s̃ ≥ t0. An estimate for the integral of (3.44) with respect to x1 and x2 is proven in
Appendix B (see (B.5) in Proposition B.2). We now apply (B.5) in order to show that (3.42)
with m = 2 and σ1σ2 = −1 is bounded uniformly with respect to the cutoff t0, provided
β ≤ 6π .

By Propositions B.2 and 2.9,

2 Ã2(s,±,∓) = βg(s)
∫
R2×R2

dx1dx2

∫ s

t0
g(s̃) |�| exp

(
β

∫ s

s̃
g(τ )h(|x1 − x2| /τ)dτ

)
ds̃

≤ β

8
sm(s) · 1

4s

∫ s

t0
s̃2m(s̃) exp

(
β

2π

∫ s

s̃

1

τ
m(τ )dτ

)
ds̃ ≡ 
(s)C̃2(s) (3.45)

where 
(s) = βsm(s)/8 is the L1-norm (3.8) of βv̇i j (s) and C̃2(s), defined accordingly by
(3.45), can be estimated for s small as (see (3.29))

C̃2(s) <
C

2π
sβ/2π−1

∫ s

t0
s̃2−β/2πds̃ <

C

6π − β
s2 <∞ (3.46)

if β < 6π , uniformly in t0. Together with the two other components 2 Ã2(s,±,±), whose
estimate is even better in view of the stability bound improvement, we have

1/4
∑
σ,σ ′

2 Ã2(s, σ, σ ′) ≤ 
(s)C̃2(s) .

Moreover, the function C̃2(s) that majorizes the contribution of a neutral pair inside a
cluster of size n ≥ 3 is bounded, for β in the first threshold interval I1 = [4π, 6π), by the
corresponding term of the majorant series (recall (3.41) and Proposition 3.7): f3(s)C̃

(3)
2 (s) =

τ3(t0, s), defined respectively by (3.32), (3.36) and (3.28) with k = 3:

C̃2(s) ≤ τ3(t0, s) . (3.47)
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To prove the inequality we compare the integrand of (3.45) with the integrand of (3.28) with
k = 3:

s̃e
β
2π

∫ s
s̃ m(τ )/τ dτ

se
β
3π

∫ s
s̃ m(τ )/τ dτ

= s̃

s
e
−β
6π

∫ s
s̃ m(τ )/τ dτ ≤

(
s̃

s

)1− β
6π ≤ 1 (3.48)

holds for any s̃ ≤ s and β ≤ 6π , by the asymptotics of m(τ ) given in Proposition 2.9
and the fact that m(τ )/τ is a monotone decreasing function of τ > 0. Observe that (3.47),
together with (3.46), ensure that the two implicit assumptions of Claim 1.2 hold. We refer to
Sec. 6.3 of [22] or the proof of Theorem 4.3, in [8] for alternative calculations by which the
convergence of theMayer series can also be established for β ∈ [4π, 6π), in both treatments,
provided the modified specific energy ē3(h̃) of “tripole” exceeds −(k + 1)/(2k) for k = 3,
i.e. −2/3. We have shown in Proposition 2.1 that ē3(h̃), being smaller than −1/2 (= ē3(h))
but larger than −0.535, exceeds −2/3 = −0.666 and equation (3.41) thus holds with k = 3
by Propositions 3.7 and 3.9. Observe that, by (3.30) with n = k = 3, B(s) = β/(4πs) and

(s) = 2βs,

3b3 ≤ f3(1)
2C (3)

3 (1) = 32

3! τ3(t0, 1)
2

and τ3(t0, s) =
∫ s
t0


(s̃)e4/3
∫ s
s̃ B(τ )dτds̃ is finite uniformly in t0 for the decomposition (1.7) of

the Yukawa potential v (see Remark 3.5) and for the decomposition (1.4) it follows directly
from Proposition 3.9.

The interval forwhich a neutral pair of charges yields finite contribution to theMayer series
has been extended from [0, 4π), if the pair was an isolate cluster, to [0, 6π), if they are in the
presence of other charges, due to a redistribution of the powers of s̃ and s in a homogeneous

of degree 4 estimate for
∫∫
|�| dx1dx2 in favor of s̃ (see (B.5)). The rearrangement of

powers wasn’t enough to prevent the collapse of a neutral pair inside threshold intervals
Ik = [βk−1, βk+1) of order k higher than 3, supposing of course the neutral clusters of size
smaller than k have been discarded from theMayer series. However, such an extension would
be possible if the exponential term of (3.43), which also depends of h, were included in the
definition of �. In this case we need to be more careful when |x1 − x2| /τ is small. Let us
explain an argument used in [22]. By the first mean value theorem, there exist τ ∗ ∈ [

s̃, s
]

such that (r = |x1 − x2|)
β

2π

∫ s

s̃
m(τ )h(r/τ)

dτ

τ
= m(τ ∗)h(r/τ ∗) β

2π
log

s

s̃
.

For s a small fixed number, let � = {(r , s̃) ∈ R+ × [t0, s] : r ≤ 0.2τ ∗} and note that
m(τ ∗)h(r/τ ∗) < 3/4 for (r , s̃) in the complementary set (R+ × [t0, s])\�, by Proposi-
tions B.1 and 2.9. Under this condition Ã2(s,±,∓) can be bounded by the last integral in
(3.45) with the exponent 2− β/2π of s̃ in (3.46) replaced by 2− (3/4)β/2π = 2− 3β/8π ,
which is finite for β < 8π . On the other hand, we expect that the integral of � with respect
to (x1, x2) ∈ R

2 × R
2 in (B.5), can be improved when restricted to � in such way that

the exponent 2 − β/2π of s̃ in the last integral of (3.46), replaced by 3 − β/2π , becomes
integrable for β < 8π . We refer to Subsec. 6.3, pgs. 29-30 of [22] for detail of this calculation
with h̃ in place of h for the standard decomposition and Lemmas 3 and 4 of [21]. We observe
that, the analogue of both (3.46) and (3.48) hold under the improvement. So, the two implicit
assumptions of Claim 1.2 are verified.

Let us comment on how to proceed in the next threshold interval [6π, 20π/3). Given that
the contribution to the Mayer series due to a neutral pair of charges satisfies the two assump-
tions of Claim 1.2 and “tripoles” and “quintupoles” do not collapse, the next contribution
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comes from neutral quadrupoles and superstability could be useful in this case (see [17, Sect.
V.B.]).

4 Summary and Open Question

The main result of the present paper, Theorem 2.5, states that the energy Un(ξ ; h) of a
configuration ξ = (x, σ ) = (x1, . . . , xn, σ1, . . . , σn) of n particles, with (xi , σi ) ∈ R

2 ×
{+1,−1}, interacting through the two-dimensional Euclid’s hat pair potential h (·/s) at scale
s satisfies (2.11). Since the inequality saturates when the n particles collapses all together
to a single point with net charge 0 if n is even and ±1 if n is odd, a corollary to this
(see Corollary 2.7) is that the minimal specific energy e(h) and the minimal constrained
specific energy ē(h), defined by (1.18) and (1.19), are both−1/2. The same statement holds
to positive radial potentials of positive type in any dimension d ≥ 2 provided it can be

written as scale mixtures of Euclid’s hat: v(x) =
∫

g(s)h (|x | /s) ds, g(s) ≥ 0 and the right

hand side of (2.11) is multiplied by
∫

g(s)ds. Consequently (see Corollary 2.8 ), if n is

odd the stability bound (1.16) can be replaced by (1.23) for any potential of this class with

B = B̄ = 1

2

∫
g(s)ds.

Wehave applied themain result to the two-dimensionalYukawagaswith particles activity z
at the inverse temperatureβ in the interval of collapse [4π, 8π). ACauchymajorant, proposed
in [22] for the pressure and density function, can be written in terms of the principal branch
of theW -Lambert function which is analytic provided its argument−zτk , with τk = τk(t0, t)
given by (3.28), satisfies e |z| τk < 1, β < βk+1 = 8πk/ (k + 1) when the divergent part of
the leading even Mayer coefficients up to order 2n ≤ k+ 1, k > 1, are extracted. It has been
assumed in addition that an improved stability condition (see [22, Conjecture 2.3]) holds
for any odd number of particles 2n − 1 ≤ k. However, the numerical evaluation (see [22,
Remark 7.5]) of the total energy U2n−1(ξ ;βv̇) for the standard scaling decomposition (1.7)
when n = 2 and 3 have indicated that it would fail for sufficient large k and Proposition 2.1
now proves it for U3(ξ ;βv̇). We have in the present paper proved that when the Yukawa
potential v is represented as scale mixtures of Euclid’s hat it satisfies Conjecture 2.3 of [22]
for any k > 1, provided Claim 1.2 holds true. Moreover, all the estimates necessary to
establish convergence of the majorant series in [22] holds for this representation of v due to
Proposition 2.9. We have restated Propositions 3.4, 3.7 and 3.9 accordingly for the reader
convenience.

It is important to stress at this point that the classical solution �k = �k(t, z) of (3.26) is
actually a majorant for the density function (3.2) and the statement (3.10) holds in Propo-
sition 3.7 as long as t0 > 0. One open question is whether the majorant �k remain faithful
when the cutoff t0 tends to 0. We answer the question affirmatively only for k = 3 and argue
that this question might be dealt using nowadays available tools.
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Appendix A: Characteristic Features of h̃ and Related Function

Proposition A.1 w �−→ h̃(w) = wK1(w) is a regular function at every point w ∈ (0,∞).
The function h̃(w) strictly decreases from its maximum h̃(0) = 1, decays to 0 at∞ exponen-
tially fast and changes its concavity: h̃′′(w) < 0 for w < w0 and h̃′′(w) > 0 for w > w0 at

1/2 < w0 <
(
1+√17

)
/8, whose numerical value is w0 = 0.5950(…).

Proof Regularity and positivity of Kν(x) for every ν ∈ R and x > 0 are known facts (see
e.g. [16, Appendix A]). It follows from the equation

(
xnKn(x)

)′ = −xnKn−1(x) (A.1)

with n = 1 together with limw→0 wK0(w) = 0 and limw→0 wK1(w) = 1 (see [16] and [34,
Lemma 2.2]) that

h̃′(w) = (wK1(w))′ = −wK0(w) < 0

for w > 0, proving the strictly decreasing property of h̃ and h̃(0) = 1. The inequalities for
x > 0:

√
πe−x√

2x + 1/2
< K0(x) <

√
πe−x√
2x

1+ 1

2x + 1/2
<

K1(x)

K0(x)
< 1+ 1

2x
, (A.2)

find in ref. [34], imply the exponential decaying of h̃(w).

h̃′′(w) = − (wK0(w))′ = K0(w)

(
wK1(w)

K0(w)
− 1

)

together with (A.2) yield

h̃′′(w) < K0(w)

(
w − 1

2

)
< 0

provided w < 1/2 and

h̃′′(w) > K0(w)

(
w

2w + 1/2
+ w − 1

)
> 0

provided w > (2w + 1/2)(1 − w) = 3w/2 + 1/2 − 2w2 or, equivalently, w >(
1+√17

)
/8 = 0.640 39. The unique solution of wK1(w)/K0(w)− 1 = 0, whose numer-

ical value is w0 = 0.5950(…), satisfies 1/2 < w0 <
(
1+√17

)
/8 (see proof of Lemma

A.2 below). This concludes the proof. ��

Lemma A.2 The function x �−→ p(x) = xK1(x)+x2K0(x) defined inR+ has a global max-
imum at x0, 1/2 < x0 <

(
1+√17

)
/8. It strictly increases from p(0) = 1 as x varies from

0 to 1/2 and strictly decreases to 0, exponentially fast, as x varies from
(
1+√17

)
/8 to∞.

The second derivative p′′(x) of p(x) is negative in the interval 1/2 ≤ x0 ≤
(
1+√17

)
/8.

Numerically, x0 = 0.5950 (…) and its (global) maximum values p(x0) = 1.061(…) < 1.07.
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Fig. 6 Plot of p(x) and h̃(w) together

Proof Using (A.1) with n = 1 together with K ′0(x) = −K1(x), as in the proof of Proposi-
tion A.1, we have

p′(x) = xK0(x)

(
1− xK1(x)

K0(x)

)
< xK0(x)

(
1− x

2x + 1/2
− x

)
< 0

provided x >
(
1+√17

)
/8 and

p′(x) > xK0(x)

(
x − 1

2

)
> 0

provided x < 1/2. These prove that p(x) increases in (0, 1/2) and decreases in((
1+√17

)
/8,∞

)
, exponentially fast in view of (A.2).

p(x) attains its maximumvalue at the same point at which h̃(w) changes its concavity. The

maximum x0 of p(x) solves K0(x)−xK1(x) = 0 and satisfies 1/2 < x0 <
(
1+√17

)
/8 ≈

0.64, as stated above. To prove that x0 is the global maximum, it suffices to show that the
second derivative of p(x), which may be calculated exactly as before,

p′′(x) = (x (K0(x)− xK1(x)))
′

= (1+ x2)K0(x)− 2xK1(x)

= −2K0(x)

(
xK1(x)

K0(x)
− 1+ x2

2

)
,

takes negative values for x ∈
[
1/2,

(
1+√17

)
/8

]
. By equation (A.2) and positivity of

K0(x), this is implied by

xK1(x)

K0(x)
− 1+ x2

2
> x + x

2x + 1/2
− 1+ x2

2
> 0 .
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Denoting the function on the right hand side by l(x) = x + x/(2x + 1/2)− (1+ x2)/2, we

need to show that l(x) > 0 for x ∈
[
1/2,

(
1+√17

)
/8

]
. But l(1/2) = 5/24 ≈ 0.20 and

l(
(
1+√17

)
/8) =

(
23+√17

)
/64 ≈ 0.29 are both positive and the second derivative of

l(x),
l ′′(x) = − (

17+ 12x + 48x2 + 64x2
)
/(1+ 4x)3 < 0

for all x > 0, proving therefore the statement.
We have thus proven that x0 is a global maximum of p(x), concluding the proof of

Lemma A.2. ��

Appendix B: General Features of h and a Certain Integral Estimate

Proposition B.1 w �−→ h(w) defined by (2.8) is regular at every point w ∈ (0, 1), convex
and non increasing function in (0,∞). Moreover, it can be written as

h(w) = 2

π

(
arccosw − w

√
1− w2

)
, if 0 ≤ w ≤ 1 (B.1)

h(w) = 0 if w > 1 so, writing ϕ(x) = h(|x |) we have ϕ(0) = h(0) = 1 and ϕ̂(0) = π/4 is

its Fourier transform ϕ̂(ξ) =
∫
R2

h(|x |)e−2π iξ ·xdx at ξ = 0.

Proof We shall deduce (B.1) from (2.8) by means of a geometric representation of the con-
volution integral

πs2

4
h(w) =

∫
R2

χ[0,s/2](x − y)χ[0,s/2](y)dy (B.2)

(see e.g [19, Sect. 2]). SinceMittal’s integral representation of the Euclid’s hat is used instead
(see [19, Fig. 4 andEq. (49)]), we shall give details of its derivation for the reader convenience.

The product of indicator functions does not vanish if their support, the discs Bs/2(x) and
Bs/2(0) centered at x and 0, intersect and this occurs if and only if the distance |x | between
their centers is less than their diameter s. Writing w = |x | /s, we have

h(w) �= 0⇐⇒ 0 ≤ w < 1 .

From this point of view, the convolution integral (B.2) is given by the area A(θ) of two “caps”,
of common bases, made of a sector of opening angle θ and radius s/2 with the triangular
region inside removed (see Fig. 7):

πs2

4
h(w) = A(θ) = 2×

(
1

2

( s
2

)2
θ − 1

2

( s
2

)2
sin θ

)
, (B.3)

where, with b the length of the caps common bases,

s cos θ/2 = |x |
s sin θ/2 = b . (B.4)

By Pitagoras |x |2 + b2 = s2, we deduce b = s
√
1− w2. Solving equations (B.4) for θ and

sin θ : θ = 2 arccosw and sin θ = 2 sin θ/2 cos θ/2 = 2w
√
1− w2 , together with (B.3),

yields (B.1).
The regularity of h(w) in (0, 1) follows from this representation. Clearly, h(0) = 1 by

(B.1). Since h′(w) = −2√1− w2 < 0 and h′′(w) = 2w/
√
1− w2 > 0 for any w ∈
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b

Fig. 7 Geometric interpretation of the Euclid’s hat function

(0, 1), we conclude that h(w) is strictly decreasing in (0, 1) monotone non increasing and
convex in (0,∞). By the convolution theorem and (B.2) with s = 1, we have ĥ(0) =
(4/π)χ̂[0,1/2](0)2 = (4/π) (π/4)2 = π/4, concluding the proof. ��

Using the self-convolution form (B.2) of the Euclid’s hat h(w) together with its geometric
interpretation as the area of “caps” (see proof of Proposition B.1 above), the following
estimate holds:

Proposition B.2 The integral of � := (h(|x0 − x1| /s)− h(|x0 − x2| /s)) h(|x1 − x2| /s̃) in
absolute value with respect to x1 and x2 satisfies

∫
R2×R2

|�(s, s̃, x0, x1, x2)| dx1dx2 ≤ 1

8
π2s̃3s . (B.5)

Proof Writing � in terms of indicator functions of two discs centered, let us say, in z and z̃
(analogous to Fig. 7, with different radius):

� = 4

πs2

∫
R2

dz · 4

π s̃2

∫
R2

dz̃χs/2(x0 − z)
(
χs/2(z − x1)− χs/2(z − x2)

)
χs̃/2(x1 − z̃)χs̃/2(z̃ − x2)

(B.6)
we observe that the integrand of � differs from 0 if, and only if, either x1 is inside of
the non null intersection Bs/2(z) ∩ Bs̃/2(z̃) and x2 is inside the complementary region
Bs̃/2(z̃)\(Bs/2(z) ∩ Bs̃/2(z̃)) �= ∅ or vice-versa. As a consequence, we have
∫
R2×R2

dx1dx2
∣∣χs/2(z − x1)− χs/2(z − x2)

∣∣χs̃/2(x1 − z̃)χs̃/2(z̃ − x2) = 2A · B (B.7)
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where A = ∣∣Bs/2(z) ∩ Bs̃/2(z̃)
∣∣, B = ∣∣Bs̃/2(z̃)\(Bs/2(z) ∩ Bs̃/2(z̃))

∣∣ = (
π s̃2/4

) − A and
|D| denotes the area of a bounded domain D ⊂ R

2. Using

2A · B = 1

2
(A + B)2 − 1

2
(A − B)2 ≤ 1

2
(A + B)2 = 1

2

(
π s̃2

4

)2

and the fact that A and B are different from 0 if and only if

s − s̃

2
< |z − z̃| < s + s̃

2

we have

4

πs2

∫
R2

dz χs/2(x0 − z) · 4

π s̃2

∫
R2

dz̃ 2A · B ≤ 1

s̃2

(
(s + s̃)2 − (s − s̃)2

)
· 1
2

(
π s̃2

4

)2

which together with (B.6) and (B.7) yields (B.5). ��

Appendix C: Some Auxiliary Equations Related to the Mixture Function
g

Some results stated in Sect. 2 are proven below. We begin with an auxiliary Lemma.

Lemma C.1 Let I : [0,∞) −→ R be defined by

I (s) =
∫ ∞
s

K1(y)
√
y2 − s2dy . (C.1)

The integral can be written as

I (s) =
∫ ∞
s

K1(y)
s√

y2 − s2
dy (C.2)

and from these we conclude that I (s) = πe−s/2.

Proof The integral (C.1) converge uniformly. The integral (C.2) is obtained by taking (minus)
the derivative of (C.1):

I ′(s) =
∫ ∞
s

K1(y)
−s√
y2 − s2

dy = −I (s) , s > 0 . (C.3)

Observe that K1(y)
√
y2 − s2

∣∣∣
y=s = 0 for the same reason as before. Since ae−s solves (C.3)

for any a ∈ R, to complete the proof we to show that (C.1) implies (C.2) and I (0) = π/2.
Repeating the operations bringing (2.9) into the form (2.13), equation (C.1) can be written

as ∫ ∞
s

K1(y)
√
y2 − s2dy =

∫ ∞
s

(∫ ∞
0

e−y
√
k2+1dk

)√
y2 − s2dy

=
∫ ∞
0

(∫ ∞
s

e−y
√
k2+1

√
y2 − s2dy

)
dk

=
∫ ∞
0

(∫ ∞
s

e−y
√
k2+1 y√

y2 − s2
dy

)
dk√
k2 + 1
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= s
∫ ∞
0

(∫ ∞
0

e−s
√
k2+1√r2+1dr

)
dk√
k2 + 1

= s
∫ ∞
0

K1

(
s
√
k2 + 1

) dk√
k2 + 1

= s
∫ ∞
s

K1 (y)
dy√

y2 − s2

where the integrations order has been switched in the second equality, following by partial
integration; we have changed variable y = s

√
r2 + 1 in the fourth equality, used K ′0(w) =

−K1(w) together with (2.16) and changed to the variable y = s
√
k2 + 1 in the last equality.

Likewise, using K ′0(y) = −K1(y) and inserting the integral representation (2.16), we find

I (0) =
∫ ∞
0

yK1(y)dy = π

2
. (C.4)

This concludes the proof of the lemma. ��

Proof of the second equality of equations (2.21) and (2.20) We shall deduce an equation for
J (s) and L(s) in terms of I (s). Differentiating (2.21) with respect to s, gives

J ′(s) = −
∫ ∞
s

yK0(y)
s√

y2 − s2
dy

= −s
∫ ∞
s

K0(y)

(√
y2 − s2

)′
dy

= −s
∫ ∞
s

K1(y)
√
y2 − s2dy = −s I (s) = −π

2
se−s , (C.5)

by Lemma C.1. Analogously, differentiating (2.20) with respect to s, together with (A.1),
gives

L ′(s) = −s
2

∫ ∞
s

yK1(y)
y√

y2 − s2
dy

= s

2

∫ ∞
s

(yK1)
′ (y)

√
y2 − s2dy

= −s
2

∫ ∞
s

yK0(y)
√
y2 − s2dy = −1

2
s J (s) . (C.6)

We also need initial condition to both equations. Using K ′0(y) = −K1(y) and inserting the
integral representation (2.16), we find as in (C.4),

J (0) =
∫ ∞
0

y2K0(y)dy = π

2
(C.7)

and

L(0) = 1

2

∫ ∞
0

y3K1(y)dy = 3π

4
. (C.8)

Integrating (C.5) together with (C.7), yields

J (s) = π

2
(1+ s)e−s . (C.9)
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Analogously, integrating (C.6) together with (C.9) and (C.8), yields

L(s) = π

4

(
3+ 3s + s2

)
e−s (C.10)

concluding the proof. ��
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