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Abstract. Pathology reports are a main source of information regarding cancer 
diagnosis and are commonly written following semi-structured templates that 
include tumour localisation and behaviour. In this work, we evaluated the efficiency 
of support vector machines (SVMs) to classify pathology reports written in 
Portuguese into the International Classification of Diseases for Oncology (ICD-O), 
a biaxial classification of cancer topography and morphology. A partnership 
program with the Brazilian hospital A.C. Camargo Cancer Center provided 
anonymised pathology reports and structured data from 94,980 patients used for 
training and validation. We employed SVMs with tf-idf weighting scheme in a bag-
of-words approach and report F1 score of 0.82 for 18 sites and 0.73 for 49 
morphology classes. With the largest dataset ever used in such a task, our work 
provides reliable estimates for the classification of pathology reports in Portuguese 
and agrees with a few similar studies published in the same kind of data in other 
languages. 
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1. Introduction 

Clinical reports are usually written in natural language due to its descriptive power and 
ease of communication among specialists. Processing data for knowledge discovery and 
statistical analysis requires information retrieval techniques, already established for 
newswire texts, but still in development in the medical subdomain. Some studies [1,2] 
explored mapping techniques to obtain structured information from clinical data, usually 
mixing sets of rules with machine learning. Although the results are promising, major 
efforts are required to build medical corpora and to adapt general language rules to the 
clinical domain. 

Pathology reports are a main source of information regarding cancer diagnosis [3] 
and are commonly written following semi-structured templates that include tumour 
localisation and behaviour. Since structured data are mostly not available from the 
electronic health record (EHR) with sufficient accuracy and completeness, cancer 
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registries play an important role as containers of manually reviewed clinical content at 
patient level, in order to report cancer statistics to authorities by using controlled 
vocabularies. In this process, health professionals often employ the International 
Classification of Diseases for Oncology (ICD-O) [3], a biaxial classification of cancer 
topography and morphology maintained by the World Health Organization (WHO). 

Probably the first work to evaluate the automated classification of pathology reports 
into more than one class, Martinez and Li [4] explored a Naïve Bayes classifier with 
named entities as features to classify 217 reports written in English into 11 different sites. 
They report a micro-averaged F1 score of 0.58. Jouhet et al. [5] employed Naïve Bayes 
classifiers and Support Vector Machines (SVMs) in 5,121 French free-text pathology 
reports to classify them into the two ICD-O axes using ngrams as features. They reported 
an F1 score of 0.72 for 26 topographic sites and 0.85 for 18 morphology classes in the 
ICD-O code attribution task. Later, Kavuluru et al. [6] applied Naïve Bayes classifiers, 
SVMs and Logistic Regression to a dataset of 56,426 English pathology reports in order 
to classify them into 57 primary sites from the ICD-O. They compared the efficiency of 
unigrams, bigrams and named entities as features and reported an F1 score of 0.90. More 
recently, Oleynik et al. [7] applied Naïve Bayes classifiers to a set of pathology reports 
written in Portuguese and obtained F1 = 0.75 for the recognition of 16 topographies and 
F1 = 0.62 for 49 morphologies. 

In this paper, we applied SVM to a large dataset of pathology reports in Portuguese 
and assessed its efficiency. We report results in the two ICD-O axes, viz. topography and 
morphology. To our knowledge, there are no previous studies related to the same 
language, method and type of data. 

2. Materials and Methods 

2.1. Pathology Reports and Cancer Registry Corpora 

A partnership program with the Brazilian hospital A.C. Camargo Cancer Center provided 
anonymised pathology reports and structured data from 94,980 patients used for training 
and validation. The documents were created during routine operation between 1996 and 
2010, with their text structure following the institution's editorial guidelines. 

In order to train a supervised machine learning classifier, we programmatically 
unified reports of the same patient and associated their content using the patient identifier 
to the data available in cancer registries. These registries include manually encoded 
information of the cancer topography, morphology and the metastatic status. In the next 
step, we discarded those with confirmed metastasis or multiple classifications and used 
the structured information in the cancer registries as the classifier target. 

The resulting dataset maps patients into the two ICD-O axes, viz. topography with 
n = 18,905 patients (18 code groups) and morphology with n = 18,599 patients (49 code 
groups). Due to the nature of the problem, patients are not uniformly distributed in the 
groups, as can be seen on the data presented in Section 3. 

2.2. Support Vector Machines 

In a pre-processing step, we lowercased all tokens (extracted with the Java 
StringTokenizer class) and kept only the remaining 5,000 most frequent ones to speed up 
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processing and reduce model overfitting. We then applied a Support Vector Machine 
(SVM) over the vector space representation of the data (in a bag-of-words approach), 
with tf-idf weighting scheme2 and a linear kernel. SVMs as such are known to produce 
good results in text classification [8]. 

A SVM is a discriminative and non-probabilistic classifier that tries to maximise the 
decision margin between two given classes [8]. The decision function, seen in Eq. (1), 
assigns either  or  to an input vector  based on the decision hyperplane normal 
vector  and an intercept term . 

 (1) 

We used Weka 3.6.6 [9] for most of the steps and LibSVM 3.17 [10] to perform 
SVM calculations under a one-versus-all approach, common in multi-class classification 
tasks. A regularisation parameter  was empirically determined following [11]. 

3. Results 

Tables 1 and 2 show a breakdown of sample size (n), precision (P), recall (R) and F1 
score (F1) obtained via 10-fold cross-validation for the ten topographies and 
morphologies with best results, respectively. The last row of each table shows the overall 
micro-averaged efficiency measures. Due to space limitations, full tables and confusion 
matrices are only available online at https://goo.gl/iG41Ok and https://goo.gl/cTrJfI. 
 
 

Table 1. Top ten F1 scores in the ICD-O topography attribution task. 

Code Group Description n P R F1 
C44 Skin 3,858 0.88 0.94 0.91 
C50 Breast 3,668 0.89 0.91 0.90 

C73-C75 Thyroid and other endocrine glands 1,329 0.92 0.87 0.90 
C60-C63 Male genital organs 1,536 0.93 0.81 0.87 
C64-C68 Lymph nodes 660 0.86 0.78 0.82 
C51-C58 Female genital organs 1,574 0.85 0.77 0.81 
C69-C72 Eye, brain and other parts of central nervous system 536 0.83 0.70 0.76 
C00-C14 Lip, oral cavity and pharynx 903 0.80 0.71 0.75 
C15-C26 Digestive organs 2,159 0.67 0.84 0.75 

C77 Lymph nodes 590 0.68 0.80 0.74 

Overall 18,905 0.82 0.82 0.82 

 
  

                                                           
2 Tf-idf stands for term frequency–inverse document frequency. 
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Table 2. Top ten F1 scores in the ICD-O morphology attribution task. 

Code Group Description n P R F1 
959-972 Hodgkin and non-Hodgkin lymphomas 859 0.85 0.87 0.86 
850-854 Ductal and lobular neoplasms 3,410 0.85 0.87 0.86 

855 Acinar cell neoplasms 1,059 0.87 0.85 0.86 
809-811 Basal cell neoplasms 1,704 0.80 0.89 0.84 
872-879 Nevi and melanomas 1,473 0.87 0.81 0.84 
906-909 Germ cell neoplasms 208 0.89 0.71 0.79 
812-813 Transitional cell papillomas and carcinomas 384 0.81 0.74 0.78 
938-948 Gliomas 237 0.82 0.71 0.76 

858 Thymic epithelial neoplasms 17 1.00 0.59 0.74 
868-871 Paragangliomas and glomus tumors 26 1.00 0.58 0.73 

Overall 18,599 0.74 0.74 0.73 

4. Discussion 

Results obtained in the topography attribution task (F1 = 0.82) were better than the ones 
in the morphology attribution task (F1 = 0.73). As expected, the evaluated efficiency is 
better at simpler tasks, where the number of target classes is lower (18 versus 49). The 
results might be dependent on the non-uniform distribution of classes in the dataset, with 
the best results reported on the most common classes. Additionally, the most common 
cancer in women (C50: Breast) and men (C60-C63: Male genital organs) achieved high 
precision rates (0.89 and 0.93, respectively). 

Moreover, the analysis of the confusion matrix reveals that the most common 
mistake in the topography attribution task is the classification of C51-C58: Female genital 
organs as C15-C26: Digestive organs, which also accounts for its low precision (0.67) 
and is responsible for 5% (171/3380) of the incorrect classified patients. In the 
morphology axis, classification of 805-808: Squamous cell neoplasms as 814-838: 
Adenomas and adenocarcinomas is the most frequent source of error and accounts for 
8% (381/4796) of the misclassifications. 

Although a strict comparison is hard due to the lack of public data in the medical 
domain, SVM shows improvements over the Naïve Bayes approach of Martinez and Li 
[4] applied to the same kind of data. While they report an F1 score of 0.58 with 11 sites, 
we achieved a higher F1 score of 0.82 with seven more classes. Likewise, our study 
achieved results comparable to those reported by Jouhet et al. [5]. Even though we report 
a lower F1 score of 0.74 (versus 0.85) with 31 more classes in the morphology code 
attribution task, we achieved a higher F1 score of 0.82 (versus 0.72) over only eight less 
topography classes. Compared to the work of Kavuluru et al. [6], we obtained a lower F1 
score (0.82 versus 0.93) with four more target classes. Lastly, SVM performed much 
better than a prior work done in the same dataset with Naïve Bayes classifiers [7], with 
an F1 score improvement of 0.07 and 0.11 in the topography and morphology groups, 
respectively. One common approach in these studies is to remove rare groups and 
therefore achieve better efficiency rates. In contrast, we report results in the standard set 
of 18 topography groups and 49 morphology groups, as defined by the WHO [3]. 
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5. Conclusion 

Although our classifier is in general agreement with other works reported in literature, 
we can see some limitations. A more precise analysis would have been done if we had 
classified a subset of the reports by a team of specialists without access to other patient 
data. Assessing Cohen’s kappa factor among them would provide a smaller upper bound 
to the algorithm and perhaps reproduce high discordance rates described in literature. 
The unavailability of such a team for an extended period also grounds our automated 
process. Nonetheless, we could have tested other learning models known for providing 
better results, like neural networks. However, given its elevated complexity and high 
computational cost, we chose a simpler and more manageable approach. 

Our study may improve recall rates in tasks such as cohort building for clinical trials, 
as it creates additional structured information over textual data. Moreover, it could be 
employed to ease manual classification of pathology reports via the generation of 
probability ordered code lists. The research showed that the automatic classification of 
pathology reports is not only feasible, but also achieves high efficiency rates comparable 
to those found in similar papers. We believe that our work provides a successful baseline 
for future research, not only for the classification of medical documents written in 
Portuguese, but also to be extended and applied to other domains. 
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