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Abstract
We determine the exact solution of the Einstein field equations for the case of a spher-
ically symmetric shell of liquid matter, characterized by an energy density which is
constant with the Schwarzschild radial coordinate r between two values r1 and r2. The
solution is given in three regions, one being the well-known analytical Schwarzschild
solution in the outer vacuum region, one being determined analytically in the inner
vacuum region, and one being determined mostly analytically but partially numeri-
cally, within the matter region. The solutions for the temporal coefficient of the metric
and for the pressure within this region are given in terms of a non-elementary but
fairly straightforward real integral. For some values of the parameters this integral
can be written in terms of elementary functions. We show that in this solution there
is a singularity at the origin, and give the parameters of that singularity in terms of
the geometrical and physical parameters of the shell. This does not correspond to an
infinite concentration of matter, but in fact to zero energy density at the center. It does,
however, imply that the spacetime within the spherical cavity is not flat, so that there
is a non-trivial gravitational field there, in contrast with Newtonian gravitation. This
gravitational field is repulsive with respect to the origin, and thus has the effect of
stabilizing the geometrical configuration of the matter, since any particle of the matter
that wanders out into either one of the vacuum regions tends to be brought back to the
bulk of the matter by the gravitational field.
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1 Introduction

The exterior Schwarzschild solution [1, 2] of the Einstein field equations has played a
major role in General Relativity. It describes the effects of gravitation in the vacuum
outside a time-independent spherically symmetric distribution of matter. One of the
reasons for its importance is its generality—it only depends on the spherical symmetry
and on the total energy of thematter distribution. Jebsen andBirkhoff [3, 4] have shown
that this solution is still valid even in time-dependent situations, provided that the
spherical symmetry is preserved. Another reason for its popularity is the association
of the coordinate singularity of this solution, which occurs for a certain value of the
radial coordinate, with the presence of an event horizon, thus leading to the concept
of black holes.

Less known—even absent in many standard textbooks on General Relativity—is
the interior Schwarzschild solution [2, 5]. It gives the metric of the space inside a
spherically symmetric matter distribution with an energy density which is constant
with the radial coordinate. This other solution can be continuously joined with the
Schwarzschild vacuum solution that is valid outside the matter distribution. It is less
general in that it only describes matter distributions with energy densities that do not
depend on the radial coordinate r . In addition, it does not contain any singularities.
This point is emphasized in many texts, for example in [2, 6]. Basically, in order to
avoid singularities at the center of the matter distribution a certain integration constant
is set equal to zero.

For a spherical matter shell characterized by an inner radius r1, an outer radius
r2 and an energy density constant with r the situation is more involved. In the inner
vacuum region, where r < r1, the solution of the Einstein equations leads to an
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integration constant, heretofore denoted by rμ, which determines the singularities in
the entire inner vacuum region. There are no singularities only if rμ = 0. In analogy
with what is done for the interior Schwarzschild solution one may feel tempted to set
rμ = 0 by hand and eliminate all singularities. However, as we are going to show in
this paper, the correct approach is to start in the outer vacuum region (r > r2), where
the exterior Schwarzschild solution holds, and use the continuity of the solution in the
two boundaries of the three regions to determine the constant rμ. The rather surprising
result is that the imposition of the surface boundary conditions implies that rμ > 0,
so that the solutions do contain a singularity at the origin. In addition, one can prove
that this condition has to be satisfied in order to produce solutions with non-negative
pressure inside the matter shell.

It is remarkable that the boundary conditions on matter interfaces for the Einstein
field equations seem to play a smaller than expected role in the literature. A rare
example in which the role of these boundary conditions is emphasized can be found
in [7], although the author of that paper only obtained solutions containing a negative
pressure region inside the matter shell. By analyzing these negative pressure solutions
the author concluded that matter cannot collapse towards the center of black holes in
general relativity. We are going to show in this paper that it is possible to obtain phys-
ically reasonable matter shell solutions of the Einstein equations with non-negative
and finite pressure inside the shell. It is important to emphasize that the singularity at
the origin in the inner vacuum region does not lead to any divergence of the matter
quantities, and in fact stabilizes the matter shell structure. This is so because the grav-
itational field within the inner vacuum region turns out to be repulsive with respect to
the origin. Our solutions for matter shells are expressed in terms of a single integral
which for some values of the physical parameters can bewritten in terms of elementary
functions and constitute a new class of exact solutions of the Einstein field equations.

Results similar to the ones we present here were obtained numerically for the case
of neutron stars, with a Chandrasekhar-style equation of state [8], by Ni [9], including
the presence of inner and outer matter-vacuum interfaces. However, the crucial con-
sideration of the interface boundary conditions was missing from that analysis, thus
leading to incomplete results. The discussion of the interface boundary conditions was
subsequently introduced by Neslušan [10], thus completing the analysis of the case of
the neutron stars. Just as in the present work, the discussion of the interface boundary
conditions led, also in that case, to an inner vacuum region containing a singularity
at the origin and a gravitational field pointing away from the origin, that is, repulsive
with respect to the origin. The present work can be considered as an exactly solvable
laboratory model that illustrates some of the properties of that numerical solution.
It also shows that the properties of the inner vacuum region are not artifacts of that
particular problem or of that particular type of equation of state.

This paper is organized as follows. In Sect. 2 we state and solve the problem; in
Sect. 3 we derive the main physical properties of the solution; in Sect. 4 we present
a two-parameter family of explicit solutions and a few numerical examples; and in
Sect. 5 we present our conclusions.
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2 The problem and its solution

Wewill present, in the case of a spherically symmetric shell of liquid fluidwith constant
energy density, the exact solution of the Einstein field equations of General Relativity
[11],

R ν
μ − 1

2
R g ν

μ = −κ T ν
μ , (1)

where κ = 8πG/c4, G is the universal gravitational constant and c is the speed of
light. Under the conditions of time independence and of spherical symmetry around
the origin of a spherical system of coordinates (t, r , θ, φ), the Schwarzschild system
of coordinates, the most general possible metric is given by the invariant interval,
written in terms of this spherical system of coordinates,

ds2 = e2ν(r)c2dt2 − e2λ(r)dr2 − r2
[
dθ2 + sin2(θ)dφ2

]
, (2)

where exp[ν(r)] and exp[λ(r)] are two positive functions of only r . As one can see, in
thisworkwewill use the time-like signature (+,−,−,−), following [11].Under these
conditions the matter stress-energy tensor density T ν

μ on the right-hand side of the
equation is diagonal, and given by the four diagonal components T 0

0 (r) = ρ(r), where
ρ(r) is the energy density of the matter, and T 1

1 (r) = T 2
2 (r) = T 3

3 (r) = −P(r),
where P(r) is the pressure, which is isotropic, thus characterizing a fluid.

Since under these conditions R ν
μ and T ν

μ are both diagonal, there are just four non-
trivial field equations contained in Eq. (1). In addition to these four field equations we
have the consistency condition

DνT
ν

μ = 0, (3)

which is due to the fact that the combination of tensors that constitutes the left-hand
side of the Einstein field equation satisfies the Bianchi identity of the Ricci curvature
tensor. Writing these equations explicitly in the chosen coordinate system, one finds
that the component equations involving T 2

2 (r) and T 3
3 (r) turn out to be identical, so

that we are left with the set of four equations, including the consistency condition,

{
1 − 2

[
rλ′(r)

]}
e−2λ(r) = 1 − κr2ρ(r), (4){

1 + 2
[
rν′(r)

]}
e−2λ(r) = 1 + κr2P(r), (5){

r2ν′′(r) − [
rλ′(r)

] [
rν′(r)

]

+ [rν′(r)
]2 + [

rν′(r)
]− [

rλ′(r)
]}

e−2λ(r) = κr2P(r), (6)

[ρ(r) + P(r)] ν′(r) = −P ′(r), (7)

where the primes indicate differentiation with respect to r . Next, it can be shown that
Eq. (6) can be obtained from the others, being in fact a linear combination of the
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derivative of Eq. (5) and of Eqs. (4), (5) and (7). If we denote Eqs. (4) through (7)
respectively by Et , Er , Eθ and Ec, we have that

Eθ = 1

2

[
−rν′(r) (Et − Er ) + r E ′

r + κr2Ec

]
. (8)

This leaves us with a set of just three differential equations to solve. In addition to
this, we will assume that we have an energy density ρ(r) = ρ0 which is constant as
a function of r within the shell of fluid matter, thus characterizing a liquid fluid. The
equations that we propose to solve are therefore those given in Eqs. (4), (5) and (7). It
is important to note that, in this way, we are left with a system of just three first-order
differential equations. Therefore, the discussion of boundary conditions can be limited
to the discussion of the behavior of the functions involved, thus eliminating the need
for any discussion of the behavior of their derivatives.

Wewill assume that thematter consists of a spherical shell of liquid, located between
the radial positions r1 and r2, meaning that wewill have an inner vacuum regionwithin
(0, r1), a matter region within (r1, r2), and an outer vacuum region within (r2,∞).
This means that we will have for ρ(r) and P(r)

ρ(r) =
⎧⎨
⎩
0 for 0 ≤ r < r1,
ρ0 for r1 < r < r2,
0 for r2 < r < ∞,

(9)

P(r) =
{
0 for 0 ≤ r ≤ r1,
0 for r2 ≤ r < ∞.

(10)

The function P(r) within the matter region is, of course, one of the unknowns of our
problem. In addition to this, we have the boundary conditions for P(r) at the two
interfaces, in the limits coming from within the liquid,

P(r1) = 0, (11)

P(r2) = 0, (12)

since these constitute a requirement in any interface betweenfluidmatter and a vacuum.
The remaining boundary conditions are those requiring the continuity of λ(r) and ν(r)
across the interfaces, and the asymptotic conditions leading to the Newtonian limit at
radial infinity.

2.1 Solutions in the vacuum regions

Within either vacuum region the consistency condition in Eq. (7) becomes a mere
identity, so that we are left with only two equations, in which we replace both ρ(r)
and P(r) by zero,

1 − 2
[
rλ′(r)

] = e2λ(r), (13)

1 + 2
[
rν′(r)

] = e2λ(r). (14)
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This immediately implies that λ′(r) + ν′(r) = 0, and hence that λ(r) + ν(r) = A,
where A is a dimensionless integration constant. The first of these two equations
involves only λ(r), and can also be written as

[
r e−2λ(r)

]′ = 1, (15)

which can be immediately integrated to

e−2λ(r) = 1 − R

r
, (16)

where R is an integration constant with dimensions of length.
We must now discriminate between the inner and outer vacuum regions. In the

outer vacuum region we must get flat space at radial infinity, which requires that both
λ(r) and ν(r) go to zero for r → ∞. This in turn implies that A = 0 in the outer
vacuum region, thus leading to ν(r) = −λ(r). As is well known, the condition that the
Newtonian limit be realized at radial infinity requires that R = rM , the Schwarzschild
radius rM = 2MG/c2 associated to the asymptotic gravitationalmassM of the system.
Thus we arrive at the time-honored Schwarzschild solution [1, 2] in the outer vacuum
region,

λs(r) = − 1

2
ln

(
r − rM

r

)
, (17)

νs(r) = 1

2
ln

(
r − rM

r

)
, (18)

where the subscript s denotes the outer vacuum region. Note that there is a limitation
on the values of the parameters r2 and rM describing the distribution ofmatter, because
these expressions have a singular behavior at r = rM . Wemust have rM < r2 to ensure
that there is no event horizon formed outside the distribution of matter.

In the inner vacuum region there are no asymptotic conditions to be applied, and thus
the integration constants A and R will have to be left undetermined, to be determined
later on via the boundary conditions at the interfaces between the vacuum and the
matter, as we come in from radial infinity towards the origin. For convenience we will
put R = −rμ, and write the solution in the inner vacuum region as

λi (r) = − 1

2
ln

(
r + rμ

r

)
, (19)

νi (r) = A + 1

2
ln

(
r + rμ

r

)
, (20)

where the subscript i denotes the inner vacuum region. Note that the value of rμ
determines the singularity structure of this solution within the inner vacuum region.
If rμ < 0 then there is a singularity at the strictly positive radial position r = −rμ,
corresponding to the formation of an event horizon at that position. If rμ = 0 then
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there are no singularities at all within this region. If rμ > 0 then there is only one point
of singularity, located at the origin r = 0. We will show later on that we do indeed
have that rμ > 0.

We therefore have the complete analytical solutions in the inner and outer vacuum
regions, which contain one input parameter of the problem, the mass M associated to
the Schwarzschild radius rM , and two integration constants still to be determined, A
and rμ.

2.2 Solution in thematter region

In the matter region Eq. (4) for λ(r) can be written as

[
r e−2λ(r)

]′ = 1 − κρ0r
2, (21)

which can be immediately integrated to

e−2λ(r) = 1 + B

r
− κρ0

3
r2, (22)

where B is an integration constant with dimensions of length, thus leading to the
general solution for λ(r) in the matter region,

λm(r) = − 1

2
ln

(
1 + B

r
− κρ0

3
r2
)

, (23)

where the subscriptm denotes thematter region. This solution contains one integration
constant, the constant B, and one parameter characterizing the system, namely ρ0,
which is not, however, a free input parameter of the problem, since it will depend on
M and thus on rM .

In order to dealwith ν(r) in thematter region,we consider the consistency condition
given in Eq. (7), which can be written in this region as

ν′(r) = − P ′(r)
ρ0 + P(r)

, (24)

thus allowing us to separate variables and hence to write ν(r) in terms of P(r),

dν = − dP

ρ0 + P
= −d ln(ρ0 + P) . (25)

If we integrate from the left end r1 of the matter interval to a generic point r within
that interval, we get

ν(r) − ν(r1) = − ln

[
ρ0 + P(r)

ρ0 + P(r1)

]
. (26)
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However, the boundary conditions for P(r) at the interfaces tell us that we must have
P(r1) = 0, and hence we get the general solution for ν(r) within the matter region,
written in terms of P(r),

νm(r) = ν1 − ln

[
ρ0 + P(r)

ρ0

]
, (27)

where ν1 = ν(r1). The solutions for λ(r) and ν(r) within the matter region involve
therefore two integration constants, B and ν1. The solution for ν(r) is not yet com-
pletely determined, since it is given in terms of P(r), which is also as yet undetermined.
However, the information obtained so far already allows us to impose the boundary
conditions at the interfaces, in order to determine the integration constants, which is
what we turn to now.

2.3 Interface boundary conditions

The condition of the continuity of λ(r) at the interface r1 implies that we must have
that λi (r1) = λm(r1), which from Eqs. (19) and (23) gives us the following relation
between the parameters

B − rμ = κρ0

3
r31 . (28)

In addition to this, the condition of the continuity of λ(r) at the interface r2 implies that
we must have λm(r2) = λs(r2), which from Eqs. (17) and (23) gives us the following
relation between B and the parameters

B + rM = κρ0

3
r32 . (29)

This last condition already determines the integration constant B in terms of the
parameters of the problem,

B = −rM + κρ0

3
r32 , (30)

and the difference of the two conditions just obtained determines the integration param-
eter rμ in terms of the parameters of the problem,

rμ = −rM + κρ0

3

(
r32 − r31

)
. (31)

We have therefore the solution for λ(r) in the matter region, in terms of the parameters
of the problem,

λm(r) = − 1

2
ln

[
κρ0

(
r32 − r3

)+ 3 (r − rM )

3r

]
. (32)
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Let us point out that there is a consistency condition to be applied to this result, since
we must have that the cubic polynomial appearing in the argument of the logarithm
be strictly positive for all values of r within the matter region, that is

κρ0

(
r32 − r3

)
+ 3 (r − rM ) > 0, (33)

for all r ∈ [r1, r2]. Note that the term with the cubes is necessarily non-negative, but
that the other term may be negative, if rM is not smaller than r1. Therefore, so long as
rM < r1, this strict positivity condition is automatically satisfied. If, however, we have
that r1 < rM < r2, then the condition must be actively verified for all r ∈ [rM , r2]. If
it fails, then there is no solution for that particular set of input parameters.

Since we have νm(r) written in terms of P(r), and since we know the interface
boundary conditions for P(r) in limits from within the matter region, we are in a
position to impose the boundary conditions on ν(r) across the interfaces, even without
having available the complete solution for νm(r). To this end, let us note that from
Eq. (27) we have that νm(r1) = νm(r2) = ν1. At the interface r1 the condition of the
continuity of ν(r) implies that we must have νi (r1) = νm(r1), which from Eqs. (20)
and (27) gives us the following relation between ν1, A and the parameters,

ν1 = A + 1

2
ln

(
r1 + rμ

r1

)
. (34)

In addition to this, the condition of the continuity of ν(r) at the interface r2 implies that
we must have νm(r2) = νs(r2), which from Eqs. (18) and (27) gives us the following
relation between ν1 and the parameters,

ν1 = 1

2
ln

(
r2 − rM

r2

)
. (35)

This last condition gives us the integration constant ν1 in terms of the parameters of the
problem, and its difference with the previous one determines the integration constant
A,

A = 1

2
ln

(
1 − rM/r2
1 + rμ/r1

)
. (36)

Note that we have that A < 0 for any positive values of rM and rμ. This completes
the determination of the solution for both ν(r) and λ(r) in the inner vacuum region,
for which we now have

λi (r) = − 1

2
ln

(
r + rμ

r

)
, (37)

νi (r) = 1

2
ln

(
1 − rM/r2
1 + rμ/r1

)
+ 1

2
ln

(
r + rμ

r

)
, (38)
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with rμ given by Eq. (31). We also have the following form for the solution for ν(r)
within the matter region, still in terms of P(r),

νm(r) = 1

2
ln

(
r2 − rM

r2

)
− ln

[
ρ0 + P(r)

ρ0

]
. (39)

At this point the situation is as follows, in regard to the complete solution of the
problem. Given values of r1, r2 and rM , which completely characterize the geometrical
and physical nature of the object under study, we have the complete solution for both
λ(r) and ν(r) in the outer vacuum region. We also have the complete solution for
both λ(r) and ν(r) in the inner vacuum region, except for the determination of the
parameter ρ0. We have as well the complete solution for λ(r) in the matter region,
again up to the determination of the parameter ρ0. The one element of the solution still
missing is the complete solution for ν(r) in the matter region. However, since we have
ν(r) determined in terms of P(r) in this region, this can also be accomplished by the
complete determination of P(r) in this region, which is the task we tackle next. Let
us emphasize that the parameter ρ0 is not a free input parameter of the problem, since
it must be chosen so that the given value of rM results, that is, the local value of the
energy density must be chosen so that the given value of the asymptotic gravitational
mass M results at radial infinity.

2.4 The equation for the pressure

The equation determining the pressure P(r) in the matter region can be obtained by
eliminating ν′(r) from Eqs. (5) and (7), which gives us

ρ0 + P(r) − 2
[
r P ′(r)

] = e2λm (r)
[
1 + κr2P(r)

]
[ρ0 + P(r)] . (40)

In this equation the quantity exp[2λm(r)] is a known function, since we have already
determined λ(r) in the matter region. This is a first-order non-linear differential equa-
tion determining P(r), with the boundary conditions P(r1) = 0 and P(r2) = 0. Since
the equation is first-order and there are two boundary conditions to be satisfied, it is
clear that the parameter ρ0 will have to be adjusted so that the second condition can be
satisfied. This will therefore determine the parameter ρ0 in terms of the other param-
eters of the problem. This equation can be simplified by a series of transformations
on the variables and parameters. First we define the parameter ϒ0 = 1/r0, which has
dimensions of inverse length and is such that

ϒ2
0 = κρ0, (41)

and the dimensionless pressure

p(r) = P(r)

ρ0
, (42)
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in terms of which Eq. (40) becomes

[
rp′(r)

] = 1

2
[1 + p(r)]

{
1 − e2λm (r)

[
1 + ϒ2

0 r
2 p(r)

]}
. (43)

Substituting the known value of λm(r) from Eq. (32) we get

p′(r) = 1

2r
[1 + p(r)]

ϒ2
0

(
r32 − r3

)− 3rM − 3ϒ2
0 r

3 p(r)

ϒ2
0

(
r32 − r3

)+ 3 (r − rM )
. (44)

This has the form of a Ricatti equation, and can be linearized by the transformation of
variables

p(r) = 1

z(r)
− 1, (45)

thus resulting in the equation for z(r),

z′(r) + ϒ2
0

(
r32 + 2r3

)− 3rM
2r
[
ϒ2
0

(
r32 − r3

)+ 3 (r − rM )
] z(r) = 3ϒ2

0 r
3

2r
[
ϒ2
0

(
r32 − r3

)+ 3 (r − rM )
] .
(46)

This equation has an integrating factor given by exp[F(r)], where F(r) is defined as
an integral of the coefficient of the second term from r2 to some arbitrary r within
[r1, r2],

F(r) =
∫ r

r2
ds

ϒ2
0

(
r32 + 2s3

)− 3rM
2s
[
ϒ2
0

(
r32 − s3

)+ 3 (s − rM )
]

= 1

2

∫ r

r2
ds

1

s
− 1

2

∫ r

r2
ds

−3ϒ2
0 s

2 + 3

ϒ2
0

(
r32 − s3

)+ 3 (s − rM )
. (47)

One can see now that both integrals can be done, and thus we obtain

eF(r) =
√

r

r2

√
3 (r2 − rM )

ϒ2
0

(
r32 − r3

)+ 3 (r − rM )
, (48)

in terms of which Eq. (46) for z(r) can be written as

[
eF(r)z(r)

]′ = 3

2

ϒ2
0 r

2 eF(r)

ϒ2
0

(
r32 − r3

)+ 3 (r − rM )
, (49)
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which can then be integrated over the interval [r , r2] giving

z(r) = e−F(r) + 3

2
e−F(r)

∫ r

r2
ds

ϒ2
0 s

2eF(s)

ϒ2
0

(
r32 − s3

)+ 3 (s − rM )
, (50)

where we used the fact that by definition F(r2) = 0, and the fact that P(r2) = 0
implies z(r2) = 1.

Note that once more the existence of the solutions for F(r) and for z(r) is condi-
tioned by the strict positivity of the same cubic polynomial that we discussed before
in Eq. (33), which we can now write as

ϒ2
0

(
r32 − r3

)
+ 3 (r − rM ) > 0, (51)

for all r ∈ [r1, r2]. Substituting the value of exp[F(r)] we have the solution for z(r)
written in terms of a real integral,

z(r) =
√

ϒ2
0

(
r32 − r3

)+ 3 (r − rM )

r

×
{√

r2
3 (r2 − rM )

+ 3

2

∫ r

r2
ds

ϒ2
0 s

5/2

[
ϒ2
0

(
r32 − s3

)+ 3 (s − rM )
]3/2

}
. (52)

Inmost cases this remaining integral is elliptic and therefore cannot be written in terms
of elementary functions, so that in general this remaining last step of the resolution
procedure has to be performed by numerical means. However, as we are going to show
in Sect. 4, for some values of the parameters it is possible to express this integral in
terms of elementary functions.

After determining z(r) in the matter region, Eq. (45) allows us to calculate the
dimensionless pressure p(r) which, according to Eq. (42), is equal to the pressure
divided by the energy density ρ0,

p(r) = 1

z(r)
− 1 �⇒ (53)

P(r) = ρ0

z(r)
− ρ0. (54)

Note that z(r) also determines ν(r) in the matter region, since in Eq. (39) we have
νm(r) in terms of P(r), and therefore we have for the exponential of νm(r),

eνm (r) =
√
r2 − rM

r2

ρ0

ρ0 + P(r)
, (55)

which, using Eq. (54), implies that

eνm (r) =
√
r2 − rM

r2
z(r), (56)
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so that, up to a constant factor, z(r) turns out to be the square root of the temporal
coefficient of the metric. This completes the determination of the solution in all three
regions, in terms of the parameters of the problem. Given certain values of r1, r2
and rM , one must still find a value of the parameter ρ0, and hence of ϒ0, such that
the boundary conditions for P(r) at the two interfaces are satisfied. One can obtain
an equation determining this value of ϒ0 by considering the value of z(r1). Since
P(r1) = 0, we have that z(r1) = 1, so that from Eq. (52) we get

√
r2

3 (r2 − rM )
=
√

r1
ϒ2
0

(
r32 − r31

)+ 3 (r1 − rM )

+3

2

∫ r2

r1
dr

ϒ2
0 r

5/2

[
ϒ2
0

(
r32 − r3

)+ 3 (r − rM )
]3/2 . (57)

The solution of this algebraic equation gives the value of ϒ0, and hence the value of
ρ0, for which the two interface boundary conditions for P(r) will be satisfied. The
solution of this equation necessarily includes the consistency check of the solution
obtained, since the calculation of the integral is dependent on the strict positivity of
the polynomial in Eq. (51), for all r within [r1, r2]. This is the same condition that
guarantees the consistency of the results for F(r) and z(r), and hence the consistency
of the results for P(r) and ν(r) within the matter region.

3 Main properties of the solution

In this section we will state and prove a few important properties of the solution. We
will assume that, given certain values of r1, r2 and rM , the corresponding solution
exists. In other words, we are assuming that a solution of Eq. (57) forϒ0 can be found,
thus determining ρ0, which includes establishing the strict positivity of the cubic
polynomial within the square roots in the denominators, and that a corresponding
function z(r) is therefore determined via Eq. (52). This then implies that the solutions
for both λ(r) and ν(r), as well as for P(r), are all determined, with all the boundary
conditions duly satisfied. A simpler way to put this is to say that we are establishing the
most important properties of all existing solutions of the problem. For easy reference,
we state the complete solution explicitly inTable 1,wherewehave thatρ0 is determined
algebraically via Eq. (57), z(r) is determined by Eq. (52), and rμ is given by Eq. (31).
We will start by the discussion of the presence of the singularity at the origin.

3.1 Existence of the singularity at the origin

First of all, we should clarify that at this point we are not trying to characterize the
singularity at the origin in differential-geometric terms. This will be done later, in
Sect. 3.4, where we will show that it is in fact a curvature singularity. For now we
are simply determining its existence, in the sense of the singularities in the theory of
analytic functions, in the relevant functions that characterize the spacetime metric in
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Table 1 Summary of the results

λ(r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1

2
ln

(
r + rμ

r

)
for 0 < r ≤ r1,

− 1

2
ln

⎡
⎣ κρ0

(
r32 − r3

)
+ 3 (r − rM )

3r

⎤
⎦ for r1 ≤ r ≤ r2,

− 1

2
ln

(
r − rM

r

)
for r2 ≤ r < ∞,

ν(r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

2
ln

(
1 − rM/r2
1 + rμ/r1

)
+ 1

2
ln

(
r + rμ

r

)
for 0 < r ≤ r1,

1

2
ln

(
r2 − rM

r2

)
+ ln[z(r)] for r1 ≤ r ≤ r2,

1

2
ln

(
r − rM

r

)
for r2 ≤ r < ∞.

Schwarzschild coordinates. We may however note that, since we have that Tμν = 0
in the inner vacuum region, which implies that Rμν = 0 there, we have for the scalar
curvature that R = 0 everywhere within that region, including at the origin. In any
case, the singularity may be physically characterized as one that does not lead to an
infinite concentration of matter at that point.

The existence of the singularity at the origin is equivalent to the statement that
rμ > 0, because the only way to avoid that singularity would be to have rμ = 0. If
we put rμ = 0 then, as we will see, we are forced to make r1 = 0, so that we no
longer have a matter shell, and we obtain instead the Schwarzschild interior solution
for a filled sphere. It is important to note that the argument that follows depends on
the condition that r1 > 0, because otherwise there would be no inner vacuum region,
and hence no interface boundary conditions at r1, so that all the derivations done so
far would cease to be valid.

We start with a preliminary lemma for a matter shell with r1 > 0, in which we will
prove that the following combination of parameters

1

3
ϒ2
0

(
r32 − r3e

)
− rM > 0, (58)

is strictly positive, where re is the position of the maximum of the dimensionless
pressure p(r) within the interval [r1, r2]. In order to do this, we consider the equation
for p(r) given in Eq. (44). Since p(r) is a positive function that is the solution of
a first-order differential equation within the strict interior (r1, r2) of the interval, it
must be a continuous and differentiable function there. Therefore, given that due to
the interface boundary conditions it is zero at both ends and hence always increases as
we go to the interior of the interval, it must have a point of maximum re somewhere
in the strict interior of the interval, where we will have that p′(re) = 0. Using the
differential equation for p(r) given by Eq. (44) at this point we thus obtain

1

2re
[1 + p(re)]

ϒ2
0

(
r32 − r3e

)− 3rM − 3ϒ2
0 r

3
e p(re)

ϒ2
0

(
r32 − r3e

)+ 3 (re − rM )
= 0. (59)
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This can only be zero if the numerator is zero, so we have that

ϒ2
0 r

3
e p(re) = 1

3
ϒ2
0

(
r32 − r3e

)
− rM . (60)

Since ϒ2
0 > 0 and at its maximum we must have p(re) > 0 for the dimensionless

pressure, we conclude that our lemma holds,

1

3
ϒ2
0

(
r32 − r3e

)
− rM > 0. (61)

Let us now consider the result for rμ in terms of the given parameters of the problem,
as shown in Eq. (31), which we can write as

rμ = 1

3
ϒ2
0

(
r32 − r31

)
− rM . (62)

By adding and subtracting terms to this equation, we can write it as

rμ =
[
1

3
ϒ2
0

(
r32 − r3e

)
− rM

]
+ 1

3
ϒ2
0

(
r3e − r31

)
. (63)

The quantity within square brackets is the one we just proved to be strictly positive
in our lemma. The other term is also strictly positive because we certainly have that
re > r1. Therefore, we have our theorem,

rμ > 0. (64)

It is important to observe that what we have proved here can be stated as

r1 > 0 �⇒ rμ > 0, (65)

which then implies that we must also have, as we mentioned before, that

rμ = 0 �⇒ r1 = 0. (66)

As a consistency check, we can easily calculate the derivative p′(r) at the two ends
of the interval. Since p(r) is a positive function that is zero at both ends, it follows
that its derivative at r2 must be negative, and that its derivative at r1 must be positive.
Applying Eq. (44) at r2, since we have that p(r2) = 0, we get for the derivative at the
right end of the matter interval,

p′(r2) = − rM
2r2 (r2 − rM )

. (67)
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Since by hypothesis we have that r2 > rM and that rM > 0, we conclude that the
derivative p′(r2) is strictly negative, as expected. In addition to this, applying that
same equation at r1 and using Eq. (62) in order to substitute in favor of rμ, since we
also have that p(r1) = 0, we get for the derivative at the left end of the matter interval,

p′(r1) = rμ
2r1

(
r1 + rμ

) , (68)

which is positive, as expected, since rμ > 0. Therefore we see that our result is
consistent with a positive pressure within the whole matter interval.

In this way we see that every solution of the problem that exists at all is bound to
have a singularity at the origin, which is characterized by the factor

ln

(
r + rμ

r

)
, (69)

that appears with a negative sign in λi (r) and with a positive sign in νi (r). This implies
that at this singular point we have that

lim
r→0

λi (r) = −∞, (70)

lim
r→0

eλi (r) = 0, (71)

lim
r→0

νi (r) = ∞, (72)

lim
r→0

eνi (r) = ∞. (73)

Note that this singularity does not have any disastrous consequences, since it does not
imply infinite concentrations of matter. In fact, we have ρ(r) = 0 in the whole inner
vacuum region, including at the origin. For the proper lengths in the radial direction,
it just implies that they get progressively more contracted as we approach the origin,
rather than being expanded with respect to the corresponding variations of the radial
coordinate r , as is the case in the outer vacuum region. For the proper times it just
means that we get progressively more severe red shifts as we approach the origin,
rather than the blue shifts that we get as we approach the event horizon from the outer
vacuum region.

As a corollary to the proof that rμ > 0, note that this fact guarantees the positivity of
the cubic polynomial in Eq. (33). This is so because the second derivative of that poly-
nomial is given by −6κρ0r , being therefore negative for all r ∈ [r1, r2]. This means
that the graph of the cubic polynomial has a concavity turned downward throughout
this interval. In addition to this, it is easy to see that at r = r2 the polynomial is given
by 3 (r2 − rM ), which is strictly positive so long as r2 > rM . Finally, at r = r1 the
polynomial is given by

κρ0

(
r32 − r31

)
+ 3 (r1 − rM ) = 3

(
r1 + rμ

)
, (74)

123



Exact solution of the Einstein field equations… Page 17 of 31 68

where we used Eq. (31), which is also strictly positive since rμ > 0. As a consequence
of this, we may conclude that, so long as the conditions r2 > rM and rμ > 0 hold, as
they must for physically sensible solutions, the polynomial is strictly positive for all
r ∈ [r1, r2].

3.2 Nature of the inner gravitational field

The physical interpretation of the function ν(r) is that the proper time interval at the
radial position r , between two events occurring at the same spatial point, is given by
dτ = exp[ν(r)]dt , where dt is the time interval between the two events as seen at
spatial infinity, where spacetime is flat. If we consider a photon traveling in the radial
direction, either inwards or outwards, this means that the proper frequency f (r) of the
photon changes with position, between a first point ra and a second point rb, according
to

f (ra) = e−ν(ra) f∞, (75)

f (rb) = e−ν(rb) f∞, (76)

where f∞ is the frequency of the photon at radial infinity. Dividing these two equations
and making the two points very close together, so that ra = r and rb = ra + δr , we
have

f (r + δr)

f (r)
= e−[ν(r+δr)−ν(r)]. (77)

For sufficiently small δr we may write the variation of the function ν(r) in terms of
its derivative ν′(r), so that we get

f (r + δr)

f (r)
	 e−δr ν′(r). (78)

Since the energy h f (r) of a photon, h being the Planck constant, is proportional to its
frequency, we have an interpretation of the red and blue shifts of the frequency of the
photons as decreases or increases in their energies, respectively. We thus observe that,
if a photon is going outward, so that δr > 0, and if the derivative ν′(r) is positive, then
we will have that f (r + δr) < f (r), and therefore a red shift in the frequency. If it is
going outward but the derivative is negative, then we will have that f (r + δr) > f (r)
and hence a blue shift. On the other hand, if the photon is going inward, so that δr < 0,
and the derivative is positive, then we will have a blue shift, and finally, if it is going
inward and the derivative is negative, then we will have a red shift. Let us write down
the derivative of ν(r) in the inner and outer vacuum regions,

ν′(r) =

⎧
⎪⎨
⎪⎩

− 1

2

rμ
r(r + rμ)

for 0 < r ≤ r1,

1

2

rM
r(r − rM )

for r2 ≤ r < ∞.

(79)
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Let us now consider the consequences of Eq. (78) in more detail in each one of these
two regions, starting with the outer vacuum region. As one can see above, in the
outer vacuum region, since we have that r > r2 > rM > 0, the derivative ν′(r) is
always positive. Therefore, photons traveling outward undergo red shifts, while those
traveling inward undergo blue shifts. This can be interpreted in energetic terms as the
statement that when traveling inward the photons gain energy from the gravitational
field, and when traveling outward they lose energy to it. This is characteristic of a
gravitational field that is attractive towards the origin.

However, in the inner vacuum region the situation is reversed. Since we have that
rμ > 0, the derivative is everywhere negative in that region. This means that pho-
tons traveling outward within this region are blue shifted, and therefore gain energy
from the gravitational field, while photons traveling inward within this region are red
shifted, and therefore lose energy to the gravitational field. This is characteristic of a
gravitational field that is repulsive, driving matter and energy away from the origin.
This is the exact opposite of what happens in the outer vacuum region. It is important
to note that this repulsion is not from thematter in itself, but from the origin, consisting
therefore of an outward attraction towards the shell of matter.

3.3 The energy conditions

It is possible to determine, up to a certain point, when the weak and dominant energy
conditions [2] are satisfied for the solutions that we present here. Let us start by
pointing out that in our case here both gμν and T ν

μ are diagonal, with

diag[gμν] =
[
e2ν(r),− e2λ(r),−r2,−r2 sin2(θ)

]
, (80)

diag[T ν
μ ] = [ρ(r),−P(r),−P(r),−P(r)] . (81)

Given an arbitrary vector field

Vμ = (V0, V1, V2, V3) , (82)

it is not difficult to show that under these conditions the weak energy condition is
always satisfied,

T μ
ν VμV

ν ≥ 0, (83)

regardless of any properties that Vμ may or may nor have. Therefore the only relevant
energy condition is the dominant energy condition, which consists of first defining the
vector field

Wμ = T μ
ν V ν, (84)

and then showing that, if Vμ is a future-pointing causal vector field, with V0 > 0 and

VμV
μ ≥ 0, (85)
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then Wμ is a future-pointing causal vector field, with W0 > 0 and

WμW
μ ≥ 0. (86)

In fact, it can be shown without too much difficulty that the condition holds so long
as one has that

ρ(r) ≥ P(r), (87)

for all r within the matter region. All this can be done in general, under the hypotheses
stated, without discriminating any special forms of ρ(r) and P(r), or any specific
relations between them.

In our specific case here we have that ρ(r) = ρ0, so that the condition above
reduces to a condition on the dimensionless pressure p(r) defined in Eq. (42), namely
the condition that

p(r) ≤ 1, (88)

for all r within the matter region. While the particular examples given in Figs. 1 and 3
in this paper show that this is indeed the case in those examples, and although there
seems to be manymore examples in which this holds, so far we do not have an analytic
determination of the complete subset of the parameter space of themodel within which
the dominant energy condition holds. However, we can certainly state that there is a
region in the parameter space where the dominant energy condition is satisfied.

3.4 The curvature scalars

We have established that the solution contains a singularity at the origin r = 0.
However, we have not yet determined completely the exact nature of this singularity.
While we know that it is a repulsive singularity, since the gravitational field around it is
repulsive with respect to the origin, which in itself is a somewhat unexpected property,
its geometric nature is far from clear. We also know that this singularity is related to
the time, since we have shown that photons approaching the singularity undergo ever
larger amounts of red shift. However, the fact remains that we cannot yet be sure of
whether or not this is a curvature singularity in the invariant differential-geometric
sense of the term, or something that depends fundamentally on the coordinate system
used.

The singularity is contained in the sector of the solution for the inner vacuum,
which is known analytically, as shown in Eqs. (19) and (20). The most serious aspect
of this singularity is that, as shown in Eq. (20), the temporal coefficient exp[2ν(r)]
of the metric diverges to infinity as we make r → 0, behaving in fact as 1/r . This
is true so long as rμ > 0, that is, so long as there is an inner vacuum region at all,
since we have shown that rμ = 0 ⇒ r1 = 0, and also that rμ > 0 ⇒ r1 > 0. This
is a strong divergence, similar to the Coulomb divergence of the potential of a point
charge in Electrodynamics. Note that in the case of the radial component exp[2λ(r)]
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of the metric there is no divergence, but a convergence to zero instead, for any rμ > 0,
as shown in Eq. (19).

In order to bring the nature of this singularity into proper perspective, we calculated
several curvature invariants [2, 12] within the inner vacuum region, so as to be able
to subsequently examine their r → 0 limits. We will give here an outline of this
calculation, with all the results written for the inner vacuum region. The diagonals of
the metric tensor and of its inverse are given by

diag[gμν] =
[
A
r + rμ

r
,− r

r + rμ
,−r2,−r2 sin2(θ)

]
, (89)

diag[gμν] =
[
1

A

r

r + rμ
,− r + rμ

r
,− 1

r2
,− 1

r2 sin2(θ)

]
, (90)

where A is the constant given in Eq. (36). The Riemann curvature tensor, in its
geometric-definition form, has the 24 non-zero components given by

R0
1(10) = + rμ

r2
(
r + rμ

) ,

R1
0(10) = +A

rμ
(
r + rμ

)

r4
,

R0
2(20) = − 1

2

rμ
r

,

R2
0(20) = R3

0(30) = − 1

2
A
rμ
(
r + rμ

)

r4
,

R0
3(30) = − 1

2

rμ
r

sin2(θ),

R1
2(12) = + 1

2

rμ
r

,

R2
1(21) = R3

1(31) = + 1

2

rμ
r2
(
r + rμ

) ,

R1
3(13) = + 1

2

rμ
r

sin2(θ),

R2
3(23) = − rμ

r
sin2(θ),

R3
2(32) = − rμ

r
, (91)

where the index notation (01)means that the equation holds for the two indices shown
in either order, but with the corresponding changes of sign, given the antisymmetry of
the various curvature tensors by the interchange of the two indices in the first pair, or
of the two indices in the second pair. And the same holds for any pair of indices other
than (01), of course. This means that each result written with two such parenthesized
pairs of indices corresponds in fact to four tensor components. With this notation the
Riemann curvature tensor, in its fully covariant form, has the 24 non-zero components
given by
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R(01)(10) = + rμ
r3

,

R(02)(20) = − 1

2
A
rμ(r + rμ)

r2
,

R(03)(30) = − 1

2
A
rμ(r + rμ)

r2
sin2(θ),

R(12)(21) = + 1

2

rμ
r + rμ

,

R(13)(31) = + 1

2

rμ
r + rμ

sin2(θ),

R(23)(32) = −rμr sin
2(θ). (92)

In order to calculate the invariant curvature scalars, we start by considering the Rie-
mann curvature tensor in themixed form Rμν

λσ ,whichhas the 24non-zero components
given by

R(01)
(01) = + rμ

r3
,

R(02)
(02) = R(03)

(03) = − 1

2

rμ
r3

,

R(12)
(21) = R(13)

(31) = + 1

2

rμ
r3

,

R(23)
(32) = − rμ

r3
. (93)

We also consider the left dual curvature tensor in the form ∗Rμν
λσ , defined by

∗Rμν
λσ = − 1√−g

εμναβ Rαβλσ , (94)

of which there are also 24 non-zero components, given by

∗R(01)
(23) = −2

1√
A

sin(θ)
rμ
r

,

∗R(02)
(13) = − 1√

A
sin(θ)

rμ
r2
(
r + rμ

) ,

∗R(03)
(12) = + 1√

A

1

sin(θ)

rμ
r2
(
r + rμ

) ,

∗R(12)
(03) = −√

A sin(θ)
rμ
(
r + rμ

)

r4
,

∗R(13)
(02) = −√

A
1

sin(θ)

rμ
(
r + rμ

)

r4
,

∗R(23)
(01) = +2

√
A

1

sin(θ)

rμ
r5

. (95)
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Finally we consider the double dual curvature tensor in the form ∗R∗μν
λσ , defined by

∗R∗μν
λσ = − εμναβ Rγ δ

αβ εγ δλσ , (96)

of which there are also 24 non-zero components, given by

∗R∗(01)
(01) = −4

rμ
r3

,

∗R∗(02)
(02) = ∗R∗(03)

(03) = +2
rμ
r3

,

∗R∗(12)
(21) = ∗R∗(13)

(31) = −2
rμ
r3

,

∗R∗(23)
(32) = +4

rμ
r3

. (97)

Given these three tensors, the following six invariant curvature scalars can be defined.
We start by the three invariants which are linear on the curvature tensors, the scalar
curvatures

R = Rμν
νμ, (98)

∗R = ∗Rμν
νμ, (99)

∗R∗ = ∗R∗μν
νμ, (100)

and add to this the three invariantswhich are quadratic on the curvature tensors, namely
the Kretschmann scalar K1, the Chern–Pontryagin scalar K2 and the Euler scalar K3,

K1 = Rμν
λσ Rλσ

μν, (101)

K2 = ∗Rμν
λσ Rλσ

μν, (102)

K3 = ∗R∗μν
λσ Rλσ

μν. (103)

Performing the calculations we get for the two invariant scalars associated to Rμν
λσ ,

R ≡ 0, (104)

as is to be expected, since the Einstein equations are satisfied within the inner vacuum
region, where they reduce to Rμ

ν = 0, and hence imply that R = 0, and

K1 = 12
r2μ
r6

. (105)
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In the case of the invariant scalars associated to the left-dual tensor ∗Rμν
λσ , due to the

index structure of the non-zero components shown in Eq. (95), there are no non-zero
terms on either of the contractions, so that we immediately get

∗R ≡ 0, (106)

K2 ≡ 0. (107)

In fact, these two results hold even in the general static and spherically symmetric
case, that is, for all static and spherically symmetric geometries. Therefore, they imply
very little about our solution in particular. Performing the calculation of the last two
invariant scalars, those associated to ∗R∗μν

λσ , we get

∗R∗ ≡ 0, (108)

which is a consequence of the fact that the two tensors in Eqs. (93) and (97) are
proportional to each other, thus implying that their traces are proportional as well,
and

K3 = −48
r2μ
r6

, (109)

which not unexpectedly is proportional to K1.
Having calculated all the six invariant curvature scalars, we are now in a position

to consider their r → 0 limits, as well as the same limit of the individual tensor
components, in each case. All the linear curvature scalars turn out to be identically
zero within the inner vacuum region, although in the case of ∗R this retains precious
little relation to our particular solution. The same comment applies to the quadratic
curvature scalar K2. Of course it then follows that their r → 0 limits are zero as well.

The two remaining quadratic curvature scalars K1 and K3 both diverge fast to
infinity when we make r → 0. Since these are invariants, the fact that they diverge
to infinity when we approach a given point is not dependent on the coordinate system
used. Besides this, most of the non-zero components of all the three forms of the
curvature tensor, Riemann, left dual and double dual, with any sets of upper and lower
indices, also diverge to infinity in the r → 0 limit. The linear scalars R and ∗R∗, that
turn out to be zero, vanish because of cancellations among divergent components of
the corresponding tensors, which have the same absolute value and opposite signs.
In the case of the quadratic scalars K1 and K3, the negative signs are eliminated, the
divergent components add up and we get results that diverge when we approach the
origin.

While establishing the regularity of the curvature tensor at the origin would require
the calculation of a complete set of curvature invariants, with results that would have
to be finite, it is enough that one such invariant results divergent at the origin in order
to establish that the singularity is in fact a curvature singularity. This is so because the
values of an invariant scalar at any given points are not changed by any transformations
of coordinates. The description of the points may depend on the coordinate system,
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but the values of the scalar function cannot. Hence, if there is a sequence of points
within a neighborhood of the singular point, along which the invariant curvature scalar
diverges to infinity in one coordinate system, then it will so diverge in any coordinate
system. Besides, since this invariant curvature scalar is an algebraic combination of
the components of the curvature tensor, it follows at once that in any coordinate system
at least some of the components of that tensor will diverge to infinity.

Therefore wemay conclude that there is in fact an invariant singularity at the origin,
in the differential-geometric sense of the term. The singularity is not, therefore, an
artifact of the particular system of coordinates that we use, but a real geometrical
singularity with an invariant meaning. Still, from the point of view of the physics,
possibly the most important property of this singularity is that it is a repulsive rather
than attractive one.

4 Examples of specific solutions

In order to calculate z(r) either analytically or numerically it is convenient to define
a dimensionless variable ξ such that

ξ ≡ ϒ0 r �⇒ (110)
d

dr
= ϒ0

d

dξ
, (111)

where ϒ0 = 1/r0. In terms of ξ , Eq. (46), that determines z(r), becomes

z′(ξ) + η + 2ξ3

2ξ(η + 3ξ − ξ3)
z(ξ) = 3ξ3

2ξ(η + 3ξ − ξ3)
, (112)

where the primes indicate now derivatives with respect to ξ , and where we define

η ≡ ξ32 − 3ξM , (113)

ξ1 ≡ ϒ0 r1, (114)

ξ2 ≡ ϒ0 r2, (115)

ξM ≡ ϒ0 rM . (116)

Thus ξ1, ξ2 and ξM correspond respectively to the internal radius r1, the external radius
r2 and the Schwarzschild radius rM , expressed in terms of the new variable ξ . The
solution of Eq. (112) is obtained by writing Eq. (52) in terms of ξ ,

z(ξ)=
√

η + 3ξ − ξ3

ξ

[√
ξ2

3(ξ2 − ξM )
+ 3

2

∫ ξ

ξ2

dχ
χ5/2

(η + 3χ − χ3)3/2

]
, (117)

where, in order to remain within the matter region, we must have ξ1 ≤ ξ ≤ ξ2. If we
multiply both the numerator and the denominator in the integrand of the integral in
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Eq. (117) by χ3/2, define the polynomial Q(χ) = χ
(
η + 3χ − χ3

)
and the rational

function S(χ, Q) ≡ χ4/Q3, then the integral in Eq. (117) can be rewritten as

∫ ξ

ξ2

dχ
χ5/2

(η + 3χ − χ3)3/2
=
∫ ξ

ξ2

dχ S
[
χ,
√
Q(χ)

]
. (118)

The expression on the right-hand side of Eq. (118) is by definition an elliptic integral
[13] and cannot be expressed in terms of elementary functions except in two cases: (1)
S
(
χ, Q1/2

)
contains no odd powers of χ ; in our case this happens when η = 0 and

leads to the Schwarzschild interior solution; (2) the polynomial Q(χ) has two equal
roots; this leads to the explicit solutions that we discuss next.

4.1 A family of explicit solutions

The integral in Eq. (117) contains a cubic polynomial. The nature of its three roots
depends on the value of its discriminant � [14]. For cubic polynomials of the form
aξ3 + cξ + d we have � = −4ac3 − 27a2d2. If � > 0 the polynomial has three
distinct real roots, if � = 0 it has three real roots but two of them are equal, and if
� < 0 it has one real and two complex roots which are conjugate to each other. In our
case we have a = −1, c = 3, d = η and therefore � = 27(4 − η2).

The value � = 0 corresponds to the case where the solution for z(ξ) can be
expressed in terms of elementary functions. Note that we have � = 0 when η = ±2,
which corresponds to ξ32 = ±2 + 3ξM . For η = −2 the polynomial in the integral in
Eq. (117) is non-positive for ξ ≥ 0. Therefore, we must choose η = 2. For this value
of η the polynomial is strictly positive in the interval [0, 2) and can be factored as

2 + 3χ − χ3 = (2 − χ)(χ + 1)2. (119)

In this case we can express the integral in Eq. (117) in terms of elementary functions.
The calculation can be considerably simplified using a new integration variable u
defined by u = √

χ/(2 − χ). The final result, up to an integration constant, is

I(χ) ≡
∫

dχ
χ5/2

(2 − χ)3/2(χ + 1)3

= 2χ2 + 15χ + 10

18 (χ + 1)2

√
χ

2 − χ
− 5

√
3

27
arctan

(√
χ

2 − χ

)
. (120)

Thus, in terms of I(χ) Eq. (117) reads

z(ξ) =
√
2 + 3ξ − ξ3

ξ

{√
ξ2

3(ξ2 − ξM )
+ 3

2
[I(ξ) − I(ξ2)]

}
. (121)

Note that, in order to guarantee that the cubic polynomial for η = 2 shown in Eq. (119)
is always positive, we need to have χ < 2. Therefore, since we already know that
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the polynomial is positive, the arguments of the square roots in Eq. (120) are always
positive.

4.2 Examples of numerical solutions

In our numerical approach here, we assume that the external radius ξ2 = ϒ0r2 is
given. In order to complete the calculation we have to determine the interior radius
ξ1. This can be done recalling that the dimensionless pressure p(ξ) is zero for ξ = ξ2
and ξ = ξ1. Since according to Eq. (53) p(ξ) = 1/z(ξ) − 1, this is equivalent to
the determination of the values of ξ for which z(ξ) = 1. By the determination of
ξ1 we would have solved the problem in the entire matter region. Note that since
ξ = ϒ0r = √

κρ0 r we have obtained a family of solutions parametrized by two
parameters, the external radius r2 and the parameter η.

If the discriminant � �= 0 the integral in Eq. (117) is expressed in terms of elliptic
integrals and the result is not very transparent. It is more convenient to integrate the
differential Eq. (112) using the fourth-order Runge–Kutta algorithm (RK4) [15]. We
start by choosing a value of ξ = ξ2 for which the cubic polynomial is positive and we
put z(ξ2) = 1. This determines the outer radius of the matter shell. We then iterate the
differential equation given in Eq. (112) in the decreasing ξ direction until we reach the
first point for which the value of z returns to 1. This point is chosen as ξ1. If a value for
ξ1 cannot be found, we conclude that there is no solution to the problemwith the given
values of ξ2 and ξM . A good test for the efficiency of the algorithm is to compare the
exact analytic result given in Eq. (121) with the result from the numerical integration
in that same case. These results are shown in Fig. 1. On any current 64-bit desktop
computer one can easily reach a high degree of precision with little numerical effort.
After iterating the RK4 algorithm from ξ2 to ξ1 the difference between the exact and
the numerical results for z(ξ) stays below 1.03536 × 10−29 for an iteration step of
δξ ≈ 10−7.

In the comments that follow ξμ ≡ ϒ0rμ, where rμ is the integration constant that
results from the solution of the Einstein equations in the inner vacuum region, given
in Eq. (31). In the matter region the input parameters are η and ξ2. The parameter ξ1 is
obtained from the integration ofEq. (112). The value of ξM that is necessary for plotting
the curves is given in Eq. (116). The expressions for λ(ξ) and ν(ξ) are given in Table 1.
Figure2 shows the plots of the functions ν(ξ) and λ(ξ) for η = 2.0 and ξ2 = 51/3.
The curves were obtained analytically using Eq. (121) and the expressions in Table 1,
but using the numerically calculated parameters ξ1 = 0.594881 and ξμ = 0.596494.

InFig. 3weplot the dimensionless pressure p(ξ) as a functionof ξ , in a case inwhich
there is no analytic expression in terms of elementary functions and the calculation
is performed numerically. The parameters are ξ1 = 1.24050 and ξμ = 1.03035.
Comparing Figs. 1 and 3, that depict the dimensionless pressure p(ξ) as a function
of ξ for η = 2.0 and η = 5.0, one notes that the two graphs are similar but for larger
values of η the graph becomes less symmetric. Note that in both cases we have that
p(ξ) < 1.

Figure 4 shows the plots of the functions ν(ξ) and λ(ξ), for η = 5.0 and ξ2 = 2.0.
In this case there are no analytical solutions in terms of elementary functions available
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Fig. 1 Comparison between the dimensionless pressure p(ξ) calculated analytically and numerically using
the Runge–Kutta fourth-order algorithm for η = 2.0, ξ2 = 51/3 and ξM = 1.0, resulting in ξ1 = 0.594881
and ξμ = 0.596494

Fig. 2 The functions ν(ξ) and λ(ξ) for η = 2.0, ξ2 = 51/3 and ξM = 1.0. The shaded area indicates the
matter region, to its right is the outer vacuum and to its left is the inner vacuum.Here we have ξ1 = 0.594881
and ξμ = 0.596494
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Fig. 3 The dimensionless pressure p(ξ) calculated numerically for η = 5.0, ξ2 = 2.0 and ξM = 1.0. Here
we have ξ1 = 1.24050 and ξμ = 1.03035

in the matter region and the values of ν(ξ) and λ(ξ) were obtained numerically. In the
vacuum regionswe used the analytical expressions given inTable 1with the parameters
ξ1 = 1.24050 and ξμ = 1.03035.

5 Conclusions

In this paper we have given the complete and exact solution of the Einstein field
equations for the case of a shell of liquid matter. Although this particular problem
can be seen as having a somewhat academic nature, it does lead us to two important
and unexpected conclusions. One of them is that all solutions for shells of liquid
matter have a singularity at the origin, within the inner vacuum region, that does not,
however, lead to any kind of pathological behavior involving the matter. The other
is that, contrary to what is usually thought, a non-trivial gravitational field does exist
within a spherically symmetric central cavity, namely the inner vacuum region.

The geometry within the cavity is associated with a spacetime that is contracted in
the radial direction, rather than expanded. It is easy to verify that, unlike what happens
in the outer vacuum region, in the inner vacuum region the proper radial length, �1,
say from r = 0 to r = r1, is in fact smaller than the corresponding radial coordinate
r1. We have that d�1 = √

g11 dr , and therefore

�1 =
∫ r1

0
dr
√

r

r + rμ

<

∫ r1

0
dr
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Fig. 4 The functions ν(ξ) and λ(ξ) for η = 5.0, ξ2 = 2.0 and ξM = 1.0. The shaded area indicates the
matter region, to its right is the outer vacuum and to its left is the inner vacuum. Here we have ξ1 = 1.24050
and ξμ = 1.03035

= r1, (122)

given that rμ > 0. This illustrates the fact that the radial lengths within the inner
vacuum region are contracted rather than expanded. The true physical volume of the
inner vacuum region is therefore correspondingly smaller than the apparent coordinate
volume. This renders this inner geometry not embeddable in the illustrative way that
is usually employed in the case of the outer vacuum region.

The gravitational field associated to this geometry, inside the inner vacuum region,
can be interpreted as a repulsive field with respect to the origin. This can be ascertained
from an examination of the sign of the derivative of ν(r) in the inner and outer vacuum
regions, and its interpretation in terms of the energy of a photon traveling in the radial
direction. This sign is positive in the outer vacuum region, corresponding to an attrac-
tive field towards the origin, and negative in the inner vacuum region, corresponding
to an repulsive field away from the origin.

Of course, since ν′(r) is a continuous function, and since we enter the matter region
from the outer vacuum region with a positive derivative for ν(r), and exit it into the
inner vacuum region with a negative derivative, there must be a point within the matter
region where ν′(r) = 0, and where the derivative flips sign. This is clearly the point
re of minimum of ν(r), which is also the point of minimum of z(r), and hence the
point of maximum of the pressure P(r), a point which already had a role to play in
our arguments.

The arisal of a spherically symmetric regionwhere the gravitational field is repulsive
rather that attractive with respect to the origin may feel contrary to our classical
intuition regarding gravity. However, this type of situation can arise even in the context
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of aNewtonian framework inflat spacetime, ifweuse a slightlymodifiedpotential.One
can acquire an intuitive understanding of the unexpected situation in the inner vacuum
region by considering the time-honored Newtonian argument for the determination of
the gravitational force within a hollow spherically symmetric thin shell of matter, but
with a potential that behaves as 1/r1+ε for some |ε| � 1, thus leading to a force that
behaves as 1/r2+ε .

If one considers a test mass at a point in the interior of the hollow shell, at the
position r with respect to the center, it is not difficult to use the usual Newtonian
argument to show that, if ε > 0, then the resulting gravitational force at that point is
oriented outward, in the direction of r, towards the shell of matter. In other words, the
attraction by the part of the shell that is closer to the point r outweighs the attraction
from the opposite side, thus leading to a resulting force that repels particles away from
the origin. Note that this argument involving a potential behaving in a way other than
1/r is the same that can be used to model the precession of the perihelion of orbits
in General Relativity using this Newtonian framework. That precession is prograde
precisely if ε > 0.

It is interesting to note that this configuration of the gravitational field tends to
stabilize the shell of liquid matter, since any particle of matter that detaches from the
liquid and wanders into one of the vacuum regions will be driven back to the bulk of
the liquid by the gravitational field. This can be interpreted as a successful stability
test satisfied by all the solutions. The general tendency of the gravitational field is
therefore that of compressing the shell of fluid matter, from both sides. This suggests
that the same interpretation should be valid in the case of a gaseous fluid.

The singularity at the origin is usually thought to be associated with an infinite
concentration of matter there, and thus considered to be an evil that must be avoided
at any cost. However, this argument only makes any sense at all if one thinks of that
singularity as a point of gravitational attraction, rather than as a point of repulsion of
matter. Here we do have the singularity, but not the infinite concentration of matter at
the origin, due to the repulsive character of the gravitational field around the origin.

In any case, the existence of the singularity is not a question of choice, of course,
since it is required by the field equations and by the interface boundary conditions that
follow from them. In the case of the shell solutions one is not at liberty to impose that
rμ = 0 in order to avoid this singularity. The condition rμ = 0 just selects a particular
subset of non-shell solutions. In our case here it selects the interior Schwarzschild
solution.
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