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M • I 

In [5], Erdos, Gillman a.nd Henriksen proved an important isomorphism 

theorem for real-closed fields. They applied the theorem ~ .a class of fields that 
appears as non-archimedean residue class fields of m~ma.l ideals in rings of 

continuous functions on completely regular topologica.l spaces. 

In this paper we study the residue ,class fields of the Colombeau ring of 

generalized numbers le (where K is th~ field of real numbers R or the field 

of complex numbers C). This ring can be thought of• the ring of moderate 

(see definition below) germs of functions (not necessarily continuous) at the 

right of zero in ]O, 1]. The ring K is provided with a natural filtration v and an 

a.ssociated ultrametric norm (in the sense of [11), that turns it into a complete 
non-archimedea.o peeudometric space. Thia filtration induces in a natural way 

a filtration in every residue class field of K, that is, in every quotient of K by 

a ma.ximal ideal J. We prove in Section 1 that the induced filtration is in fact 

a valuation V of the field K/J. It turns out that the residue fields "K./J are in 
fact complete non-archimedean valued fields. 

In Section 2 we state some of Ka.pla.nsky's results on ma.ximal fielda with 

valuations [7], to prove that 'K./ J is in fa.ct a ma.ximal field (Section 3, Theorem 

3.4). As a consequence of this fact we can apply a structure theorem for such 

residue class fields: if kJ is the residue field - in the sense of valuation theory 

- of the valued field (R/ J, V), then 

C/J !:!!! kJ((t1t)), 

and 
If./J £!! kJ((t1t,ca,.8)), 

where kJ((tR, ea.o)) is the field of formal power series E-resti.,f'Y with Sa well 
ordered subset of R, a., E kJ &nd fl't/J = CaJlfl'+/J {for aome factor set Ca,.8)· 

The field kJ((tR)) is the same but with Ca,p = 1. 

"The au&bor would like &o thank hen, R. Bianeoai, A. Ancona and 0. Rlobranco for many 

belp{ull c:omenalioaa. 
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' .... 
In order to decide if all the residue class fields are isomorphic we had to 

introduce the analog of the zero set of & continuous function. In the ring K the 
situ&tion is different from the usual context of rings of continuous functions, 
because we have germa of arbitrary (moderated) functions. Some (ad&pted) 
machinery of [6] worked out in our case. We proved that all residue class 
fields C/J a.re isomorphic (Theorem 6.10), but we left the real case (K = R) 
open. The real case seems to be more delicate because the fields If./ J are 
nonarchimedean real-closed fields (Section 5) of power c that are not '71-set.s 
(see [9]). 

Let K denote the field of real numbers or the field of complex numbers. 
We define the ring tM(K) aa the ring (pointwise operations) of a.11 functions 
/: JO, l] -+ K that a.re moderate, that is, that verify the moderation condition 

(1.1) 

We will write {1.1) using the o-symbol_ simply as IJ(e)I = o(e"). For a given 
/ E t:.M(K) we define 

11(1) = sup{o- ER : IJ(e)I = o(~)} 

It is clear that 11(/) E RU { oo} and that II verifies the following properties: 

LEMMA 1.1. 
(1) 11().f) = v(f) for all). EK• and all f e !.M(K). 
(e) 11(10) ~ 11(!) + 11(9). 
(9). v(f + g) ?; min{v(/), v(g)}. 
(./) v(er /) = r + 11(!) for all r ER and all/ E !M(K). 
(5) 1/r < u and IJ(e)I = o(e") then 1/(e)I = o(e'") 
(6) 1/n ~ 1 ia an inte.ger, v(r) = nv(l). 

The function vis called a filtration (see [11) of the ring &M(K). We define 
I I: t:M(K) -+ R+ by 

Ill := e-"u> 

with the convention e-00 = O. Then we have the immediate properties: 

LEMMA 1.2. The fund.ion 11: !M(K) -+ R+ ia an ultrametric fund.ion 
(see [l]) in EM(K) and 

(1) I - /I= I/I, 
(2) I/+ nl $ ma.x{l/1, lgl}, 
(3) I/+ DI= ma.x{l/1, lull i/ 1/1 'F IDI• 
(.I) ler/1 = e-rlfl. 
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(5) lful s llllul 
In the terminology of [1], the ring EM(K) with the function 11 is called a 

semi-normed ring. The function I I defines a. pseudometric topology by means 
of 

d(f,g) := If - ul, 
which makes £M(K) into a topological ring. We define 

kerl I= {/ E £M(K) : 1/1 = O}, 

&nd it is not dificult to prove that kerl I is in fact &n ideal of CM(K) that · 

we will denote by N(K) or simply by N. The elements of N will be called 

null-functions. 

REMARK 1.3. By Lemma 1.1 (6) it follows that Nia equal to its radical 

./Ji= {/(e) E £M(K) : /(et EN for some integer r > O}. 

The ring of Colombea.u genera.Ii.zed numbers is defined by 

K := EM(K)/N. 

The filtration JI has the property that 11(/) = oo if, and only if, / E N 
and 11 is constant in each equivalence class module N. Hence we can define 11 

in K and we ca.n also naturally define 

I 1:K--+ R+-
The ring K with this 11 is a. normed ring, [lJ. It is in fact a complete (eee {2]) 
normed ring, the completion of the semi-normed ring £M(K) in the sense of 

[l). . 
The K-algebra X can be thought of as the algebra of moderate germs 

of functions a.t o+. A germ / is moderate if (1.1) hols for some (hence all) 
representative /(e). 

NOTATION 1.4. In this paper roe toill alwavs denote elements of K by 
letters /, g, h, and so on. For a representatiae off we toill write /(e) or 
j. An element of X/J will be denoted by[/]. The quotient K/J will alao be 

denoted by R'1. 
If J ui a maximal ideal of I{ then it is easy to eee that the multiplicative 

group of units Kx is open, and consequently J must be closed (see [l], p. 27, 

corollary S). We can define a filtration: 

(1.2} 11([!]) = sup{11(/ + h) : h E J}, 

and an ultrametric ([l], p. 17) function: 

l[/]lru := inf{I/ + hi : h E J}. 
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We have the following properties: 

LEMMA 1.5 ([l], pp. 16 - 17). Since J is closed in K, the function I lree 
is a norm in K; and the corresponding topology is the quotient topology. Since 
K is complete, KJ is also complete. 

We a.re going to see that the filtration (1.2) is in fact a rea.l valuati~n of 
the field K;. We will need the following criterium: i 

LEMMA 1.6 ([1], p. 43, Proposition 1). Let (A, I I) be a normed ring with 
the following properties: 

( 1) For each a E A, a -::/: 0, there exists a multiplicative element m E A 
and an ezpoent s E N such that Ima•! = lmllal• = 1, 

(2) A"" = B'if B1 is an integral domain, 
where A"' is the ruidue ring of A, defined by the quotient of the closed unit 

ball B~ = {z E A : lzl $ 1} by the open unit ball B1 = {z E A : lzl < 1}. 
An element m E A is called a multiplicative element if m ¢ kerl I and if 

lmzl = lmllzl VzEA. 

THEOREM 1.7. If J is a maximal ideal o/K then the induced filtration 
11 in KJ, defined by (1.2) is in fact a ooluation, that is 

(1) 11([/]) = oo if, and only if f E J. 
(2) 11([/][g]) = 11([!]) + 11([g]). 

Proof. To prove (1), suppose that 11((/]) = oo. Then sup{11(/ + h) : 
h E J} = oo a.nd there is a sequence {/,.} with /,. E [J] for all n ~ 1 such 
tha.t limn-.co 11(/,.) = oo. Hence, for a.ny g E [J] we have g - J,. E J a.n-::l so 
lim(g - /,.) = g E J because J is closed. This proves that [g] = [/] = 0. 

To use Lemma. 1.6, we must note tha.t the functions e i-+ e" (tha.t we 
denote simply bye") are multiplicative elements ofX by Lemma 1.2 (4), and 
consequently a.re multiplicative elements of R;. Besides, the whole ring K 
verifies 1r1 = I/I" for all natural numbers n ~ l (see Lemma 1.1 (6). This 
property is called pou,er-multiplicativity in [l]). To verify (1) of Lemma. 1.6, 
we consider a.ny [/] EK; and put a := 11((/]). Then, defining m = e-a we 
have tha.t 

v([m]l/1) = -a+ v([.f]) = 0, 

and so l[m][.f]I = l[m)ll[.f]I = 1. To verify (2), consider the elements [z], [J.,] E B~ 
such that [zy] E B1, Then 11([zy]) > O. We will prove that the only way 
of having 11([z][y]) > 0 is ha.ving 11([:i:]) > 0 or 11([y]) > 0. Let us chose 
representatives f, j of [z], [y] such that 11(fj) > 0. Since 11(:i:) $ 11([:i:]) and 
v(y) $ 11([y]), if by a.bsurdum 11([z]) = 11([y]) = 0 we would have 11(z) $ 0, 
11(y) $ 0 and 11(ij) > 0. 
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Choose any O < b < v(iy). Then, it is not true that li(e)j/eh/2 -+ 0 if 
£ -+ o+. This mea.ns tha.t there is &n M > 0 such tha.t the set 

A:= {e E]O, 1] : 1,;11 > M} 

is not empty and O e A (the closure of A). Let XA denote the characteristic 
function of the set A and XAc the characteristic function of it.a complement set 
Ac in ]O, 1] {they a.re clearly moderate functions). Then XAXA• = 0 and so, 
since J is a maximal ideal, we must have XA E J or XA• E J. And so, if we 
write 

i = ZXA + ZXAc, 

we have four possibilities: 

(1) i = iXA mod Jandy= YXA mod J, 

(2) i = ZXA mod J and Ji= YXA• mod J, 

(3) i = iXAc mod J and fl= YXA mod J, 

(4) i = iXAc mod J and fl= YXA• mod J, 

In case (1), since lx(E)y(E)l/£6 -+ 0 when£-+ o+, and we have 

lz(e)I IO(e)Ju(e)I > Mlv(e)xA(e)I > O 
eb/2 eb/2 - t;h/2 - I 

it follows that IY(e)XA(e)l/£6/ 2 -+ o. This means tha.t v(JixA) ~ b/2 and 80 

v([yxAD = v([y]) > O. 
Cases (2) and (3) are Bimpler because in both cases we have 

iy = ZXAYXA• = 0 mod J, 

and so [z][y] = O, that is, either z E J or fl E J, a.nd 80 or v([z]) = 00 or 
v([y]) = 00. In case (4) we have i = iXAc and 80 

lz(E)XA•(E)I $ Me•12, 

that is, v([:a:]) = v([zx,tc]) ~ b/2. This proves the theorem. □ 

2. Pseudo-convergence and maximality 

In this section we recall some definitions and result.a concerning some 
aspect.a of valuation theory that will be needed in the sequel. 

Let K be a field with a. valuation V, with value group R and k it.a residue 
field. 
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DEFINITION 2.1. A well ordered set {ap} of elements of K, without a 
last element, is said to be pseudo-convergent if whenever p < u < T, 

(2.1) V(au - ap) < V(aT - au)• 

LEMMA 2.2 ([7]). If {ap} is pseudo-convergent, then either 
(1) V(ap) < V(au) for all pairs p,u with p < u, or V(ap) = V(au) from 

some point on, i.e., for all p, a ~ >.. 
(2) V(ac, - ap) = V(a,+1 - ap) for all p < "· 

~ a. consequence of Lemma. 2.2 we can una.mbiguously put 'YP for V( au -
ap) (p < u). We note tha.t by inequality (2.1), h,} is a monotone increasing 
set of elements of R. In fa.ct, if p < " then p < u < u + 1 and 

'YP = V(au - ap) < V(au+l - au)= 1u• 

DBFllUTION 2.3. An element z E K is said to be a limit of the pseudo­
convergent set {ap} ifV(z - ap) = 'YP for all p. 

DEFINITION/LEMMA 2.4. The set of all elementa 11 EK auch that V(11) > 
1 P for all p fonm an ( integral or jmctionary) ideal t!l in the ooluation ring B, 
called the breadth of {a,}. 

The limit of a. pseudCKOnvergent set is by no means unique; however, 
given one limit, it is easy to describe the totality of limits: •. 

LEMMA 2.5 ([7]). Let {a.,} be a pseudo-convergent, with breadth t!l, and 
let z be a limit of {ap}. Then an element is a limit of {ap} if, and onl11 if, it 
is of the form z + 11, with y E t!l. 

Let the field L be an extension of K, with a. valuation tha.t is an extension 
of V. If the group and residue class field of L coincide with Rand k, res~ 
ctively, we say that L is a.n immediate extension of K. If K admits no proper 
immediate extensions, K is said to be mazimaL 

THBORBM 2.6 (Kapla.nsky, [7]). A field with a valuation is mazimal i/, 
and onl11 if it contains a limit for each of its pseudo-convergent sets. 

LEMMA 2.7 ([3], p. 90). Let {ap}pET be a pseudo-convergent set and 
T' CT a well ordered cofinal subset. Then {apheT' is a pseudo-convergent set 
with the same breadth and the same set of limits of {ap},eT• 

We need some results concerning the structure of a. maximal field F with 
value group R a.nd residue class field k, in order to ha.ve a unique maximal 
extension of a. given valued field. We have 

THBORBM 2.8 ([4], p. 226). Let the masimallr, complete field F iaave 
value group r and residue class field k, such that F and k have charucteristic 
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zero. Suppose that evef'l,I element of k has an n-th root in k for all integers n. 
Then F is analytically isomorphic to k(((tr)), where this last field is the field 
of formal power series L-yes a.yf' with a.y E k and S a well ordered subset of 
r. 

REMARK 2.9. We will use this result in the ctUe F = C/J ( that we will 
prove to be maximal), where k = kJ, the residue field o/C/J, and r = R. 

If the residue field ki does not contain the n-th roots of its elements - as 
is the case of R/ J - then a. factor set Ca,p appears: 

THEOREM 2.10 ([7], Theorem 6, p. 317). Let K be a mazimal field with 
value group r and residue field k. If K and k are both of characteristic zero, 
then K is analytically isomorphic to a power series field k((tr, Ca,.B)), where 
ta • tl3 = Ca,pt0 +P and Ca,P is a factor set. 

3. Maximalitv of residue class fields 

Now we work again in the ring K of Colombea.u generalized numbers. We 
will denote the filtration v simply by V, because in the quotient K/J it is 
really a valuation. 

LEMMA 3.1. Let {v .. (e)},.>1 be a sequence of moderate functions such 
that each Vn is zero in [1/2", 1] and V(vn) ~ 'Yn• Suppose that i'Yn} is a 
monotone increasing sequence of positive real numbers. Then the series 

(3.1) 4>1(e) = E vn(e) 
n~l 

defines a moderate function. 

Proof. First notice that the series (3.1) makes sense beca.use for each e, 
there is only a finite number of indices n such that v,.(e) can pos&bly be 
different of zero. 

If we define g;::+1c = Vm + "m+l + · • · + Vm+Jc then g;::+1c is moderate and 
V(g;::+lc) ~ min{V(vm+;) : 0 $ j $ k} ~ "fm by hypothesis. To prove the 
lemma, it is enough to prove tha.t there is a real number b such that 

(3_2) I E..>;.""(e)I = I lim1c➔c;.g~+1cce)I ---+ 0 (e-+ o+). 

We choose b = "ft - ch, for some 61 > O. If (3.2) is false, then, there is an ~ > 0 
such that for every o > 0 we can find some O < e• < o with 

I limA:➔00 g~+1c(e*)I • 
' >c (e•)-n- 1 
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But this means tha.t for k ~ No 11ufficiently great we must ha.ve 

lg2+"(e*)I 2 > (.. 
(e-)-ri-l1 I 

which is a. contradiction because if we let 6 ➔ 0, we already know tha.t 

V(g:+k(e)) ~ 'Y2 and, by Lemma. 1.1 (5), 

g:+11(€) -+0 
(e)-ri.-61 • 

□ 

REMARK 3.2. Notice that in the situation of the abotie lemma we ca1t, 
conclude 

V(L t1;(e)) ~ 'Ym• 
j~m 

In fact, if we had considered g;::+11 instead of u:+- we could have choaer. b = 
'Ym - 6.,. and the proof would have been the same. 

TBBOltBM 3.3. Let {[ap]heT be a pseudo-convergent set in "ll./J. Then 
there ill a cofinal subset T C T and a pseudo-convergent set {a~}pET, in R 
8uch that [a~ = [ap] for all p E T'. 

Proof. Since the value group r of the valued field "K./ J is r = R and T is 
a well ordered subset of r without a. last element, we have tha.t T is enumerable 
and hence, can be written aa 

T = {pi < P2 < · · · < Pw < Pw+1 < · · · < P'Jl.i < P:iw+t < · · ·}, 
where w is the first non finite ordinal. We will choose a. well ordered cofinaJ 
subset T' of T and then a.pply Lemma. 2. 7. Then we can find a convenient 
lifting to a. pseud<H:Onvergent set in K. 

First we consider the cofinaJ subset 

T" = T - {p..,,p,..,,1>3,,,, ••• }. 

Notice that he set T" can be divided into segments, the first being {p1 < P2 < 
···},the second {Pw+l, Pw+2, • • ·}, and so on. Then it is clear that we can have 
either 

(1) T" has only a. finite number k of segments, or 
(2) T" has a.n infinite number of segments. 
In the first case we define T' = T'' if k = 1; T' = {Pw+1, Pw+2, • • ·} if k = 2; 

and, for general k ~ 2, 

T' = {P(k-l)w+h P(k-l)w+2, P(k-l)w+-31 •• ·}. 

In the second case we define 

T' = {P1,Po,1+1,P2w+1,~1, ... }. 
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It is clear in both ca.sea that T' is a. well ordered cofinal subset of T and 
by Lemma 2.7, {[ap]heT' is a pseud<H:Onvergent set with the same limit., of 
the initial one. 

The first case. We can suppose without loss of generality tha.t 

T' = {p1,P2,P3, · .. }. 

Defining V([a,+1]-[ap]) = 'YP (p ET') we have (see Lemma 2.2) that {-yp},eT• 
is a. monowne increasing sequence of real numbers without a. greatest element. 
Let us now construct the convenient lifting. Choose a~ , a~

1 
representatives 

of (aP2], [aPl] such that V(a~1 - a~) = i,,, with i,1 < "(p1. Choose a~ a 
representative of [aPa] such that V(a~ - a~) = 1~ with 'Yp, < 'Y'P'J < 'YPoJ• If 
we continue in this way we ha.ve a. simila.r construction of a.II {a~;}, for 1 ~ j, 
with the property: 

I I I 
'Yp1 < 'YP1 < 1P2 < 'YP2 < "f Pa < 'Y,a < . •. 

Let us prove that { a~} pET' is a. pseudo-convergent set in K. Consider the 
set of elements p < u < T of T'. We must prove that 

V(a: - a~) < V(a~ - a:). 

Since { i,,} ~T' is monotone increasing, it is enough to prove that 

V(a~ - a~)= V(a~1 - a~) 

for a.II pairs p < u. If u = p + le for some k ;;:: 2, then 

a~, -a~= (a~, -a~(A:-i)) + (a~(A:-t)-a~(A:-2)) + ·· ·+ (a~1 - a~) 

and since i, < T,+i < · · · < Y,+(A:-l) we have that 

V(a~ - a~) = min{V(a~; - a~c;-i)) : 1 ~ j ~ k} = i,. 
This proves that { a~} pET' is a pseudo-convergent set in K. 

The second case. Now T' = {P1tPw+i,P2c.>+1,P&i+1,···}, and, in the same 
way we did above, we can construct liftings a~;..,+i for all j ;;:: 0 such that if we 

put V([a.r] - [aP;..,+iD = 1; (,- E T' and P;...+1 < 1") then 

V(a~u+i)..+i - a~; .. +i> = i; < 1;, 

'Yi < 'Yt < 'Y2 < 72 < 'Y~ < 'Y3 < . • '· 
The remainder of the proof is the same. This proves the theorem. D 

TBBOR.BM 3.4. The quotient KJ of the Colombeau ring X bu a ~mal 
ideal J is a mazimal field. 
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Proof. Let {[ap]}peT be & pseudo-convergent set in XJ. We must con-, . 

struct an element I/] E I{, such that V([/] - [ap]) = "/p for all p. Since the ·· 

sequence of real numbers {'yp}peT is monotone increasing, multiplying ea.chap 
by a(!' (for an appropriate fixed r, independent of p) we can suppose~at 

1 P > 0 for all p. It is clear that if [J] is a limit for {[F!' ap]} ,~ then [e-r /] will 
be a. limit for the original pseudo-convergent set. 

By Theorem 3.3 we can suppose without 1068 of generality that there is 

& set of representatives {a~},,eT of the classes {[a,]}peT such that if we set 

V(a~ - a~)= i, then 

(3.3) 1;, < 1,i < "(~ < 11>2 < i,. < "'(,. < · · · 
It does not matter if we &re in the first or the second case. We will use 

tha notation of the first case for its simplicity. 
If we can find a "limit" f EK for this set {a~},eT, in the sense that 

V(f - "~) = 1~, Vp ET 

then 
V((.f] - [a~) = V([/] - [a~ 1] + [a~1] - [a~) 

but V([a~1] - (a~]) = "'(p and V([/]- [a~1]) ~ V(f - a~1) = "Y',,+i > -r, by 
(3.3} So, 

V([J] - [a~]) = min{V{[a~1] - (a~]), V((.f] - [a:.+11)} = -r,. 
This provm that I/] is a limit for the pseudo-convergent set {[ap]},e7. Lftt us 

find this limit/ in X. 
Let us write T aa T = {p1 < P2 < · · ·}. By hypothesis, for every p E T we 

have V(a:.+1 - a~) = -r, and we can find some representatives a:.+1 (e), a~(E) E 

£M(K), in order to define: v,.(e) = a~+l (e}-a~ (E), fore < 1/2" and v,.(e) = 
0 for E ~ 1/2n. Define 9n = a~ + V1 + "2 + · · • + Vn• Then 9n and a:.,_+1 define 
the same class in K. Notice that since 1/2" ➔ 0, the series 

f(e) = a~1 (e) + E v,.(e) 
n,!::1 

makes sense, beca.use, for ea.ch given E it consists only in a. finite sum. In fa.ct 

it is a moderate function by Lemma 3.1. 
Besides, considering the projections in X, we have: 

a.nd ao 

f - a,_ = a~, + Ev,. - { a~ + "1 + 11'J + · · · + Vn-1) = E v; 
;~1 ;~-

V(f - a~)= V(a~+l - a:.,. + E v;) = 
j~n+l 

= min{V(a~+l - a:.,.}, V( E v;)} = Tp,., 
j~n+l 
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by Rema.rk 3.2. This proves the theorem. 

11 

□ 

To use Theorems 2.8 and 2.10 a.hove, we notice that if ki is the residue 

field of Ki (it is clear that the characteristic of ki is zero and that KC k1), 
then, if K = C, every element of kJ has an n-th root in kJ for all integers 
n ~ 1. It follows from Theorem 3.4 that 

C/J ~ ki((ill)). 

This is no longer true if K = R. In this case we have that ([7), p. 317) 

Rf J ~ kJ((f1l, Ca,p)), 

where ,b((tR, Ca,p)) is the field of formal power series E,.yes a..,t7 with Sa. well 
ordered subset of R and 

with CaJJ e ki a factor set. 

4. A partial order in R 

In this a.nd the next section section we shall construct a total order in 

the residue class fields R/ J. This order was introduced by the a.uthors of [8], 
and most of the result.a of this and the next sectiona, except Lemma 4.1 1111d 

Theorem 5.2, are due to D. Sca.rpalezos in a. persona.I communication to the 
authors of [8]. 

The partial order a.nd the lattice structure of the set of all functions RJO,l] 

induce naturally a. partial order on the subring of the moderate functions 

EM(R), which is also a. sublattice. To pass these structures to R = EM(R)/N 
some ca.re is needed. For the function -e%p( -1/ e) is negative in EM(R) and 

zero in R:. 
We will put a. partial order in R as follows: if /, g E R, then / ~ 0 if for 

a.ny representative /(e) of/ we have: for every b > 0 there is an O < '16 < 1 

such that /(e) ~ -e6 in )0, 'lb], 
We say that / ~ g if/ - g ~ 0. 

LEMMA 4.1. If f E 1[ then f ~ 0 if, and only if, there uista a represen­

tative f(e) of I such that f(e) ~ 0 for all e E]O, 1]. 

Proof. H there is some representative /(e) off as a.hove, then a.U repre­

sentatives are of the form 
J(e) +e(e) 

for e(e) E N. Since for every b > 0 we have -e6 $ t(e) $ e6 for all £ in some 

]O, 'lb], then -e6 $ /(e) + {(e) for O < e $ 'lb· Then / ~ O. Conversely, let 
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Ji (e) be an arbitra.ry fixed representa.tive of/. Then, for every b > 0 '.';ere 

is an f'/6 such that ft (e) 2: -~ in JO, '11>1• Let us choose b = n, for all natural 

numbers n 2: 1 and put 1Jb = fin (that we can choose to verify: '1n+l < '1n) 
Define: 

An= {e e]O,min{l/2n,'7,.}] : fi(e) < O}. 

Then A.+1 C An and A,. c]O, 1/2"] for all n ~ 1. If there is some N ~ 1 such 

that AN is empty, then we can choose f (e) as being Ii (e) in ]O, 1/~+l] and 0 

in ]l/~+1, 1]. Then it is clea.r tha.t J = Ii in Rand that /(E) ~ 0 for all E, If 

A11 is not empty for every n 2: 1, we define 

{ 

/i(e) if /i(E) 2: 0 
f(e) = 

E" if E E An \ An+l 

Then /(e) is a moderate function and f(e) - fi(e) is equal to zero or to 

en - /1 (e) in An\ A..+1- But then, since in An\ An+i we have -e" ~ Ii (e) < 
-en+l, we must have 

0 < s" + s"+l < £11 - /1(£) ~ 2£", in A..\ A .. +1-

But this implies that /(e)- /i(e) belongs to }I. This proves the lemma.. 
□ 

L&MMA 4.2. ~ relation 2: is a partial order in Ji". 

Proof. It is clear tha.t if f 2: g then / + h 2: g + h. From Lemma 4.1 it 

is clear that if f 2: 0 and g 2: 0 we must have lg 2: 0. Besides, if / ~ g and 

g ~ l then / = g. In fact, fixed b > 0, we must ba.ve . 

l(e) - g(e) 2: -c6 g(e) - /(e) ~ -e" e E]O, 11] 

Thus, 1/(e) - g(e)I < eb, and hence / - g is in N. □ 

We can define the absolute value off E R: it is the class Ill of the function 

defined by 
1/l(e) := 1/(e)I. 

It is clearly a. positive moderate function. The class I/I does not depend on 

the representative; for if /i is another representative, 

11/(e)l- lft(e)II ~ 1/(e) - ft(e)I = o(~) 

for all b E R. Thus, Ill - I/ii EN. 

LBMMA 4.3 (Convexity of ideals). If J ia an arbitraf'J,I ideal of R, then 

/ E J if, and only if, 1/1 e J. More generallu, if O ~ 191 ~ Ill and f E J, then 

g eJ. 
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Proof. We fix a representative /(e) of/ in what follows. Let u(e) be the 

function such that u(E) = 1 if f (e) ;?!: 0 and u(e) = -1 if f(e) < O. Then u(e) 

is a moderate function and its class belongs to R. 

1/(e)I = u(e)/(e) Ve E]O, 1) 

ans1 so, since u-1(e) = u(e), / E J ¢:::> Ill E J. HO $ IDI $ Ill and J E J 

then we can choose representatives f (e) and g(e) of the classes / and g such 

that lu(e)I $ 1/(e)I (notice that if /(71) = 0 then g(y) = 0) fore in some ]O,fJ], 

Define the function u(e) for e e]O, v] as 

{ 

g(e)/ /(e) if f(e) #:- 0 

u(e) = 
1 if f(e) = 0 

and u(e) = 1 fore > JJ. It is clear that u is moderate, a.nd so, since 

g(e) = u(e)f(e) Ve e]O, '7] 

we have the lemma. D 

We can define the positive a.nd negative parts of a.n element / E It: 

r = /+Ill r = I-Ill 
2 2 

then / = /+ + r, f+ ~ O, r $ O. 

LBMMA 4.4. If J ia a prime ide.al of ff. and / ia an element not in J, 

then either j+ or 1- belongs to J. 

Proof. Choose a representative f(e) of/. Then, it is cle&r that j+(e) is 

a. representative of j+ and J-(e) is a representa.tvive of J-. Besides 

I'(e) · rM = o, Ve E]O, 1]. 

Since J is a prime ideal, we must have/+ E J or J- E J. 
D 

. 6. Totai order in Ri j 

We have seen that I[ is a partially ordered ring &nd e~ery maximal ideal is 

convex (Lemma4.3 above). To put an order in the residue field R/J we recall 

a general fact (see [9], Chap. 5, Theorem 5.2): If I is an ideal in a partially 

ordered ring A, then, in order that A/ I be a partially ordered ring according 

to the definition 

[J] ~ 0 ~ 3g EA, with g ~ 0 & g =/(mod J), 
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it is neceasa.ry and sufficient that / be convex:.1 

So we define the order in If./ J in this way and it follows from this definition 
([9], Chap. 5, Theorem 5.3) that [J] ~ 0 if, and only if,/= I/I (mod J). We 
could also say tha.t [/] ~ 0 if, and only if, f = j+ (mod J) (or equivalently: 
[/] ~ 0 if, a.nd only if J- E J). 

THEOB.BM 5.1. The field RJ is totally ordered by thf! above order. 

Proof. We sa.w in Lemma 4.4 tha.t if / E R then either j+ E J or J- E J ·., 
This means that every element is compa.ra.ble with zero. It is also clear that 
if [f] $ {g] a.nd {gJ $ [f] then [.fJ = [gJ, because/ - g = If - gl (mod J) a.nd . 
g-f = lg-fl (mod J) imply f-g = g-f (modJ) a.ndso, / = g (mod J). □ 

Besides, this order is compa.tible with the order of RC llJ. 

TBBORBM 5.2. If J is a mazimal ideal of I[ then It1 is a real-closed 
field. 

Proof. We will prove that every positive element baa a square root and 
every polynomial of odd degree has a root in the field ltJ. If O < [.f] is a positive 
element ofl[J, then/= /+(mod J) and by Lemma. 4.1 we can suppose that 
there is a representative such that /(e) ~ 0 for€ E]01 fJ). Then, we consider 
g(e) := ,/l(e'j for O < e < '1 and O for '1 $ e $ 1. Thus g is a modera.t.e 
function and g2 = / in It. If 

X" + l/~1JX"-1 + · · · + l/1JX + [Jo] 

is a polynomial with odd degree an coefficients in RJ. We consider the poly-
nomia.l equa.tion · 

(5.1) X" + /n-1 (e)X"-1 + ···+Ii (e)X + /o(e) = 0 

obtained by choosing representa.tiv~ /;(e) E t'M(R) of the classes/; in 1t 
For ea.ch fixed€ EJO, 1], (5.1) is a polynomial equation with real coefficients 

and odd degree. Therefore, there is a real root r(e) which we can suppose, by 
standard calculus, to verify: 

(5.2) lr(e)I $; ma.x{l, 2nl/,.-1(e)I, ... , 2nl/o(e)I}. 

This defines a function r: ]O, 1) ➔ R. Since the right side of (5.2) is a moderate 
function it follows that r(e) ia also moderate. If we had considered a general 
polynomial 

1In (II], convent)'• defined in a different wq. What - call conwsit• In 1-nma 4.3 • called 
o.baolute con•ml11 there. Abao.lute ~ty • auonpr then conwxity. 
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with [J,.] #: 0, then dividing by 1/n] we would have obtained a. monic polynomial 

with the same roots. 
D 

REMARK 5.3. Since C = R + iR ( where i = J=I), if Jc is a mazimal 

ideal of C, then 

J = {f ER : f = R(h), for some h E J,:} 

(where R(h) is the "real part" of the genn h) is a subset of Jc that generates 

Jc in l: and is a mazimal ideal of R. Then Jc = J + iJ and 

RJ(i) = R[,1/(J[i]) = c/Jc, 

and so, since R/ J is a real-closed field, C/ Jc is algebraically closed. 

6. Isomorphism classes of residue class fields 

Of course the next question is: are the fields KJ isomorphic? We will 

answer this question in the case K = C. For the real case K = R, although 

ff./J is a real-closed field we cannot apply the main theorem of [5], because 

it is not a. '1J.-&et (see [5] or [9] for a definition), as can be seen by choosing 

A= {[OJ} and B = {[£"] : n ~ I}. It is clear that there is no [h] E "lf./J such 
that 

[O] < [h] < [e"] Vn ~ 1. 

LBMMA 6.1. If J is a mazimal ideal oj"K. then the degru o/transcendency 

o/RJ over the field K is at le.ast ,. 

Proo/. It is clear that Kc KJ, C.onsider the subfield of KJ defined by 

.C := K({[E'] : r ER}). 

We will prove that the set A = {[e"] : r E R} is a transcendency base of 

.C over K. Since e6 · e" = e6+' and (E'r = e"'• for all integers m ~ 1, it is 

enough to prove that the set A is linearly independent over K. Suppose that 

a1[e•1] + a2[e~] + · · · + at[e,,11
] = [OJ, 

with each a; 'F O and bi < ~ < • • • < b1c. This means that a1e61 + a2~ + 
• • • + a,,el>11 E J, which is impossible unless a.ll a;'s are zero, because a1e61 + 
a 2e62 + • • • + a~• is a unit of 'K. 0 

For every j E EM(K) we write Z(h = {E EX : i(E) = O}; Z(h is called 

the zero-set of i. We have the following characterization of the elements of X: 

LBMMA 6.2 ([8]). ut f be any non-zero element of K . Thffl: 
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( 1) If J is a unit, then every repruentatiue j of J verifies O ¢ Z(i).±_ 

(2) If f is not a unit, there is a repre8entative i of J such that OE Z(i), 
where X denotes the closure of a subset X c]O, 1] in (0, 1]. 

DEFINITION 6.3. If f is a non-unit of K, a repruentative J of f such 
that (2) of Lemma 6.2 holds toill be called a generic rtpre8entative off. 

Let I be any ideal of K. We define the set (we use the convention: if 
j E &M(K) then its projection in K will be denoted simply by /) 

Z(l) = {Z(j) : Vj generic, f EI, }. 

We also denote by ZQO, 1)) the set of all Z(i) for every generic j E EM(K). 
We sa.y that a. subfamily .A C ZQO, 1]) is generically closed (for short g­

closed) if for every pair Z(j), Z(g) in .A, there are generic elements i1 and {J1 
such that 

(1) /=Ji and g = 91 in Kand 
(2) Z(ii) n Z(.91) E .A. 

LBMMA 6.4. The /amil71 Z(l), I a proper ideal o/'R, •atufiea the follow­

ing properties: 
( 1) The empt11 set is not a member of Z (1). 
(2) Z(l) is g-cloaelL. 

- (3) Let A E Z(I) and B = Z(g) for some generic g E EM(K) such that 
B ::> A. Then BE Z(I). 

. _Proof. Since I is a proper ideal, (1) is clear from the definition of Z(I). 
If Z(j) a.nd Z(g) are members of Z(I) then we have Z(j) n Z(g) = 

Z(lil + 1§1). But although lfl + lul E I (see Lemma. 4.3) the function Iii+ IDI 
ma.y be no~generic. Let this be the case; we can then suppose without loss of 
generality that there is an f] > 0 such that liMl+lg(e)I :/:- 0 for every E E]O, fJ]. 

But by Lemma 6.2 we can find a. generic h such tha.t h = I/I + lul in R 
and h =Iii+ lul +f, where l EN. 
- Define the set U = Z(h). Then U is a nonempty subset of]O, l] and O E Tl. 

Consider the function 

{ 

li(e)I + l§(e)I if e E U0 

cp(E) = -
0 if EE U 

Then cp is a moderate function and 

{ 

{(e) if E E U0 

h(E) - cp(E) = O 
if EE U 
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and this means that the projection r.p of ti> is equal to lfl + lol in K. Now define 

• { i(e) if e e uc { g(e) if e e uc 
h(e)= ~(€)= 

0 if£ E U O if e E U 

We will prove that f1 - J E N a.nd 91 - g E .N. To do this, notice that the 

functions 
li(e)lxu(e) 

are functions of .N; in fact 

lb(e)lxu(e) 

liMlxu(e) < Oi(e)I + lu(e)l)xu(e) _ l!(e)xu(e)I ➔ 
0 

~ - ~ - ~ 

for very b ER. Since we have supposed that li(e)l+lh(e)I # 0 for every e E]O, 71] 

and OE U, the functions lg(e)lxu(e) and li(e)lxu(e) are non identica.lly zero. 

But we may write: 

lb(e)lxu(e) = lb(e)xu(e)I li(e)lxu(e) = li(e)xu(e)I, 

and since it is clear that u E .N if and only if lul E N, it follows that 

f(e)xu(e) E .N and g(e)xu(e) E .N. This means that f(e)- fi(e) = f(e)xu E 

,N a.nd g(e) - b1(E) = g(e)xu E N. Then / = h a.nd g = 91 in K, and 

Z(i1) fl Z(g1) = U. This proves (2). Let A= Z(i) E Z(J) and B = Z(~) for 

BOme h E &M(R), with B ::> A. Then, since I is an ideal, Jg E I and /h is a 

generic representative of fh. But 

Z(fh) = Z(j) u Z(h) = Z(h), 

and this proves (3). D 

LEMMA 6.5. Let A be a famil11 of ZOO, 1]} such that (1), (2) and (9) 

above are satisji&l. Then A= Z(I) for some proper ideal I ofK. 

Proof. Let I= {/ER : Z(j) EA}. If f,g EI then by (2), there are 

generic representatives j and g such that 

Z(j + b) :> Z(lil + lbl) = Z(i) n Z(j) 

Then, since we can suppose that Z(i)nZ(g) EA, by (3) we have Z(f+g) E .A. 

and hence J + g E I. 
If / E I and 'I/, E K then we can find a generic representative j of f and 

a representa.tive 'ifJ of v,. Then j,j, is a. generic representa.tive of /v,. Then 

z(i,i,) = Z(i) u Z(¢) ::J z(h. 

Therefore, by (3), Z(f,¢) E .A and so ft/, EI. 

This proves that I is an idea.I. Let us prove that it is a. proper ideal. If 

some unit u EK belongs to I, then Z(u) EA for some generic representative 
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u. But by Lemma. 6.2, u does not have any generic representative. This proves 

the lemma. cf 

LEMMA 6.6. Let J be a mazimal ideal o/X and define 

J' ={/ER' : 3j, generic ,Z(h E Z(J)}. 
,• 

Then J' ·= J and so, if [I] and [g] are elements of the quotient "K./J ,uch 

that there are representatives j and g that coincide in some Z E Z(J), ~ 
[f] = [g]. 

Proof. By Lemmas 6.4 and 6.5 we have that J1 is a proper ideal of X and 

it is clear that JC J'. By the ma.ximality of J we have that J = J'. If j and 

g coincide in some Z(u) E Z(J) then Z(i- j) :> Z(u) and so, by Lemma 6.4 

(3) we have Z(i - g) E Z(J). But by the above reasoning,/ - g E J, and 10 

[/] = [g). This proves the lemma.. 

□ 

DEFINITION 6.7 (Adapted from (6)). By the minimal cardinal aaaociate.d 
with a mazimal ideal J of'K., we shall mean the smallest of the cardinal numbers 
of the sub•eta Z, for Z E Z(J). By con6truction it ia clear Chat the amallen 

minimal cardinal ia No. 

LEMMA 6.8. Let b denote the auociated minimal cardinal of a madmal 

ideal J o/X. Then the power of"K/J ia not gf'mter then 21. 

Proof. By Lemma. 6.6, if[/] and [g] h&ve representatives j and j that 

coincide in some Z(u) E Z(J) then [f] = [g]. Since there are at most c• (i.e., 

2•, because b ~ No) K-valued functions defined in Z(u), it follows that there 
are at most this many mutually incongruent such functions. · · D 

THEOREM 6.9. Let J be a mazimal ideal oJX. Then the mininal cardinal 
of J ia No, 

Proof. We will construct a generic function i(£) such that Z(/) is enumer­

able and/ E J. Let Ebe any enumerable subset of X =]0, 1] such that OE F. 
If, for some such E, XEc E J then we are done. If not, let E = {1/n : n ~ 1}. 

Then XB E J. Define I,. =)1/(n + 1), 1/n[, n ~ 1, and 

{ 

1 if EE E 

g(E) = £"

0 

if£ E /" - {p,.} 

if e=p,. 

where p,. is the middle point of J,.. Then j is moderate and iE-g is a function' 

that has the properties: 
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(1) for all real numbers be R we have: 

XE(e) - g(e) -+ O e ➔ o+, 
eb 

that is, XE = g in K, and 

(2) Z(g) = {Pn : n ~ l} (a.nd so g is generic). 

So, g E J and the ca.rdina.lity of Z(g) is No, This proves the theorem. □ 

THEOREM 6.10. All quotients CJ have pov,er , and so are all isomorphic. 

Proof. By Theorem 6.9, the minimal cardinal associated to every maximal 

ideal J of C is No and so, by Lemma. 6.8, the cardinality of C/ J is ~ 2No = ,. 
But since we have trivia.Uy that c ~ the ca.rdinality of C/ J we have that a.II 

such quotients have ca.rdina.lity exactly ,. Since aJ1 these fields a.re algebraically 

closed (see rema.rk 5.3), a classical theorem of Steinitz inplies that all these 

fields are isomorphic. D 

If K = R we have already observed that R/ J is not of order type r,. We 

will prove the following: 

LBMMA 6.11. The order of R/ J is unbordered and continuous. 

Proof. A set is unbordered if it is not empty and nas no fust and last eh~ 

ments. Considering any [/] e If./ J we muat. have that for 110me repl'e&ellta.tive 

/(e) of J: IJ(e)I = o(e') {for some b E R). Then, there is an 0 < fl& < l such 

that -e6 < /(e) < e6 for O < e < 'lb, and ao, by the definition of the order in 

I[ we have -e6 S / S e6, and since the family {er},.eR has no first and no last 

element, R/ J is unbordered. 
An ordered set, each of whose decompositions is a. cut, is said to be con­

tinuous ((10], Ch. III, §7). Let us suppose that < A, B > is a decomposition 

of If./ J that is a. gap. Then cz < b for all cz E A and all b E B and A baa no laat 

and B has no first element. Let {[J,.l} and {[g,.l} (n ~ 1) be two sequences of 

elements of R/ J cofinal in A and coinitial in B respectively, such that 

(6.1) Vnl < [Jn,+1] < l9m+il < [g,,.], 

for all n, m ~ 1. We will prove that there is a.n element [h] E R/ J such tha.t 

[j,.] < [h] < [g,,.] 

for all n, m. This ia not possible since < A, B > is a decomposition of Rf J, 

and so there a.re no gaps in If./ J. 
Fll'St note that we may assume, without loss of generality, that we can 

find representatives J,.(e) and /n+i(e) of/,. and /n+i (and 9m+1(e), g,,.(e) of 

9m+i, 9m) such that for all e E]0, 1] we have: 

(6.2) f,.(E) $ /n+t(E), 9..+t(E) $ g,.(e). 
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For ifwe put 

J!(e) = ma.x{fi(e), ... , /n(e)}, 

then these functions a.re clea.rly moderate a.nd, by (6.1) (and the definition of 

the order) we will have that/!= In and u:n = g,,. in lI (that is, they define 

the same class module N). 
Secondly, we note that we may also assume that for all e E]O, 1) 

(6.3) /n(e) :S Un(E). '' 

For put /{'(e) = /I(e), and gf(e) = max{/f'(e),g{(e)}. If we have defined 

J,, J," _,, II th t . 
1, •· •• n,111, •·•,Un 80 a 

J;'(e) :5 • • • :S /!(e) :5 g:(e) :5 · · · :S gf(e), 

for all e E]O, 1]1 then we put 

J::+1 (e) = min{ma.x{f.:(e), f..+1 (e)}, 0:(e)}, 

u:+1(E) = max{min{0:(e),9~+1(e)},f.:+1(e)}, 

then it follows from (6.1) and the order in lI that we have J:: = f! and 0:: = Y,i. 
for all n ~ 1. Moreover, we have 

t;:(e) S f::+1 (e) S u:+1 (e) :S g;(e) 

for all e E]O, 1]. 
We define h(e) = sup{/n(E) : n ~ 1}. Then, by (6.2) and (6.3), h(e) is a 

moderate function and we have /n(e) :S h(e) :S g.(e) for all e E]O, 1). But in 

fact we have 
1/n) < [h) < fg,,.] 

for all m, n ~ 1, because if [/t] = [h] for some k, then,_ since /.(e) :S /.+1 (e), 

and lh(e)-A+;(e)I :S lh(e)- J-.(e)I for all j ~ 1, the fact that [h] = flt) means 

h - J-. E J, and so, by Lemma 4.3, we would have [h] = 1/k+;], contradicting 

(6.1). In the same way we cannot have [h] = fg-.) for any k. This proves tha.t 

"l!i/ J baa a continuous order. □ 

7. Open questiom 

(1) Is the order type of If./J the order type of the field of real numbem? 

Tha.t is, in view of the above lemma., can we construct an enumerable dense 

subset of ff./J? (See [10], Chap. III, §7, Theorem 3). 
(2) Are the fields ff./J, J a maximal idea.I, isomorphic? 

lMS'ITJVTO D■ MAT■KATICA ■ ElrrATmTJCA DA UKIVIIIUDAI)■ D■ SAO PAULO, CAIXA PorrAL 

68281, CEP 0&31.,_1170, Slo PAUW, SP, BRAZIL 
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