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In order to decide if all the residue class fields are isomorphic we ha(.d to
introduce the analog of the zero set of a continuous function. In the ring K the
situation is different from the usual context of rings of continuous functions,
because we have germs of arbitrary (moderated) functions. Some (adapted)
machinery of [6] worked out in our case. We proved that all residue class
fields C/J are isomorphic (Theorem 6.10), but we left the real case (K = R)
open. The real case seems to be more delicate because the fields R/J are
nonarchimedean real-closed fields (Section 5) of power ¢ that are not 7;-sets

(see [9]).
1. Preliminary results

Let K denote the field of real numbers or the field of complex numbers.
We define the ring £)s(K) as the ring (pointwise operations) of all functions
f:]0,1) — K that are moderate, that is, that verify the moderation condition

(1.1) 3 eR, lm |f()l=0.

We will write (1.1) using the o-symbol simply as |f(e)] = o(e?). For a given
f € Em(K) we define

v(f) =sup{ec € R : |f(e)] = o(¢®)}
It is clear that v(f) € RU {00} and that v verifies the following properties:

LEMMa 1.1.

(1) v(Af) = v(f) for all A € K* and all f € Ep(K).
(2) v(f9) 2 v(f) + v(9)-

(8).v(f +9) 2 min{v(f),»(g)}-

() v(Ef)=r+v(f) for allr € R and all f € Ey(K).
(5) If 7 < o and |f ()] = o(e”) then |f()| = o(e”)

(6) If n > 1 is an integer, v(f™) = nu(f).

The function v is called a filtration (see [1]) of the ring £pr(K). We define
H}: Er(K) — Ry by
1= e

with the convention ¢~ = 0. Then we have the immediate properties:

LEMMA 1.2. The function | |: Ep(K) — Ry is an ultrametric function
(see [1]) in EM(K) and

(D 1-f1=11,

(2) If + g < max{| 1, gl},

(3) 1f + gl = max{}fl],1gl} if If} # lg|.

(4) e fl= eI £].
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(5) 19l < |/llsl

In the terminology of [1], the ring £ps(K) with the function | | is called a
semi-normed ring. The function | | defines a pseudometric topology by means
of

d(f,9) =1f - 4l,
which makes £3s(K) into a topological ring. We define
ker||={f € Eu(K) : |f| =10},

and it is not dificult to prove that ker| | is in fact an ideal of £p(K) that
we will denote by AV (K) or simply by /. The elements of A will be called
null-functions.

REMARK 1.3. By Lemma 1.1 (6) it follows that N is equal to its radical
VN = {f(€) € EmM(K) : f(e)” € N for some integer r > 0}.

The ring of Colombeau generalized numbers is defined by
K = Eyq(K)/N.

The filtration v has the property that v(f) = oo if, and only if, f € N
and v is constant in each equivalence class module A'. Hence we can define v
in K and we can also naturally define

|- K — R,.

The ring K with this | | is a normed ring, [1]. It is in fact a complete (see [2])
normed ring, the completion of the semi-normed ring £p(K) in the sense of

[1]. i

The K-algebra K can be thought of as the algebra of moderate germs
of functions at 0*. A germ f is moderate if (1.1) hols for some (hence all)
representative f().

NoTaTioN 1.4. In this paper we will always denote elements of K by
letters f, g, h, and s0 on. For a representative of f we will write f(g) or
f. An element of R/J will be denoted by [f]. The quotient K/J will also be
denoted by K.

If J is a maximal ideal of K then it is easy to see that the multiplicative
group of units K™ is open, and consequently J must be closed (gee [1], p. 27,
corollary 5). We can define a filtration:

(1.2) v({f]) =sup{v(f+4) : heJ},
and an ultrametric ([1], p. 17) function:

{[fllree := inf{|f +h| : hE€J}.
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We have the following properties: v

LEMMA 1.5 ([1], pp. 16 - 17). Since J is closed in K, the function | |res

is a norm in K and the corresponding topology is the quotient topology. Since:
K is complete, K is also complete. .

We are going to see that the filtration (1.2) is in fact a real va.lua.tién of
the field K;. We will need the following criterium: 5

LemMa 1.6 ([1], p. 43, Proposition 1). Let (A,||) be a normed ring with
the following properties:

(1) For each a € A, a # 0, there exisis a multiplicative element m € A
and an expoent s € N such that {ma®] = |m||a}* =1,

(2) A~ = B; /B, is an integral domain,

where A™ is the residue ring of A, defined by the quotient of the closed unit
ball Bl = {z € A : |z| <1} by the open unit ball B, = {z € A : |z| < 1}.
An element m € A is called a multiplicative element if m ¢ ker| | and if

|mz] = |m]|z| Vz € A.

THEOREM 1.7. IfJ is a mazimal ideal of K then the induced filtration
v in K, defined by (1.2) is in fact a valuation, that is

(1) v([f]) = oo if, and only if f € J.

(2) v((fle]) = v([5]) + »((a])-

Proof. To prove (1), suppose that ¥([f]) = co. Then sup{v(f + h)

h € J} = oo and there is a sequence {f,} with f, € [f] for all n > 1 such
that lim, 0 ¥(fa) = c0. Hence, for any g € [f] we have g — f, € J and s0
lim(g — fa) = g € J because J is closed. This proves that [g] = [f] = 0.

To use Lemma 1.6, we must note that the functions £ ~ " (that we
denote simply by €") are multiplicative elements of K by Lemma 1.2 (4), and
consequently are multiplicative elements of K;. Besides, the whole ring K
verifies |f*| = | f|* for all natural numbers n > 1 (see Lemma 1.1 (6). This
property is called power-multiplicativity in [1}). To verify (1) of Lemma 1.6,
we consider any [f] € K and put @ := v([f]). Then, defining m = £~* we
have that

v([m]lf]) = —a+v([f]) =0,

and so |[m]{f]] = |[m}}|[f]| = 1. To verify (2), consider the elements [z], [y] € B}
such that [zy] € B;. Then v([zy]) > 0. We will prove that the only way
of having v([z][y]) > 0 is having »([z]) > 0 or »([y]) > 0. Let us choge
representatives £, § of [z}, [] such that v»(2§) > 0. Since »(z) < v([z]) and
v(y) < v([y]), if by absurdum v([z]) = v([y]) = 0 we would have () < 0,
v(§) < 0 and ¥(2§) > 0.
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Choose any 0 < b < v(£§). Then, it is not true that |3()|/e/? — 0 if
€ — 0%, This means that there is an M > 0 such that the set

A={e€)0,1] : Iﬁ,?' > M)

is not empty and 0 € A (the closure of A). Let x4 denote the characteristic
function of the set A and x4 the characteristic function of its complement set
A® in ]0,1) (they are clearly moderate functions). Then xax4c = 0 and so,
gince J is a maximal ideal, we must have 34 € J or x4 € J. And so, if we
write
& =3ixa+IXac, §=19%a+ 9Xac

we have four possibilities:

(1) & = 254 mod J and § = 4 mod J,

(2) 2 =2x4 mod J and § = iy ac mod J,

(3) & = &xac mod J and § = x4 mod J,

(4) 2= Ex4c mod J and § = fxac mod J,

In case (1), since |2()§(¢)|/e® — 0 when & — 0%, and we have

12(e)l 1§(e)xale)l [g(e)xale)]
7 e”/? >M b2 >0,

it follows that |§(e)%a(€)|/e®/* — 0. This means that v(§x4) > b/2 and so

v(lyxal) = v([s1) > 0.
Cases (2) and (3) are simpler because in both cases we have

| 2 = 2XaGRae = 0 mod J,
and so [z][y] = 0, that is, either z € J or y € J, and so or ¥([z]) = co or
v([y]) = 0. In case (4) we have £ = £y 4 and s0
la(e)Rac(e)| < MeM?,
that is, ¥([z]) = v([zXx4c]) > /2. This proves the theorem. (]

2. Pseudo-convergence and maximality

In this section we recall some definitions and results concerning some
aspects of valuation theory that will be needed in the sequel.

Let K be a field with a valuation V', with value group R and k its residue
field.
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DrriNiTION 2.1. A well ordered set {a,} of elements of K, without a
last element, is said to be pseudo-convergent if whenever p < o < 7, L

(2.1) V(ay - a,) < V(a; — a,).

Lemuma 22 ([7]). If {a,} is pseudo-convergent, then either

(1) V(a,) < V(as) for all pairs p,o with p < o, or V(a,) = V(a,) from -
some point on, i.e., for all p,o 2> A.

(2) V(a, - a,) =V(ap41—ap) forallp<o.

As a consequence of Lemma 2.2 we can unambiguously put «, for V(a, —
a,) (p < o). We note that by inequality (2.1), {¥,} is a monotone increasing
set of elements of R. In fact,if p < o then p< o < o+ 1 and

T = V(G, i ap) < V(G,.H_ - aa) =Y.

DEFINITION 2.3. An element z € K is said to be a limit of the pseudo-
convergent set {a,} if V(z —a,) =7, for all p.

DEFINITION/LEMMA 2.4. The set of all elemenisy € K such that V(y) >
«p for all p forms an (integral or fractionary) ideal A in the valuation ring B,
called the breadth of {a,}.

The limit of a pseudo-convergent set is by no means unique; however,
given one limit, it is easy to describe the totality of limits:

LeMma 2.5 ([7]). Let {a,} be a pseudo-convergent, with breadth ®, and
let z be a limit of {a,}. Then an element is a limit of {a,} if, and only if, it
i3 of the form z +y, with y € A.

Let the field L be an extension of K, with a valuation that is an extension
of V. I the group and residue class field of L coincide with R and k, respe-
ctively, we say that L is an immediate extension of K. If K admits no proper
immediate extensions, K is said to be mazimal.

TrEOREM 2.6 (Kaplansky, [7]). A field with a valuation is mazimal if,
and only if it contains a limit for each of its pseudo-convergent sets.

Lemma 2.7 ([3], p. 90). Let {a,},er be a pseudo-convergent set and
T' C T a well ordered cofinal subset. Then {a,},cT+ i8 a pseudo-convergent set
with the same breadth and the same set of limits of {a,}eT.

We need some results concerning the structure of a maximal field F with
value group R and residue class field k, in order to have a unique maximal
extension of a given valued field. We have

TaeoreM 2.8 ([4], p. 226). Let the mazimally complete field F have
value group I' and residue class field k, such that F and k have characleristic
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zero. Suppose that every element of k has an n-th root in k for all integers n.
Then F is analytically isomorphic to k(((t7)), where this last field is the field
of formal power series 3_,cs ayt? with a, € k and S @ well ordered subset of
T.

REMARK 2.9. We will use this result in the case F = C/J (that we will
prove to be mazimal), where k = k, the residue field of C/J, and T = R.

If the resnEue field k7 does not contain the n-th roots of its elements ~ as
is the case of R/J ~ then a factor set ¢, g appears:

TrEOREM 2.10 ([7], Theorem 6, p. 317). Let K be a mazrimal field with
value group I' and residue field k. If K and k are both of characteristic zero,
then K is analytically isomorphic to a power series field k((t*,ca,g)), where
% 1P = ¢, pt®tP and cop is a factor set.

—r

3. Maximalitv of residue class fields

Now we work again in the ring K of Colombeau generalized numbers. We
will denote the filtration v simply by V, because in the quotient K/J it is
really a valuation.

LEMMA 3.1.  Let {va.(e)}nn1 be a sequence of moderate functions such
that each v, is zero in [1/27,1) and V(v,) > Yn. Suppose that {y,} is a
monotone increasing sequence of positive real numbers. Then the series

6.1 $1(e) = Y vnle)

n2>1
defines a moderate function.

Proof. First notice that the series (3.1) makes sense because for each ¢,
there is only a finite number of indices n such that v,(g) can possibly be
different of zero.

If we define g™** = v, + Vi1 + -+ + U4k then g™+* is moderate and
V(gmt*) > min{V(vm+;) : 0 < j < k} > ¥m by hypothesis. To prove the
lemma, it is enough to prove that there is a real number b such that

: 24k
(32) 'E"Zf;"‘ ©l_ 'hm""zfﬁ @l _,0 (o)
We choose b = 4, — 8y, for some §; > 0. If (3.2) is false, then, thereis an ¢* > 0
such that for every & > 0 we can find some 0 < &* < § with

[limiren 24 | o
ey '




8 PAULO A. MARTIN

But this means that for k > Np sufficiently great we must have
I.‘h“‘( *)l
(5*)11—51
which is a contradiction because if we let § —+ 0, we already know that
V(ga**(€)) > 72 and, by Lemma 1.1 (5),

> €,

2+k
937 (€)
(e —0.
a
REMARK 3.2. Notice that in the situation of the above lemma we can,
conclude
V(Y vi(€) 2 Ym.
ji>m

In fact, if we had considered gm+* instead of git* we could have choser. b =
“m — 6m and the proof would have been the same.

TueoreM 3.3. Let {[a,]},eT be @ pseudo-convergent set in K/J. Then
there is a cofinal subset T C T and @ pscudo-convergent set {a),}pe1’ in K
such that [a}] = [a,] for all p€ T".

Proof. Since the value group T of the valued field K/JisT'=R and T'is
a well ordered subset of I' without a last element, we have that T is enumerable
and hence, can be written as

T={p<pa< <pu<put1 < <P < pri1 <}

where w is the first non finite ordinal. We will choose a well ordered cofinal
subset T of T and then apply Lemma 2.7. Then we can find a convenient
lifting to a pseudo-convergent set in K.

First we consider the cofinal subset

T"=T- {Pmpﬁmp&m---}-

Notice that he set T” can be divided into segments, the first being {p1 < p2 <
-++}, the second {pu+1, Pu+2;* **}, and 80 on. Then it is clear that we can have
either

(1) T” has only a finite number k of segments, or

(2) T has an infinite number of segments.

In the first case we define TV = T if k = 1; T/ = {pus1, Pty - -} f b = 2;
and, for general k > 2,

T'= {P(k—l)w+1ap(k—1)u+2,l’(k—1)w+a, -
In the second case we define

T = {P1) Purk1s Part 1 P31+ * )
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It is clear in both cases that T” is a well ordered cofinal subset of T and
by Lemma 2.7, {[8,]} e is a pseudo-convergent set with the same limits of
the initial one.

The first case. We can suppose without loss of generality that

T= {PI:PZ,P& o °}'

Defining V ([a,41] - [a,]) = 7, (p € TY) we have (see Lemma 2.2) that {y,},e1
is a monowone increasing sequence of real numbers without a greatest element.

Let us now construct the convenient lifting. Choose 4}, ,a), representatives

of [a,,), [a,] such that V(a},, — a}) = 7,, with 7}, < 7,,. Choose a, a
representative of [a,,] such that V(a}, — a),,) = 7;, with 7, <7, < 7. K
we continue in this way we have a similar construction of all {af,j}, for1<j,
with the property:

Yo < Vo1 < Yoy < Tpz < Yoy <Ypw <

Let us prove that {a}},¢7/ is a pseudo-convergent set in K. Consider the
get of elements p < o < 7 of T'. We must prove that

V(a, - a}) < V(a; - a).
Since {74} ,e7+ is monotone increasing, it is enough to prove that
V(ag - ap) = V(apy1 — ap)
for all pairs p < 0. If 0 = p+ k for some k > 2, then
Gyt = = (i = Gpyary) + (oo ~ Gpaeon) +F (i = @)
and since 7, < Y541 < -** < Vpy (k1) We have that
V(d, — a}) = min{V (a}y; ~ Ghy(j-1y) : 1< TSk} =7

This proves that {a}} 1 is a peeudo-convergent set in K.

The second case. Now T” = {1, fw+1, P2wt1; P3uwtls -}, a0d, in the same
way we did above, we can construct liftings a;,.“ " for all j > 0 such that if we
put V([a,] = [ap,.,]) =7j (7 € T’ and pjuya < 7) then

V(a;(ju)»q-z ) = 7 <%
NE<Nn<B<<TE<y< "
The remainder of the proof is the same. This proves the theorem. O

THEOREM 3.4. The quotient K of the Colombeau ring K by a mazimal
ideal J is @ mazimal field.
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Proof. Let {[a,]},eT be a pseudo-convergent set in K;. We must con-"
struct an element [f] € K such that V([f] - [a,]) = 4, for all p. Since the -
sequence of real numbers {7,},er is monotone increasing, multiplying each a,
by a & (for an appropriate fixed r, independent of p) we can suppose that
v, > 0 for all p. It is clear that if [f] is a limit for {[e"a,]},er then ¢~ f] will
be a limit for the original pseudo-convergent set. .

By Theorem 3.3 we can suppose without loss of generality that there is
a set of representatives {a}},eT of the classes {[a,]},er such that if we set .
V(a}, - a,) =17, then
(3-3) Voo <01 € Vos <V < Ty <Vea <+

It does not matter if we are in the first or the second case. We will use

tha notation of the first case for its simplicity.
If we can find a "limit” f € K for this set {a},},er, in the sense that
V(f - a) =7 VpeT
then
V(1 [a) = V([f] - [8p41] + [a1a] - [a])
but V([a},] - [a}]) = 7, and V([f] = [6)4,1]) 2 V(f — ap41) = Vo4 > 7o bY
(3.3) So,
V(A= o)) = min{V([a},] - [a,]), V(] - [6541])} = -
This proves that [f] is a limit for the pseudo-convergent set {[a,]},eT. Lat us
find this limit f in K.

Let us write T as T = {p; < p2 < ---}. By hypothesis, for every p € T we
have V(a},;; — a}) = v, and we can find some representatives a, (€), 8(c) €
Eum(K), in order to define: v,(€) = @), ,1(€) ~ @}, (€), for € < 1/2" and vp(e) =
0 for € > 1/2". Define g, = @), +v1+v3+---+tpn. Then g, and a;,_,, define
the same class in K. Notice that since 1/2™ — 0, the series

fe) =ap, () + Y vale)
n>1
makes sense, because, for each given ¢ it consists only in a finite sum. In fact
it is a moderate function by Lemma 3.1.
Besides, considering the projections in K, we have:
f-tp=al + T vm— (o), +vrtv bt va) =y
i1 j2n

and so

V(- ) = V(@ ~ o+ 3 03)=
J2n4l

= min{V(G'p-+1 - 'pn)i V( Z UJ)} = 7'h’
izt
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by Remark 3.2. This proves the theorem.
O

To use Theorems 2.8 and 2.10 above, we notice that if k; is the residue
field of K (it is clear that the characteristic of & is zero and that K C kj),
then, if K = C, every element of k; has an n-th root in k; for all integers
n > 1. It follows from Theorem 3.4 that

C/J = ks ((ER)).
This is no longer true if K = R. In this case we have that ([7], p. 317)
R/J = ks((tR, ca))s

where k7((tR, co,5)) is the field of formal power series 3¢5 ayt” with S a well
ordered subset of R and
tetf = c‘,,pt':"Hg ,

with cq g € ks a factor set.

4. A partial order in R

In this and the next section section we shall construct a total order in
the residue class fields R/J. This order was introduced by the authors of [8],
and most of the results of this and the next sections, except Lemma 4.1 and
Theorem 5.2, are due to D. Scarpalezos in a personal communication to the
authors of [8].

The partial order and the lattice structure of the set of all functions Rio:1)
induce naturally a partial order on the subring of the moderate functions
£x(R), which is also a sublattice. To pass these structures to R = £p(R)/N
some care is needed. For the function —ezp(—1/¢) is negative in Epr(R) and
zero in R.

We will put a partial order in R as follows: if f,g € R, then f > 0 if for
any representative f(¢) of f we have: for every b > 0 thereisan 0 < m <1
such that f(€) > —¢* in 10, m)].

We say that f > gif f—g > 0.

LemMa 4.1. If f € R then f > 0 if, and only if, there ezisis a represen-
tative f(g) of f such that f(¢) > 0 for all € €]0,1].

Proof. If there is some representative f(e) of f as above, then all repre-
sentatives are of the form

f(e) +&(e)

for £(¢) € N. Since for every b > 0 we have —et < £(e) < & for all ¢ in some
10, m), then —e? < f(&) + £(¢) for 0 < £ < m. Then f > 0. Conversely, let
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fi(¢) be an arbitrary fixed representative of f. Then, for every b > 0 !"icre
is an 7 such that fy(€) > —¢® in ]0,m). Let us choose b = n, for all natural
numbers n > 1 and put 75 = 7, (that we can choose to verify: fny1 < n)
Define;

An = {€ €]0, min{1/2%,7}] : fi(e) < 0}-

Then An41 C A, and A, CJ0,1/27] for all n > 1. If there is some N > 1 such
that Ay is empty, then we can choose f(g) as being f1{¢) in ]0, 1/2¥+1] and 0
in J1/2N41,1]. Then it is clear that f = f; in R and that f(¢) > 0 for all . If
A, is not empty for every n > 1, we define

file)  f file) 20
fle) = {

e ife€ An\ Ann

Then f(e) is a moderate function and f(¢) — fi(€) is equal to zero or to
€ — fi(€) in An \ An41. But then, since in A, \ An41 we have —¢" < hle) <
—e™1, we must have

0<e® 4™t e fi(e) € 2™, inAn\ A

But this implies that f(¢) — f1(¢) belongs to A, This proves the lemma.
O

LemMa 4.2. The relation > is a partial order in R.

Proof. 1t is clear that if f > g then f+ A > g+ h. From Lemma 4.1t
is clear that if f > 0 and g > 0 we must have fg > 0. Besides, if f > g and
g > f then f = g. In fact, fixed b > 0, we must have .

fle)-ge) 2~ gle)-fle)2 - e€lo,n]
Thus, |f() — 9(¢)| < €b, and hence f — g isin N. m]

We can define the absolute value of f € R: it is the class | f] of the function

defined by
I£1(e) = 1£(e)I-
It is clearly a positive moderate function. The class |f] does not depend on
the representative; for if f; is another representative,
W E) = 1AEN < 1f() - Al = ofe)

for all b € R. Thus, |f| - |fil €N.

LemMa 4.3 (Convexity of ideals). If J is an arbitrary ideal of R, then

f € J if, and only if, |f| € J. More generally, if 0 < |g| < |f| and f € J, then
ged.
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Proof. We fix a representative f(€) of f in what follows. Let u(e) be the
function such that u(€) = 1 if f(€) > 0 and u(€) = —1 if f(€) < 0. Then u(e)
is a moderate function and its class belongs to R.

|f()l = u(e)f(e) Ve €]0,1]

ang 8o, since u~}(e) = u(e), f € J <= |fl € J. HO < g| < |fland f€J
then we can choose representatives f(€) and g(g) of the classes f and g such
that |g(€)| < |1 £(€)| (notice that if f(y) = 0 then g(y) = 0) for £ in some 10, 7).
Define the function u(e) for € €]0, 7} as

{ 9(€)/f(e) if fle)#0
u(e) =
1 iffle)=0

and u(e) = 1 for € > 7. It is clear that u is moderate, and so, since
g(e) = u(e)f(e) Ve €]0,7]
we have the lemma., ]
We can define the positive and negative parts of an element f € R:
_ [+ - _f-lf

then f=ft+ -, f+ 20, f~ <0.
LemMA 44. IfJ is a prime ideal of R and f is an element not in J,
then either f+ or f~ belongs to J.
Proof. Choose a representative f(€) of f. Then, it is clear that f+(e) is
a representative of f+ and f~(€) is a representatvive of f~. Besides
f+(E) i f_(E) =0, Ve G]Os 1]'
Since J is a prime ideal, we must have f* € Jor f~ € J.

5. Total order in R/J
We have seen that T is a partially ordered ring and every maximal ideal is
convex (Lemma 4.3 above). To put an order in the residue field R/J we recall
a general fact (see [8], Chap. 5, Theorem 5.2): If is an ideal in a partially
ordered ring A, then, in order that A/I be a partially ordered ring according
to the definition

[fl>03gch withg>0 & g = f (mod J),
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it is necessary and sufficient that I be convex.!

So we define the order in R/J in this way and it follows from this definition
([8], Chap. 5, Theorem 5.3) that [f] > 0 if, and only if, f = |f] (mod J). We
could also say that [f] > 0 if, and only if, f = f* (mod J) (or equivalently:
[f] > 0if, and only if f~ € J).

TuEOREM 5.1. The field R is totally ordered by the above order.

Proof. We saw in Lemma 4.4 that if f € R then either ft € Jor f~ € J.,
This means that every element is comparable with zero. It is also clear that
if [] < [g] and [g] < (/] then [f] = [g], because f — g = |f — g| (mod J) and
9-f=lg~f| (mod J) imply f—g = g—f (mod J) and s0, f = g (mod J). O

Besides, this order is compatible with the order of R C R ;.

THEOREM 5.2. If J is a marimal ideal of R then Ry is a real-closed
field.

Proof. We will prove that every positive element has a square root and
every polynomial of odd degree has a root in the field R ;. If 0 < [f] is a positive
element of Ry, then f = f*+(mod J) and by Lemma 4.1 we can suppose that
there is a representative such that f(¢) > 0 for £ €]0,%). Then, we consider
g(€) == /Fle) for 0 < e < nand 0 for p < € < 1. Thus g is a moderate
function and g?= fin R. If

X™ 4 fat]X™ L 4 4+ [AKX + [fo]

is a polynomial with odd degree an coefficients in R;. We consider the poly-
nomial equation ’

(5.1) X"+ fa1(E) X"+ -+ file) X + fole) =0

obtained by choosing representatives f;(€) € £a(R) of the classes f; in K.

For each fixed € €]0, 1], (5.1) is a polynomial equation with real coefficients
and odd degree. Therefore, there is a real root r(¢) which we can suppose, by
standard calculus, to verify:

(5.2) Ir(e)l < max{1, 2n| fas(g)l, - .., 2n|fole)|}.

This defines a function r:]0, 1] —+ R. Since the right side of (5.2) is a moderate
function it follows that r(c) is also moderate. If we had considered a general
polynomial

!

[fa)X" + St} X" 4 -+ [A)X + [fo]

In {9], convexity is defined in a different way. What we call ity in L 4.3 is called
absolute convexity there. Absolute convexity is sironger then convexity.
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with [f,.] 3 0, then dividing by [f,] we would have obtained a monic polynomial
with the same roots.
O

RemaARrk 5.3. Since €= R+ iR (where i = /=1), if J, is a mazimal
ideal of C, then

J={feR : f=R(h), for someh € J.}

(where R(h) is the "real part” of the germ h) is a subset of J. that generates
J. in € and is a mazimal ideal of R. Then J. = J +iJ and

R, (i) = R[/(J[]) = €/,
and so, since R/J is a real-closed field, T/J. is algebraically closed.

8. Isomorphism classes of residue class flelds

Of course the next question is: are the fields K; isomorphic? We will
answer this question in the case K = C. For the real case K = R, although
R/J is a realclosed field we cannot apply the main theorem of [5], because
it is not a ny-set (see [5] or [8] for a definition), as can be seen by choosing
A={[0]} and B = {[e*] :n > 1}. It is clear that there is no k] € K/J such
that

[0l < [r]l < [eM Vn> 1.

LemMma 6.1. IfJ is a marimal ideal of K then the degree of transcendency
of K over the field K is at least c.

Proof. It is clear that K C K. Consider the subfield of K defined by
£:=K({[ : reR}).

We will prove that the set A = {[¢"] : r € R} is a transcendency base of

£ over K. Since ¢® - # = ¢4 and (%)™ = e™ for all integers m > 1, it is

enough to prove that the set A is linearly independent over K. Suppose that
anfeh] + g[e] + - -+ anle™] = [0},

with each o; # 0 and b < b2 < -+ < bi. This means that aye®* + age® +
.-+ aget* € J, which is impossible unless all o;’s are zero, because a1e® +
aze? + -+ -+ ope® is a unit of K. O

For every f € £y(K) we write Z(f) = {e € X : Fle) = 0}; Z(f) is called
the zero-set of f. We have the following characterization of the elements of K

Lemua 6.2 ([8]). Let f be any non-zero element of K. Then:
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(1) If f is @ unit, then every representative f of f verifies 0 € Z(f) .\
(2) If f is not a unit, there i3 a representative f of f such that 0 € Z(f),
where X denotes the closure of a subset X CJ0,1] in [0,1].

DeriniTION 6.3. If f is a non-unit of K, a representative f of f such .
that (2) of Lemma 6.2 holds will be called a generic representative of f.

_ Let I be any ideal of K. We define the set (we use the convention: if
f € Em(K) then its projection in K will be denoted simply by f)

Z()={2Z(f) : Yf generic, f€I,}.

We also denote by £(]0, 1]) the set of all Z(f) for every generic f € Eu(K).

We say that a subfamily A C Z(]0,1]) is generically closed (for short g-
closed) if for every pair Z(f), Z(§) in A, there are generic elements fiand g
such that

(1) f=fiand g=g) in K and

(2) Z(A)NZ(G,) € A.

LEMMA 6.4. The family Z(I), I a proper ideal of K, satisfies the follow-
ing properties:

(1) The empty set is not a member of Z(I).

(2) Z2(1) is g-closed.

(3) Let A € Z(I) and B = Z(§) for some generic g € Ep(K) such that
B D A. Then B € 2(I).

Proof. Since I is a proper ideal, (1) is clear from the definition of Z(I).
If Z(f) and Z(§) are members of Z(I) then we have Z(f) N Z(g) =
Z(|f1+ |8])- But although |f| + |g] € T (see Lemma 4.3) the function |f} + 3]
may be non-generic. Let this be the case; we can then suppose without loss of
generality that there is an 7 > 0 such that |f(e)l+ |§(€)] # 0 for every € €0, ).
But by Lemma 6.2 we can find a generic A such that & = |f| + |g| in K
and h = [f| + 1| + &, where £ € V.
- Define the set U = Z(h). Then U is a nonempty subset of ]0,1] and 0 € U.
Consider the function

IF©)+13(e)] ifeeUe
¢le) =

0 ifeeU
Then ¢ is a moderate function and

) f(e) ifeeUs
h(e) — ¢(e) = Y
0 ifeelU
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and this means that the projection ¢ of ¢ is equal to | f]+|g| in K. Now define

) fle) ifeeUs gle) ifeeUs
hie)= §ile) =
0 ifeelU 0 ifeelU

We will prove that fi—feNand § ~§€N. To do this, notice that the
functions

lfe)wle)  laE)xule)

are functions of A; in fact
FIGIEEG) < (1f )] + lae))xule) _ E)xu(e)! 50
gb = b - b

for very b € R. Since we have supposed that | f(e)|+]§(e)) # 0 for every £ €]0, 7]
and 0 € T, the functions |§(€)|xu(e) and | f(€)|Xv(€) are non identically zero.
But we may write:

|9(e)xue) = la(e)xu e)l |fE)lxue) = |f(e)xu el
and since it is clear that u € N if and only if |[u| € N, it follows that
F(e)ku(e) € N and §(e)xu () € N. This means that f(e) - f1(€) = f(€)kv €
N and §(e) — §1(e) = §(e)kv € V. Then f = frand g = g1 in K, and
Z(f1) 0 Z(31) = U. This proves (2). Let A=2Z(f) € Z(I) and B = Z(h) for
some h € Ep(R), with B O A. Then, since I is an ideal, fg € I and fhis a
generic representative of fh. But

Z(fk)y = Z(f)u Z(h) = Z(h),
and this proves (3). m]

LeMMa 6.5. Let A be a family of Z(J0,1]) such that (1), (2) and (3)
above are satisfied. Then A = Z(I) for some proper ideal I of K.

Proof. Let I = {f gi{ : Z(f) € A}. If f,g € I then by (2), there are
generic representatives f and § such that

Z(f +34) o Z(fl + 13 = Z2(/) N Z(§)

Then, since we can suppose that Z(f)nZ(g) € A, by (3) we have Z(f+f) e A
and hence f+g€l.

IffeIa.ndvbeKthenwecanﬁnda.genericrepresenta.tivefoffa.nd
a representative % of ¢. Then f"} is a generic representative of f. Then

Z(f$) = 2(HHuz) > Z(f).

Therefore, by (3), Z(f$) € Aandso fp € 1.
This proves that 7 is an ideal. Let us prove that it is a proper ideal. If
gome unit u € K belongs to I, then Z(#) € A for some generic representative
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4. But by Lemma 6.2, u does not have any generic representative. This proves
the lemma, o

LEMMA 6.6. Let J be a mazimal ideal of K and define
={f €K : 3f, generic ,2(f) € Z(J)}.

Then J' = J and so, if [f] and [g] are elements of the guotient K/J such _
that there are representatives f and § that coincide in some Z € Z(J),

(71=1lgl-

Proof. By Lemmas 6.4 and 6.5 we have that J' is a proper ideal of K and
it is clear that J C J'. By the maximality of J we have that J = J'. ¥ f and
§ coincide in some Z(ii) € Z(J) then Z(f — §) D Z(#) and so, by Lemma 6.4
(3) we have Z(f ~ §) € Z(J). But by the above reasoning, f — g € J, and g0
[f]1= [g]). This proves the lemma.

]

DEerFNITION 6.7 (Adapted from [8]). By the minimal cardinal associated
with a mazimal ideal J of K, we shall mean the smallest of the cardinal numbers
of the subsets Z, for Z € Z(J). By construction it is clear that the smallest
minimal cardinal 18 Rg.

LEMMA 6.8. Let b denote the associated minimal cardinal of @ mazimal
ideal J of K. Then the power of K/J is not greater then 2.

Proof. By Lemma 6.6, if [f] and [g) have representatives f and § that
coincide in some Z(#) € Z(J) then [f] = [g]. Since there are at most c* (i.e.,

2%, because b > Ro) K-valued functions defined in Z(d), it follows that there
are at most this many mutually incongruent such functions. 0

THEOREM 6.9. LetJ be a mazimal ideal of K. Then the mininal cardinal
of J is Ry,

Proof. We will construct a generic function f(¢) such that Z(f) is enumer-
able and f € J. Let E be any enumerable subset of X =]0, 1] such that 0 € E.
If, for some such E, xge € J then we are done. If not, let E= {1/n : n > 1}.
Then kg € J. Define I, =]1/(n +1),1/n[,n > 1, and

1 ifeeE
de)=4¢ e ifeel, - {p,}

0 ife=pn
where p,, is the middle point of I;;. Then § is moderate and xg—g is a function
that has the properties:
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(1) for all real numbers b € R we have:
x-—+—E(e)eb— 3le) —0 e+ 0%,
that is, xg = ¢ in K, and
(2) Z(3) = {pn : n 21} (and so § is generic).
So, g € J and the cardinality of Z(§) is Ro. This proves the theorem. [

TaEoREM 6.10. All quotients C; have power ¢ and so are all isomorphic.

Proof. By Theorem 6.9, the minimal cardinal associated to every maximal
ideal J of T is No and so, by Lemma 6.8, the cardinality of T/J is < oRo = ¢,
But since we have trivially that ¢ < the cardinality of C/J we have that all
such quotients have cardinality exactly ¢. Since all these fields are algebraically
closed (see remark 5.3), a classical theorem of Steinitz inplies that all these
fields are isomorphic. n

If K = R we have already observed that R/J is not of order type . We
will prove the following:

LemMMA 6.11. The order of R/J is unbordered and continuous.

Proof. A set is unbordered if it is not empty and nas no first and last ele-
ments. Considering any [f] € R/J we must have that for some representative
f(€) of f: |f(€)l = o(e®) (for some b € R). Then, thereis an 0 < m < 1 such
that —eb < f(€) < £ for 0 < £ < m, and so, by the definition of the order in
R we have —&® < f < €*, and since the family {¢"},¢R has no first and no last
element, R/J is unbordered. -

An ordered set, each of whose decompositions is a cut, is said to be con-
tinuous ([10], Ch. I, §7). Let us suppose that < A,B > is a decomposition
of R/J that is a gap. Thena < bforall a € Aand all b € B and A has no last
and B has no first element. Let {[f,]} and {[ga]} (n > 1) be two sequences of
elements of R/J cofinal in A and coinitial in B respectively, such that

(6.1) el < Unta] < [9m41] < [gm),
for all n,m > 1. We will prove that there is an element [4] € R/J such that
[fa] < [B) < [gm]
for all n,m. This is not possible since < A, B > is a decomposition of R/J,
and so there are no gaps in R/J.
First note that we may assume, without loss of generality, that we can

find representatives fu(¢) and fat1(€) of fa 3nd fos1 (and gm41(€), gm (€) of
gm+1, m) such that for all £ €]0, 1} we have:

(6'2) fn(e) S fn+l(€)t gﬂl(e) S gn(5)°
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For if we put

fa(e) = max{fi(e),..., faEh (€)= min{g; (€), .- - gm(€)}s
then these functions are clearly moderate and, by (6.1) (and the definition of
the order) we will have that f/, = f, and gl, = gm in R (that is, they define
the same class module V).

Secondly, we note that we may also assume that for all ¢ €0, 1]

(6.3) fa(€) < gnle)- “
For put f!(€) = fi(€), and g}(e) = max{f{(e),gi()}. H we have defined

o o f g ..., g" 80 that :

7€) <o < fa(e) S an(e) S --- S ai(e)s
for all ¢ €]0, 1], then we put
f241(€) = min{max{f7(e), fos1 ()} 9a(E)},
941 (e) = max{min{g{(€), gr41(E)} fat1 ()}
then it follows from (6.1) and the order in R that we have f} = f, and gy =g,
for all n > 1. Moreover, we have
F2E) < frs1(8) < gnpr(€) < 9n(€)
for all £ €]0, 1].
We define h(e) = sup{fa(€) : n > 1}. Then, by (6.2) and (6.3), h(c) is a

moderate function and we have f,(€) < k() < ga(e) for all € €]0,1]. But in

fact we have

[fs] < [h] < [gm]
for all m,n > 1, because if [fi] = [h] for some k, then, since f,(€) < fat1(e)
and [(€) — fis3 ()] < [h{€) = fi(€)] for all j > 1, the fact that [4] = [fs) means
h— fi € J, and 8o, by Lemma 4.3, we would have [A] = [fi4;], contradicting
(6.1). In the same way we cannot have [h] = [gi] for any k. This proves that
R/J has a continuous order. o

7. Open questions

(1) Is the order type of R/J the order type of the field of real numbers?
That is, in view of the above lemma, can we construct an enumerable dense
subset of R/J? (See [10], Chap. III, §7, Theorem 3).

(2) Are the fields R/J, J a maximal ideal, isomorphic?
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