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Resumo

Neste trabalho, nés consideramos uma equagao diferencial do tipo neutro de segunda
ordem e com retardo e estabelecemos resultados sobre oscilacao das solucoes apds o sis-
tema ter sofrido perturbagdes controladas e instanténeas (chamada impulsos). Com efeito,
como alguns casos particulares e ndo impulsivos da equagao sao oscilatérios, estamos in-
teressados em encontrar condigoes tais que o sistema diferencial neutro continue oscilando
ap6s impormos condigoes de impulsos sobre o sistema.



Abstract

We consider a certain type of second-order neutral delay differential systems and we
establish two results concerning the oscillation of solutions after the system undergoes
controlled abrupt perturbations (called impulses). As a matter of fact, some particular
non-impulsive cases of the system are oscillating already. Thus, we are interested in
finding adequate impulse controls under which our system remains oscillating.



1 Introduction

Because systems subject to impulse effects may undergo unusual phenomena such as
“beating”, “dying”, “merging”, “noncontinuation of solutions”, etc, and because they
are widely used to model real-world problems in science and technology, the theory of
impulsive differential systems has been attracting the attention of many mathematicians
and the interest in the subject is still growing. In the last years, the action of impulses
on functional differential systems has been intensively investigated.

In this paper, we are mainly concerned with oscillating systems which remain oscillat-
ing after being perturbed by instantaneous changes of state. We consider a certain type
of second-order neutral delay differential system and give sufficient conditions governing
the impulse operators acting on the system so that its solutions are oscillatory.

An important application of second-order differential equations with impulses appears
in impact theory. An impact is an interaction of bodies which happens in a short period
of time and can be considered as an impulse. Billiard-type systems, for instance, can be
modelled by second-order differential systems with impulses acting on the first derivatives
of the solutions. Indeed, the positions of the colliding balls do not change at the moments
of impact (impulses), but their velocities gain finite increments. For models describing
viscoelastic bodies colliding, systems with delay and impulses are more appropriate. See
[6].

An application of second-order neutral delay differential equations appears, for in-
stance, in problems dealing with vibrating masses attached to an elastic. They also
appear, as the Euler equation, in some vibrational problems. See [2, 3, 7, 9, 11, 15], for
instance.

In recent years, there has been an increasing interest on the oscillatory behavior of
second order nonlinear or quasilinear delay differential equations with impulse action. We
refer to the papers [12, 13, 18], for example.

When considering a system subject to impulse effects, one expects that either the
impulses act as a control and cease the oscillation of the system, or the impulse operators
are somehow “under control” so that the system remains oscillating. It is known, for
instance, that impulses can make oscillating systems become non-oscillating and, like-
wise, non-oscillating systems can become oscillating by the imposition of proper impulse
controls. In [4], the authors adapt the techniques of [5] and [17] and give conditions so
that the solutions of certain second-order delay differential equation oscillates. See also
[1, 16, 19, 20, 23, 24, 25].

In the present paper, we consider the second-order neutral delay differential equation

[r(t) (2(t) + p()a(t — 7)) + f(t,z(t),z(t = 6)) =0,  t>to, t#tx,
z(tk) = Ir(z(t; ), o' (te) = Je(@'(t;)), k=1,2,..., (1)
z(t) = #(t), to—o <t <o,

where p € PC([to, +00[, Ry), 7(¢) is a positive continuous function defined in [to, +o0],

§ and 7 are non-negative constants, 0 <t <t <... <t < ... with k_lirfoo tx = +oo and

ter1 — t > 0, where o := max{d, 7}, and ¢,¢" : [to — 0,%] — R have at most a finite
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number of discontinuities of the first kind and are right continuous at these points. Then
we state sufficient conditions so that the solutions of system (1) are oscillatory.

* In fact, it is known that some particular cases of (1) oscillate without the presence
of impulses. See [10, 16, 24] for instance. Our main results, namely Theorems 2.1 and
2.2, give conditions under which system (1) remains oscillating. In order to obtain such
result, we employ some ideas from [4] and specially from [10].

We note that when right continuity is replaced by left continuity, the results of the
present paper remain valid (with obvious modifications). For left continuous functions
and in the absence of impulses, see the results from [10] and [24], for instance. In the
absence of delay, see [14] and [21].

In [17], the authors state oscillation results for the impulsive delay differential system

(r®E'($)7) + f(t,2(t),2(t = 0) =0, t2t, t#1,
z(te) = In(z(t;)), z'(te) = Ju(z' (), k=1,2,...,
z(ty) = o,  &'(t7) = 7' (to),
where 0 < 0 = p/q, with p and ¢ being odd integers. See also [13] and [12].

For neutral differential systems, we mention [22], where the authors consider the non-
impulsive system

[F®1) + @)1 @) + pO2(e@))] +ab) o) =0, t21n,

where « is a positive constant. An oscillation result is proved for this system. When
a=1and o(t) =t — o, where o := max{d, 7} as in (1), our results generalize the result
from [22].

In the case of neutral differential systems with impulses, we mention [18], where the
author states some criteria for the oscillation of the solutions of the discrete system

A (Tn—1|A(33n—1 = Zpero1) | A (B — zn—r—1)) + f(n,%n,2n—1) =0
subject to the impulse action

rnkIA(xnk - mnk—T)la—lA(xnk - xnk—'r) -

S Mk (Tnk_]_|A(.Tnk_1 - xnk—T—1)|a_1A('T’nk—1 - -’Enk—"r—l)) )

where Az, = T,41 — Z,, « is a positive constant and the impulse operator M, fulfills cer-
tain conditions, k,7 € N. Thus, up to now, it seems that no result concerning oscillation
of solutions for piecewise continuous neutral differential systems subject to impulses have
been found yet. Hence our result is a contribution in this direction.

Furthermore, we assume that p(t) in system (1) takes any positive value improving
the usual assumption that 0 < p(t) < 1.



2 Main results

By w € PC([T, +oo[, R;) we mean the set of functions w € C*([Ax, Ags1[, Ry), for
each k = 0,1,2,..., where {\;}x>1 is a sequence of positive real numbers, with Ay = T,
and the limits w(A;) and w'();) exist, for all £ =0,1,2,....

Consider the second-order neutral delay differential equation

[r@)(z(t) + p()z(t — 7)1 + f(t,2(t),z(t = 6)) =0,  t=>to, t#,
m(tk) = Ik(x(t;)), .T’(tk) = Jk(x’(t;)), k) = 1,2, s vy (2)
z(t) = (), to—o <t<ty,

where § and 7 are positive real numbers, o := max{d, 7}, 0 <ty < t; < ... <t < ...
with klim tx = +o0o and tgy1 — t > o, for all k € N, p € PCY([to, +oo[, Ry) and

—+o0
¢, 9" : [to — 0,t0] — R have at most a finite number of discontinuities of the first kind and

are right continuous at these points.
We will state oscillation results for (2) in two situations which we will refer to as case
A and case B.

2.1 Case A

Throughout this section we assume that
(H,) f:[to— o,+00[xR x R — R is continuous, wf(t,u,v) > 0 for all uv > 0,

f(t, u,v) .

for all v # 0, where m(t) is continuous on [ty — o, +oo[, m(t) > 0, and zp(z) > 0,
for all z # 0 and ¢'(z) > 0;

(Hy) Iy, Ji : R — R are continuous, with I;(0) = Ji(0) = 0, and there exist positive
numbers ag, br and ¢ such that

Ik(SL‘)

T

ar < <bg, Ji(z)=ckz, T#0, k=12,...,
for all K € N.
(Hs) r is a positive continuous function on [to, +oo[ and

t 1 Ck
' — _ % N dsi=4e0.
tl}inoo i (r(s) H max{bk, cx} > ° e

to<tp<s

(Hy) p(t) and p'(t) are right continuous on Jtx, tis1[ with left lateral limits p(ty) =
1
—1—p(tk), and p'(t;) = Z—p’(tk), for each k € N.
Ck k
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We start by presenting a lemma which is borrowed from [8] (see Theorem 1.4.1 there)
replacing the left continuity by the right continuity of g(¢) and ¢'(¢) at ¢, for all £k € N,

Lemma 2.1 Suppose

(i) the sequence {tx}ren satisfies 0 <to <t; <...<tp<... with lim t; = +co.

k—+00

(it) g,9 : Ry — R are continuous on Ry \ {t;x : k € N}, there ezist the lateral limits
9(t:), 9'(8:), 9(tF), &' (&) and g(tF) = g(te), K =1,2,....

(111) fork=1,2,... and t > to, we have

g't) < p(t)gt) +q(t), t#t, (3)
g(tk) < arg(ty) + Br, (4)

where p,q € C(Ry,R), o and By, are real constants with oy > 0.

Then the following inequality holds

o0 < o) TT aew ([ o0s)+ [ T] wwes ([ st atopis

to<tr <t 3 to §<tE <t
+ Z H o exp (/ p(s)ds) B, t>to.
to<tp<t 1p<t;j<t tk

Remark 2.1 If the inequalities (3) and (4) are reversed, then the inequality (5) is also
reversed.

For the sake of convenient notation, let z(t) = z(t) + p(t)z(¢t — 7).

Lemma 2.2 Suppose (H;) to (Hy) are fulfilled, ag,cy > 1, k € N, and there exists T > 1,
such that £(t) > 0 for t > T —7 — 4. Then z(t) > 0 on the interval [T, +oo[ and 2'(t) > 0
for t € [tg,trs1], where ty > T and k € N. Furthermore, z(t) is non-decreasing on
[T, +oo0.

Proof. Suppose z(t) > 0, fort > T —7—4. Then z(t —7) > 0forallt > T —4. In
particular z(¢t — 7) > 0 for all ¢t > 7" and hence
z(t) =z(t) + p(t)z(t —7) >0, t>T >to.

Now we are going to prove that z'(¢;) > 0, tx > T and k € N. Suppose the opposite,
that is, there exists t;, > T such that 2'(t;) < 0. Let 2/(t}) = —a, with o > 0. Since
tre1 — ty > o > 7 for each k € N, we have

b < g1 — 7 < tp41 (6)



for all k¥ € N. Thus, from the continuity of z and 2’ on [tx_1, tx[, inequality (6), assump-
tions (H,) and (Hy), and equation (2), we have

2(te) = 2'(tk) +p'(te)x(ts — 7) + p(te)a’ (te — 7)
= Ju(@'(ty)) + aup'(t) 3ty — 7) + crp(ty)z' (8 — 1)
= o2 (ty) + k' (t;)z(ty — 7) + cep(ty)2' (¢ — 7)
2 (t; ),
that is, 2'(tx) = cx2'(t;;) for all k € N.
On the other hand, if ¢ € Jty, tx41[, K € N and ¢, > T, it follows by (H;) that

[r(®Z' O = = £(t,2(t), 5(t - 6)) < —m(D)e(z(t - §)) < 0.

Hence r(t)z'(t) is non-increasing on each interval [ty, tx41[, ¥ € N, such that t; > T.
We now consider the impulsive differential inequality

(r(t)2'(t)) < 0, t>to, tF#tk, k=Jo+1J0+2,...,
2(h) = e2ltr), k=jgo+1,50+2,....
Let g(t) = r(t)2'(t). Then
g,(t) s 07 7-€>tjoa t7étk7 k:j0+1,j0+2a""
g(tk) = Ckg(t;), k=j0+1,j0+2,....

By Lemma 2.1, we have

gt) <atz) I e

tio <t <t

Z(t) < (ngg)>z'(tj;) I1 o (7)

tio <t <t

that is,

For k = jo + 1, jo + 2, ..., we also have

2(ty) = o(te) +p(te)z(te — 7)

= Ix(z(ty)) + cp(ty )z (b — 7)
bz (ty) + crp(ty )zt —7)
max{b, cx}2(ty)-

INIA

By (7) and since z(tx) < max{bg, ck}2(t;), k = jo + 1,70 + 2,..., it follows from
Lemma 2.1 that

2(t) < 2(t,) H max{by, ck}-i-/t H max{b, cx} [(TT((%O))) 2'(t5,) H ij| ds

tip <tu<t tio s<t<t ti<tyids

- H max{bg, cx} Z(tfo)_ar(tjo)/ 7(13 H m &

tip <tk <t tio tio <tk<s



And since z(t) > 0 for ¢ > T, the last inequality contradicts (H3). Therefore 2'(t;) > 0
for all tk, tr > T.
Since r(t)2'(t) is non-increasing on [ty, txy1[, it is clear that

)i 20

for ¢ € [tk, tk+1[, te > 7. Finally, take any tx, k¥ € N, such that ¢, > 7. Then

2'(t) >

z(te) = z(te) +p(te)z(ty — 7)
= Ix(z(ty)) + cep(ty )=ty — 1)
> apz(ty) + eep(ty)z(ty — 7)
> min{a, cx}2(ty)
> a(t).
Hence z(t) is non-decreasing on [T, +oo[ and the proof is complete. O

Remark 2.2 When z(t) is eventually negative and ax,c, > 1, £ € N, then under hy-
potheses (H;) to (Hy) one can prove similarly that z(¢) < 0 on the interval [T, 4+o0o[ and
Z'(t) <0 for t € [ty, tgy1[, where ¢t > T. In particular, z(¢) is non-increasing on [T, +o0l.

Now we present an auxiliary function whose definition is borrowed from [10] and which
will be used in the proofs of the following results.
Let ® € C?([ty, +00), R,) be given and define h € C([to, +o0o[, R) by

ht) = 218

Now, define the function 1 by

p(t) = (1) {m(t)[1 - p(t — 8)] + 7t — &) (t)e — [r(t — 6)h(t)er]'}
for each ¢, <t < tgy1, £ =1,2,3,....

Proposition 2.1 Suppose (H;) to (Hy) are fulfilled, ax,ck > 1, k € N and ¢(v) = v in
assumption (H,). If equation (2) is nonoscillatory, then there exist a number ko € N and
a function w € PC([tk,, +00[, R) satisfying

w(t) +9(0) + W) g

m—&—)_ , Ty <t < tryr, (8)

for each k = ko, ko + 1,ko + 2, ....
Proof. Let z(t) be a nonoscillatory solution of (2). Without loss of generality, we may
assume that z(t) > 0 on [T — 7 — §, +o0f, for some T' > t,.

Recall that z(t) = =z(t) + p(t)z(t — 7). By Lemma 2.2, 2() > 0, 2'(f) > 0 for
t € [tk, trs1[, where t, > T and k € N and z(t) is non-decreasing on [T, +09|.

9



Let kg = min{k : ¢, > T, k =1,2,3,...}. By (2) and hypothesis (H;), we obtain
[r(t)2'(t)] = —f(¢, z(t), z(t — 8)) < —m(t)z(t — &) < 0,

for every ¢t > T and ¢ # t;, k € N. Consequently, 7(¢)z'(t) is a non-increasing function on
each interval [ty, tes1[, & = ko, ko + 1, ....
Now, we assert that
T(t)2'(t) < cpr(t —6)2'(t = 6), 9)

for each ¢, <t < txy1, k = ko, ko + 1, .... Indeed. First, note that
r(te)2' (ts) = 7(t)[z'(t) + P'(te)z(te — ) + p(te) s’ (&, — 7))
(6 )k (@' (8)) + cep ()2 (8 — 1) + crp(tp)a! (8 — 7)]

= r(ty)[ees'(ty) + a8 )z (ty — 7) + cp(ty)2' (¢ — 7)]
= ar(t;)? ()

Iftp+0 <t <tgyr, k=koko+1,..., we have ¢y <t —§ < tyy1 — 0 < t441, then

r(t)2'(t) < 7(t—=98)2'(t —8) < epr(t — 6)2' (¢t = 9).
Ity <t<tpy+06,k=koko+1,.., wehave ty_1 <t —3d <t—0 <t then
r(t)2'(t) < r(te)2' (tk) = crr(t;) 7' (7)) < cr(t — 6)2'(t — 6).

Thus, the assertion is proved.
Note that

£(t, o(t), a(t - 8)) 2 m(B)a(t - 8) = m(t)[=(t - 5) — p(t — 6)a(t — 6 — )],
for t #ty, k € N and ¢ > T. Then,
[r(®)2 O +m(®)[2(t - 8) — p(t - 8)a(t — 7 = 8)] < [r(OZ O + (2, 2(t), a(t - 8)) =0,
for t # ty, k € N and ¢ > T, that is
[r(&)2/ () +m(®)[2(t — 8) — p(t — 6)a(t — 5 — 7)] < 0.
Since z(t) is non-decreasing from Lemma 2.2, we have
g(t—6—71)<2t—0—1)<2(t=06), t>T.

Then
m(t)z(t — 6)[1 — p(t — 8)] < m(t)[z(t — ) — p(t — 6)z(t — 6 — 7))

and, consequently,
[r(8)2'(t)]" + m(t)z(t — 6)[1 — p(t — 6)] <O,

fort > T,1#1 k € N.

10



Now, define
r(t)z'(¢)

w®) =200 {228 - (e |

for each t € [tk, tkt1[, & = ko, ko + 1,.... Note that w € PCY([ty,, +c0), R).
We also have

w0) < ~2h0)u(0) + 00 { =m0 - e -3 - LEOZCZD gy ]

for each ty < t < txy1, k= ko, ko +1,....
Since 7(t)2'(t) < cxr(t — )2/ (t — ) from (9), we have

r()2 (8)2(t - 5) 1 )20\
2(—08) = ort—9) (z(t—é)) |

Then
w'(t) < =2h(t)w(t) + (t) {—m(t)[l —p(t—=0)]+

_ckr(tl_ 3) (2&?5%) + [l = 5)h(f)ck]'} ;

for each ty <t < tgy1, kK = ko, ko + 1, ....

e (02 _ wlt)
r(t)z w
Z(t _ 5) - (I)(t) - T(t - 5)h(t)ck;
we have
w'(t) < — W) L o) {(—m@)L - p(t — 6
@Ot —9) i) =plt =gl
—r(t — 8)h*(t)ck + [r(t — &)h()ck]'},
Therefore,
: w?(t)
& e 7
'U)(t) e ’L/)(t) T(t—é)q)(t)ck’ 123 <t<tk+17
k=koko+1,...
When z(t) is eventually negative, then proof follows analogously. O

Lemma 2.3 Ifc, =1 and a;, > 1 for each k =1,2,3, ..., then there is T > ty such that
w(ty) —w(ty) <0 for each k € N with t;, > T.

Proof. At first, given t; for some k € N, suppose ty —d — 7 # t;_1. Then,
r(te)2' (t
w(tk) = (I)(tk) {%:% -+ T(tk — 5)h(tk)ck}

= ) { ") 4 — i

2(ty —9)
= ®(t;) {% +r(ty — 5)h(t2)}
= w(t),

11



k=1,223,...
Now, we need to consider the case when t;, — 0 — 7 = tx_;. Without loss of generality,
we may assume that z(¢t) > 0 on [T — 7 — §, o0, for some T > t,. Then

2(te —0) — 2(ty —6) = p(tx—96)[z(ts —6—71) —=(ty —6 — 7))
= p(te — 0)[z(tr-1) — =(t;_)]-

Since, z(tg-1) > axz(t;_;) > z(t,_,), it follows that
2(ty — 0) — 2(t;, —6) > 0.

By Lemma 2.2, z(t) > 0 on the interval [T, +oo[ and 2/(t) > 0 for t € [tk,tk+1[, Where
tx > T and k € N. Thus, we can conclude that

w(te) < w(ty),
for ¢, > T.
When z(t) < 0 on [T — 7 — 4, +o0], for some T > tg, the result follows analogously. O

The following theorem is an extension of Horng-Jaan Li’s criteria to oscillation. See
[10].

Theorem 2.1 Suppose (Hy) to (Hy) are fulfilled, ar > 1, ¢y, =1, k € N, p(v) = v in
assumption (Hy) and

+o00 tha1
Z P(s)ds = 400, (10)
k=n "tk

for n € N. If there erist sequences {an}n>1 and {&;}n>1 of positive real numbers, such

n—+400

1
that &, € Jtn, tnea[, n € N, limsup(&, — tay1) > 0, E o < 400 and
n=1 "

&k ds
>
/tk r(s—0)®(s)er — ks

k € N, then system (2) is oscillatory.

Proof. Suppose system (2) is non-oscillatory. Then it follows from Proposition 2.1 that
there exist a number k, € N and a function w(t) € PC([tk,, +oo[, R) satisfying (8) for
tr <t < tps1, k=ko,ko+1,ko+2,..

Integrating (8) over [tx, tk+1), K € N and k > ko, we obtain

w(tpy) < wlts) — t . H(s)ds — /t - e _wd)(g(s)% ds. (11)

12



For n € N, we have

ko+n ko+n kotn  ntiy kotn  ntyyy w? 3
Youttea s 3 =3 [Tetoas- 3 [T il
k=ko k ko k=kgo L 8
Consequently,
ko+n ko+n tk+1
Wppm) € wlt)+ D o) —ut)]= Y [ wlo)as +
k=ko+1 k=ko
ko+n try1 2
_ Z/ w(s) ds,
ool (s — 0)®(s)cy
where n € N,

By Lemma 2.3 and equation (10), there exists Ny > 0 such that

ko+n ko+n o1

w(tk,) + Z[wtk ~wtk]—Z/ Y(s)ds < =1, for n > Ny.

k=ko+1 k=ko

Thus

ko+n trgl 'LUZ(S)
" % ~l.= f > N,.
W(tegant1) < —1 kzzko/t T YPP ds, for n > Ny

Note that for all tgg1n < & < tkgtn+1, We have

tho+n+1 'LU2(S)
< —1— ds, fi > Ng.
w() < -1 / P T S P, s, for n > N

tko-{-n

Then

¢ w(s) /f ds
ds < — .
/ R 5 PN N P Y

3 teg+n+1 2
_ / 1 / 0 w?(p) dl ds,
thg b r(s5 = 6)®(5)Cko4n T T — 0) @ () Cro+i

for each tgy4n < &€ < tggint1 and n > Np.

(12)

(13)

Let us consider &kyin € |tkotn, thotntil, » > No, given by the hypotheses, and define

s w(s)
— ds, n St <tlanei, m=2No
’U(f) /tk . T(S _ 6)@(S)Ck0+n gko-i— 5 ko+n-+1 0

Then the Cauchy-Schwartz inequality implies

: w?(p) 2 ’ dp
/ o= 50 (omen 2V ) [/ -

Ekotn < 8 < trgint1

13



Since

Gptet  wP(y) ’ w® (1)
du > / i
/tk0+n r(p—6)@(p)ck tigan T (1 — 0) (1) Chiotn s

Ekotn < 8 < tho4n+1, then by (13), we get

3 ds
v(€) < */tw (5= 0)0(3)chyrn

-1
_ / ‘ v*(s) / dp s
tho+n ’I"(S - 6)(1) S)ck0+n tkg+n T(/"’ - 5)CI)(IU’)Cko+n ,

where Eko4n < € < tkgnt1 and n > No.
Now, we define H(§) by

/5 ds n /5 v2(s) /s du - ds
tkg+n T(S - 5)q)(s)cko+n tho+n ’I‘(S - (s)q)(s)cko—l-n tho+n T(N’ - 6)(1)(/~L)cko+n ,

Ekotn < & < Tkgtnt1 and n > Ny. Then

o 1 v*(€) ‘ dé R
& (5) - ’I‘(f — 5)@(§)0k0+n 4 ’I‘(f — 5)@(§)Cko+n [/tko+ﬂ T(S - 5)®(S)Cko+n]

and
ds

4
o< [
RO
for 6ko+n < 5 < tko+n+1a n 2 NO- Then

< H(§) < |v(é)],

H(E) | H() 1 f ds B
B7(6) = V7€) = (€~ 2 (E)crorn U (e 5)@<s>cko+n} /

Ekgan S € < Ugtat1, B 2 No.
Integrating the above inequality from &gyin tO tgo4n41, We have
1 1
= =+ 2
H(tko+n+1) H(fko+n)

. /tk0+n+1 ds 1 /Ek0+n ds
n — 1n .
e M T el N CR -1 e

Thus

1 o /tk0+n+1 ds - /‘Eko+n ds
—_— n —_— 5
H (Eko4n) — bigein r(s = 6)®(s)Cko+n teg+n r(s = 6)®(s)Cko+n
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Since

H Eko-}-n dS
> >
Gow) > | oy 2 o
n > Ny, we have
+o00 1 +00
— < < +o00.
=1 (§k0+n) w=Ng Oko+n
Thus,
f 1 /tk0+n+l dS /€k0+n ds
n —1In < +o00.
2T o TG 08 im0~ DBt
Then,

. /tko+n+1 ds | /§k0+n ds 0
—1mn =0,
n—-+0o tigin  T(8 = 8)2(8)Crotn tigan (S = 0)®(8)Chotn

and this is a contradiction, because lim sup[€xy+n — tko+n+1] > 0. Hence, we finished the
n—-+00

proof. O

Consider the following neutral delay differential equation of second-order,

(x(t) + % z(t — 1))” + (3 —t¥)z(t — 1) arctan(t) =0, t>1, ¢ #t,

(14)
z(t) = (t), —1<t<0,
where ¢, ¢’ : [-1,0] — R are continuous functions. Note that
1
73] = 1, and  p(t) = 7
By using the notations from [10], let ¢(t) = (¢* — ¢?) arctan(t), v = 1 and f(z) = =.
Choose @(t) = %2 Then h(t) = % and we have
(t3 — t?) arctan(t) [t —2 2
Yt) = v | a for ¢t> 1.
Then, by using the software Maple, we obtain
+o00 dS +o0
_ = (s)ds = +o0,
| wemem ) v

for all t > 1. Therefore, from [10], Theorem 2.2, the non-impulsive system (14) is oscilla-
tory.

As we did before, we now consider system (14) and prove that it remains oscillating
after the imposition of proper impulse controls.
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Example 2.1 Consider the following second-order neutral delay differential equation

’

(x(t) + %m(t - 1)>” + (83 —t?)z(t — 1) arctan (£) =0, t>1, tH#t,

(15)

< z(ty) = <k_l:1>:v(t;), o) =2 )y  B=120::,

L z(t) = ¢(t), -1<t<0,

where ¢, ¢’ : [-1,0] — R are continuous functions and ¢; = 2k — 1, k = 2,3,4,.... Note
that txr; —tx =2 > 1, for all k = 2,3,4, ...
We have

1 k+1
r(t) =1, p(t)=z, ax = by = : and ¢, =1k=1,2,....

Let us consider m(t) = (¢ — ?) arctan(¢). Then

b 1 Ck
li — — = | ds=
i to (r(s) H max{bg, cx} ) s

to<tp<s

+00 kd
_/0 Hk+18

to<trp<s
131 t2

= / H ds+/ H
t b fo<tr<s

5 +1
to<trp<s
k

T e

2 tp<tp<s
1 1
= (= to) 5 (=) + 5 (s — 1)+

b)
1+1 +1+ = 400
2 "2 - ‘

1
3 4
Thus hypotheses (H;) to (H,) are satisfied.
1
Choose ®(t) = t—12~ Then h(t) = 5 and

() = 2 <ﬂ> I

2

2 \t-—1 4’

Then b oo
- ds — ,
Z / Y (s)ds /tn Y(s) ds = +o0

k=n "tk

for each t, > 1.
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Now, define the sequences {{x}x>2 and {ay}r>2 by
& = 2k and o = k2,
for each k£ = 2,3, 4,.... Note that
e < & < tpia, k=2;3.4....,

limsup[§y, — tg41] = 1,

k—+o00
+oo 1 +o0
E = = == & 00
2 bl
k=2 %k e k

and

Ek 1 €k ds ke
| S
, T(s—0)®(s)ck , T(s—0)P(s) t

¢ 1 12k% — 6k + 1
ph R e T

for each k = 2,3,4,.... Therefore, it follows from Theorem 2.1 that all solutions z(t) of
(15) are oscillatory.

2.2 Case B

In this section, we establish an oscillation result for (2) under the following hypotheses:

(HY) f:[to— o0, +00] X R x R — R is continuous, uf (¢, u, v) > 0 for all uv > 0,

t, u, v
[t u, v) > n(t),
U
for all u # 0, where n : [t — 0, +0o[— R is a positive continuous function.

(H5) Ix, Jr : R — R are continuous, with I;(0) = Jx(0) = 0, and there exists positive
number a; > 1 such that
Ilc(m) = Jk(‘z) = 0T,

for all £k € N.

We also assume that conditions (H3) and (Hy4) hold, with ¢, = ay and by = ay, for
each k € N.

Now, define the function %, : [to, +00[— R by
¥i(t) = @(t) {n(t)[1 — p(t)] + r()A*(t)ax — [r(t)h(t)ar]'}

for each ty <t <tx41, £=1,2,3,....

LT



Remark 2.3 Lemma 2.2 still holds if we replace hypothesis (Hy) by (H}) and (Hy) by
(H3).

With the new conditions (H;) and (Hj)*, we can rewrite Proposition 2.1 as follows.

Proposition 2.2 Suppose (HY), (Hj), (Hs) and (Hy) are fulfilled. If equation (2) is
nonoscillatory, then there exist a number ky € N and a function w € PC([tg,, +o0, R)
satisfying

wt)

w'(t) + 1 (t) + rom =

tr <t< Tkt1, (16)

fOT‘ each k = k‘o,ko + 1, ko + 2,

Proof. This proof follows the main ideas of the proof of Proposition 2.1. Let z(t) be a
nonoscillatory solution of (2). Without loss of generality, we may assume that z(t) > 0
on [T — 7 — 6, +o0], for some T > t,.
Recall that z(t) = z(t) + p(t)z(t — 7). By Remark 2.3 and Lemma 2.2, z(t) > 0,
2'(t) > 0 for ¢ € [tg, tg41[, where ¢t > T and k € N and z(¢) is non-decreasing on [T, +o0|.
Let ko = min{k : t, > T, k =1,2,3,...}. By (2) and hypothesis (H}), we obtain

[r@®)2 @) = =f(t, =(t), z(t - §)) < —n(t)z(t) <0,

for every t > T and t # t;, kK € N. Consequently, 7(¢)z'(¢) is a non-increasing function on
each interval [t, txy1[, & = ko, ko + 1,.... Since ax > 1, we have

r(t)2'(t) < apr ()2 (1), (17)

for each ¢, <t < tpi1, k =ko,ko+1,....
Note that

f(t, x(t), z(t — 6)) 2 n(t)z(t) = n(t)[2(t) - p(t)z(t — 7],
for t #t;, k € N and t > T. Then,
[r@)2' @) +n(®)[=(t) — p(t)z(t - 7)] < [r(O)2' ()] + F (&, z(2), z(t - 8)) =0,
for t # t;, k € Nand t > T, that is
[r(®)2' ()] + n(t)[2(¢) — p()z(t — )] < 0.
Since z(t) is non-decreasing from Remark 2.3 and Lemma 2.2, we have
zt—1)<a(t—r1)<2(t), t>T.

Then
n(t)z(t)[1 — p(t)] < n(t)[z(t) — p(t)z(t — 7)]
and, consequently,
[r(@)2' ()] + n()z(1)[1 - p(t)] <0,

18



fort >T,t#1t, keN.
Now, define

w(t) = B(1) {T(t)z'(t) T r(t)h(t)ak} |

for each ¢ € [tk, tky1[, b = ko, ko + 1, .... Note that w € PC([tg,, +00), R).
We also have

o) < ~2h()ut) + 00) {-n(0]1 - 0] - LZ0ED 1 gy

for each <t < tk+1, k= k)o, ko + 1,....
Since r(t)2'(t) < axr(t)2'(¢) from (17), we have

0200, 1o (1Y

2%(2) ()

Then
w/(8) < ~20(0u(s) + 2(0) { o)1 - p(9] +
1 (r(t)7 () ,
- ( o ) + [r(H)h(t)al }
for each e < ¢ < sy k = ko, ko + ) [
. (020 _ ()
r(t)z w
@ = 30 " r(t)h(t)ay
we have
'(t 7 B 1)1 — p(t)] — r(t)h2(¢ £)h(t)ax)’
WD) < gt + (0 {=n(O)l1 - p(0)] — rOR(E)ox + P ORI},
Therefore,
, w?(t)
w'(t) < =i (t) — OO le <t < gy,
k = koko+1,.... If 2(¢t) < 0in [T — 7 — 6, +oo|, for some T > t,, the result follows
analogously and we complete the proof. O
+o0 +00
Lemma 2.4 Ier(tk)h(tk)(ak — ag—1) < 400, then Z(w(tk) —w(t;)) < +oo.
k=1 k=1

Proof. Note that

w(tk) = q)(tk) {T(tk)Z/(tk) + T(tk)h(tk)ak}




. _ _ ()2 (¢t
k=1,2,3,... Since w(t;) = ®(¢;) {i'i—()f_—()—l‘l + r(t;)h(t;)ak_l}, k=1,2,.., we have
2\,
w(te) —w(ty) = r(te)h(te) 0k — Gk1),
k=1,2,3,.... Therefore, the result is proved. (]

Next, we establish an oscillation criterium for system (2) satisfying hypotheses (H7),
(H3), (H3) and (Hy). The proof follows similarly to the proof of Theorem 2.1 by applying
Lemma 2.4 instead of Lemma 2.3.

+00
Theorem 2.2 Suppose (Hy), (H;), (H3) and (Hy) are fulfilled, Zr(tk)h(tk)(ak—ak_l) <

k=1
+00 and

+00 b4
Z/ Y(s)ds = +o0,
k=n Ytk

for n € N. If there exist sequences {an}n>1 and {&,}n>1 of positive real numbers, such

{-00
) 1
that &, € Jtn, tne1[, » € N, limsup(&, — th1) > 0, § - < +00 and

n—r
n—+oo n=1 n

/5" ds S
S ——— a_’
W T()®()e — "

k € N, then system (2) is oscillatory.

Example 2.2 Consider the following second-order neutral delay differential equation
(

1 "
(x(t)+zx(t—1)> +z®)2In(t-1)=0, t>1, t#t,

k+1 k+1 (18)

<mmy:67¢)ﬂq% yug:<~?)xwp, k=1,2,...,

L 2(t) = ¢(t), —-1<t<0,

where ¢, ¢’ : [-1,0] — R are continuous functions and ¢, = 2k — 1, k = 2,3,4,.... Note
that tgp1 —te =2 > 1, for all £ = 2,3,4,....

We have : L
r(t) =1, p() =7, %=4?ﬂk=LGu

Let us consider n(t) = t?>In(t — 1). Then

t 1 Ck
. 1 % ) gs=
t-ljinoo to (T(S) H max{bx, cx} ) ’

to<tr<s
t
. G
:thm ( ) H max{a a})ds:
—+00 r(s maxi{ a
to to<ti<s k> 2k
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t ¢
t—}-rknoo to r(s) £ t—1>1—ri~noo to 1a5'= &6;
Thus hypotheses (Hy), (H3), (Hs) and (Hy) are satisfied.

1
Choose ®(t) = el Then h(t) = % and

In(t — 1) 2 9
wl(t):_t—_(t—l)_}—t_‘i-*-_@’ for by <t <tgyr, t>1.
Then
o= [l T (In(t — 1) 2 R [ 9
1,[) SdS‘:/ <—*t—1 +*—>d5+ / —d = + ’
Ly WO ) T g) ey | = e

for each ¢, > 1.
As before, let us define the sequences {&;}x32 and {ag}rs2 by & = 2k and ay = k2,
for each k£ = 2,3,4,.... Then

e < & < tk41, k:2,3,4,...,

lim sup[§ — tg41] = 1,
k—+o0

and

/ﬁk 1 . k 133 )
s = s°ds =
1, T(8)®(s)ax k+1 /tk

ok 126 — 6k +1Y _ o _
AV ES 3 =il

for each £ = 2,3, 4,.... We also have

+0o0 +0o0 =
;r(tk)h(tk)(ak —ay_y) = ; @ DRGE =) < T

Therefore, it follows from Theorem 2.2 that all solutions z(t) of (18) are oscillatory.
3 Final comments and an open problem

It worths mentioning that in [19], the authors give a counter-example to a result from
[24] (namely, Lemma 1) for the non-impulsive case, when the function p in (1) takes
negative values (in [o, 0], with @ > —1). As a consequence, counter-examples to results
from [1] and [23] appear naturally, since these papers use Lemma 1 from [24]. As a matter
of fact, when —1 < a < p(t) < 0, under the conditions of [1], [23] or [24], the solutions of
the systems considered in these papers may be non-oscillatory. In view of this, a question
arises: is it possible to find adequate impulse operators which, in the case where the
function p takes negative values, the system (2) is oscillatory?
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