

39th Topical Meeting

of the International Society of Electrochemistry

23 - 26 March 2025

Natal, Brazil

The Role of Electrochemistry
in Sustainable Energy
and the Environment

PROGRAM

<https://topical39.ise-online.org>

e-mail: events@ise-online.org

Exploring Nitrogen Reduction Pathways on MoS₂ Surfaces via Online Electrochemical Mass Spectrometry

Rodrigo Gomes de Araujo, Joelma Perez

Chemistry Institute of São Carlos -USP

Ave. Trabalhador São-carlense, 400

CEP 13566-590 - São Carlos - SP - Brazil

rodrigo.gomesarquio@usp.br

Electrochemical nitrogen reduction to ammonia under ambient conditions has emerged as a promising alternative to the traditional Haber-Bosch process,^{1, 2, 3} due to its potential for reducing CO₂ emissions. This green energy conversion process, which utilizes N₂ and H₂O, reduces pollutant emissions and reliance on petroleum, contributing to a more sustainable energy framework.^{4, 5} However, the nitrogen reduction reaction (NRR) presents considerable challenges due to the high stability of N₂ and the limited availability of active, efficient catalysts. In this study, we explore the NRR in 1.0 mol L⁻¹ NaOH using MoS₂ electrodes, with online electrochemical mass spectrometry (OLEMS) employed to identify gaseous products. The physical characterization of the electrocatalyst was performed using energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Figure 1 displays chronoamperometry (CA) results and CA-MS signals for various volatile species as a function of the applied potential: m/z 30 (N₂H₂⁺), 29 (N₂H⁺), 28 (N₂⁺), and 2 (H₂⁺). Results for the NRR are shown in red, while measurements in the absence of nitrogen (i.e., in helium) are depicted in blue. OLEMS results notably reveal the presence of N₂H⁺ and N₂H₂⁺ species as intermediates in the NRR, with N₂ consumption beginning at -0.4 V vs. RHE and the onset of NH₃ production around -0.5 V vs. RHE. Notably, no N₂H₃⁺ or N₂H₄⁺ species were detected. Measurements conducted under a helium atmosphere (in the absence of nitrogen) revealed no detectable formation of the monitored species in the mass signals. The N₂ molecule adsorbs onto the catalyst surface, proceeding through two protonation steps to form N₂H and N₂H₂ intermediates at potentials below -0.4 V, with N₂H₂ identified as the primary intermediate leading to ammonia production. For the first time, this study uses OLEMS to successfully identify key intermediates in the NRR, correlating NH₃ formation with N₂ consumption as a function of applied potential, offering critical insights into the reaction pathway for ammonia synthesis.

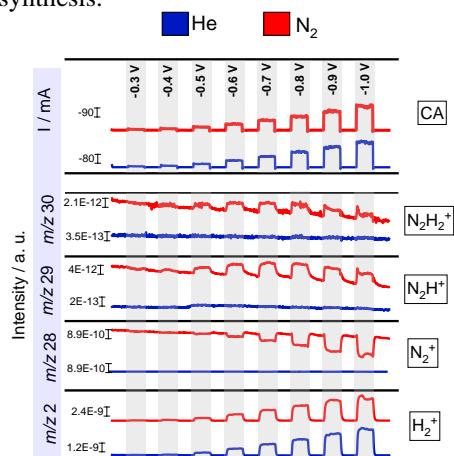


Figure 1. OLEMS mass signal results for MoS_2 . CA-MS in 1.0 mol L⁻¹ NaOH electrolyte. In the blue and red lines correspond to He and N₂, respectively.

References

- 1 DU, H. et al. Enhanced Electrochemical Reduction of N₂ to Ammonia over Pyrite FeS₂ with Excellent Selectivity. **AcS Sustainable**
Chemistry & Engineering, v. 8, n. 28, p. 10572-10580, ISSN 2168-0485.

2 SU, H. et al. Single Atoms of Iron on MoS₂Nanosheets for N₂ Electroreduction into Ammonia. **Angewandte Chemie-International Edition**, v. 59, n. 46, p. 20411-20416, ISSN 1433-7851.

3 MA, H.; CHEN, Z.; WANG, Z. Electroreduction of nitrogen to ammonia on nanoporous gold. **Nanoscale**, v. 13, n. 3, p. 1717-1722, ISSN 2040-3364.

4 CHEN, J. et al. Beyond fossil fuel-driven nitrogen transformations. **Science**, v. 360, n. 6391, ISSN 0036-8075.

5 FOSTER, S. et al. Catalysts for nitrogen reduction to ammonia. **Nature Catalysis**, v. 1, n. 7, p. 490-500, ISSN 2520-1158.