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In this paper, we investigate how it is possible to define a new class of lattice gauge models based
on a dualization procedure of a previous generalization of the Kitaev Quantum Double Models.
In the case of this previous generalization that will be used as a basis, it was defined by adding
new qudits (which were denoted as matter fields in reference to some works) to the lattice
vertices with the intention of, for instance, interpreting its models as Kitaev Quantum Double
Models coupled with Potts ones. Now, with regard to the generalization that we investigate here,
which we want to define as the dual of this previous one, these new qudits were added to the
lattice faces. And as the coupling between gauge and matter qudits of the previous generali-
zation was performed by a gauge group action, we show that the dual behavior of these two
generalizations was achieved by coupling these same qudits in the second one through a gauge
group co-action homomorphism. One of the most striking dual aspects of these two general-
izations is that, in both, part of the quasiparticles that were inherited from the Kitaev Quantum
Double Models become confined when these action and co-action are nontrivial. But the big
news here is that, in addition to the group homomorphism (that defines this gauge group co-
action) allows us to classify all the different models of this second generalization, this same group
homomorphism also suggests that all these models can be interpreted as two-dimensional
restrictions of the 2-lattice gauge theories.

Keywords: Quantum double models; lattice gauge theories; confinement properties; topological
order; algebraic order.
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1. Introduction

One of the current issues of interdisciplinary research explores some theoretical
models and technologies that try to support some kind of quantum computing.'™
And since the original purpose of Quantum Computation is to be interpreted as a
generalization of Classical Computation,®”
fined by assigning quantum bits (qubits)® to the edges of some oriented lattice £,. In
general, it is not wrong to say that, in order to avoid any problems with reading the
data encoded by these qubits, £, is usually chosen to be the one that discretizes some
two-dimensional compact orientable manifold M,. Nevertheless, a crucial advantage
of using these lattices, which discretize these two-dimensional compact orientable
manifolds, is the possibility of evaluating/implementing theoretical models that,
because they have a topological order,” can perform some fault-tolerant quantum
computation.'®'? These are precisely the cases of

some of these theoretical models are de-

e the Toric Code (D(Z,)), which gets its name from the fact that M, is homeo-
morphic to a two-dimensional torus,'?'* and

e its natural generalization, so-called Quantum Double Models (D(G)), which
are defined by using (i) a group G that is not necessarily Abelian and (ii) an
L, that discretizes an My not necessarily homeomorphic to a two-dimensional
torus, but that assigns quantum dits (qudits) instead of qubits to its

19 14 15
edges_i-,u,io

Given that the D(G) models do not associate any qudits with the faces or/and
vertices of £,, one paper was published a few years ago'® to understand what hap-
pens, for instance, when these models are coupled to new qudits assigned to the
lattice vertices (D, (@G)). After all, as the D(G) models can be understood in terms of
pure lattice gauge theories, "
models, which would be able to mimic some more general gauge theories, where some
kind of matter was also present.'®'? Therefore, since these new D;;(G) models
needed to be interpreted as D(G) generalizations, which also needed to be understood

it was desirable that there was another class of lattice

in the light of these more general gauge theories, these new qudits were purposely
denoted as matter fields similarly to what was done in Ref. 20, where lattice gauge
theories were coupled to fixed-length scalar (Higgs) fields allocated on the lattice
vertices.

In this Ref. 16, it became clear that, as the D);(G) magnetic quasiparticles in-
crease the energy of the system when they are transported through the lattice, the
ground state of these models does not necessarily depend on the first homotopy group
m1(My). As a consequence of this result, which points out that these magnetic
quasiparticles should be interpreted as confined” in the D,;(G) models, another
paper was published shortly thereafter, presenting a new class of theoretical lattice

aWe will explain it all (what these D,,;(G) magnetic quasiparticles are, why they increase the energy of the
system when they are transported, why they were interpreted as confined etc.) later on, in Sec. 2.2.1.
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models (H,;/C(Zy)) where this increase no longer happens.?' This class of (Abelian)
H,;/C(Zy) models is a subclass of the D,;(G) models in which

e the (gauge) group G is the cyclic Abelian group Zy, and

e the operators, which detect the magnetic quasiparticles in the D;(G) models, were
b

excluded from their Hamiltonian.
And as strange as it may seem to build this subclass (which have the same gauge
group dependence as the D(G) models) without the operators that detect these
magnetic quasiparticles, the fact is that these H);/C(Zy) models have, at least, a
very interesting property: some matter excitations (i.e. those energy excitations that
can be produced by manipulating the matter fields) exhibit non-Abelian fusion
rules.?"?* Therefore, since the only difference between the H,;/C(Zy) and Dy, (Zy)
models are the operators that measure magnetic quasiparticles, it is not difficult to
conclude that these matter excitations, which exhibit non-Abelian fusion rules, are
also present in the D), (Zy) models.

Nevertheless, and in contrast to the D(G) models,** the fact is that these two
generalizations do not lead, for instance, to self-dual models. And as the confinement
of the D,;(Zy) magnetic quasiparticles has some similarity with that of quarks in
Quantum Chromodynamics®® (which is precisely the gauge theory whose non-per-
turbative problems fostered the development of the lattice gauge theories”®*"),
natural question that arises is: how to use these D;;(G) models as a kind of basis for
defining a self-dual generalization of the D(G) ones where, for instance, qudits are
assigned to all the faces and vertices of £,7 By the way, can a generalization of the
D(G) models, intentionally defined by using the dual framework of the D,/ (G)
models, show us if it is possible to construct this self-dual generalization? Thus, in
order to answer these questions, this paper is rightly devoted to the analysis of a new

a

class of models (D% (@)), which is intentionally defined by using the dual framework
of these Dj;(G) models. That is, this new generalization of the D(G) models, whose
construction/definition will be detailed in Sec. 3, has

o the same gauge structure as them, but

¢ the matter qudits attached only with the center of all the faces of Lo, since all these
centers can be interpreted as the vertices of a dual lattice £5.*

However, as we need to do this construction/definition (and, consequently, analyze
it) based on what we already know about the D;;(G) models, we will deliberately use
the following section to do a detailed and judicious review of these D;;(G) models, by
analyzing their algebraic and topological properties. And just for the sake of

b At this point, we need to make an addendum: after all, although Ref. 16 refers to its models by using the
same notation as Ref. 21, here we prefer to use the “D,;(G)” notation not only to differentiate the models
of these two works, but also to highlight the fact that the models of Ref. 16 satisfy the same Drinfeld’s
quantum double algebra® of the D(G) models. "
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simplicity, we will consider that £, and, consequently, £} are square lattices, even
though all the considerations that will be presented in this paper can be applied to
general lattices.

2. A Brief Overview on the D;,;(G) Models

According to what we said in the introduction, the D;;(G) models are straightfor-
ward generalizations of the D(G) ones. And in order to prove this statement, it is
important to analyze what are the similarities and differences between these two
classes of models. As a matter of fact, with regard to the issue of the similarities, it is
worth noting that, due to the quantum computing proposal that permeates these
D(G) and D);(G) models, both are defined by assigning a |G|-dimensional Hilbert
space )| to each of the edges of L,. Observe that, since §)q is responsible for
supporting the gauge qudits that need to be manipulated in these two classes of
models, its single-qudit computational basis is B, = {|g) : g € G'}.

Now, with regard to the differences that exist between these two classes of models,
it is correct to say that all these differences have their origin in the fact that, in the
case of the D,;(G) models, there is also an M-dimensional Hilbert space £, assigned
to each of the vertices of £,. After all, by remembering that these D,;(G) models

e were intentionally defined to mimic some more general lattice gauge theories, and

e have additional qudits assigned to the lattice vertices in order to mimic matter
fields similarly to what was done, for instance, in Ref. 20, where Higgs fields were
allocated on the lattice vertices,

an additional Hilbert space

DR ...0 Ny
—

N, times

becomes necessary to support all the additional matter qudits that need to be ma-
nipulated in the Dj;(G) models. That is, these D;;(G) models were defined by
assigning an $);; to each of the vertices of £, because this Hilbert space is responsible
for supporting these new matter qudits.

By the way, since this Ref. 20 couples the Higgs fields to the lattice gauge fields by
using a group action® it is also correct to say that these D;;(G) models were also
defined by exploiting this fact: i.e. they were defined by coupling these matter qudits
to the gauge ones by using a group action p: G x .S — S, which defines how the
gauge group G acts on the elements of the single-qudit computational basis B5,, =
{la) : @« € S} of ;. For now, S should only be interpreted as a set of indices (i.e.
S =1{0,1,2,...,M — 1}). Nevertheless, since this group action yu is one of the pro-
tagonists of the D;;(G) models (because it tells us how the matter and gauge qudits
are coupled), it is interesting to note that it allows us to interpret 9, as a (left)
C(G)-module.™
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a ga
AP | d +<o>~ l> = X d(u(g,0),7) |dg! )@~ gb>
vES
c cg~!
a

a

B b d)y = 6(hya b ted) |b d

o™ = 6(p(a,@), (B +A)mod M)

Fig. 1. Definition of the components AS,:(]), B Eth) and C [(A) whose effective action, on the sectors S, S; and
S, of L,, respectively, can also be better understood by looking at Fig. 2. Here, the group element a is
indexing an |a) basis element of §) |, the symbol o indexes an |a) basis element of $),/, and A is a natural
index such that 0 < A < M — 1. Moreover, it is also worth noting that, here, 6(z, y) should be interpreted
as a Kronecker delta that was written differently for the sake of intelligibility (i.e. 8(x,y) = 6,,).

2.1. A few words about the Dy/(G) Hamiltonian operator

But since we are talking about p, it is important to take the opportunity to mentioning
that its role is explicit in two of the three operators that make up the Hamiltonian

Hp, ) = _jAZCAv_JBfZLBf_jC[ZE Cy (1)
veELy feL, €L,

of these D,;(G) models, where J,, Jp and J are three positive parameters. Scilicet, p
appears in the vertex and link operators®

1
A'U = @ Z A/E;/) and C[ = 020) (2)

9eG

respectively, whose components are shown in Fig. 1 together with those of the face
operator
(e)
By=B fe : (3)
Here, e should be interpreted as the neutral element of G.

Note that, by virtue of all the operators in (2) and (3) being expressed by using
Kronecker deltas, it is not difficult to conclude that, no matter what they do, 0 and 1
are the only values they return by acting on each vertex, face or edge of £,. And since
these same expressions (2) and (3) are such that

[Avaf] = [Avacél = [Bfacl] =0,

¢ Although we are referring to £, in terms of its vertices, faces and edges, it is worth noting that operators
analogous to Cy are often denoted as link operators in other lattice gauge models. And as the origin of this
name lies in the fact that the purpose of such operators is to make clear what is the link between what is
contained in two neighboring vertices, we will use this same denotation since, for example, this is also the
purpose of C.
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Fig. 2. Piece of £, that supports the D,;(G) models where we see: (i) the rose-colored sector (S,) centered
in the vth vertex; (ii) the baby blue-colored sector (Sy) highlighting the fth face; and (iii) the light orange-
colored sector (Sy) that is centered in the ¢th edge. Here, the highlighted edges (in black color) correspond
to Hilbert subspaces ¢ in which the vertex (rose-colored sector), face (baby blue-colored sector) and link
(light orange-colored sector) operators mentioned in (2) and (3) act effectively. Note that, as S, and S,
contain vertices in their interior, an analogous comment applies to the vertices highlighted with Greek
letters: i.e. according to what can be seen in Fig. 1, these vertices correspond to Hilbert subspaces $);; in
which, for instance, only the vertex and link operators act effectively.

and

A“/ o AU// = A”/ . 5('1)/, ’U”),
Bf’ [} Bf” = Bf’ . 6(fl, f//) and
Cg/ o an = Cg! . (5(6/,£”),

all this allows us to assert that A,, By and C; are three projectors: i.e. A,, By and C,
are three operators that allow us to assert that, when

Aléo) = 1&0)s  Byléo) = &) and  Cyl&y) = [€o) (4)

hold for all the N, vertices, N, faces and N, edges of L,, the state |{) of this lattice
system belongs to the Hilbert subspace

(0) —
Ny SOy =NG® - @Nig OHu @ ... @ Hy

N, times N, times
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whose states have the lowest possible energy. From the point of view of (1), this is
equivalent to saying that |€,) is an eigenstate of Hp () that has an eigenvalue equal to

Ey = —(JsN, + TIgN¢ + JoNy) (5)

because the D,;(G) models are examples of frustration-free models.'®

2.1.1. A few words about the existence of additional vertex, face and edge projectors

Since we just talked about the projectivity of A,, By and CY, it is important to open a
small parenthesis here to tell you, the reader, that they are not the only projectors of
these D);(G) models. After all, by noting that G is a finite group that has®!

¢ R distinct (nonequivalent) conjugacy classes C;, = {hg,h~! : h € G}, and (therefore)
e R distinct (nonisomorphic) irreducible representations py,; : G — G L (C) over

the complex numbers,

it is not difficult to see that these three operators are nothing more than mere special
cases of others

g A
UJ |G| ZX1+J . ’(1}'])7 BfA’L = Z Bch> and CZ;A = Cé( >7 (6)

geG 9€Cy

where xi.;(9) = Tr[p11s(9)], J,L=0,1,...,R—1 and A=0,1,...,M —1. And
since all these operators

(a) have eigenvalues equal to 0 and 1,
(b) satisfy the relations
[Ay g, Byrp] = [Ayr g, Coonr) = [Byr i, Coopr] = 0, (7)
AU’,J’ o A7;//7J// = Aﬂ/“]/ . 6(’1}’ ’U”) . (J/, J”),
Bf’,L’ o vi”,L” = Bf’,L’ . (f/ f//) . (L/,L//) and
C[’,A’ o C[//_Au = CZ’,A’ . 6(€/,€”) . (S(A,,A”)

not only for all the values of J'),L'") =0,1,...,R—1 and A’'") =0,1,...,
M — 1, but also for all the vertices, faces and edges of L,, and
(c) are such that
M—1

R-1
> Ay =1, ZBfL—Ilf and Y Cpp =1y,
T=0 =0 =0

where 1,, 1 and 1, are identity operators that act effectively on the vth vertex,
fth face and fth edge of £, respectively,

dThis notation “I,”, “1 77 and “],” is being used here only to be consistent with some expressions that will
be presented later. Nevertheless, as all these operators act effectively on the vth vertex, fth face and ¢th
edge of L,, respectively, all of them can be interpreted, in fact, as an identity operator T ., that acts on all
lattice edges simultaneously.

2350018-7
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it is correct to assert that
U= {A'U,O7 A’I},l? ey A%R—l})
B = {Bfi)?Bf,l?"'?Bf,R—l} and
<= {Cwa Ctz,h cee »Cl,Mfl}

are three complete sets of orthogonal projectors onto $p, (). And why is it important
to open this parenthesis here? Because, in addition to (7) ensures that the D,;(G)
models are exactly solvable,'® the fact that these models have been defined by
using all these projectors is in full agreement with the requirements of Quantum
Mechanics.*? After all, by noting that

A,=Ay0, By=DBjy and Cp=Cyy

because

e X1(g9) =1 holds for all the elements of G, and

e C, is the conjugacy class of e,

this is precisely what allows us to assert that a state |¢,), which satisfies (4) for all the
N, vertices, N; faces and N, edges of L,, belongs to $©). In plain English, it is the
existence of these projectors (6) that allow us to decompose the D,,(G) Hilbert space
into the direct sum

e i
D0u(@) =9 @) © D) (8)

where Sﬁ(gil @) and 533”@ are the orthogonal subspaces that contain all the Dy,(G)

vacuum and nonvacuum states, respectively.”?

2.1.2. Understanding the vertex and face operators

Of course, given that we ended the last paragraph by citing these D;;(G) vacuum and
nonvacuum states, it is very important that we explain how they can be produced.
But, before we do that, it seems more interesting to pay attention to what these
operators A, ;, By and Cy, do in addition to being projectors. And since we have
already said that one of the ideas behind these D;;(G) models is, for instance, to mimic
some lattice gauge theories where matter fields are present, it is worth to say that this
mimicry is mostly done by the operator A, that defines the Hamiltonian (1).

As a matter of fact, in order to understand how A, does this, one of the things that

we need to do is understand how its components Agg ) act on L,. And in accordance with

what Fig. 1 shows us, these components are operators that, by acting on S,,, change®

e the matter fields |a), for other |y), = |u(g, @)),, and

€Not only here, but elsewhere in this paper, we will use the indices v and ¢ whenever necessary to emphasize
that o) and |g) are associated with the vth vertex and the ¢th edge of Lo, respectively.

2350018-8
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o the gauge fields |g’), for other

lg-9"¢ or |g"-g97")

if the orientation of the ¢th edge points into or out of the vth vertex, respectively.

That is, regardless of whether or not these components change the matter fields that
appear on the lattice vertices, they change all the gauge fields of S, when g # e. In
this way, as the result of the action of A, comes from the sum of all the transfor-

mations that Agw is capable of doing, it is not wrong to conclude, for instance, that

A, averages out the possible transformations that A(L;") is able to do by using all
elements of G.'" And since the only difference between A, and the others A, ; is
due to the characters x;,;(g), which can take on values other than 1 when J # 0
and g # e, it is also not wrong to extend this conclusion to all these operators
A, ;. That is, even though x;,;(g) can take on complex values other than 1 when
J #0 and g # e, each of these operators A, ; computes some kind of “exotic”

weighted average, when J # 0, for all the transformations that Ai” is capable of
doing.

Regardless of the “exoticity” of what has just been said, the fact is that, since we
already said that the qudits assigned to the lattice edges must be interpreted as the
D,(G) lattice gauge fields, this allows us to conclude that all the transformations
that A&") performs are naturally lattice gauge transformations. But while this con-
clusion is correct, a relevant question is: how can we justify this conclusion in a more
fundamental way? And this is a relevant question that, for instance, can be answered
by explaining what is the actual role that the operators By ;, have in these models.
After all, in order to explain this actual role of By s, it is imperative to note that the

product a~'b~led, which appears explicitly in the definition of B (fg), is one of the

holonomies that can be calculated by using all the gauge qudits around the fth lattice
face.!” And since the sum that defines each B 1.1 is constrained to the fact that this
operator always returns'’

e 1, if the holonomy of the lattice face on which it acts effectively belongs to C;,, and

e 0, otherwise,

it is natural to conclude that each By can be interpreted as a kind of “holonomy
meter”.

Note that, as a consequence of this natural conclusion, By, can be recognized as
an operator that measures only flat connections: i.e. it measures only trivial holo-
nomies that are characterized by e along the faces. Thus, by remembering that

e it is precisely this B, that make up the Hamiltonian (1), and

o the smallest energy eigenvalue (5) is obtained only when, for instance, all the face
holonomies of £, belong to C,

2350018-9
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we can assert that, when these D,;(G) models are in their ground states, £, is locally
flat. Of course, the converse of this assertion is not true since, for instance, the D,;(G)
models have nonvacuum states |£) where

By|€) = 1€)

hold for all the N faces of £,. But the act of interpreting these face operators as
“holonomy meters” is quite revealing: after all, as (7) shows us that A, ; and By,
commute among them for all values of v, f, J and L, this means that all the holo-
nomies measured by B, ; continue to belong to the same C;, after the action of A, ;
on L,. That is, since these face holonomies can be associated with local estimates of
how curved is the two-dimensional manifold M, that £, discretizes, all these local
(non-)deformations are preserved under the transformations that all the operators
A, are capable of doing.'” In this fashion, as this geometric point of view is anal-

ogous to the one that underlies all the continuous gauge theories,>**

it is precisely
that allows us to assert that the action of these operators AS,’G) and A, ; can be
interpreted as lattice gauge transformations. Note that this is one of the things that

explains, for instance, the fact that one of the Dj;(G) vacuum states is

e =T[4l ®...0l) @0)®...00) (9)

veL

N, times N, times

because, in addition to all the face holonomies of “seed”
le)®...0e) ®0)®...®]0)

N, times N, times

belonging to Cy, the action of the operator [],c A, is unable to change them.

2.1.3. What does the correspondence principle has to tell us about these Dy/(G)
models?

Given what has just been said about all these vertex and face operators, it is quite
clear that there is a symbiosis between them with regard, for instance, to the inter-
pretation of the D;;(G) models as examples of the lattice gauge theories. Never-
theless, it is worth noting that, despite what has been said to be correct, we still have
not talked about the role that the group action p have in these models. And although
it seems strange to conclude that the operators A, ; perform lattice gauge transfor-
mations by disregarding, for instance, what they do on the matter fields, the truth is
that this conclusion was inherited from the D(G) models: i.e. this conclusion was
inherited from lattice gauge models where there are no matter fields.'”

In order to understand this last comment, it is important to note, at least, two
things and the first one is that the D(G) models, whose Hamiltonian is

Hpe) =-Tx Y Aw—Js > By, (10)

vEL, feL,

2350018-10
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a ga
c cg™!

a a
B b d) = d(ha b led) |b d

C (&

Fig. 3. Definition of the components A% and B(fh), which define the D(G) vertex and face operators, in

terms of their effective action on L£,. Note that, since these D(G) vertex and face operators are also

expressed as A, ; = ‘%‘zgecxlu(gfl) LAWY

components makes it clear, for instance, that the D(G) and D,,(G) face operators are exactly the same.

and By =3 e, Bgf’), respectively, the definition of these

are defined by using vertex (A, ;) and face (B ) projectors that, despite being
similar to those in (6), have a small difference: the components of these D(G)
projectors are those in Fig. 3. And why is it important to note this first thing?
Because the only difference between the D(G) and D,;(G) vertex operators concerns
precisely the action on the matter fields. After all, even if there is (were) some
matter field assigned with the vertices of L5, Fig. 3 makes it quite clear that the D(G)
vertex operators are (would be) unable to act on these matter fields. In this fashion,
as the D(G) and Dy(G) vertex operators act on the gauge fields in exactly the
same way, this inability of the D(G) vertex operators allows us to conclude that
they can actually be interpreted as D;;(G) vertex operators that are “blind” to
the matter fields, regardless of whether these matter fields are on the lattice vertices
or not.

Note that, as strange as this interpretation may sound at first glance, there is no
way not to recognize that it makes sense because, by bearing in mind that

e quantum-computational models try/need to model some reality that can be
physically implemented, and

e the Dj/(G) models are intentionally defined to be seen as generalizations of the
D(G) ones,

there must be a (mathematical) correspondence between these two classes of lattice
models in such a way that the D(G) models can be recovered as special cases of the
D,/ (G) ones. In plain English, these two classes of lattice models need to respect the
same kind of correspondence principle that the most diverse physical theories respect
when they are formulated.®> Therefore, as the D(G) vertex operators are “blind” to
the presence of matter fields, two good ways to make the D,;(G) vertex operators
become “blind” to these matter fields seems to be imposing that

e the group action be such that (g, ) = « for all g € G because, in this case, there
will be no change on the matter fields, or/and

e M isequal to 1 since, in this other case, the D,;(G) vertex operators will be unable
to make any changes on the matter fields due to lack of options.
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2.1.4. The presence of the Potts model

But, before we say whether (or which of) these two “good ways” really work to
recover the D(G) models as special cases of the D);(G) ones, we need to remember
that the Dj;(G) Hamiltonian (1) is not defined only by vertex and face operators: it is
also defined by a link operator Cy, whose meaning, in addition to not having been

discussed so far, is starred by p. And with regard to the components C' ,Ea) that appear
in Fig. 1, it is possible to assert that they are defined in this way only to make it
possible to interpret these D,;(G) models in terms of a coupling of the D(G) models
with the Potts models.>®3" As a matter of fact, by analyzing a hypothetical situation
where, for instance, J4 and Jg could be taken as null, it is not difficult to see that the

Hamiltonian (1) would reduce to
HDAI(G) = _jCZCZa (11)

(eL,

which is “exactly” the same expression as the interaction Hamiltonian of a Potts model.
It is obvious that you, the reader, may argue that, due to the presence of y in the

Kronecker deltas of C' /@, there is a deep difference between (11) and the interaction
Hamiltonian operator of the original Potts model. And although this argument is
perfectly correct, it is worth stressing, once again, what we have said in the last
paragraph: the D,;(G) models should be interpreted in terms of a coupling of the
D(G) models with the Potts ones. That is, the D(G) and Potts models cannot be
disconnected from each other in order to define these D,;(G) models: these two
classes of models must be coupled to each other and the main responsible for this
coupling is i because, due to its presence in the vertex and link operators, it allows to
check whether the matter fields have been manipulated or not.

Observe that, since all the elements of B,, are orthonormal vectors and, therefore,

6(ula, ), B) = (u(a, @) | B), (12)

it is not difficult to see, for example, that the smallest eigenvalues of (11) are asso-
ciated with the eigenstates where the matter fields are aligned from the p point of
view. That is, (12) is a result that allows us to interpret all the link operators C; » as

comparators, since each component C [(a) measures the alignment of two neighboring
matter fields (i.e. of two matter fields that are assigned with the two boundary
vertices of the ¢th edge) from this p point of view. And as these matter fields also need
to be aligned in the ground state of the D;;(G) models where 74, Jp and J are positive
parameters, it is not difficult to see that the only way to make the D, (G) vertex
operators “blind” to the matter fields (and, therefore, recover the D(G) models as a
special case of the D;;(G) ones) is by taking M = 1. After all, since (12) will always be
equal to 1 when M = 1 because u(a,0) = 0, the Dj;(G) Hamiltonian will reduce to

Hp, )= =—Ta Z A, — Tp Z By — (JoNy) 1, (13)

vELy feL,
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in this case, a result that is identical to (10) except for one constant. But since, whenever
we measure any energy, we are always actually measuring energy differences, the
presence of this constant does not prevent us from recognizing that (13) is, indeed, one of
the possible Hamiltonian of the D(G) models.'*!*!?

2.2. General properties of the Dy/(G) models
For the sake of completeness, it is also important to point out that, in the case of the
D,/(G) nonvacuum states, all the energy excitations that characterize them are

produced through the action of operators Wé(J’L’A) and WﬁJ‘A) that, due to the pro-
jectivity of A, ;, By and Cy,, are, respectively, such that

W[(LL,A) o Ayy= A, o WZ(J,L,A))
J.LA J,LA
W/( Yo Bty= Bjpo Wé >,

(14a)

(14b)

WY oy = Cpp o WY and (14c)
WM o A= A, ;0o WY and (15a)
WM o ¢y = Cypo WA, (15b)

And by remembering, once again, that

e quantum-computational models try/need to model some reality that can be
physically implemented, and

e these Dj;(G) models were defined as the computational analogues of some lattice
gauge theories,

it becomes quite clear that, at least, all the fusion rules

J’,L/J\’) (J”,L”,AN) q(JU’LU’AN) (J/.L/,A/)

)

q' X q = X q
q(.]’,L/,A’) % Q(']”’A,) _ Q(']H"A/) % q(']/’L,’AI) and

QU 5 QUM = QU"A") ¢ QU

need to be satisfied so that all the D,;(G) energy excitations ¢(/-»4) and Q /"), which

are locally produced by the action of the operators W}J"L’M and Wf,J’A) respectively,

can be interpreted as quasiparticles.

By the way, since we are talking about quasiparticles, it is important to point out
that, due to the correspondence principle Dy(G)|y=1 = D(G), it is not difficult to
conclude that all the D(G) quasiparticles are also included, in some way, in the
D,;(G) models. However, as these two classes of lattice models are not equal when
M +# 1, something different must happen to these quasiparticles that were inherited
from the D(G) models when p is, for example, a nontrivial group action.

2.2.1. The Toric Code coupled to matter fields as an example

In order to begin to understanding what is different about the quasiparticles
that were inherited from the D(G) models, it is interesting to analyze the general
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properties of the cyclic Abelian Dy(Z,) model: i.e. it is interesting to analyze the
general properties of a lattice model that, when defined by using an £, that dis-
cretizes a two-dimensional torus, can be recognized as a Toric Code coupled to the Ising
model. And according to what was discussed above, it is not difficult to see that the

matrix representations of the D,(Z,) vertex, face and link operators are given by*’

A= 5 S0P M) IT @) (162)

9€Zs 0es,
1 z
Bii= 5 S (=5[] (¢i)? and (16b)
gEZy é’ESf
1 P
Coa=5 D (=D My(g) [] (o) (16¢c)
9EZLy vES)
respectively, where!6-%!
M,(g) = (o%)0 and (172)
M(g) = (7)" (17b)

After all, since the set {M(g) : g € G} is composed of matrices that represent the
gauge group G and, consequently, the group action u,?! something that is no longer
difficult to observe is, for instance, that all these operators (16) satisfy all the con-
ditions (a), (b) and (c).

By the way, another thing that is no longer difficult to observe is that, due to the
fact that (16a) and (16b) are represented with the help of the Pauli matrices 0% and

o*,%® the operators I/I/((J"L’A> that produce quasiparticles in this Dy(Z;) model can be
represented by’
J,L,A z x J,L,A x z
WY = (08)7 0 (6)F or WY = (07)F o (o). (18)

That is, these operators WéJ’L’M have the same expression as those that produce
quasiparticles in the D(Z,) model and, as in this same model, these operators always

fHere, we think it is better to write this representation as (18), rather than the one
W;LM) =0y, W[(,(]'l‘l) =0y and W;l’l’l) =o0)/=0j00; =000}

we wrote in Ref. 13, because it places more emphasis on the fact that these operators need to be expressed in
terms of those that compose the D,(Z,) Hamiltonian. After all, it is always good to remember that, as well
as in QFT (where Hamiltonians can be expressed in the Fock representation by using the creation a’ and
annihilation a operators:m)7 the entire D(Z,) energy spectrum can also be well understood from"?

e the knowledge of the ground state of these models, and
e the excitations produced by the action of the operators that compose its Hamiltonian on this ground

state.
(J,L,A)
‘

Note that write (18) is also very welcome because, when J = L = A = 0, the operator W' can be

identified as those that produces (a pair of) vacuum quasiparticles.
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produce pairs of quasiparticles that are detectable by the face and link operators:
scilicet,

o A, detects one quasiparticle ¢(109) on each vertex that delimits the /th edge of £,
after

(1,000 _ =z
Wér =0y

acts on this edge and changes the lattice gauge field from |0) to |1), and
¢ By indicates that

Wé(O,l,l) _ 0_25’

(0,1,1)

by acting on this ¢th edge, produces one quasiparticle ¢ on each face that

shares this edge.

And, if we really recognize that the operators (18) are the same ones that produce the

(LL1)

D(Z,) quasiparticles, it is not difficult to conclude, for instance, that W, also

produces another pair of quasiparticles because the fusion

(1,0,0) (0,1,1)

q X q

results in a nonelementary quasiparticle, which is the dyon ¢,

2.2.2. On the confinement of the Dy(Z,) magnetic quasiparticles

Given what we said in the previous paragraph, perhaps you, the reader, are won-

dering about the fact that, while We(l"o’ is indexed by A = 0, the operator W (L1
indexed by A = 1. After all, if these two operators actually produce the same qua-
siparticles of the D(Z,) model, should not the quasiparticles ¢(:%") and ¢} be
duals of each other and, therefore, should not these two operators/quasiparticles be
indexed by the same value of A7 And if you are asking this, know that this is an
excellent question, since it gives us the opportunity to answer what is different about
these quasiparticles that were inherited from the D(Z,) model.

The simplest way to answer this is by noting that, in accordance with (14), every

pair of quasiparticles, which is produced by an operator Wé']’L’A) where A is nonzero,
is also detectable by the operator C,. That is to say, while a pair of quasiparticles

produced by W[1 00)
W,fo 1 is. And from the point of view of the Dy(Z,) Hamiltonian, this means that, if

is not detected by C), a pair of quasiparticles produced by

a pair of quasiparticles is produced by VV(1 00 5ver what was once a vacuum state, it
will raise the energy of this lattice system to

Ee = EO + 2\-7Aa
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whereas the production made by Wémi) over the same vacuum state will raise the
energy to

E, = Ey+2J4+ Jc-

By the way, since we touched on the subject of energy, it is important to continue
exploring this subject to explain what else is different about these pairs of quasi-
particles. And as strange as this may seem at first, the main difference is directly
associated with the possibility of transporting these quasiparticles over L,. After
all, since ¢1%0) can be interpreted as its own anti-quasiparticle (because
o™¥* = (o™¥#) 71 it is not difficult to see that an operator

o) = [ wp™"

ey

can transport it to another lattice vertex. For this, it is enough that ~ is a set of

lattice edges that describes a continuous path that, as shown in Fig. 5, is delimited by

(1,0,0)

the same vertex where this g is. However, although it is also possible to transport

(011 to another lattice face by using an analogous operator

O(~*) = H WZ(,O’I'D,

ey

a quasiparticle ¢

where 4* is a continuous dual path like the one shown in Fig. 6, something different
happens: in the same way that the link operator (that appear in the D,(Z,)

0,1,1) 0L1) are

that
participates in this transport process and, therefore, increases the energy of this

when pairs of quasiparticles ¢!

produced, this link operator also detects the action of each operator Wé?’l’l)

Hamiltonian) detects the action of Wé(

lattice system to
Einc = Em, + (nlf’ ' jC) (19)

Here, n, is the number of edges or, equivalently, of operators W "M involved with
this transport. In this way, and by remembering, once again, that quantum-
computational models try/need to model some reality that can be physically
implemented, we need to ignore the fact that this transport is mathematically pos-
sible and consider that all these quasiparticles ¢(/1') are confined (i.e. that all they
“cannot” be separately transported).

2.2.3. A hadronic analogy

In order to understand why we need to consider that all these quasiparticles g(/:1V)

are confined, it is crucial to note that, if the motion of any (quasi)particle increases/
decreases the energy of a physical system to which it belongs, this prevents us from
finding out the statistics of this (quasi)particle by changing its spatial position."’
Note that this is not the case for the quasiparticle ¢(%) that, as in the D(Z,) model,
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@

Fig. 4. Piece of the same lattice region of £y at two different times, where we see a pair of quasiparticles
¢109 and g% (red outlined and purposely indexed with the “4+” and “~” symbols, respectively) of the
D,(Zy) model. In the first instant ¢, (above) we see these quasiparticles at the positions where they were

produced due to the action of W;le_o) : i.e. on the two vertices that delimit the ¢th lattice edge (highlighted

in black color) on which W}LU’“) acts. In the second instant ¢, > ¢; (below) we have these same quasi-

particles, but after one of them has been transported to one of the vertices that delimit the ¢’th lattice edge
(which is also highlighted in black color). After all, as these quasiparticles are their own anti-quasiparticles,

the action of a new operator W;,l 00) produces two new ones and, therefore, leads to a fusion qg'o‘o) X q(,l‘U‘O)

at the vertex (highlighted in white color) that delimits these two lattice edges.

can be recognized as a boson.'*** But although this increase (19) prevents us from
finding out the statistics of ¢(®11) by changing its spatial position, we need to make
an important observation here: after all, and as suggested in Fig. 7, if, instead of

transporting just one of these quasiparticles, we transport the two quasiparticles of a

0,1,1)

pair produced by We( together, this new transport will be done without any

increase in the energy of this lattice system. And this is an important observation

L1 are confined

because it legitimizes the interpretation that these quasiparticles ¢(°
in this Dy(Z,) model.

In view of the legitimacy of this confinement interpretation, it is interesting to
point out that this confinement of quasiparticles is, in some way, analogous to the
phenomenon of quark confinement.*! After all, although it is not impossible to move
one quark away from another/others inside a hadron, it is well known that, as this

quark moves away from another/others, the potential energy of this hadronic system
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e &

Fig. 5. Here, we see a transport of quasiparticles that is a little more general than the one shown in Fig. 4,

but that illustrates how the action of an operator O(y) works. After all, since an operator Wf,1 20 can be

used to transport a quasiparticle to a neighboring vertex, the operator O(y) makes use of this possibility to
transport this same quasiparticle to more distant vertices. And a good way to understand this is to realize
that the path « (which is highlighted in black color) is composed of edges that are neighbors two by two

(1,0,0) )

because, as W, leads to a fusion

1,0,0
L

produces two quasiparticles by acting on an edge, H[/67W15/1’0’0
x ¢ at all vertices that are shared by two edges in v U {¢}. Thus, if we consider the same initial

situation as in Fig. 5, where two quasiparticles were produced by W;l’ﬂ'n), all these fusions cause one of

these quasiparticles to be transported to the vertex that delimits only « and not the ¢th lattice edge.

increases until the moment that Nature produces an additional meson (i.e. a hadron
usually composed of a quark—antiquark pair) in order to conserve the energy of the
system.?”»® Thus, by noting that

e the potential energy between a quark and an antiquark in a meson increases lin-
early with the distance between them,** and

e the action of W(J’L"A) produces one pair, which is composed of one quasiparticle
q(f’L N and its anti-quasiparticle ¢/"“") | where before it was a vacuum,

this analogy seems to endorse the confinement of quasiparticles mentioned above

because the energy (19), which is associated with a pair of quasiparticles qf’l’l)

01

and

, also increases linearly with the distance between them.

Given all these facts, it seems to make a lot of sense to say that, from the per-

JL1) produces a kind of

spective of elementary particle physics, the action of Wz(
prototype of a meson. And this perspective becomes even more interesting when we
notice, for instance, that the most general D(G) quasiparticles are interpreted as
anyons: i.e. they are not necessarily interpreted as bosons or fermions. After all, as the
concept of anyon arose from the advent of the Aharonov-Bohm Effect'* (because it is
possible to realize such anyonic statistics for systems where one electric particle

rotates around one punctual magnetic field on a 2D surface), the D(G)

&In plain English, Nature prefers to convert this energy increase into mass—energy of a new quark—
antiquark pair and this is exactly what, for example, justifies the appearance of the jets (i.e. spray of new
hadrons) in the various experiments involving the collision of high-energy hadrons.” 2
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Fig. 6. Piece of the same lattice region of £, at two different times in the Dy(Z,) model. In the first instant

t; (above) we have a pair of quasiparticles q(f‘l‘l) and ¢4V (blue outlined and purposely indexed with the

“+” and “—” symbols, respectively), which were produced by the action of a single operator Wé“‘l’l). Here,

the single orange dot corresponds to the unique vacuum violation that is detected by Cy,. In the second
instant ¢, > ¢, we have these same quasiparticles, but after one of them has been transported away from

the other due to the action of Wé(,o’l‘l). This operator acts on all the edges that intersect the dual path v
(highlighted in dashed black). Observe that, in this latter case, we have new (three) orange dots: one for
each edge involved in this transport, making clear the linearity that is related to the growth of the system
energy in this transport.

quasiparticles which are detectable in the vertices were baptized as type e (electric),
while those that are detectable in the faces ended up being denoted as type m
(magnetic)."” In other words, we are facing a scenario that, due to the same corre-
spondence principle mentioned in Sec. 2.1.3, allows us to recognize ¢(/*0) and ¢(®-LA)
as electric and magnetic quasiparticles, respectively. And, in plain English, this is

b actually produces a kind of prototype of

exactly what seems to reinforce that I/VZ(']’1
a meson in the Dy(Z,) model since, for instance, there are several works that explore

the hypothesis that quarks are magnetically confined.*~>*

2.2.4. Is there any Dy;(Zy) model whose ground state degeneracy depends
on m (Ms)?

Although we have just discussed this confinement of quasiparticles only in the con-
text of the Dy(Z,) model, it is important to understand how this confinement appears
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Fig. 7. In this figure, we present again (above) the same situation presented in Fig. 6, which depicts the

linear increase in the energy of this lattice system when we transport one of the quasiparticles ¢(®11) away
0L O
oWy

from another. And we present this same situation again because, as W/(
difficult to see that, if an operator [Ty, W/(,O 1 acts on the path 5 (which is highlighted in dashed black),

it will erase the energy track produced by the transport of Fig. 6. Therefore, as the final result of this action
leads us to the same initial configuration as in Fig. 6, it is not wrong to say that, when we transport two of
these quasiparticles together, this energy of this lattice system is preserved.

=Ty, it is not

in more general D;;(Zy) models (i.e. in the D;(Zy) models where M or/and N is/
are greater than 2). And the best way to understand this is by noting that, unlike
what happens with the D(Zy) models, the D,;(Zy) ground state degeneracy does
not necessarily depend on the order of 7 (M,).

Note that the Dy(Z,) model is a good example of this fact because, when

0.7 = [ wi (20)

lrex
acts on a set 4* of edges that intersect any closed dual path, it always leads to a
nonvacuum state and, therefore, the D,(Z,) ground state is independent of the order
of m;(My). However, when we analyze the Toric Code coupled to matter fields with
M > 2, we may find a situation that is somewhat different. This is what happens, for
instance, with the D3(Z,) model, whose vertex operators can always be represented as

Av,J :% Z (71)Jg ’ Mv(g) H (O—?’)ga

gEZy l'es,
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where! 62!

Mi,(())—(O]lT (1)) and Ml,(l)—<;; ?) (21)

and where 1 is an identity matrix and 0 is a zero column matrix. After all, by noting
that the set

Silu = {|a>u €y Mu(g)|a>’u = |a>17 for all g€ Z?)} (22)

of points of 9;, that are fixed by the group action p is nonempty, this allows to
conclude that the D3(Z,) ground state degeneracy is dependent of the order of
71 (My). And in order to understand this conclusion, the first thing we need to do here
is to note that, as

o all the D,,(Z,) face operators are represented by (16b), and
o all the Dj;(Z,) link operators cannot perform any permutation between the gauge
or matter fields,

the matrices in (21) allow us to recognize that this D5(Z,) model has, at least, two
vacuum states”

€y = HAW <® |e>> ® <® |0>> and (23a)

lely vELy
€y = T A <®|e>> ® <® |2>> (23b)
v’ el veELy

because there is no transformation, which can be expressed as a product of the
operators A,, By and Cj, that can connect these two vacuum states. And once all the
D, (G) models reduce to the D(G) models when M = 1, the second thing we need to
do here is to note that the same operators (18) produce (pairs of) quasiparticles in
this D3(Z,) model. By the way, since we touched on the subject of the quasiparticle
production, it is also important to note that the operators

W = M,(g) (24)

also need to be listed among those are able to produce (matter) excitations in this
model because, among other things, they define the D;(Z,) Hamiltonian.! However,
despite the action of these operators (24) on the vacuum state (23a) being identical to
that of the operators (17a) on the unique D,(Z,) vacuum state (9), there is a
“problem” here: after all, as (21) permutes |0}, < |1), but fixes |2),, these operators
(24) are completely unable to produce any (matter) excitation on the vacuum state
(23b). That is, the only operators that compose the D;(Z,) Hamiltonian and,
therefore, can excite this vacuum state (23b) are the operators (18).

hNote that (23a) is just a more streamlined way of writing the same vacuum state (9).
iThis comment is in full agreement with the one we already made in the footnote in p. 15.
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Nevertheless, it is precisely this “problem” that, for instance, allows us to make
some important observations, and the first one concerns the relationship between the
Ds(Z,) ground state degeneracy and the cardinality of (22). After all, as

e [3ir,| = 1 because (21) fixes only |2),, and
e the fixation M,(g)|2), = |2), makes the D3(Zy) vertex operator Cy, unable to

detect any energy excitation produced by W[(J’l‘l) on the vacuum state (23b),

it becomes clear that all the quasiparticles produced by W(EU"M) on this vacuum state

(23b) are not confined. Thus, by

e noting that the action of (20) on the vacuum state (23b) does not lead to an excited
state, and

e considering that
{CT7 ;; ey j;7176:’}
is a nonempty set that contains all the noncontractile curves that generate

WI(MQ)a

we conclude that all the vacuum states

€2V =TT 1o @1,

p=1

where A = (A, Ay, ..., A1, A) # (0,0,...,0,0), are topologically independent of
each other and, by definition, with respect to the vacuum states (23).'* Here,

e ), =0,1,and
e 7, is a closed dual path (similar to what appears, in dashed black, in Fig. 6) that

should be interpreted as the discretization of C;.

But although we have used the D;3(Z,) model to show that there is a Dy;(Zy)
model whose ground state degeneracy depends on 7, (M), it is not difficult to show
that this also happens with many other D;;(Zy) models. And in order to show this, it
is enough to analyze all the D;;(Zy) models where

3@# = {|a>v € 9y Mv(g)|a>u = |a>v for all g € ZN} (25)
is a nonempty set. After all, as these models have [§ir,| vacuum states

€67) = [T4. <® |e>> ® <® |a>> (26)

leLly vELy

JThis condition A # 0 is of paramount importance because, when X = 0, the vacuum state |€ [()2')‘)> is
reduced to (23b).
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whose matter fields cannot be manipulated by using

W0 = M,(g),
all the operators
0,3 = [ wo” T wi*Ot, (27)
tery, ver;,

are completely unable to excite these |§ir,| vacuum states by acting on a non-
contractile closed dual path 4* that crosses all the edges of a set I'/s UT';,. Here, I' |y
and T'}, are two subsets, whose edges have some counterclockwise and clockwise
orientations, respectively, as shown in Fig. 8.

In other words, all the Dj;(Zy) models where [§ir,| # 0 have a set of vacuum
states

S

|§éa,)\,L)> — H [OLP (:)';)])\p

p=1

£5)

that is degenerate as a function of 7;(M,), where

L= (L17L27"')L5717L8) and
A= (A17>\27"'7>\5717As) 7£ (ana"'v()?O)v

with A, = 0, 1.

2.2.5. Another interesting analogy

By continuing to take advantage of this scenario, where each of the vacuum states
(26) is defined by filling all the lattice vertices with the same matter field |a), it is
interesting to analyze the differences between the D,,;(Zy) models that have a trivial
group action p from those that do not. And something that is not difficult to see is
that, when p

e is a trivial group action, all the D,,;(Zy) vacuum states

€57y = []4 (® |e>> ® (® a>>, (28)

teL, veL,

are independent of each other because, from the algebraic point of view, u defines
M orbits containing only one element (i.e. 1-cycles),”” and

e is a nontrivial group action, some of these vacuum states (28) (or perhaps all of
them) can be connected by using some transformation, which can be expressed as a

kKNote that, in the case of the Dj;(Zs) models, these operators (27) reduce to
0,6 = T[ Wi

ey
because (W[(,O’l’o))f = Wl(,o‘m) = oy, That is, if we ignore the fact that 4* is a noncontractile closed dual
path, it is quite remarkable that this result “coincides” with (20).
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Fig. 8. Here, we see a piece of the same lattice region, at two different times, to explain the meaning of the
edge subsets I'’; and I'?,. In the first instant ¢; (above) we see a pair of magnetic quasiparticles, which was
produced around the ¢th oriented edge. Observe the presence of a light blue arrow, which points from the
quasiparticle “—” to “+”: this arrow and the ¢th edge define an ordered basis, whose orientation is . In the
second instant ¢, > ¢; (below) we see these same quasiparticles, but after one of them has been transported
away from the other along a dual path 4* (highlighted in dashed light black). Observe again the presence of
arrows in this figure: in the case of the light blue arrows, they refer to the same basis “0)”; now, in the case
of the light red arrows, each of them defines, with the lattice edges that they intersect, another basis that
has an inverse orientation O. Alongside these two observations, it is also important to note that, as Wé,o LA
always produce pairs of “quasiparticle” and “anti-quasiparticle” in the Dy (Zy) models, they are also
mathematically capable of transporting all these quasiparticles as long as they are used in a clever way.

This clever way is by using O (y*) = He'erg,/ Wé,o L0 Hz'erg (W[(f]’L‘O))+ as long as the edge subsets I’y and
7, contain only the edges that define “O” and “O”, respectively.
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product of the operators A,, By and C; because 1 defines some orbit(s) containing
more than one element (i.e. k-cycles where k > 1).

As a consequence of this, we can assert that, when p

e is a trivial group action, the D;;(Zy) ground state is n-fold degenerated, where
n = [Fir,| - 0pz,) (29)

is the product between the cardinality of (25) (which, in this case, is equal to M)
and the number 0z, ) of vacuum states in the D(Zy) ground state, and

e is a nontrivial group action, the n-fold degeneracy of the D;;(Zy) ground state is
characterized by

n= Mgy + |%1F,u| : DD(ZN) (30)
because p can also define n, orbits containing more than one element.

Of course, and for the sake of completeness, it is worth remarking that the de-
generacy degrees of the more general D,,;(G) ground states, where G is not neces-
sarily an Abelian group, can be calculated as

nTr<H A@HBch[) (31)

veLy feL, leLy

That is, all those degeneracy degrees, which were mentioned in the previous para-
graph, can also be obtained through (31). By the way, and also for the sake of
completeness, it is also important to point out that, although we have only paid
attention to these different D);(Zy) vacuum states, which can be defined by filling all
the vertices of £y with the same matter field, it is not difficult to conclude that this
may also happen with other D;;(G) models where G is not necessarily an Abelian
group. And in accordance with what was discussed in the previous section, the key
condition for this to occur is that

Silfu = {|a>v € Ny M,,(g)|oz)1, = |a)v for all g € G}

is a nonempty set.

But while this allows us to infer that the ground state degeneracy of these D (G)
models also depends, in some way, on the second group of homology H, (./\/12),54’l this
also allows us to see something that appears to be a little more relevant. After all, and
regardless of whether G is an Abelian group or not, all these D;;(G) vacuum states,
which are defined by filling all the vertices of £, with the same matter field, are quite

IThere is a connection (between the ground state degeneracy of the Dj;(G) models and the homology
group H,(M,)) that can be perfectly exploited by using, for instance, a mathematical induction on what
was presented in Ref. 13. Nevertheless, as the pedagogical discussion of this connection deserves a paper
dedicated only to this (even because writing it here would make the this paper even longer than it already
is), we will postpone this for now.
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similar to the one that was proposed by Dirac in 1929,°® who claimed that the
vacuum could be interpreted as an infinite “sea” of particles. And this seems to be
more relevant because this similarity is also observed, for instance, in the Abelian
H,;/C(Zy) models that were discussed in Ref. 23, which can be interpreted as special
cases of the D),;(G) models where Jz = 0.

In order to understand this similarity, it is crucial to keep in mind that we can only

go from one vacuum state |€ (()a/)> to another |€ (()a”>> if we are able to make exchanges

|a’y, — |a”), over all the lattice vertices. And this is a task that needs to be done

with the help of some operator Wl(,']’A) that, by performing this exchange on the vth

lattice vertex, produces a quasiparticle Q(/-») there. Note that this is precisely the

o’ 0
w0 =
) 0T 1

that, being one of the operators that define the D3(Z,) Hamiltonian, manages to
excite, for instance, the vacuum state (23a) of the D3(Z,) model. In this fashion, by
remembering that

situation of the operator

o W,U(I"O) is the same operator M, (1) that defines the component Af,l) of the D3(Zs)
vertex operators, and

e this A (vl) performs lattice gauge transformations that are incapable of changing any
state of the D3(Z,) model,

it is not difficult to conclude that, despite the action of Wf;l’o) on a single lattice vertex

1,0)

produces a quasiparticle Q:0), the action of this same operator on all the vertices at

once keeps this lattice system in the same vacuum state (23a) because, for instance,
[Twio=T1]Aa%.
veLy veLy
In other words, if we analyze this D3(Z,) model by taking its vacuum state (23a), we
see that there is no difference between thinking this quasiparticle Q 1:?) (which has a
fusion rule that identifies it as its own anti-quasiparticle) as®*

51’0) acts on the vth vertex of a lattice that

0,0)

e something real, in a situation where W

has all its vertices previously coated by vacuum quasiparticles Q9 or

e a hole, in a situation where this same Wf,l"o) acts on the vth vertex of a lattice

previously filled by quasiparticles Q0.

2.2.6. Why can QA be interpreted as quasiparticles?

Of course, even though WL(,LO) is such that Wél’o) o Wél’()) =1,, the fact that it does
not produce Q0 in pairs may be making you, the reader, question whether Q%0
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can actually be interpreted as a quasiparticle or not. After all, since these matter
excitations are not produced in pairs of “particle” and “antiparticle”, it is not pos-
sible to transport them over £, analogous to what happens, for instance, with the
D(@) quasiparticles (except by a “teleport” operator

Wi o o

i v

that transports it from one vertex v’ to another v” completely arbitrary).”’

Yet, despite this impossibility of transporting Q (19, it is interesting to note that,
in addition to the fact that there is nothing preventing this Dj(Z,) model from
serving as a guide for the construction of other lattice model(s) that can support this
transport, Q (1) seems to have some electrical properties. And what allows us to have
this perception about Q1% is that, in addition to it fuses (or, at least, overlaps) with
all the electric quasiparticles inherited from the D(Z,) model at the same lattice
vertex, it also presents a kind of electrostatic interaction with another, which have
the same flavor (i.e. which have the same (1,0) index), when p is a nontrivial group
action. After all, when we have only two quasiparticles Q-0 on two vertices v’ and
v” of L,, the energy of this system is equal to*’

e Ey+ 6J-, when v’ and v” are neighbors, and
o Fy+ 87, otherwise.

In view of all that we have just said, it is impossible not to recognize that, despite this
impossibility of transporting Q %) actually prevents us from finding out its statistics
by changing its spatial position, it is quite sensible to consider it as a quasiparticle.
And since this electrostatic behavior also shows up in the matter excitations that are
produced in the D;;(G) models whose group actions are not trivial, it also becomes

JA)

sensible to consider Q as quasiparticles.

2.2.7. On the presence of non-Abelian fusion rules in the Abelian Dy (Zy) models

Note that this clarification, which we have just made about the interpretation of
QAN as quasiparticles, further reinforces the similarity between all the D, (Zy)
vacuum states, which are defined by filling all the vertices with the same matter field
(i.e. with the same matter excitation), and Dirac “seas”. But, as we have also said
that all the Dy,;(Zy) quasiparticles are produced by the same operators that make up
the D;;(Zy) Hamiltonian, this requires us to answer the following question: given
that all these vacuum states can be interpreted as different phases that coexist in the
same energy regime, how is it possible to perform transitions between/among all

these phases since, when |Fir,| # 0, all the operators Wl(,']"A) that can be identified in
the D);(Zy) Hamiltonian cannot excite |§ir,| of these vacuum states?

In order for us to understand the answer to this question, it is pedagogical
to continue using the D;(Z,) model as an example, since it is such that |§ir,| = 1.
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By the way, in order for us to really understand the answer to this question by using

the D3(Z,y) model, it is crucial to note that the relations (15) indicate that the matrix
(JK)

representations of W in this model need to be, at least, such that
ag by ¢ aj bn cn
W = by agp e and W = -by —an —cp |,
dyp dyp Ty dpp —dp 0

whose entries must be interpreted as complex numbers. Nonetheless, according to
what Ref. 23 tells us about the H3;/C(Z,) model, the only operator that manages
to produce a quasiparticle that fosters transitions between the vacuum states (23a)
and (23b) is

00 1
w0 =10 0 1]. (32)
1 1 a

After all, by noting that a is a complex number, the fact that™
W15270>|0>v = Wz§21())|1>v = |2>v and W7V(v2’0)|2>v = |0>v + |1>L +a- |2>v

makes it clear that, by considering that the vacuum states (23a) and (23b) corre-
spond to two phases that can coexist in the same energy regime, it is possible to go
from one phase to another, and vice versa, through

o an exchange W*" |0}, = |2), on all the lattice vertices for a transition from (23a)
to (23b), or
e exchanges, which can be carried out by using (several) combinations of the

operators WéLO) and WIEZ'O) that act on all the vertices of Lo, for a transition from
(23b) to (23a).

)

In this fashion, by taking into account that the mission of Wéz*“ is to produce a

quasiparticle Q ?9) this allows us to recognize, for instance, that (23b) is also similar

to a Dirac “sea”. And what is special about this operator WL(.Q’O) ? What is special
about it is that, as the composition

11 a
100 010 001
wEOowl9 =11 a :(o 1 o) +<1 0 0) +a (0 0 1>
) 00 1 00 1 11 a
a a 2+a —_——— ——— ————

vvl(.(),()) W 1(\1.0) [V},Q'O)

MHere, we are considering the same single-qudit computational basis states of Ref. 23, where the vector
(ket) |n), with n being a natural number, can be represented by a column matrix whose nth row contains
the number 1 while the others are filled with the number 0.

2350018-28



Int. J. Quantum Inform. 2023.21. Downloaded from www.worldscientific.com

by UNIVERSIDADE DE SAO PAULO on 06/06/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

Quantum double models coupled to matter fields

is associated with the fusion rule between two excitations Q29 it is clear that the
D5(Zy) model can support non-Abelian fusion rules.'*** That is, the transition from
(23b) to (23a) is performed by an operator

F=J[w”

vELy

that is composed of those that, by acting on each lattice vertex, produce a quasi-
particle that presents a non-Abelian fusion rule

Q20 x QR0 = Q00 L QIO 4 5. QR0
with itself.
Note that, although this operator (32) is not included in the D3(Z,) Hamiltonian,
its presence is legitimized, for instance, by Ref. 16. After all, although its authors
have not discussed the need to make transitions among the five vacuum states

3% —H <®| >®<®|0>> and

leLy vELy
, (33)
€5y = [Tiox wHAU, <®| ) ® <® |2>>
p=1 lEL, vELy

that define the D3(Z,) ground state (because there are four
A=(0,0), A=(0,1), A=(1,0) and A=(1,1)

that define four vacuum states (33) that are topologically independent of each other),
it observes that these five vacuum states can be rewritten by using another Hilbert
basis, which allows us to recognize, for instance, that all the lattice vertices have the
same matter field |0) + |1) 4+ a - |2) with a = 1. And according to what was said in
p- 25, this five-fold degeneracy of the D3(Z,) ground state is consistent with the result
(30), since

Norh = 1, |Slgp| =1 and DD(ZN) =4.

2.2.8. And what do phase transitions tell us about the ¢\"LN quasiparticles?

For the sake of completeness, it is important to point out that, although we have used
the D3(Z,) model as an example to show that the presence of these quasiparticles,
which exhibit non-Abelian fusion rules, support phase transitions in the lowest en-
ergy state, it is not difficult to prove that this presence is also needed to support
these phase transitions when |Fiz,| > 1. Incidentally, another thing that we can also
prove is that, by exploring a different point of view, which involves recognizing that
L, is an example of connected graph,’®°" it is possible to interpret some D), (Zy)
vacuum states as symmetry-protected topological (SPT) phases and, consequently,
thetransitions among them as some global symmetry breaking. But, since all these
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H,;/C(Zy) models can be interpreted special cases of the D,;(G) ones, we will not
go into the details of all these proofs here because they can be found, for instance,
in Ref. 23.

Anyway, as we are talking about these phase transitions, it is important to take
the opportunity to explain, for instance, what they tell us about the ¢(/-£» quasi-
particles. After all, despite these quasiparticles having been inherited from the D(G)
models, it is quite clear that, in the nontrivial D;;(G) models (i.e. in the Dy (G)
models that are defined by using a nontrivial group action), these quasiparticles
acquire two new properties:

e they can fuse with the Q /) quasiparticles that are produced by manipulating the
matter qudits, and

e at least part of the magnetic quasiparticles can be confined, similarly to what
happens to the quarks that are confined in mesons.

Thus, given these two new properties, a question that naturally arises is: do these two
new properties make these ¢(/-£) quasiparticles very different from those in the
D(G) models? And the answer to this question is not for a very simple reason:
correspondence principle.

In order to understand how the correspondence principle explain this answer, it is
necessary to remember that, in the same way that we can define these “trivial”
D,;(G) models, we can also define the “trivial” D;;(G) ones (i.e. we can also define
the Dj;(G) models by using a trivial group action). And despite these “trivial”
D,;(G) models not being very funny because the D(G) and Ising models that define
them are decoupled, it is precisely this decoupling that, for instance, causes all their
magnetic quasiparticles to become unconfined. Of course, one of the consequences of
this lack of confinement is the fact that we can evaluate the spin-statistics of all
these quasiparticles. But since the D(G) and Ising models that define the “trivial”
Dy (G) models are decoupled, fortunately we do not need to worry about doing
this evaluation: after all, as this decoupling also implies that all the ¢(/--4) quasi-
particles of these “trivial” D;;(G) models are unable to interact with all the
QM) quasiparticles, they just have the same properties inherited from the D(G)

TLA) - quasiparticles of these “trivial” D,;(G)

models. In other words, all the ¢
models are exactly the same quasiparticles of the D(G) ones. In this fashion, by

noting that

e the group action u defines how the gauge qudits change the values of the matter
qudits, not the other way around,

e all the ¢(/"LN) quasiparticles in the D,;(G) models are produced by the same
operators that produce all the quasiparticles in the D(G) models, and

e the correspondence principle already requires that the D(G) vertex operators
be interpreted as the D);(G) vertex operators that are “blind” to the matter qudits,
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it is correct to extend what we said at the end of the last paragraph to the ¢(/:LA)
quasiparticles of all the Dj;(G) models, whether they are “trivial” or not. After all,
since all the vacuum states

a,\)
66Ny = H 01(%;)] HA7/<®| ) ® (® |a>>,
p=1 v’ leLl, veL,y
where M, (g)|c), = |a),, are mere replicas of the D(G) vacuum states, this shows that,
just as the D(G) models need to be recovered as a special case of the D;;(G) ones by
taking M = 1, the correspondence principle also requires that this happens when M > 2.

3. A Dualization Procedure on the D,,;(G) Models

Given that the general properties of the D,;(G) models are now quite clear, it is really
time for us to turn over a new leaf to (finally!) pay attention to the construction of a
new class of lattice gauge models (DX (@)) that are dual to the D;;(G) ones. After all,
in addition to being valid to say that these new D’ (G) models can give us some clue
as to how it might be possible to get a lattice model that is self-dual, it is also valid to
say that the D,;(G) models previously discussed give us a tremendous advantage in
this dual context. And by considering, for instance, the content of Fig. 9, which
illustrates the existence of a dual lattice £} (i.e. a lattice whose vertices/faces are the
faces/vertices of L), it becomes clear that one of the aspects of this tremendous
advantage is in the fact that this geometric duality can be used as a first guide to
define the D (G) models as the algebraic duals of the D,;(G) ones.

In order to begin to show how this geometric duality can be used as this first guide,
it is important to remember that the self-duality of the D(G) models is not only
characterized by the fact that, for each quasiparticle detected by the vertex operator
A,, there is always another one, with the same properties, that is detected by the face
operator By, and vice versa: this self-duality of the can also be characterized by the
fact that these D(G) vertex and face operators can be interpreted as the duals of each
other. In other words, although it is already clear that A, and B; effectively act on
the edges that define the vertices and faces of Lo, respectively, it is not difficult to see,
from this geometric dual point of view of Fig. 9, that these same operators also effec-
tively act on the edges that define the faces and vertices of L3, respectively. And this
is an important reminder because, as with the D;;(G) models previously analyzed,
there must be a (mathematical) correspondence between the D(G) and D (G) models
so that the first ones (i.e. the D(G) models) can be recovered as special cases of the
second ones (i.e. the DX (G) models). In this sense, and by bearing in mind all the dual
issues that have already been observed with the aid of Fig. 9, it is not difficult to
conclude that, if these D (G) models really exist, their Hamiltonian operators must be
expressed as

Hpxioy=-T4 Y A,=T%> By =T Ci (34)

vEL, feL, (€L,
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Y

Fig. 9. Piece of the same oriented square lattice £, that supports the D,,;(G) models, where the presence
of its dual lattice £3 is now being highlighted by using dotted lines. Observe that, as in Fig. 2, here we are
also highlighting the same the rose (S,) and baby blue (S;) colored sectors, which are centered in the vth
vertex and fth face of Lo, respectively. Nevertheless, contrary to what happens in Fig. 2, which shows an
orange sector (S;) composed of an edge and the two vertices that limit it, here we see a new green sector
(S}) that, despite being centered on an ¢th edge, does not contain the two vertices that limit this edge. But
while these sectors S, and S are different from the point of view of L, it is important to observe that, when
we look at S from the perspective of £3, it is equivalent to what S, is from the perspective of Ls: i.e. when
we look at L3, it is quite clear that S} is geometrically dual to Sy, and vice versa, because S; is composed of
a dual edge and the two dual vertices that limit it. In this way, as £ also shows us that S, is geometrically
dual to Sy, and vice versa, it becomes clear that, for the DX(G) models to be interpreted as duals to the
Dy;(G) ones, it is necessary that the DX (G) Hamiltonian be analogous to (1), but with its vertex, face and
link operators acting on S, Sy and S}, respectively.

Here, 7'y, J ' and J - are three positive parameters; and A}, B’ and C are the “new”
vertex, face and link operators, respectively, whose definitions and properties will be
discussed from now on.

3.1. Some considerations about the vertex, face and edge operators

Because these new D (G) models also need to be interpreted as generalizations of the
D(G) models, an obvious fact that we have to keep in mind is that all these operators
A, B'; and C} also need to act on the same Hilbert (sub)space

DG ® ... @ N
—_———
N, times

that was already associated with £, in the D(G) and D,;(G) models. And given that
the obviousness of this fact lies in our desire to recognize the D,;(G) and DX(G)
models as duals of each other, it is worth noting that, because the sectors S, and S
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are duals of each other, the DX (@) vertex operators need to be exactly the same as
the D(G) models. That is, since

e the face operators of the D(G) and D,;(G) models are the same, and
o the DX(G) vertex operators need to be dual to the D,;(G) face operators,

these DX (G) vertex operators need to be defined as

’U,J |G| ZXIJrJ - 'A’E/w? (35>

geG

whose components 141(,9> are exactly the same as those defined in Fig. 3.

As a matter of fact, a good panorama of how the DX (G) vertex, face and link
operators act on L, can be understood with the help of Fig. 10, which can be
interpreted as a new version of Fig. 9 where despite £} having been “strangely”

Y

\ \ \ U g @ A \
s

Y

Y
Y
\

A 1 4 y A A
¢ L

Fig. 10. Replica of the previous figure to illustrate how L, can be used to support the DX (G) models.
Although, here, there are no longer the dotted lines of L3, we see the same the rose (S,,) and baby blue (S;)
colored sectors that were highlighted in Fig. 2, which are centered in the vth vertex and fth face of L,
respectively, and a new sector (S}), which is centered in the ¢th edge of L, is highlighted in light green.
Note that, when we compare the present piece with the one shown in Fig. 2, it turns out to be clear that this
light green colored sector can be interpreted as the geometric dual of the light orange colored sector of
Fig. 2. After all, in the same way that the light orange colored sector is defined by one edge and its end
vertices, on which there are two matter fields |a) and |3), the light green colored sector is also defined by
one (dual) edge and its end (dual) vertices, which also support two new matter fields |&) and |3). These
new matter fields will be denoted in this way (i.e. by using a tilde symbol) only for the convenience of
distinguishing them from the previous matter fields.
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hidden, the presence of the D% (G) gauge and matter fields is now being highlighted.
Of course, by looking at this Fig. 10, perhaps you, the reader, are wondering why we
have “strangely” hidden L£;. And if you are really asking this question, the best
answer that we can give you is that £} was used only as a mere guide so that we
could start to see/explore this duality: after all, remember that the lattice, which is
the main protagonist of all these D(G), D;;(G) and DX (G) models, is £y. In this
way, since the vertices of L} correspond to the faces of L, this is precisely what
explains why D®(G) models need to be defined by assigning matter fields only to
these faces.

3.1.1. How can we define the face operator B}?

Given our desire to recognize the D;;(G) and DX (G) models as duals of each other,
one thing we can already say about the D (G) face operators is that they obviously
need to act on the matter fields. And in parallel to this, as we already know that the
D(G) face operators measure the holonomies around the lattice faces, it is also correct
to say that these DX (G) face operators also need to do the “same” thing. That is,
these DX (G) face operators need to measure how deformed are these lattice faces due
to the presence of quasiparticles that, now, can be produced by manipulating gauge
or/and matter qudits. Note that, since the correspondence principle also requires that
the D(G) models be recovered as special cases of the D (G) ones in some limit that
will become clear later on, these DX (G) face operators need to measure the same
holonomies as the D(G) ones when this limit is reached.

Although we still do not know what the exact expressions of these DX (G) face
operators are, another thing that we can already say about them is that, in the same
way that the operator By in (1) measures flat connections, the operator By in (34)
also needs to measure the “trivial holonomies” around the lattice faces. However, as
Fig. 10 already makes it clear that there are matter fields on all these lattice faces,
this “trivial holonomy” may not be exactly the same trivial holonomy that B} is able
to measure, which explains the use of quotation marks. After all, as these matter
fields must support the production of quasiparticles and, therefore, the presence of
these quasiparticles will also be responsible for locally deforming the lattice in some
way, these matter fields must be taken into account in the calculation of these “trivial
holonomies”.

Of course, even though we have just said a few words about these “trivial
holonomies”, everything we have said is still vague. And since we want to understand
what the exact expressions of these DX (G) face operators are, we need to stop being
vague and present the exact definition of these “trivial holonomies”. But before we
present this definition, it is important to remember that all the different holonomies,
which can be measured around the lattice faces by the D(G) and D, (G) face
operators, are defined as

h=a"'b"ted (36)
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by using the same binary operation that defines G as a group. And why is it im-
portant to remember this? Because this gives us a strong indication that it is perfectly
possible to define something, which is very similar to a holonomy, as

B =§(&) h=5a) a'bted (37)

by using a function § : S — G because this definition makes A’ an element of G. Here,
S is a set that indexes the elements of B,, = {|@) : & € S}, which is the single-qudit
computational basis of the Hilbert space § 5 that supports the matter qudits that are
assigned to the lattice faces.

But despite the expression (37) of this “fake holonomy” makes some sense
because, whatever the values of f(&), it also allows us to define the same R distinct
(non-equivalent) conjugacy classes

Cp={ngr(h")~":h" € G},

is there any mathematical result that guarantees that a function { can actually be
used to make (37) model all the possible face deformations in the presence of the
matter fields? And the answer to this question is yes: not only does this mathematical
result exist, but it also serves the purpose of interpreting the D,;(G) and D%(G)
models as duals of each other. After all, by remembering that the D,;(G) models were
produced, by coupling the D(G) ones to matter fields allocated on the lattice vertices
with the help of a group action p: G x S — S, if we really want the Dy;(G) vertex
operators to be interpreted as the algebraic dual of the DX (G) face operators and vice
versa, the second ones (i.e. the DX (G) face operators) need to be defined by using a
co-action

& — F(a) =fa)®a, (38)

where & and (&) must be elements of S and G, respectively. And since f exists, it is
not absurd to use it to define (37) and, therefore, the expressions of these D (G) face
operators that need to be dual to those starred by a group action. In this fashion, by
noting that

e this “fake holonomy” (37) can be reduced to the true holonomy (36) in some
special cases, and
e the “trivial holonomies”, which B } needs to be able to measure, also need to be

characterized by the neutral element of G,

it seems convenient to define the DX (G) face operators as

],/
Bl =B, (39)
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B dy = 6(K,5(a) a=‘b~ted) |b d
& &

Fig. 11. Definition of the components B'f(h,) that define the DX (G) face operators in terms of their

effective action on L.

whose components B/f(h’,) are defined in Fig. 11). Here, as with all the operators in (1),

the face operator that make up the D* (G) Hamiltonian (34) is defined as B, = B l/f(e).

3.1.2. How can we define the link operator C?

In view of what we have just said, perhaps you, the reader, are wondering what
guarantees the existence of f. And this is an extremely relevant question whose
answer can be well understood, for instance, by noting that the D(G) models are
Hamiltonian realizations of lattice gauge theories based (i) on an involutive Hopf
algebra C(G)°® and (ii) on finite quantum groupoids (i.e. on a weak Hopf algebra).”
More specifically, it is possible to affirm that the D(G) Hamiltonian realizes a re-
presentation of the Drinfeld’s quantum double?? of these involutive Hopf algebras.®”
And why is it important to note this? Because the underlying algebra with involution
is a star-algebra® that, for instance, allows us to describe the D(G) models based on
star-quantum groupoids.”®%? After all, in addition to being possible to prove that,
whenever a group G acts on a ring A4 that can be interpreted as a star-algebra, there is
a co-action F : A — C(G) ® A, it is also possible to prove that this F can be given by
(38) as long as f is a homomorphism: i.e. this function f, which we need to define
the “fake holonomy” (37), exists and allows us to interpret (38) as a co-action
homomorphism.™

Another interesting fact, which also points to the convenience of taking (39) as the
DX (@) face operators, is that all of them commute with themselves and, according to
Fig. 12, with all the vertex operators inherited from the D(G) models. And un-
doubtedly this fact is extremely relevant because, in order to make these DX (G)
models exactly solvable, it is essential that all these operators are interpreted as
projectors onto

Dpr) =N ®-.. O Hig OHK @ ... @ Ny .
—_—
N, times Ny times
However, as (34) shows us that the D (G) Hamiltonian is also defined by an oper-
ator C', which acts only on the dual link sectors of £,, it becomes clear that all the

DX(@G) link operators also need to commute with themselves and these other
operators for the same reason.

1 An excellent discussion of why such inductions exist can be found, for instance, in https://mathoverflow.
net/questions/190812/coaction-of-a-group. And for the sake of completeness, Ref. 63 shows some examples
that make it very clear that such co-action homomorphism can be defined.
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Fig. 12.  Proof that the operators A; and B’ ), = B’fu",) commute because the elements of G are such that

(gb) M(eg™") ' = b7 (g g)e™t = b~te7!. Here, Aj, and B, act only on the vertex and face sectors whose
intersection is not empty because, when this intersection is empty, these operators commute by definition.

Note that, although we have not yet presented the exact expressions of these
DX(@Q) link operators, one thing we already know about them is: they must be
interpreted as the duals of the D;;(G) link operators, and vice versa, both from a
geometric and algebraic point of view. But even though Fig. 10 already shows the
need for this geometric point of view, what does it mean to say that the Dy;(G) and
DX(@Q) link operators are the duals of each other from an algebraic point of view?
Based on the dual relationship between the D, (G) (D¥(G)) vertex and D%(G)
(D (@)) face operators, it is correct to say that this means that, while the Dy, (G)
link operators just compares two matter fields without performing any transforma-
tion on these fields, the D (@) link operators must

e do this same kind of comparison, in some way, with the help of f, and

e necessarily perform some kind of transformation in the gauge and dual matter
fields on which it acts.

And given this scenario, the expression that best fits the needs of the link operator
that make up the DX (G) Hamiltonian (34) is

1 -
Cr=—=3 oW, (40)

151 {5
whose components are defined in Fig. 13.
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fp19-fo1

Fig. 13. Definition of the components C ) that define the link operator (40). Note that, since Cém is

defined by taking o’ = f( ) a, &'= =X 1 x& and B’ = B« \, this shows that C} actually performs

transformations in the gauge and matter fields on which it acts. Here, in the same way that the symbol “.”

is used, when necessary, to indicate a product between the elements of the gauge group G, the symbol “x” is

used to indicate a product between the elements of S.

3.1.3. What are the requirements for A',, B'; and C| to be projectors?

It is obvious that there are several questions that still need to be answered about all
these D% (G) operators. And one of these questions refers, for instance, to the reason
why we have presented a definition for only the link operator C'j and not for all the
DX (@) link operators. Note that a good answer to this question requires us to re-
member that, since all the D () vertex, face and link operators must define three sets

- {APU?AZJ,l? . '7A;7,R71}a
:{Bf,()vBlf,17"'7B/f,R—l} and

Q:/ = {CZO? 02,17 R 0271(71}

of orthogonal projectors onto $px (¢, they must also satisfy the same properties (a),
(b) and (c) as their dual counterparts. After all, as the previous section already made it
clear that the orthogonality of these operators can be delegated, for instance, to the
characters of a group, all the commutation relations that are satisfied by A/, B ’f and
C} will apply to those operators that complete ', B’ and €’. We will return to this
point later on.

As a consequence of this good answer, it is correct to say that, if we want to
evaluate whether C') qualifies as a projector, we need to evaluate the commutation
relations between it and all the operators that make up (34). And because Fig. 14
shows us that the only way to cancel [A}, C'}] is by taking

() -9=9-1(%),
it turns out to be quite clear that, for C'; to be interpreted as a projector, Im(f) C
Z(G) (i-e. f(7) must belong to the centre of ). Note that this need is also reinforced
by Fig. 15, since it shows us that

F(BxX)-a™ [ -0 =B A) -ab - [JN)] T =5(B) a0 (41)
needs to also be satisfied for [B', Cj] to vanish. Here, [f(3)] ! is the inverse of the

(group) element f(3). After all, since Im(f) € Z(G) allows us to conclude that (41) is
equivalent to

F(B+X) - [V = (D),

this result is in full agreement with the fact that f is a homomorphism.
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Fig. 14. Results of the action of the operators A/, o Cj and C; o A/, on the lattice £,, from which it is clear
that [A!,C}] will only be equal to zero if f(A) belongs to Z(G) (i.e. if f(\) belongs to the center of G).
Analogous to what has already been observed in Fig. 12, A, and C} act only on the vertex and edge sectors
whose intersection is not empty because, when this intersection is empty, these operators commute by
definition. Note that the order in which the summations are performed is irrelevant.

a a
pfoci | 1@ 2 1O}) = 1 £ 00 1@
C C
a
) |i§\ gg‘s(h’vf(ﬁ*ﬂ)'a’*[f(ﬂ)'b}fl'cd) i3 -0 ’
a a
cyo B b d )y = s(n.§(B) avred)-cy | 1(a) b d
[ . c
= |~1§! iggé(h’,f(ﬁ)-a*b”cd) F(A) - b d

Fig. 15. Results of the action of the operators B/f(h,) oCjand Cjo Blf(h,) on the lattice £,, which not only
reinforces that f(A) must belong to Z(G), but also indicates that f must be a group homomorphism. Just as
we did in Figs. 12 and 14, it is also worth noting that, here, B}»_,,, and C act only on the face and edge

sectors whose intersection is not empty because, when this intersection is empty, these operators commute
by definition.
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Fig.16. Scheme related to the double action of the link operator C' f) on the same edge sector of £,. Here,

&", B" and a" are given by the expressions (42), which also reinforce the need for § to be a group
homomorphism.

By the way, since f is a homomorphism whose codomain is the gauge group G, it is
of paramount importance to point out that this allows us to conclude that S is also a
group (whose neutral element will be denoted by &) because every homomorphism is
a structure-preserving map between two algebraic structures of the same type.’* And
the importance of pointing this out is that, in addition to the group homomorphism

properties
) =e [f(@)]"=f@a") =[{(a)" and §(@)-§(az) = §(a1 * &)
ensure that [A;, Cj] = [B';, Cj] = 0, they also ensure that the requirements
a"=A)"xa =) A v a = (A A\) T xa, (42a)
" =p8"«XN=p"«(AxX) and (42Db)
@ =§(\)-a" =) - f(A) -a = (A" A) -, (42c)

which need to be satisfied in the double action of C' ,5” that appears in Fig. 16, are
respected. In this way, by

e remembering that the DX (G) vertex operators were inherited from the D(G)
models, and
¢ noting that the double action of Bfﬁh (on the same face sector of L) shows that it

is, in fact, a projector because
S(h',§(@) -a~'b"ted) - §(B',§(&) - a "0 ed)
=6(h,§(a) - atb~ted),

we can conclude that

e it is actually reasonable that the vertex and face operators in (34) are defined as
A;) = A;)70 and B/f = Blf’o

respectively, with A; ; and B'; | being defined by (35) and (39) also respectively,
and

2350018-40



Int. J. Quantum Inform. 2023.21. Downloaded from www.worldscientific.com

by UNIVERSIDADE DE SAO PAULO on 06/06/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

Quantum double models coupled to matter fields

Fig. 17. Here, we see a kind of replica of Figs. 4 and 5 highlighting the situation of the same electric
quasiparticles, at two different times, but now in the D?(Z,) model. In the first instant ¢; (above) we have a

pair of quasiparticles ¢ (+1,0,1) and g0 (red outlined and purposely indexed with the “+” and “—” symbols,

respectively), which were produced by the action of a single operator w 21’0'1). Note that, since the production
of this pair is detected by C}}O, the green dot corresponds to the unique vacuum violation detected by this
vertex operator. Now, in the second instant ¢, > ¢, (below) we have these same quasiparticles after one of
them has been transported away from the other due to the action of operators VT/E;}’O'U on all the edges
highlighted in black color. In this latter case, we have new 8 green dots: one for each edge involved in this
transport, making clear the linearity related to the growth of the system energy in this transport.

e it is correct to assert that C}, in addition to making the DX (G) models exactly
solvable along with the other projectors in i’ and B’, can be interpreted as a
special case of the operators

1 1 by

= 2o (43)

151 5e8

/
Cin=

(i.e. O = C}) since, as S is a group, its characters x1.,(A) confer the necessary
orthonormality to the link operators that complete €.
3.1.4. The dual behavior of the link operator C} as a comparator

Of course, even though it was clear that Cj, are operators that make the D*(G)
models exactly solvable, we still need to evaluate them a little further. After all,
despite them doing some transformations on the gauge and matter fields, we still need

2350018-41



Int. J. Quantum Inform. 2023.21. Downloaded from www.worldscientific.com

by UNIVERSIDADE DE SAO PAULO on 06/06/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

M. F. Araujo de Resende J. P. Ibieta Jimenez & J. Lorca Espiro

to evaluate if, in fact, C'j can be interpreted as the dual of C,. That is, we need to
evaluated if C} actually behaves as a comparator within some dual context.

In order to make this evaluation, it is imperative to note that, since Im(f) C Z(G),
it is highly recommended to assume that S is an Abelian group. And even though
there are many good examples of group homomorphisms f : S — G where Im(f) C
Z(G) and S is a non-Abelian group,?’ one of the things that reinforces this recom-
mendation is the fact that, when S and Im(f) are two finite Abelian groups, there is a

65

Fourier transform® that allows us to observe that, in fact, C is endowed with the
dual behavior that it needs to portray. After all, note that, since S and Im(f) are finite

groups, this already allows us to rewrite

Cilé, g, ) = ZM x&,f(X) - g, B *\)
\es§
as
‘S| AeS

by using the unitary transformations
- 1 _ i~
|G| > wylg and &) =—= Y xa/(@)|d),
geG |S| aes

where w,/(g) and x4/(&) are characters of G and S, respectively. Now if, in addition
to S and Im(f) being finite groups, they are also two Abelian groups, there will be a
Fourier transform § € L(S™) such that

Zf (A) and §(A

Aes XES

(45)

where the dual group S* is isomorphic to S.2%%7%% And why is this Fourier
transform important? Because, by noting that an expression of the sort )2&/(5\) X3’
(A) = )’({&,j}«}(j\) is also a character, the substitution of (45) into (44) allows to see
that

02‘5/’9/,3,) = ? [ X" S ZX{a ﬁ} X’y(j‘) |&797B>
Bl x;€8” | | AeS
1 — B -
=% wyr o f1(x5) - 6(X (a0 57y X518 9, B)
IS1 S5
1 —_ - ~
= ﬁ[wg’ © ﬂ(X{d/,’f}’}”avgvﬂ)
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In other words, although the exact form of the index {&’, B/} depends on the nature
of the group S, it is undeniable that, when S and Im(f) are two finite Abelian groups,
(') can actually be interpreted as an operator that compares two neighboring matter
fields (i.e. that compares two matter fields that belong to the same dual edge sector)
differently, which only becomes clear when this operator acts on a diagonal basis

{\d,g,@:gEGand &,BES}.
This different way of comparing two neighboring matter fields rests on the

Pontryagin duality, which ensures that there is a one-to-one correspondence between

the characters x; and the elements of S.5

4. General Properties of these DX (G) Models

According to what we saw in the last section, it is impossible not to recognize that,
when S and Im(f) are Abelian finite groups, all the operators (35), (39) and (43), in
addition to being dual to By, A, ; and C,, respectively, are also projectors that
make the DX (G) models exactly solvable. And since all these properties are only
achieved when S and Im(f) are Abelian finite groups, it is correct to say that this
duality, which we so wanted to see between the D,;(G) and DX (G) models, only
exists when G is an Abelian finite group. Of course, if f : S — G were a group ho-
momorphism without any commitment to the definition of the co-action (38), the
fact that Im(f) € Z(G) would be completely incapable of making G also an Abelian
group. But given that

e this f defines (38) as co-action homomorphism, and
o it is well known that, when G and Z(G) are both Abelian groups, Z(G) = G,*’

this is precisely what allows us to assert that the duality between these D, (G) and
DX (@) models only exists when G is an Abelian finite gauge group.

But by speaking of the projectivity of these operators, it is worth mentioning that,
just as the D,,;(G) vertex, face and link operators are responsible for the decompo-
sition of $p, () as (8), all these DX (G) vertex, face and link operators are also
responsible for the decomposition of $px () into the direct sum

0 L
ﬁDA’(G) = *65))’\'(6‘) P ijK(G).
Here, ﬁgz{(c) and 95 () are the orthogonal subspaces that contain all the D(G)
vacuum and nonvacuum states, respectively.
As a matter of fact, in the case of the operators A}, B;; and C} that make up
the DX (@) Hamiltonian, it is crucial to note that they are responsible for projecting

any state onto ‘6%}3"(0)' After all, this is what explains not only why the D%(G)
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vacuum states are such that

Anpléo) = I€0), Biol€o) = 1&) and  Cigléy) = [€o)
hold for all the N, vertices, Ny faces and IV, edges of L,, but also why

€67 HC’/HAJ L. ®e) ®]0)®...®|0) (46)

N, times Ny times

is a vacuum state that is common to all the D (G) models. Alongside this, it is also
very crucial to note that it is the projectivity of the other Vertex7 face and link

operators on § 75 DE(G that explains why all the operators W / and W;J’A), which

are such that

VNVEJ’L’A) v, 0 - A;JJ W/]LA ’ (478“)
WM o Bl = Bl o WY, (47h)
WgJ’L 0Cly=Cipo W/LA)7 (47c)
W(fL’A oBfO_BfLOW<LA and (48a)
W(L’A)OCZO = C[AOW(LA (48b)

respectively, can remove these D (G) models from their ground states by producing
energy excitations when (J,L,A) # (0,0,0) and (J,A) # (0,0). Once again, note
that, since these D(G) models are also quantum-computational models that try/

need to model some reality that can be physically implemented, all the energy
oL - = (J, A
excitations /LY and QY. which are locally produced by the action of W/ LA)
and WEJI’A)7 respectively, need to be, at least, such that
a(1]1711/,/\/) X q<(1//"LH7AH> — a(:]”,L”,A”) X a(.]/11/11’1\1)7
Q(J/7L, I % Q ]”A/ Q(J”,A/) % Z](J,:LIwA/)
Q<J/7A/) % Q(JN“'A”> N

and
@ (J//,A//) X Q (J/w,A,).

in order to §*l'») and Q Y can be interpreted as quasiparticles.

4.1. The matriz representation of the DX (Zy) vertex, face
and edge operators

Given that we paid more attention to the D;;(G) models where G = Zy;, it makes
sense that we turn our attention to the D (G) ones where we have this same gauge
group. After all, in addition to allowing us to better compare these D*(Zy) models
with the D(Zy) and D;;(Zy) ones, it also seems reasonable to take G = Zy for two
other reasons. And the first one is that, by remembering that the fact that { is a

group homomorphism suggests that we also take S as another cyclic Abelian group
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(because every homomorphism is a structure-preserving map between two algebraic
structures of the same type®), this allows to deal with a well-defined matrix repre-
sentation

= |G| ZX1+J D H X7 H X7, (49a)

9€Ly res) es)

By = Z xio9) - Fro) | T 27 Il z/°| and  (49b)

GEZ\ é’eS’\f’ ”eS

Cia = ZX1+A (XL e R() e (X)), (49¢)

for the DX (Zy) vertex, face and link operators. Here,

(i) S, and S} are disjoint edge subsets of S,, whose edge orientations pointing in
and out of the vth vertex, respectively,

(ii) S }? and S ;9 are disjoint edge subsets of Sy, whose edges have counterclockwise
and clockwise orientations, respectively, and

(iii) x and X are characters of the matrix representations of G = Zy and S = Zy,
respectively.

Note also that, in the case of this matrix representation (49), it leads us to

X =Y [(h+1)mod N)(h|, Z="_ w"lh)(hl, (50a)
h€Zy heZy

X= ) [(@+1)mod K){(@| and Z= ) &%a)al, (50D)
acly GELK

since the correspondence principle dictates that these DX (Zy) models must be re-

21/N) and & = ei(27/K)

duced to the D(Zy ) ones in some special cases. Here, w = el are
the generators of the gauge (G' = Zy) and matter (S = Zy) groups.’

Now, with respect to the matrices F';(g) and Fy(y) that appear in (49), it is
important to say that they represent how f couples these D(Zy) models to the matter
fields. And in order to understand not only how these matrices make this coupling,

but also the second reason why it is reasonable to take G = Zy and S = Zy, it is of

© Although we have not evaluated the commutation relations when .J, L, A # 0, the expressions (49) justify
the comment that we made in p. 36 because the only difference that exists among them concerns the

characters that multiply each of the components A;,("), B/f(") and C;(A). And as these characters are

constants that commute with each other, there is no way not to conclude that
[A% 7, Bl =[A};,Cial =[B}1,Cial =0

holds not only for all the values of J'), L") = 0,1,...,N —land A’") = 0,1,..., K — 1, but also for all the
vertices, faces and edges of L,.

2350018-45



Int. J. Quantum Inform. 2023.21. Downloaded from www.worldscientific.com

by UNIVERSIDADE DE SAO PAULO on 06/06/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

M. F. Araujo de Resende J. P. Ibieta Jimenez & J. Lorca Espiro

paramount importance to pay attention to the statements of Theorems 1 and 2,
whose proofs are in Refs. 70 and 71, respectively.

Theorem 1. The number of group homomorphisms from Zy into Zy is ged(K, N)
(i.e. this number is the greatest common divisor of K and N).

Theorem 2. FEvery group homomorphism f|:Zix — Zy can be completely
determined by

f([a]) = [nal, (51)

where n is a natural number that assumes values other than zero if, and only if, nK is a
natural number divisible by N.

That is, when we deal with D (Zy) models where S=27 i, We can rely on these two
theorems and, according to what these theorems claim, all these D% (Zy) models
have, at least, a description where F'y(g) and F(¥) are identity matrices: after all, for
all the values of N and K, there will always be a group homomorphism

f(la]) = [e] (52)
that maps all the elements of Zy to the identity element of Z, . Note that, when these

D% (Zx) models are such that N and K are coprime numbers, the only way to define
these models is by using this trivial group homomorphism (52).

4.1.1. A first comment on the D%(Zy) ground state degeneracy

When we come across this description, where all these models are defined by using
(52), one of the things that we can say about them is that their “fake holonomies”
(37) reduce to the true holonomies (36). And since this reduction allows us to identify
B } 1, as the same face operator By ;, of the D(Z ) models, there is no way not to conclude
that all the D (Z ) models support the same quasiparticles as the D(Zy) models.

Observe that this conclusion is not surprising because, similar to what was dis-
cussed in Sec. 2, the correspondence principle already requires that all the DX (Zy)
models support these quasiparticles in some way. And, in fact, this is reinforced by
the fact that the face and link operators of the trivial D(Zy) models (i.e. of the
DX (Zy) models that are defined by using (52)) are given by

1 g —(
Bjp = Gl Z X1+£(9) - 1y H Z, H Z,’| and (53a)
gGZN Z’ES}" W’GS?
1 L at s o
Cla = 57 L na(3) - (X})7 @108 ()’ (53D)
S

!
U

respectively, because this allows us to conclude, for instance, that these operators
cannot detect any matter and gauge quasiparticles also, respectively. In other words,
this allows us to conclude that, in the same way as with the trivial Dy;(Zy) models,
the trivial D% (Zy) ones do not couple the gauge fields with those of matter since
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B}’ ; and C } A are “blind” to the presence of the quasiparticles Q(J’A) and gL,
respectively. As a consequence, it is correct to say that, due to this “blindness”, all
these trivial D®(Z,) models support the same electric and magnetic quasiparticles,
with the same properties, as the D(Zy) ones.
In light of these comments, it is also interesting to note that, since

e none of these operators is able to detect any change |&') ; < |@”);,” and

e none of the operators (X ;)7 (which make all these changes |&@'); < |&");) can be
expressed as a product involving the vertex, face and link operators, all the vacuum
states

z(@) -
== C/ A,r 0 "y 54
&) =ITev 1] (Zgzld) ® (@22' >>f#”®|a>f (54)

o
which are defined by taking @ = 0,1,..., K — 1, are independent of each other. Here,
the rationale for why all the vacuum states, where the & # 0, have only a single f”th
lattice face filled with |&) # |0) is due to the simple fact that, just in this case, there
are no transformations, which can be expressed as a product of the vertex, face and
link operators, that can connect these K vacuum states (54). Note that, since the
inability of (53b) to detect the quasiparticles g(/-L») implies, for instance, that all of
these quasiparticles can be transported without increasing/decreasing the energy of
the system, it is not difficult to conclude that the action of an operator
0,7 = T wir™ T vy
ery, rery

does not lead to an excited state when it acts on any of the vacuum states (54). And
since this allows us to recognize that all the vacuum states

S

€Sy =TT 10, () @66 (55)

p=1
are topologically independent of each other due to the noncontractility of 5 ;,13 it is
also not difficult to conclude that all these

n = |ker(f)| - 9p(z,) (56)

vacuum states (55) are mere replicas of the D(Zy) vacuum states.?

4.2. But what happens when § is not a trivial group homomorphism?

From the point of view of the duality that we want to identify between the D,,;(Zy)
and D®(Zy) models, all these last conclusions/observations about the trivial

P By paraphrasing the footnote in p. 9: here, we are using the index f only to emphasize that |&) is an
element associated with a face of £,.
4Here, we are using the same notation used in p. 25, now to refer to the number 2z, ) of vacuum states
that define the D(Zy) ground state.
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DX (Zy) models are very welcome. After all, note that, since the co-action that
(52) defines can be always induced by a trivial (sub)group action

f5(7(@),7) = 7, (57)
which can be represented by the same matrix
Fi(g) =1y
that composes (53a), this trivial (sub)group action defines the set
Sixy = {la); € 9k : Fy(g)la)y = |a), for all g € Zy}

of points of Hy that are fixed by (57). As a consequence, as the cardinality of this
set is precisely equal to | ker(f)|, it is not difficult to conclude that the result (56)
corresponds to the same expression (29) that defines the degree of degeneracy of the
ground states of all the trivial Dj;(Zy) models.

But given that we already know a lot about these trivial D% (Zy) models, it is time
to analyze the main properties of the nontrivial D®(Zy) ones: i.e. of the DX (Zy)
models where f is a nontrivial group homomorphism. And in order to start this
analysis, it is interesting to take the D?(Z,) model as an example. After all, in view of
what was stated by Theorem 1, there are two ways to define this model:

[1st] one, which we presented in Sec. 4.1.1 by using a trivial group homomorphism, that
has the same quasiparticles, with the same properties, as the D(Z,) model; and

[2nd] another that, because it needs to be defined by using a nontrivial group
homomorphism, has vertex, face and edge operators represented by

/ 1 o
A’U,J = ? Z (_1)(19 . H (0—5)97 (588‘)
| ‘ 9ELN Les,
1 2
B = @l S (1)t Fr(g) [] (¢§)¢ and (58b)
9Ly leS;
1 ~ T\ A
Cia= > (0¥ B[] @5 (58¢)
| | 7€§ fES[

respectively, where F';(g) and Fy(7) cannot be identity matrices.

In this fashion, by noting that Theorem 2 guarantees that the only nontrivial group
homomorphism § : Z, — Z, that exists is

f(0)=0 and f(1)=1, (59)
the fact that Im(f) = G allows us to conclude that, in this [2nd] way, we have
Fi(g) = (07)? and F,(3) = (07)".
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And by according to this picture, it is not difficult to recognize that, in this [2nd]
way, the state

€6") HC@HAU/<®| >® (@ |0)> ® |&@) o
leLy feL, fEF"

with & # 0 (i.e. with & = 1) cannot be interpreted as a vacuum state. After all, as all
the operators

(037) and (0}7)7,

which compose the vertex, face and link operators (58) (and, consequently, the
Hamiltonian (34)), produce quasiparticles in this model," it is not difficult to recog-
nize that

Wi =0
(which satisfies (48) with L =1 and A =0) produces a quasiparticle Q ® U
throughout a permutation |0); < [1), that can be detected by B';.

4.2.1. Are there “confined” quasiparticles in the DX (Zy) models?

Another important point that deserves to be mentioned here is that, in addition to
the group isomorphism (59) defines a D?(Z,) model that does not have an algebra-
ically degenerate ground state,’ it also makes C} able to detect the pairs of quasi-
particles §(1-2-1) that are produced by
Wi =oio (oDt o WM = (of) oot

That is, (59) causes C; to be able to detect the same pair of quasiparticles that are
detected individually by the operator A!. And why does this deserve to be mentioned
here? Because this situation is entirely analogous, for instance, to that of the Dy(Z,)
model. After all, contrary to what happens in the D(Z,) model, where it is possible to
transport the electric quasiparticles without changing the energy of the system, this is
not possible in this D?(Z,) model: whenever the transport of these electric quasi-
particles occurs, the energy of the system increases when f is defined by (59). And since
this increase is not welcome for the same reasons as outlined in Sec. 2, we need to do the
same thing we did before: i.e. we need to ignore that the transport of these quasi-
particles G141 is mathematically possible and consider all of them to be confined.

In view of this “confinement”, it is not wrong to say that this D?(Z,) model, where
f is a group isomorphism, has properties that are dual to those of the Dy(Z,) model.
After all, it is quite clear, for instance, that

e while, in the D,(Z,) model, the “confined” quasiparticles are detected by the face
operator By,

I'See the comments made in the footnote in p. 15.
SThat is, this group isomorphism defines a D?(Z,) model that has a set of vacuum states that are indexed
only by @ = 0.
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e here, in the D?(Z,) model, the “confined” quasiparticles are detected by the vertex
operator A}, which is dual to By.

However, there is, at least, one aspect of this D?(Z,) model that seems to spoil this
duality. What is this aspect? It is the aspect that is related precisely to the fact that
these “confined” quasiparticles (%! are not detected by B’ ;. And why does this
seem to spoil the duality between the Dy(Z,) and D?(Z,) models? Because, as these
quasiparticles are not detected by any of the operators that measure the (“fake”)
holonomies around the lattice faces, this means that their production cannot be
associated with any type of local deformation of L,. In this way, by noting that the
action of an operator
H ng 0,1) 7

ey

on a set of edges that form a noncontractile closed path 7, does not have the
slightest importance for the determination of vacuum states that are topologically
independent of'*

€5) H@HAU/ <®| ) ® <® |0>>, (60)
vl (€L, feL,

the fact that the quasiparticles §(:0!) are “confined” does not prevent the D%(Z,)
ground state from depending on the first homotopy group 7;(M). In other words,
the ground state of this D?(Z,) model, where f is given by (59), is made up of all the

vacuum states

€0 =TT 10, (G ED),

p=1

which are topologically independent of each other due to the noncontractility of 7.

4.2.2. The DN(Zy) models as other examples

Given all that we have just understood about the D?(Z,) model, it is also not difficult to
conclude that all the other D" (Z ) models where f is a group isomorphism (i.e. where f
is a group homomorphism (51) with N = K and n = 1), have the same properties listed
in the last two sections. After all, since this group isomorphism requires that

Filg)=(Zp)* and F/(7) = (X)),

we can conclude that

I. All the operators

(X0)%,(Z)9,(X,)? and (Z,)7,

tObserve that (60) is just a more streamlined way of writing the same vacuum state (46).
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which compose the vertex, face and link operators (16) (and, consequently,
the Hamiltonian (34)), produce quasiparticles in this model.
I1. Since the operators
WY = (%)

(which satisfy (48) with L = g and A = 0) can make all the changes |&'); «
|@”) ; that are allowed between the elements of B, a state

€6) HCZ’HAU’ <®| > ® <® |O>> ® |a) g,
JA

leLy feLl,

with & # 0, cannot be interpreted as a vacuum state.
III. All the quasiparticles §(*-%0), which are produced by an operator

0,L,0
WY = (x)L,

can be transported without increasing/decreasing the energy of the system,

(J.LA),

while the others ¢ which are produced by any operator

J,L,A) = (J,L,A
WY = (2)7 0 (X)E or WY = (X)) E o (7))

with J # 0, should be regarded as “confined”.
IV. As a consequence of items IT and III, the ground state of these DN (Zy)
models are made up of

(0AL)
€)= T110s HOZ/HAL(@ >®<®|0>>
p=1 v’ leL,y feL,
since all these vacuum states are topologically independent of each other due.
However, something that becomes quite clear from Theorems 1 and 2 is that,
except that N is a prime number, all these D"V(Zy) models can also be defined by
using an f that is neither a trivial group homomorphism nor a group isomorphism.

This is, for example, the case of the D*(Z,) model that, in addition to being able to be
defined by using these two group homomorphisms, can also be defined by using

f0)=§(2) =0 and §(1)=§(3) = 2. (61)

4.2.3. And what may happen when f is not a group isomorphism?
Although Theorem 2 shows us that
f(0)=0, f(1)=3 f2)=2 and j(3)=1 (62)

is another nontrivial group homomorphism that can also be used to define this
D*(Z4) model, the group homomorphism (61) seems to be more interesting because

|ker(f)] >1 and |Im(f)| = 2.
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After all, besides (62) is not very different from the group isomorphism § : Z, — Z,"
one of the things that this (61), where ker(f) = {0, 2}, allows us to see is that the
ground state of this model is defined by

€M) =110, G [T ee T Ax (@ |6>> ® <® |0>> ® [a) g,
p=1 A v’ leLl, feLl, A"
where & € ker(f). In other words, we are faced with a D*(Z,) model that has
an algebraically degenerate ground state, but where this algebraic degeneracy is
neither a maximum nor a minimum.
Another interesting aspect of this D*(Z,) model, which is defined by using (61), is
related to the fact that

Flg)=(Zp* and F(3)=(X})".

And why is this interesting? Because, when we substitute these matrices into (49), it
is not difficult to see that not all quasiparticles, which are detected individually by the
operator A’ can be considered as “confined”. And how can we see it? By noting that

e the quasiparticles, which are detected by the operator A/, are produced by

WP = (29, and
o the link operators can be represented by
1 -\ AA ST \5 A o A
Cia = 1 Z(Z)M C(Xp)Te (XD e (X)),
7eS

where i = ¢'27/%) is the generator of the matter group.

After all, as the generator of the gauge group is also equal to 7 in this case where
N = 4 and, therefore, the operators (50a) are such that

Z'{]Xh — Z’[(.(]+h) mod (4)]Xhzg’

2,0,0)

it is not difficult to conclude that all the quasiparticles g , which are produced by

= (2,00 . . .
an operator Wé ’m, are “unconfined” (i.e. these quasiparticles can be transported

without increasing/decreasing the energy of the system) because
72X2 — Z[4 mod (4)]X222 — X272

2,L,0

Consequently, as there are N — 1 quasiparticles g (2£-%) that are produced by the operators

s (g,L,0 i7 (910
WY = ()70 (X)F or WY = (X)F o (2,)

" Note that, as this group isomorphism is defined by

fO)=0, f(1)=1, f(2)=2 and f@3)=3, (63)
the only difference between it and (62) can be justified in terms of a permutation.

2350018-52



Int. J. Quantum Inform. 2023.21. Downloaded from www.worldscientific.com

by UNIVERSIDADE DE SAO PAULO on 06/06/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

Quantum double models coupled to matter fields

through a fusion

G220 = §(200) 5 5(0.20) — 5(0.20) 5 7(200)

between the quasiparticles §209 and §©£9 all these quasiparticles § &0
0,L,0)

are also

interpreted as “unconfined” since all §( are also “unconfined”.

4.3. The ground state degeneracy and the classifiability
of the DX (Zy) models

In view of what we have just seen in this last section, one thing that you, the reader,
might be wondering is: is there some rule to determine when the DX (Zx) models have

(J.LO) that are “unconfined” ? And in order for us to answer this

quasiparticles q
question, it is very interesting to pay attention, for instance, to the trivial DX (Zy)
models, because the trivial group homomorphisms §: Zy — Zy always map every
element of Z to the identity element of Z,. And since the definition of link operators
makes it clear that it is precisely the result of this mapping that needs to change the

gauge fields on which these operators act, it is also very clear that, when f(&) = e,

o these operators become “blind” to the presence of the electric quasiparticles, and
(therefore)

o the electric quasiparticles become “unconfined”.

Note that, although the D*(Z,) model discussed above was not defined by using a
trivial group homomorphism, (61) places this model in a situation that, in some way,
is comparable to this one. After all, unlike the (62) and (63), this group homomor-
phism (61) defines two distinct equivalence classes: videlicet,

O={a€Zy:a=0mod (4)} and [2]={a € Zy:a=2mod (4)}

since (61) is nothing more than the same group homomorphism (51) where n = 2.
And why is it important to pay attention to the fact that (61) defines these two
distinct equivalence classes? Because (61) is just one example of a group homomor-
phism that can do this: other functions (51), which can also do this, can be identified
whenever K and N are two even numbers. How? By considering that N = 2n: after
all, as K is also an even number and, therefore, nK will always be divisible by N,
Theorem 2 guarantees the existence of the group homomorphism

f(la]) = [nal, (64)
which can be used to define two distinct equivalence classes
0]={a €Zy,:a=0mod (2n)} and [n] ={a € Zy, : a =nmod (2n)}.
The main consequence of this is that, whenever we define a D*(Z,,) model, where K

is an even number, by using this group homomorphism (64), it leads us to

n

Fi(g)=(Z})* and F,(3) = (X})7,
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and, therefore, all the quasiparticles produced by

(n,L,0)

W(z' =(Z)" o (X)" or W;LU

(Xp) o (Zy)"
will never be detected by the D®(Z,,) link operators as long as
VAD G [(n+n)mod(2n ]X Zn — xngn

In this fashion, as |Im(f)]| is equal to the number of equivalence classes that f defines,
this explains why we take, as an example, this D*(Z,) model where [Im(f)| = 2. That
is, as much as we have highlighted the fact that | ker(f)| > 1, the necessary condition
for the existence of “unconfined” quasiparticles in the D¥(Zy) models is that
[Im(f)[ < 2.

4.3.1. What can we say about the quasiparticles that are produced by
manipulating matter fields?

Notwithstanding, the information that |ker(f)| > 1 is still relevant because it is

(7.A)

precisely this | ker(f)| that computes the number of quasiparticles Q , which are

produced by manipulating matter fields, that are not able to locally deform £,. And

although we still have not said a word about all these (matter) quasiparticles Q (']’A)7

they are not as surprising as the quasiparticles Q (/-») of the D,;(Z ) models: after all,
as all the operators

WY = (XpFo[Fyg and WY = [Fg) o (XE  (65)

that produce them can be identified in the expressions of the DX (Zy) face and link
operators, it is not difficult to conclude that

Q N have Abelian fusion rules, because we always have that
Fy(g) = (Z})*
where n takes the values that satisfy Theorem 2, and

e the action of these operators (65), with A = 0, is sufficient to perform transitions
between/among the DX (Zy) vacuum states.

Note that, just by looking at the DX (Zy) vacuum states
a,A\L) - ~
=T, G TTe T (@)« (@) sl
p=1 leLly feLl, AL

this sufficient condition makes it very clear that all the (matter) quasiparticles which

are not able to locally deform L,, are produced by the operators W f that reduce
the “fake holonomy” (37) to the true holonomy (36).
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Based on these findings, it is not difficult to conclude that all these D (Zy) models
can be completely classified in terms of an ordered 3-tuple (N, K, n), as follows:

A. (N,K,0)
All the DX (Zy) models, which are characterized by an ordered 3-tuple where
n = 0, have ground states with an algebraic degeneracy |ker(f)| that is maximal
(i.e. it is equal to K). As a consequence of this maximality, all the manipulations,
which can be done on the matter fields by using only the operators that make up
the DX (Zy) Hamiltonian, do not (locally) deform L, and, therefore, do not
change the energy of the system. In this way, it is valid to affirm that all these
models, with (N, K,0), have the same quasiparticles, with the same properties, as
the D(Zy) models.

B. (N,N,N)
When n = N, all the DX (Z ) models have an algebraic degeneracy | ker(f)| that is
minimal (i.e. it is equal to 1). And as one of the consequence of this minimality is
that |Im(f)| = N, we can affirm that, although these models house all the D(Zy)
quasiparticles among their energy excitations, all the quasiparticles that are
detected by the D% (Z,) vertex operators are “confined”. Observe that, since this

minimality also implies that all the quasiparticles Q;L’A)7 where (L, A) # (0,0),
are detectable by the DX (Zy) face and link operators, the ground state of all these
models can only be indexed by & = 0.
C. (N,K,n)

In this case, where this ordered 3-tuple is different from (N, K,0) or (N, N, N), it
is possible to affirm that the D% (Z,) models may have intermediate properties
between those of A and B. After all, although these models may be perfectly
defined by using group homomorphisms that, for instance, confine all the quasi-

(J.LA)

particles q with J # 0, whenever K is an even number and N = 2n we can

also define such models by using (64): i.e. whenever K is an even number and
N = 2n, we can define the D*(Z,,) models where all the quasiparticles g(/»»:0),
with J € [0], are unconfined. As a consequence of this partial deconfinement, the
algebraic degeneracy of the D% (Z,,) ground state is neither a maximum nor a
minimum because, for instance, all their vacuum states are indexed by 1 <

| ker(f)| < K values of &.
4.3.2. Does the degree of degeneracy of the DX (Zy) ground state depend on
the (sub)set Im(f)?

Note that, as there is no way to manipulate the matter fields when K =1, the
Hamiltonian of any trivial D'(Zy) model (i.e. of any D (Z,) model that is classified
as (N, 1,0)) is given by

Hprlgor = —=Tu > A=T8Y B =Je Y 1, @1 ®1y,,

veL, feL, (eL,
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which only reinforces the existence of a correspondence principle between the
DX (Zy) and D(Zy) models because

Hpz,yy — Hpre) k=1 = (T cNy) - 1z,

But, although we have said (somewhere in this paper) that the cardinality of ker f
is relevant for determining the degree n of degeneracy of the DX (Zy) ground
states, we have not yet presented the formula for this n when f is not a trivial
group homomorphism. So, the natural question that we can ask here is: does this
formula exist?

In order to understand the answer to this question, it is interesting that we
remember, for instance, that we have already managed to determine this formula
when we analyzed the trivial DX (Zy) models. And an interesting aspect of this
formula (56) that we found is that it clearly shows us that, in fact, there is a dual
correspondence between the trivial D;;(Zy) and DX(Zy) models. After all,
according to what has been said in p. 44, all the trivial group homomorphisms (52)
always can be induced by a trivial (sub)group action (57) that maximizes [ir; |. But
what happens when, for instance, the D% (Zy) models can be defined by using
nontrivial group homomorphisms?

One of the things that happens is that, since all these nontrivial group homo-
morphisms are induced by nontrivial (sub)group actions fi s : Im(f) x S — S that de-
fine only k-cycles where k > 1, this allows us to conclude that the dual correspondence,
between the nontrivial D;;(Zy) and D% (Z ) models, is not so perfect. Why? Because
there are nontrivial D;;(Zy) models that can be defined, for instance, by using non-
trivial group actions that can define 1-cycles. In plain English, no Dj(Zy) model,
which is defined by using a nontrivial action that defines 1-cycles, can be interpreted as
the perfect dual of any D’ (Zy) model: this interpretation occurs only when

e Im(f) =Zy, and
e the D)/(Zy) gauge group action can be expressed as pu;(f(&),7) because this

induces the co-action homomorphism F.

Note that, as a consequence of these conditions, it also becomes clear that the Dy, (Zy)
models may be interpreted as the perfect dual of the DX (Zy) models when S = S.

Nevertheless, it is also worth noting that, in accordance with the definition of the
DX(Zy) face and link operators, the elements of Im(f) must also act on the elements
of Zy. After all, since Im(f) is a normal subgroup of Zy, it is not difficult to conclude
that [, allows us to interpret its k-cycles as elements of the quotient group
Zy/Im(f).*” And what does it mean? This means that all the magnetic quasiparticles
that are inherited from the D(Zy) models are divided into equivalence classes in the
DX(Zy) ones. Thus, by noting that

e the D(Zy) models have ground states that are |Zy|?-fold degenerated, where is
the genus of My,'* and
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0,L,0)
b)

e all the magnetic quasiparticles g which are only detected by the face

operators (49b), are divided into |Zy/Im(f)| equivalence classes,

it becomes clear that the degree of degeneracy of the D*(Z ) ground states is given
by

i = [ ker()] - |Z /Tm() 2 (66)

Note that this result is in full agreement with the formula (56) because, when § is a
trivial group homomorphism, Zy /Im(f) = Zy.

5. Final Remarks

As we present in this paper, it is very clear that we can perform a dualization
procedure on the D;;(G) models as long as G is a finite Abelian gauge group. After
all, although it is well known that a group action pu: G x S — S can induce a co-
action with the help of a group homomorphism f: S — G, the facts of

e the D), (G) and DX(G) models have the same gauge group, and bring the D(G)
models as special cases,

e the commutation relations between the DX (G) vertex, face and link operators
show that the D®(G) models only are exactly solvable when Im(f) C Z(G), and

e the D),(G) and DX (@) link operators are duals of each other when S and G are
two finite Abelian groups

make it clear that the duality between these D,;(G) and D®(G) models exists only
when G is a finite Abelian gauge group. By the way, even though we wrote the entire
Secs. 3 and 4 by denoting the set that indexes the matter qudits by S, this duality
context requires that S equals S.

Observe that this last requirement is reinforced by the fact that, while the
Dy/(Zy) models may differ from the D(Zy) ones when M and N are coprime
numbers, the DX(Zy) models cannot do the same when K and N are coprime
numbers. After all, as K and N index the cyclic groups S = Zg and G = Zy,
respectively, Theorem 2 allows us to interpret these D (Z ) models, in these cases
where K and N are coprime numbers, as analogues of the D(Zy) models, but with
an algebraically degenerate ground state, because the only group homomorphism
f:Zyxg — Zy that exists is the trivial one. And, no doubt, this is another way of
saying the same thing that we already said in the penultimate paragraph of the
last section: i.e. this is another way of saying that the D,;(Zy) models may be
interpreted as the perfect dual of the DX (Zy) models when S = S.

Given this duality that we were able to recognize between the D) (Zy) and D(Zy)
models when G is a finite Abelian group, it is quite tempting to conclude that a new
class of self-dual lattice gauge models can be defined in terms of an overlap of the
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Dy (Zy) and D(Zy) ones. That is, by coupling the Abelian D(G) models to new
qudits, which would be assigned to the vertices and faces of Ly, by using the same
gauge group actions and co-action homomorphisms that were presented here, re-
spectively. However, although it is indeed possible to define this new class, whose
Hamiltonian seems to be better defined as

Hy = —=Tn Y A —=JT5Y> By=Jc Y Ci—Te Y Oy

veLy feL, leLl,y ltel,

its models do not look as nice: as these new lattice gauge models bring the Abelian
D,/ (G) and DX (G) ones as special cases, these new models depict a situation where
all the electric and magnetic quasiparticles inherited from the Abelian D(G) models
can/may be confined. In other words, this is an important aspect that may not be
very good, for instance, from a quantum-computational point of view.

By speaking of these electric and magnetic quasiparticles, it is important to
summarize some of the reasons why we have said, at various points in this paper, that
they are the same ones that appear in the D(G) models. And one of the first reasons
has to do with the fact that both the D);(G) and D (G) models were defined not
only by using the same gauge structure as the D(G) ones, but mainly without
modifying it: after all, note that

e in the Dj;(G) models, the gauge qudits act on the matter ones and not the other
way around, and

¢ as much as the D% (QG) link operators do transformations on the gauge qudits, these
transformations can also be interpreted as gauge transformations because, as
[B't g, CA] =0, they are completely unable to modify the “fake holonomy”
around the lattice faces.

And this is precisely what, for instance, explains the fact that all the electric and
magnetic quasiparticles, which can be produced by manipulating the gauge qudits in
the Dj;(G) and D (G) models, are produced by the operators that have the same
expressions in the D(G) models. That is, despite the group actions and co-actions
homomorphisms, which define the D;;(G) and D% (G) models, respectively, make
these electric and magnetic quasiparticles capable of fusing with the new quasi-
particles that are produced by manipulating the matter qudits, these electric and
magnetic quasiparticles are exactly the same as those of the D(G) models. By the
way, and by remembering that all these quantum-computational models are always
defined with the intention of modeling some reality that can be physically imple-
mented, it is also interesting to remember that, even though we know, for instance,
that an electron is already capable of interacting with several particles, there is
nothing that prevents nature from showing that there are other particles that are also
capable of interacting with an electron. And this is precisely one of the other reasons
that allows to assert that the D;;(G) and D% (G) electric and magnetic quasiparticles
are exactly the same as those of the D(G) ones, since it does not make much sense
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that an electron ceases to be an electron just because someone discovered that it is
capable of interacting /fusing with this new particle.
Note that, due to the recognition that the D,;(G) and DX (G) electric and

magnetic quasiparticles are exactly the same as those of the D(G) ones, it is correct to

say that the operators WéJ’L’A) and WEJ’L’A) that produce them, in pairs, may define

the same ribbon operators (string operators) as in the D(G) models. But what is most
striking about these quasiparticles is the fact that they are confinable. And in the case
of the D),;(G) models, the fact that the magnetic particles are confinable is interesting
for, at least, two reasons. One of them seems to be related, for instance, to the
validation of these Dj;(G) models as an excellent generalization of the D(G) ones
because, as

e the D(G) models can be understood in terms of pure lattice gauge theories, and

e the Quantum Chromodynamics is precisely the gauge theory whose non-pertur-
bative problems fostered the development of the lattice gauge theories,

this confinement of magnetic quasiparticles seems to be quite welcome since, for
instance, there are some works that already explored the possibility that the con-
finement of quarks has some magnetic reasons.’’ Although the confinement of electric
quasiparticles in the D% (G) models is perhaps not so interesting from the point of
view of elementary particle physics, it seems to be very interesting from the point of
view of condensed matter physics. After all, as the confinement of these electric and
magnetic quasiparticles points, in the latter context, to the possibility of exploring
these Dj;(G) and DX (G) models to describe superconductors (or, at least, perfect
diamagnets) and topological insulators, this deserves to be better evaluated in our
future papers.

Lastly, in addition to being important to say that the D% (Zy) models can be
classified by the group homomorphism that define them, one thing we need to re-
member is that there is no impediment, a priori, to define new generalizations of these
D(G@) and Dj;(G) models without the artifice of a dualization procedure. Never-
theless, a relevant question that we can ask ourselves because of this possibility is
whether, for instance, any of these new generalizations are able to lead us to the same
results as the Abelian DX (G) models. And a good possibility, which we can explore to
answer this question, is the one where | defines a crossed module™: i.e. the one where f
is a group homomorphism that, together with a group action i :G x S-S,
respects two conditions

H(ilg.4)) = g-1(&)-g7" and Q(j(@),B) =axfxa",
where the second one is known as the Peiffer condition.”>™ Note that the group
homomorphisms, which define the Abelian D% (G) models, satisfy these two condi-

tions when the co-action homomorphism (38) is induced by a trivial gauge group
action. And the possible advantage of taking f as the group homomorphism that now
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defines a crossed module lies in the fact that it seems possible to recover the DX (G)
models as a special case of the higher lattice gauge theories,”” which are based on the

76-78 By the way, a good example of this can be

higher-dimensional category theory.
found in Ref. 79, where a 2-lattice gauge theory is defined by using a three-dimen-
sional lattice in which we can measure l-and 2-holonomies: after all, while the
1-holonomy is identified as the same “fake holonomy” (37), which is preserved by the
gauge transformations that the operator A/, performs, the 2-holonomy®’ is preserved

by the action of the operator
| ke

ZESf

which corroborates with the perception that the link operator (40) actually performs
another kind of gauge transformation. Note that, if f is the group homomorphism

that defines a crossed module G = (G, S ;f, i), the first and second homotopy groups
of this crossed module can be defined as = (G) = G/Im(f) = coker(f) and
75(G) = ker(f), respectively,®' whose orders define, for instance, the formula (66). We
will also return to this topic in another future work.
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