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In this paper, we investigate how it is possible to de¯ne a new class of lattice gauge models based

on a dualization procedure of a previous generalization of the Kitaev Quantum Double Models.
In the case of this previous generalization that will be used as a basis, it was de¯ned by adding

new qudits (which were denoted as matter ¯elds in reference to some works) to the lattice

vertices with the intention of, for instance, interpreting its models as Kitaev Quantum Double

Models coupled with Potts ones. Now, with regard to the generalization that we investigate here,
which we want to de¯ne as the dual of this previous one, these new qudits were added to the

lattice faces. And as the coupling between gauge and matter qudits of the previous generali-

zation was performed by a gauge group action, we show that the dual behavior of these two

generalizations was achieved by coupling these same qudits in the second one through a gauge
group co-action homomorphism. One of the most striking dual aspects of these two general-

izations is that, in both, part of the quasiparticles that were inherited from the Kitaev Quantum

Double Models become con¯ned when these action and co-action are nontrivial. But the big
news here is that, in addition to the group homomorphism (that de¯nes this gauge group co-

action) allows us to classify all the di®erent models of this second generalization, this same group

homomorphism also suggests that all these models can be interpreted as two-dimensional

restrictions of the 2-lattice gauge theories.
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1. Introduction

One of the current issues of interdisciplinary research explores some theoretical

models and technologies that try to support some kind of quantum computing.1–5

And since the original purpose of Quantum Computation is to be interpreted as a

generalization of Classical Computation,6,7 some of these theoretical models are de-

¯ned by assigning quantum bits (qubits)8 to the edges of some oriented lattice L2. In

general, it is not wrong to say that, in order to avoid any problems with reading the

data encoded by these qubits, L2 is usually chosen to be the one that discretizes some

two-dimensional compact orientable manifold M2. Nevertheless, a crucial advantage

of using these lattices, which discretize these two-dimensional compact orientable

manifolds, is the possibility of evaluating/implementing theoretical models that,

because they have a topological order,9 can perform some fault-tolerant quantum

computation.10–12 These are precisely the cases of

. the Toric Code (DðZ2Þ), which gets its name from the fact that M2 is homeo-

morphic to a two-dimensional torus,12,13 and

. its natural generalization, so-called Quantum Double Models (DðGÞ), which

are de¯ned by using (i) a group G that is not necessarily Abelian and (ii) an

L2 that discretizes an M2 not necessarily homeomorphic to a two-dimensional

torus, but that assigns quantum dits (qudits) instead of qubits to its

edges.12,14,15

Given that the DðGÞ models do not associate any qudits with the faces or/and

vertices of L2, one paper was published a few years ago16 to understand what hap-

pens, for instance, when these models are coupled to new qudits assigned to the

lattice vertices (DMðGÞ). After all, as the DðGÞ models can be understood in terms of

pure lattice gauge theories,14,17 it was desirable that there was another class of lattice

models, which would be able to mimic some more general gauge theories, where some

kind of matter was also present.18,19 Therefore, since these new DMðGÞ models

needed to be interpreted asDðGÞ generalizations, which also needed to be understood

in the light of these more general gauge theories, these new qudits were purposely

denoted as matter ¯elds similarly to what was done in Ref. 20, where lattice gauge

theories were coupled to ¯xed-length scalar (Higgs) ¯elds allocated on the lattice

vertices.

In this Ref. 16, it became clear that, as the DMðGÞ magnetic quasiparticles in-

crease the energy of the system when they are transported through the lattice, the

ground state of these models does not necessarily depend on the ¯rst homotopy group

�1ðM2Þ. As a consequence of this result, which points out that these magnetic

quasiparticles should be interpreted as con¯neda in the DMðGÞ models, another

paper was published shortly thereafter, presenting a new class of theoretical lattice

aWe will explain it all (what theseDM ðGÞmagnetic quasiparticles are, why they increase the energy of the

system when they are transported, why they were interpreted as con¯ned etc.) later on, in Sec. 2.2.1.
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models (HM=CðZNÞ) where this increase no longer happens.21 This class of (Abelian)

HM=CðZNÞ models is a subclass of the DMðGÞ models in which

. the (gauge) group G is the cyclic Abelian group ZN , and

. the operators, which detect the magnetic quasiparticles in theDMðGÞmodels, were

excluded from their Hamiltonian.b

And as strange as it may seem to build this subclass (which have the same gauge

group dependence as the DðGÞ models) without the operators that detect these

magnetic quasiparticles, the fact is that these HM=CðZNÞ models have, at least, a

very interesting property: some matter excitations (i.e. those energy excitations that

can be produced by manipulating the matter ¯elds) exhibit non-Abelian fusion

rules.21,23 Therefore, since the only di®erence between the HM=CðZNÞ and DMðZNÞ
models are the operators that measure magnetic quasiparticles, it is not di±cult to

conclude that these matter excitations, which exhibit non-Abelian fusion rules, are

also present in the DMðZNÞ models.

Nevertheless, and in contrast to the DðGÞ models,24 the fact is that these two

generalizations do not lead, for instance, to self-dual models. And as the con¯nement

of the DMðZNÞ magnetic quasiparticles has some similarity with that of quarks in

Quantum Chromodynamics25 (which is precisely the gauge theory whose non-per-

turbative problems fostered the development of the lattice gauge theories26,27), a

natural question that arises is: how to use these DMðGÞ models as a kind of basis for

de¯ning a self-dual generalization of the DðGÞ ones where, for instance, qudits are

assigned to all the faces and vertices of L2? By the way, can a generalization of the

DðGÞ models, intentionally de¯ned by using the dual framework of the DMðGÞ
models, show us if it is possible to construct this self-dual generalization? Thus, in

order to answer these questions, this paper is rightly devoted to the analysis of a new

class of models (DKðGÞ), which is intentionally de¯ned by using the dual framework

of these DMðGÞ models. That is, this new generalization of the DðGÞ models, whose

construction/de¯nition will be detailed in Sec. 3, has

. the same gauge structure as them, but

. the matter qudits attached only with the center of all the faces of L2, since all these

centers can be interpreted as the vertices of a dual lattice L�
2.
28

However, as we need to do this construction/de¯nition (and, consequently, analyze

it) based on what we already know about the DMðGÞ models, we will deliberately use

the following section to do a detailed and judicious review of theseDMðGÞmodels, by

analyzing their algebraic and topological properties. And just for the sake of

bAt this point, we need to make an addendum: after all, although Ref. 16 refers to its models by using the
same notation as Ref. 21, here we prefer to use the \DM ðGÞ" notation not only to di®erentiate the models

of these two works, but also to highlight the fact that the models of Ref. 16 satisfy the same Drinfeld's

quantum double algebra22 of the DðGÞ models.12

Quantum double models coupled to matter ¯elds
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simplicity, we will consider that L2 and, consequently, L�
2 are square lattices, even

though all the considerations that will be presented in this paper can be applied to

general lattices.

2. A Brief Overview on the DM(G) Models

According to what we said in the introduction, the DMðGÞ models are straightfor-

ward generalizations of the DðGÞ ones. And in order to prove this statement, it is

important to analyze what are the similarities and di®erences between these two

classes of models. As a matter of fact, with regard to the issue of the similarities, it is

worth noting that, due to the quantum computing proposal that permeates these

DðGÞ and DMðGÞ models, both are de¯ned by assigning a jGj-dimensional Hilbert

space HjGj to each of the edges of L2. Observe that, since HjGj is responsible for

supporting the gauge qudits that need to be manipulated in these two classes of

models, its single-qudit computational basis is Bg ¼ fjgi : g 2 Gg.
Now, with regard to the di®erences that exist between these two classes of models,

it is correct to say that all these di®erences have their origin in the fact that, in the

case of the DMðGÞ models, there is also anM-dimensional Hilbert space HM assigned

to each of the vertices of L2. After all, by remembering that these DMðGÞ models

. were intentionally de¯ned to mimic some more general lattice gauge theories, and

. have additional qudits assigned to the lattice vertices in order to mimic matter

¯elds similarly to what was done, for instance, in Ref. 20, where Higgs ¯elds were

allocated on the lattice vertices,

an additional Hilbert space

HM � . . .� HM|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Nv times

becomes necessary to support all the additional matter qudits that need to be ma-

nipulated in the DMðGÞ models. That is, these DMðGÞ models were de¯ned by

assigning an HM to each of the vertices of L2 because this Hilbert space is responsible

for supporting these new matter qudits.

By the way, since this Ref. 20 couples the Higgs ¯elds to the lattice gauge ¯elds by

using a group action29 it is also correct to say that these DMðGÞ models were also

de¯ned by exploiting this fact: i.e. they were de¯ned by coupling these matter qudits

to the gauge ones by using a group action � : G� S ! S, which de¯nes how the

gauge group G acts on the elements of the single-qudit computational basis Bm ¼
fj�i : � 2 Sg of HM . For now, S should only be interpreted as a set of indices (i.e.

S ¼ f0; 1; 2; . . . ;M � 1g). Nevertheless, since this group action � is one of the pro-

tagonists of the DMðGÞ models (because it tells us how the matter and gauge qudits

are coupled), it is interesting to note that it allows us to interpret HM as a (left)

CðGÞ-module.30
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2.1. A few words about the DM(G) Hamiltonian operator

But since we are talking about �, it is important to take the opportunity to mentioning

that its role is explicit in two of the three operators that make up the Hamiltonian

HDM ðGÞ ¼ �JA

X
v2L2

Av � JB

X
f2L2

Bf � JC

X
‘2L2

C‘ ð1Þ

of theseDMðGÞmodels, where JA, JB and JC are three positive parameters. Scilicet, �

appears in the vertex and link operatorsc

Av ¼
1

jGj
X
g2G

A ðgÞ
v and C‘ ¼ C

ð0Þ
‘ ð2Þ

respectively, whose components are shown in Fig. 1 together with those of the face

operator

Bf ¼ B
ðeÞ
f : ð3Þ

Here, e should be interpreted as the neutral element of G.

Note that, by virtue of all the operators in (2) and (3) being expressed by using

Kronecker deltas, it is not di±cult to conclude that, no matter what they do, 0 and 1

are the only values they return by acting on each vertex, face or edge of L2. And since

these same expressions (2) and (3) are such that

½Av;Bf � ¼ ½Av;C‘� ¼ ½Bf ;C‘� ¼ 0;

Fig. 1. De¯nition of the components A
ðgÞ
v , B

ðhÞ
f and C

ð�Þ
‘ whose e®ective action, on the sectors Sv, Sf and

S‘ of L2, respectively, can also be better understood by looking at Fig. 2. Here, the group element a is

indexing an jai basis element of HjGj, the symbol � indexes an j�i basis element of HM , and � is a natural

index such that 0 � � � M � 1. Moreover, it is also worth noting that, here, �ðx; yÞ should be interpreted

as a Kronecker delta that was written di®erently for the sake of intelligibility (i.e. �ðx; yÞ ¼ �xy).

cAlthough we are referring to L2 in terms of its vertices, faces and edges, it is worth noting that operators

analogous to C‘ are often denoted as link operators in other lattice gauge models. And as the origin of this
name lies in the fact that the purpose of such operators is to make clear what is the link between what is

contained in two neighboring vertices, we will use this same denotation since, for example, this is also the

purpose of C‘.

Quantum double models coupled to matter ¯elds
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and

Av 0 �Av 00 ¼ Av 0 	 �ðv 0; v 00Þ;
Bf 0 �Bf 00 ¼ Bf 0 	 �ðf 0; f 00Þ and

C‘ 0 � C‘ 00 ¼ C‘ 0 	 �ð‘ 0; ‘ 00Þ;

all this allows us to assert that Av, Bf and C‘ are three projectors: i.e. Av, Bf and C‘

are three operators that allow us to assert that, when

Avj�0i ¼ j�0i; Bf j�0i ¼ j�0i and C‘j�0i ¼ j�0i ð4Þ

hold for all the Nv vertices, Nf faces and N‘ edges of L2, the state j�0i of this lattice
system belongs to the Hilbert subspace

H
ð0Þ
DM ðGÞ 
 HDM ðGÞ ¼ HjGj � . . .� HjGj|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

N‘ times

�HM � . . .� HM|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Nv times

Fig. 2. Piece of L2 that supports theDM ðGÞmodels where we see: (i) the rose-colored sector (Sv) centered

in the vth vertex; (ii) the baby blue-colored sector (Sf) highlighting the fth face; and (iii) the light orange-

colored sector (S‘) that is centered in the ‘th edge. Here, the highlighted edges (in black color) correspond

to Hilbert subspaces HjGj in which the vertex (rose-colored sector), face (baby blue-colored sector) and link

(light orange-colored sector) operators mentioned in (2) and (3) act e®ectively. Note that, as Sv and S‘

contain vertices in their interior, an analogous comment applies to the vertices highlighted with Greek

letters: i.e. according to what can be seen in Fig. 1, these vertices correspond to Hilbert subspaces HM in

which, for instance, only the vertex and link operators act e®ectively.
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whose states have the lowest possible energy. From the point of view of (1), this is

equivalent to saying that j�0i is an eigenstate ofHDM ðGÞ that has an eigenvalue equal to

E0 ¼ �ðJANv þ JBNf þ JCN‘Þ ð5Þ

because the DMðGÞ models are examples of frustration-free models.16

2.1.1. A few words about the existence of additional vertex, face and edge projectors

Since we just talked about the projectivity of Av, Bf and C‘, it is important to open a

small parenthesis here to tell you, the reader, that they are not the only projectors of

these DMðGÞ models. After all, by noting that G is a ¯nite group that has31

. R distinct (nonequivalent) conjugacy classes CL ¼ fhgLh�1 : h 2 Gg, and (therefore)

. R distinct (nonisomorphic) irreducible representations �1þJ : G ! GLjGjðCÞ over
the complex numbers,

it is not di±cult to see that these three operators are nothing more than mere special

cases of others

Av;J ¼ 1

jGj
X
g2G

�1þJðg�1Þ 	 A ðgÞ
v ; Bf;L �

X
g2CL

B
ðgÞ
f and C‘;� � C

ð�Þ
‘ ; ð6Þ

where �1þJðgÞ ¼ Tr½�1þJðgÞ�, J ;L ¼ 0; 1; . . . ;R� 1 and � ¼ 0; 1; . . . ;M � 1. And

since all these operators

(a) have eigenvalues equal to 0 and 1,

(b) satisfy the relations

½Av 0;J 0 ;Bf 0;L 0 � ¼ ½Av 0;J 0 ;C‘ 0;� 0 � ¼ ½Bf 0;L 0 ;C‘ 0;� 0 � ¼ 0; ð7Þ
Av 0;J 0 �Av 00;J 00 ¼ Av 0;J 0 	 �ðv 0; v 00Þ 	 �ðJ 0; J 00Þ;
Bf 0;L 0 �Bf 00;L 00 ¼ Bf 0;L 0 	 �ðf 0; f 00Þ 	 �ðL 0;L 00Þ and

C‘ 0;� 0 � C‘ 00;� 00 ¼ C‘ 0;� 0 	 �ð‘ 0; ‘ 00Þ 	 �ð� 0;� 00Þ
not only for all the values of J 0ð0Þ;L 0ð0Þ ¼ 0; 1; . . . ;R� 1 and � 0ð0Þ ¼ 0; 1; . . . ;

M � 1, but also for all the vertices, faces and edges of L2, and

(c) are such thatXR�1

J¼0

Av;J ¼ v;
XR�1

L¼0

Bf;L ¼ f and
XM�1

�¼0

C‘;� ¼ ‘;

where v, f and ‘ are identity operators that act e®ectively on the vth vertex,

fth face and ‘th edge of L2, respectively,
d

dThis notation \ v", \ f" and \ ‘" is being used here only to be consistent with some expressions that will

be presented later. Nevertheless, as all these operators act e®ectively on the vth vertex, fth face and ‘th
edge of L2, respectively, all of them can be interpreted, in fact, as an identity operator L2

that acts on all

lattice edges simultaneously.

Quantum double models coupled to matter ¯elds

2350018-7

In
t. 

J.
 Q

ua
nt

um
 I

nf
or

m
. 2

02
3.

21
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

E
 D

E
 S

A
O

 P
A

U
L

O
 o

n 
06

/0
6/

23
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



it is correct to assert that

U ¼ fAv;0;Av;1; . . . ;Av;R�1g;
B ¼ fBf;0;Bf;1; . . . ;Bf;R�1g and

C ¼ fC‘;0;C‘;1; . . . ;C‘;M�1g
are three complete sets of orthogonal projectors onto HDM ðGÞ. And why is it important

to open this parenthesis here? Because, in addition to (7) ensures that the DMðGÞ
models are exactly solvable,16 the fact that these models have been de¯ned by

using all these projectors is in full agreement with the requirements of Quantum

Mechanics.32 After all, by noting that

Av ¼ Av;0; Bf ¼ Bf;0 and C‘ ¼ C‘;0

because

. �1ðgÞ ¼ 1 holds for all the elements of G, and

. C0 is the conjugacy class of e,

this is precisely what allows us to assert that a state j�0i, which satis¯es (4) for all the

Nv vertices, Nf faces and N‘ edges of L2, belongs to Hð0Þ. In plain English, it is the

existence of these projectors (6) that allow us to decompose the DMðGÞ Hilbert space

into the direct sum

HDM ðGÞ ¼ H
ð0Þ
DM ðGÞ � H?

DM ðGÞ; ð8Þ

where H
ð0Þ
DM ðGÞ and H?

DM ðGÞ are the orthogonal subspaces that contain all the DMðGÞ
vacuum and nonvacuum states, respectively.23

2.1.2. Understanding the vertex and face operators

Of course, given that we ended the last paragraph by citing these DMðGÞ vacuum and

nonvacuum states, it is very important that we explain how they can be produced.

But, before we do that, it seems more interesting to pay attention to what these

operators Av;J , Bf;L and C‘;� do in addition to being projectors. And since we have

already said that one of the ideas behind theseDMðGÞmodels is, for instance, to mimic

some lattice gauge theories where matter ¯elds are present, it is worth to say that this

mimicry is mostly done by the operator Av;0 that de¯nes the Hamiltonian (1).

As a matter of fact, in order to understand how Av;0 does this, one of the things that

we need to do is understand how its components A
ðgÞ
v act on L2. And in accordance with

what Fig. 1 shows us, these components are operators that, by acting on Sv, change
e

. the matter ¯elds j�iv for other j	iv ¼ j�ðg; �Þiv, and

eNot only here, but elsewhere in this paper, we will use the indices v and ‘ whenever necessary to emphasize

that j�i and jgi are associated with the vth vertex and the ‘th edge of L2, respectively.

M. F. Araujo de Resende J. P. Ibieta Jimenez & J. Lorca Espiro
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. the gauge ¯elds jg 0i‘ for other
jg 	 g 0i‘ or jg 0 	 g�1i‘

if the orientation of the ‘th edge points into or out of the vth vertex, respectively.

That is, regardless of whether or not these components change the matter ¯elds that

appear on the lattice vertices, they change all the gauge ¯elds of Sv when g 6¼ e. In

this way, as the result of the action of Av;0 comes from the sum of all the transfor-

mations that A
ðgÞ
v is capable of doing, it is not wrong to conclude, for instance, that

Av;0 averages out the possible transformations that A
ðgÞ
v is able to do by using all

elements of G.17 And since the only di®erence between Av;0 and the others Av;J is

due to the characters �1þJðgÞ, which can take on values other than 1 when J 6¼ 0

and g 6¼ e, it is also not wrong to extend this conclusion to all these operators

Av;J . That is, even though �1þJðgÞ can take on complex values other than 1 when

J 6¼ 0 and g 6¼ e, each of these operators Av;J computes some kind of \exotic"

weighted average, when J 6¼ 0, for all the transformations that A
ðgÞ
v is capable of

doing.

Regardless of the \exoticity" of what has just been said, the fact is that, since we

already said that the qudits assigned to the lattice edges must be interpreted as the

DMðGÞ lattice gauge ¯elds, this allows us to conclude that all the transformations

that A
ðgÞ
v performs are naturally lattice gauge transformations. But while this con-

clusion is correct, a relevant question is: how can we justify this conclusion in a more

fundamental way? And this is a relevant question that, for instance, can be answered

by explaining what is the actual role that the operators Bf;L have in these models.

After all, in order to explain this actual role of Bf;L, it is imperative to note that the

product a�1b�1cd, which appears explicitly in the de¯nition of B
ðgÞ
f , is one of the

holonomies that can be calculated by using all the gauge qudits around the fth lattice

face.17 And since the sum that de¯nes each Bf;L is constrained to the fact that this

operator always returns17

. 1, if the holonomy of the lattice face on which it acts e®ectively belongs to CL, and

. 0, otherwise,

it is natural to conclude that each Bf;L can be interpreted as a kind of \holonomy

meter".

Note that, as a consequence of this natural conclusion, Bf;0 can be recognized as

an operator that measures only °at connections: i.e. it measures only trivial holo-

nomies that are characterized by e along the faces. Thus, by remembering that

. it is precisely this Bf;0 that make up the Hamiltonian (1), and

. the smallest energy eigenvalue (5) is obtained only when, for instance, all the face

holonomies of L2 belong to C0,

Quantum double models coupled to matter ¯elds
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we can assert that, when these DMðGÞ models are in their ground states, L2 is locally

°at. Of course, the converse of this assertion is not true since, for instance, theDMðGÞ
models have nonvacuum states j�i where

Bf j�i ¼ j�i
hold for all the Nf faces of L2. But the act of interpreting these face operators as

\holonomy meters" is quite revealing: after all, as (7) shows us that Av;J and Bf;L

commute among them for all values of v, f, J and L, this means that all the holo-

nomies measured by Bf;L continue to belong to the same CL after the action of Av;J

on L2. That is, since these face holonomies can be associated with local estimates of

how curved is the two-dimensional manifold M2 that L2 discretizes, all these local

(non-)deformations are preserved under the transformations that all the operators

Av;J are capable of doing.17 In this fashion, as this geometric point of view is anal-

ogous to the one that underlies all the continuous gauge theories,33,34 it is precisely

that allows us to assert that the action of these operators A
ðgÞ
v and Av;J can be

interpreted as lattice gauge transformations. Note that this is one of the things that

explains, for instance, the fact that one of the DMðGÞ vacuum states is

j� ð0Þ0 i ¼
Y
v2L

Av jei � . . .� jei|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
N‘ times

� j0i � . . .� j0i|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Nv times

ð9Þ

because, in addition to all the face holonomies of \seed"

jei � . . .� jei|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
N‘ times

� j0i � . . .� j0i|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Nv times

belonging to C0, the action of the operator
Q

v2LAv is unable to change them.

2.1.3. What does the correspondence principle has to tell us about these DMðGÞ
models?

Given what has just been said about all these vertex and face operators, it is quite

clear that there is a symbiosis between them with regard, for instance, to the inter-

pretation of the DMðGÞ models as examples of the lattice gauge theories. Never-

theless, it is worth noting that, despite what has been said to be correct, we still have

not talked about the role that the group action � have in these models. And although

it seems strange to conclude that the operators Av;J perform lattice gauge transfor-

mations by disregarding, for instance, what they do on the matter ¯elds, the truth is

that this conclusion was inherited from the DðGÞ models: i.e. this conclusion was

inherited from lattice gauge models where there are no matter ¯elds.17

In order to understand this last comment, it is important to note, at least, two

things and the ¯rst one is that the DðGÞ models, whose Hamiltonian is

HDðGÞ ¼ �JA

X
v2L2

Av;0 � JB

X
f2L2

Bf;0; ð10Þ

M. F. Araujo de Resende J. P. Ibieta Jimenez & J. Lorca Espiro
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are de¯ned by using vertex (Av;J) and face (Bf;L) projectors that, despite being

similar to those in (6), have a small di®erence: the components of these DðGÞ
projectors are those in Fig. 3. And why is it important to note this ¯rst thing?

Because the only di®erence between the DðGÞ and DMðGÞ vertex operators concerns

precisely the action on the matter ¯elds. After all, even if there is (were) some

matter ¯eld assigned with the vertices of L2, Fig. 3 makes it quite clear that theDðGÞ
vertex operators are (would be) unable to act on these matter ¯elds. In this fashion,

as the DðGÞ and DMðGÞ vertex operators act on the gauge ¯elds in exactly the

same way, this inability of the DðGÞ vertex operators allows us to conclude that

they can actually be interpreted as DMðGÞ vertex operators that are \blind" to

the matter ¯elds, regardless of whether these matter ¯elds are on the lattice vertices

or not.

Note that, as strange as this interpretation may sound at ¯rst glance, there is no

way not to recognize that it makes sense because, by bearing in mind that

. quantum-computational models try/need to model some reality that can be

physically implemented, and

. the DMðGÞ models are intentionally de¯ned to be seen as generalizations of the

DðGÞ ones,
there must be a (mathematical) correspondence between these two classes of lattice

models in such a way that the DðGÞ models can be recovered as special cases of the

DMðGÞ ones. In plain English, these two classes of lattice models need to respect the

same kind of correspondence principle that the most diverse physical theories respect

when they are formulated.35 Therefore, as the DðGÞ vertex operators are \blind" to

the presence of matter ¯elds, two good ways to make the DMðGÞ vertex operators

become \blind" to these matter ¯elds seems to be imposing that

. the group action be such that �ðg; �Þ ¼ � for all g 2 G because, in this case, there

will be no change on the matter ¯elds, or/and

. M is equal to 1 since, in this other case, the DMðGÞ vertex operators will be unable

to make any changes on the matter ¯elds due to lack of options.

Fig. 3. De¯nition of the components A
ðgÞ
v and B

ðhÞ
f , which de¯ne the DðGÞ vertex and face operators, in

terms of their e®ective action on L2. Note that, since these DðGÞ vertex and face operators are also

expressed as Av;J ¼ 1
jGj
P

g2G�1þJ ðg�1Þ 	 A ðgÞ
v and Bf;L �Pg2CL

B
ðgÞ
f , respectively, the de¯nition of these

components makes it clear, for instance, that the DðGÞ and DM ðGÞ face operators are exactly the same.

Quantum double models coupled to matter ¯elds
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2.1.4. The presence of the Potts model

But, before we say whether (or which of) these two \good ways" really work to

recover the DðGÞ models as special cases of the DMðGÞ ones, we need to remember

that theDMðGÞHamiltonian (1) is not de¯ned only by vertex and face operators: it is

also de¯ned by a link operator C‘;0 whose meaning, in addition to not having been

discussed so far, is starred by �. And with regard to the components C
ð�Þ
‘ that appear

in Fig. 1, it is possible to assert that they are de¯ned in this way only to make it

possible to interpret these DMðGÞ models in terms of a coupling of the DðGÞ models

with the Potts models.36,37 As a matter of fact, by analyzing a hypothetical situation

where, for instance, JA and JB could be taken as null, it is not di±cult to see that the

Hamiltonian (1) would reduce to

HDM ðGÞ ¼ �JC

X
‘2L2

C‘; ð11Þ

which is \exactly" the same expression as the interaction Hamiltonian of a Potts model.

It is obvious that you, the reader, may argue that, due to the presence of � in the

Kronecker deltas of C
ð�Þ
‘ , there is a deep di®erence between (11) and the interaction

Hamiltonian operator of the original Potts model. And although this argument is

perfectly correct, it is worth stressing, once again, what we have said in the last

paragraph: the DMðGÞ models should be interpreted in terms of a coupling of the

DðGÞ models with the Potts ones. That is, the DðGÞ and Potts models cannot be

disconnected from each other in order to de¯ne these DMðGÞ models: these two

classes of models must be coupled to each other and the main responsible for this

coupling is � because, due to its presence in the vertex and link operators, it allows to

check whether the matter ¯elds have been manipulated or not.

Observe that, since all the elements of Bm are orthonormal vectors and, therefore,

�ð�ða; �Þ; 
Þ ¼ h�ða; �Þ j
i; ð12Þ
it is not di±cult to see, for example, that the smallest eigenvalues of (11) are asso-

ciated with the eigenstates where the matter ¯elds are aligned from the � point of

view. That is, (12) is a result that allows us to interpret all the link operators C‘;� as

comparators, since each component C
ð�Þ
‘ measures the alignment of two neighboring

matter ¯elds (i.e. of two matter ¯elds that are assigned with the two boundary

vertices of the ‘th edge) from this � point of view. And as these matter ¯elds also need

to be aligned in the ground state of theDMðGÞmodels where JA, JB and JC are positive

parameters, it is not di±cult to see that the only way to make the DMðGÞ vertex

operators \blind" to the matter ¯elds (and, therefore, recover the DðGÞ models as a

special case of the DMðGÞ ones) is by taking M ¼ 1. After all, since (12) will always be

equal to 1 when M ¼ 1 because �ða; 0Þ ¼ 0, the DMðGÞ Hamiltonian will reduce to

HDM ðGÞ jM¼1 ¼ �JA

X
v2L2

Av � JB

X
f2L2

Bf � ðJCN‘Þ 	 L2
ð13Þ

M. F. Araujo de Resende J. P. Ibieta Jimenez & J. Lorca Espiro
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in this case, a result that is identical to (10) except for one constant. But since, whenever

we measure any energy, we are always actually measuring energy di®erences, the

presence of this constant does not prevent us from recognizing that (13) is, indeed, one of

the possible Hamiltonian of the DðGÞ models.12,14,15

2.2. General properties of the DM(G) models

For the sake of completeness, it is also important to point out that, in the case of the

DMðGÞ nonvacuum states, all the energy excitations that characterize them are

produced through the action of operators W
ðJ ;L;�Þ
‘ and W

ðJ ;�Þ
v that, due to the pro-

jectivity of Av;J , Bf;L and C‘;�, are, respectively, such that

W
ðJ ;L;�Þ
‘ �Av;0 ¼ Av;J �W ðJ ;L;�Þ

‘ ; ð14aÞ
W

ðJ ;L;�Þ
‘ �Bf;0 ¼ Bf;L �W ðJ ;L;�Þ

‘ ; ð14bÞ
W

ðJ ;L;�Þ
‘ � C‘;0 ¼ C‘;� �W ðJ ;L;�Þ

‘ ; and ð14cÞ
W ðJ ;�Þ

v �Av;0 ¼ Av;J �W ðJ ;�Þ
v and ð15aÞ

W ðJ ;�Þ
v � C‘;0 ¼ C‘;� �W ðJ ;�Þ

v : ð15bÞ
And by remembering, once again, that

. quantum-computational models try/need to model some reality that can be

physically implemented, and

. these DMðGÞ models were de¯ned as the computational analogues of some lattice

gauge theories,

it becomes quite clear that, at least, all the fusion rules

qðJ 0;L 0;� 0Þ � qðJ 00;L 00;� 00Þ ¼ qðJ 00;L 00;� 00Þ � qðJ 0;L 0;� 0Þ;

qðJ 0;L 0;� 0Þ �QðJ 00;� 0Þ ¼ QðJ 00;� 0Þ � qðJ 0;L 0;� 0Þ and

QðJ 0;� 0Þ �QðJ 00;� 00Þ ¼ QðJ 00;� 00Þ �QðJ 0;� 0Þ

need to be satis¯ed so that all theDMðGÞ energy excitations qðJ ;L;�Þ andQðJ ;�Þ, which

are locally produced by the action of the operators W
ðJ ;L;�Þ
‘ and W

ðJ ;�Þ
v respectively,

can be interpreted as quasiparticles.

By the way, since we are talking about quasiparticles, it is important to point out

that, due to the correspondence principle DMðGÞjM¼1 ¼ DðGÞ, it is not di±cult to

conclude that all the DðGÞ quasiparticles are also included, in some way, in the

DMðGÞ models. However, as these two classes of lattice models are not equal when

M 6¼ 1, something di®erent must happen to these quasiparticles that were inherited

from the DðGÞ models when � is, for example, a nontrivial group action.

2.2.1. The Toric Code coupled to matter ¯elds as an example

In order to begin to understanding what is di®erent about the quasiparticles

that were inherited from the DðGÞ models, it is interesting to analyze the general

Quantum double models coupled to matter ¯elds
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properties of the cyclic Abelian D2ðZ2Þ model: i.e. it is interesting to analyze the

general properties of a lattice model that, when de¯ned by using an L2 that dis-

cretizes a two-dimensional torus, can be recognized as a Toric Code coupled to the Ising

model. And according to what was discussed above, it is not di±cult to see that the

matrix representations of the D2ðZ2Þ vertex, face and link operators are given by29

Av;J ¼ 1

2

X
g2Z2

ð�1ÞJg 	MvðgÞ
Y
‘ 02Sv

ð�x
‘ 0 Þg; ð16aÞ

Bf;L ¼ 1

2

X
g2Z2

ð�1ÞLg
Y
‘ 02Sf

ð� z
‘ 0 Þg and ð16bÞ

C‘;� ¼ 1

2

X
g2Z2

ð�1Þ�g 	M‘ðgÞ
Y
v2S‘

ð� z
vÞg ð16cÞ

respectively, where16,21

MvðgÞ ¼ ð�x
v Þg and ð17aÞ

M‘ðgÞ ¼ ð�z
‘Þg: ð17bÞ

After all, since the set fMðgÞ : g 2 Gg is composed of matrices that represent the

gauge group G and, consequently, the group action �,21 something that is no longer

di±cult to observe is, for instance, that all these operators (16) satisfy all the con-

ditions (a), (b) and (c).

By the way, another thing that is no longer di±cult to observe is that, due to the

fact that (16a) and (16b) are represented with the help of the Pauli matrices �x and

�z,38 the operators W
ðJ ;L;�Þ
‘ that produce quasiparticles in this D2ðZ2Þ model can be

represented byf

W
ðJ ;L;�Þ
‘ ¼ ð�z

‘ÞJ � ð�x
‘ ÞL or W

ðJ ;L;�Þ
‘ ¼ ð�x

‘ ÞL � ð� z
‘ÞJ : ð18Þ

That is, these operators W
ðJ ;L;�Þ
‘ have the same expression as those that produce

quasiparticles in the DðZ2Þ model and, as in this same model, these operators always

fHere, we think it is better to write this representation as (18), rather than the one

W
ð1;0;0Þ
‘ ¼ � z

‘ ; W
ð0;1;1Þ
‘ ¼ �x

‘ and W
ð1;1;1Þ
‘ ¼ �y

‘ ¼ �x
‘ � � z

‘ ¼ � z
‘ � �x

‘

we wrote in Ref. 13, because it places more emphasis on the fact that these operators need to be expressed in

terms of those that compose the D2ðZ2Þ Hamiltonian. After all, it is always good to remember that, as well

as in QFT (where Hamiltonians can be expressed in the Fock representation by using the creation a† and
annihilation a operators39), the entire DðZ2Þ energy spectrum can also be well understood from13

. the knowledge of the ground state of these models, and

. the excitations produced by the action of the operators that compose its Hamiltonian on this ground

state.

Note that write (18) is also very welcome because, when J ¼ L ¼ � ¼ 0, the operator W
ðJ;L;�Þ
‘ can be

identi¯ed as those that produces (a pair of) vacuum quasiparticles.

M. F. Araujo de Resende J. P. Ibieta Jimenez & J. Lorca Espiro
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produce pairs of quasiparticles that are detectable by the face and link operators:

scilicet,

. Av detects one quasiparticle q
ð1;0;0Þ, on each vertex that delimits the ‘th edge of L2,

after

W
ð1;0;0Þ
‘ ¼ � z

‘

acts on this edge and changes the lattice gauge ¯eld from j0i to j1i, and
. Bf indicates that

W
ð0;1;1Þ
‘ ¼ �x

‘ ;

by acting on this ‘th edge, produces one quasiparticle qð0;1;1Þ on each face that

shares this edge.

And, if we really recognize that the operators (18) are the same ones that produce the

DðZ2Þ quasiparticles, it is not di±cult to conclude, for instance, that W
ð1;1;1Þ
‘ also

produces another pair of quasiparticles because the fusion

qð1;0;0Þ � qð0;1;1Þ

results in a nonelementary quasiparticle, which is the dyon qð1;1;1Þ.

2.2.2. On the con¯nement of the D2ðZ2Þ magnetic quasiparticles

Given what we said in the previous paragraph, perhaps you, the reader, are won-

dering about the fact that, while W
ð1;0;0Þ
‘ is indexed by � ¼ 0, the operator W

ð0;1;1Þ
‘ is

indexed by � ¼ 1. After all, if these two operators actually produce the same qua-

siparticles of the DðZ2Þ model, should not the quasiparticles qð1;0;0Þ and qð0;1;1Þ be

duals of each other and, therefore, should not these two operators/quasiparticles be

indexed by the same value of �? And if you are asking this, know that this is an

excellent question, since it gives us the opportunity to answer what is di®erent about

these quasiparticles that were inherited from the DðZ2Þ model.

The simplest way to answer this is by noting that, in accordance with (14), every

pair of quasiparticles, which is produced by an operator W
ðJ ;L;�Þ
‘ where � is nonzero,

is also detectable by the operator C‘. That is to say, while a pair of quasiparticles

produced by W
ð1;0;0Þ
‘ is not detected by C‘, a pair of quasiparticles produced by

W
ð0;1;1Þ
‘ is. And from the point of view of the D2ðZ2Þ Hamiltonian, this means that, if

a pair of quasiparticles is produced by W
ð1;0;0Þ
‘ over what was once a vacuum state, it

will raise the energy of this lattice system to

Ee ¼ E0 þ 2JA;

Quantum double models coupled to matter ¯elds
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whereas the production made by W
ð0;1;1Þ
‘ over the same vacuum state will raise the

energy to

Em ¼ E0 þ 2JA þ JC :

By the way, since we touched on the subject of energy, it is important to continue

exploring this subject to explain what else is di®erent about these pairs of quasi-

particles. And as strange as this may seem at ¯rst, the main di®erence is directly

associated with the possibility of transporting these quasiparticles over L2. After

all, since qð1;0;0Þ can be interpreted as its own anti-quasiparticle (because

�x;y;z ¼ ð�x;y;zÞ�1), it is not di±cult to see that an operator

Oð°Þ ¼
Y
‘ 02°

W
ð1;0;0Þ
‘ 0

can transport it to another lattice vertex. For this, it is enough that ° is a set of

lattice edges that describes a continuous path that, as shown in Fig. 5, is delimited by

the same vertex where this qð1;0;0Þ is. However, although it is also possible to transport

a quasiparticle qð0;1;1Þ to another lattice face by using an analogous operator

Oð° �Þ ¼
Y
‘ 02° �

W
ð0;1;1Þ
‘ 0 ;

where ° � is a continuous dual path like the one shown in Fig. 6, something di®erent

happens: in the same way that the link operator (that appear in the D2ðZ2Þ
Hamiltonian) detects the action of W

ð0;1;1Þ
‘ when pairs of quasiparticles qð0;1;1Þ are

produced, this link operator also detects the action of each operator W
ð0;1;1Þ
‘ 0 that

participates in this transport process and, therefore, increases the energy of this

lattice system to

Einc ¼ Em þ ðn‘ 0 	 JCÞ: ð19Þ

Here, n‘ 0 is the number of edges or, equivalently, of operators W
ð0;1;1Þ
‘ 0 involved with

this transport. In this way, and by remembering, once again, that quantum-

computational models try/need to model some reality that can be physically

implemented, we need to ignore the fact that this transport is mathematically pos-

sible and consider that all these quasiparticles qðJ ;1;1Þ are con¯ned (i.e. that all they

\cannot" be separately transported).

2.2.3. A hadronic analogy

In order to understand why we need to consider that all these quasiparticles qðJ ;1;1Þ

are con¯ned, it is crucial to note that, if the motion of any (quasi)particle increases/

decreases the energy of a physical system to which it belongs, this prevents us from

¯nding out the statistics of this (quasi)particle by changing its spatial position.40

Note that this is not the case for the quasiparticle qð1;0;0Þ that, as in the DðZ2Þ model,
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can be recognized as a boson.14,23 But although this increase (19) prevents us from

¯nding out the statistics of qð0;1;1Þ by changing its spatial position, we need to make

an important observation here: after all, and as suggested in Fig. 7, if, instead of

transporting just one of these quasiparticles, we transport the two quasiparticles of a

pair produced by W
ð0;1;1Þ
‘ together, this new transport will be done without any

increase in the energy of this lattice system. And this is an important observation

because it legitimizes the interpretation that these quasiparticles qð0;1;1Þ are con¯ned
in this D2ðZ2Þ model.

In view of the legitimacy of this con¯nement interpretation, it is interesting to

point out that this con¯nement of quasiparticles is, in some way, analogous to the

phenomenon of quark con¯nement.41 After all, although it is not impossible to move

one quark away from another/others inside a hadron, it is well known that, as this

quark moves away from another/others, the potential energy of this hadronic system

Fig. 4. Piece of the same lattice region of L2 at two di®erent times, where we see a pair of quasiparticles

qð1;0;0Þ and q ð1;0;0Þ� (red outlined and purposely indexed with the \þ" and \�" symbols, respectively) of the

D2ðZ2Þ model. In the ¯rst instant t1 (above) we see these quasiparticles at the positions where they were

produced due to the action of W
ð1;0;0Þ
‘ : i.e. on the two vertices that delimit the ‘th lattice edge (highlighted

in black color) on which W
ð1;0;0Þ
‘ acts. In the second instant t2 > t1 (below) we have these same quasi-

particles, but after one of them has been transported to one of the vertices that delimit the ‘ 0th lattice edge

(which is also highlighted in black color). After all, as these quasiparticles are their own anti-quasiparticles,

the action of a new operatorW
ð1;0;0Þ
‘ 0 produces two new ones and, therefore, leads to a fusion q

ð1;0;0Þ
þ � q ð1;0;0Þ�

at the vertex (highlighted in white color) that delimits these two lattice edges.

Quantum double models coupled to matter ¯elds
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increases until the moment that Nature produces an additional meson (i.e. a hadron

usually composed of a quark–antiquark pair) in order to conserve the energy of the

system.25 ;g Thus, by noting that

. the potential energy between a quark and an antiquark in a meson increases lin-

early with the distance between them,43 and

. the action of W
ðJ ;L;�Þ
‘ produces one pair, which is composed of one quasiparticle

q
ðJ ;L;�Þ
þ and its anti-quasiparticle q ðJ ;L;�Þ� , where before it was a vacuum,

this analogy seems to endorse the con¯nement of quasiparticles mentioned above

because the energy (19), which is associated with a pair of quasiparticles q
ð0;1;1Þ
þ and

q ð0;1;1Þ� , also increases linearly with the distance between them.

Given all these facts, it seems to make a lot of sense to say that, from the per-

spective of elementary particle physics, the action of W
ðJ ;1;1Þ
‘ produces a kind of

prototype of a meson. And this perspective becomes even more interesting when we

notice, for instance, that the most general DðGÞ quasiparticles are interpreted as

anyons: i.e. they are not necessarily interpreted as bosons or fermions. After all, as the

concept of anyon arose from the advent of the Aharonov–Bohm E®ect44 (because it is

possible to realize such anyonic statistics for systems where one electric particle

rotates around one punctual magnetic ¯eld on a 2D surface45), the DðGÞ

Fig. 5. Here, we see a transport of quasiparticles that is a little more general than the one shown in Fig. 4,

but that illustrates how the action of an operator Oð°Þ works. After all, since an operator W
ð1;0;0Þ
‘ 0 can be

used to transport a quasiparticle to a neighboring vertex, the operator Oð°Þ makes use of this possibility to
transport this same quasiparticle to more distant vertices. And a good way to understand this is to realize

that the path ° (which is highlighted in black color) is composed of edges that are neighbors two by two

because, as W
ð1;0;0Þ
‘ 0 produces two quasiparticles by acting on an edge,

Q
‘ 02°W

ð1;0;0Þ
‘ 0 leads to a fusion

q
ð1;0;0Þ
þ � q ð1;0;0Þ� at all vertices that are shared by two edges in ° [ f‘g. Thus, if we consider the same initial

situation as in Fig. 5, where two quasiparticles were produced by W
ð1;0;0Þ
‘ , all these fusions cause one of

these quasiparticles to be transported to the vertex that delimits only ° and not the ‘th lattice edge.

g In plain English, Nature prefers to convert this energy increase into mass–energy of a new quark–

antiquark pair and this is exactly what, for example, justi¯es the appearance of the jets (i.e. spray of new

hadrons) in the various experiments involving the collision of high-energy hadrons.42
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quasiparticles which are detectable in the vertices were baptized as type e (electric),

while those that are detectable in the faces ended up being denoted as type m

(magnetic).13 In other words, we are facing a scenario that, due to the same corre-

spondence principle mentioned in Sec. 2.1.3, allows us to recognize qðJ ;0;0Þ and qð0;L;�Þ

as electric and magnetic quasiparticles, respectively. And, in plain English, this is

exactly what seems to reinforce that W
ðJ ;1;1Þ
‘ actually produces a kind of prototype of

a meson in the D2ðZ2Þ model since, for instance, there are several works that explore

the hypothesis that quarks are magnetically con¯ned.46–53

2.2.4. Is there any DMðZNÞ model whose ground state degeneracy depends

on �1ðM2Þ?
Although we have just discussed this con¯nement of quasiparticles only in the con-

text of theD2ðZ2Þmodel, it is important to understand how this con¯nement appears

Fig. 6. Piece of the same lattice region of L2 at two di®erent times in theD2ðZ2Þmodel. In the ¯rst instant

t1 (above) we have a pair of quasiparticles q
ð0;1;1Þ
þ and q ð0;1;1Þ� (blue outlined and purposely indexed with the

\þ" and \�" symbols, respectively), which were produced by the action of a single operatorW
ð0;1;1Þ
‘ . Here,

the single orange dot corresponds to the unique vacuum violation that is detected by C‘;0. In the second

instant t2 > t1, we have these same quasiparticles, but after one of them has been transported away from

the other due to the action of W
ð0;1;1Þ
‘ 0 . This operator acts on all the edges that intersect the dual path ° �

1

(highlighted in dashed black). Observe that, in this latter case, we have new (three) orange dots: one for

each edge involved in this transport, making clear the linearity that is related to the growth of the system

energy in this transport.
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in more general DMðZNÞ models (i.e. in the DMðZNÞ models where M or/and N is/

are greater than 2). And the best way to understand this is by noting that, unlike

what happens with the DðZNÞ models, the DMðZNÞ ground state degeneracy does

not necessarily depend on the order of �1ðM2Þ.
Note that the D2ðZ2Þ model is a good example of this fact because, when

O1ð�° �Þ ¼
Y
‘ 02�° �

W
ð0;1;1Þ
‘ 0 ð20Þ

acts on a set �° � of edges that intersect any closed dual path, it always leads to a

nonvacuum state and, therefore, the D2ðZ2Þ ground state is independent of the order

of �1ðM2Þ. However, when we analyze the Toric Code coupled to matter ¯elds with

M > 2, we may ¯nd a situation that is somewhat di®erent. This is what happens, for

instance, with the D3ðZ2Þ model, whose vertex operators can always be represented as

Av;J ¼ 1

2

X
g2Z2

ð�1ÞJg 	MvðgÞ
Y
‘ 02Sv

ð�x
‘ 0 Þg;

Fig. 7. In this ¯gure, we present again (above) the same situation presented in Fig. 6, which depicts the

linear increase in the energy of this lattice system when we transport one of the quasiparticles qð0;1;1Þ away

from another. And we present this same situation again because, as W
ð0;1;1Þ
‘ �W ð0;1;1Þ

‘ ¼ ‘, it is not

di±cult to see that, if an operator
Q

‘ 02° �
2
W

ð0;1;1Þ
‘ 0 acts on the path ° �

2 (which is highlighted in dashed black),

it will erase the energy track produced by the transport of Fig. 6. Therefore, as the ¯nal result of this action
leads us to the same initial con¯guration as in Fig. 6, it is not wrong to say that, when we transport two of

these quasiparticles together, this energy of this lattice system is preserved.

M. F. Araujo de Resende J. P. Ibieta Jimenez & J. Lorca Espiro

2350018-20

In
t. 

J.
 Q

ua
nt

um
 I

nf
or

m
. 2

02
3.

21
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

E
 D

E
 S

A
O

 P
A

U
L

O
 o

n 
06

/0
6/

23
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



where16,21

Mvð0Þ ¼
0

0T 1

� �
and Mvð1Þ ¼

�x 0

0T 1

� �
; ð21Þ

and where is an identity matrix and 0 is a zero column matrix. After all, by noting

that the set

Fix� ¼ fj�iv 2 HM : MvðgÞj�iv ¼ j�iv for all g 2 Z3g ð22Þ
of points of HM that are ¯xed by the group action � is nonempty, this allows to

conclude that the D3ðZ2Þ ground state degeneracy is dependent of the order of

�1ðM2Þ. And in order to understand this conclusion, the ¯rst thing we need to do here

is to note that, as

. all the DMðZ2Þ face operators are represented by (16b), and

. all the DMðZ2Þ link operators cannot perform any permutation between the gauge

or matter ¯elds,

the matrices in (21) allow us to recognize that this D3ðZ2Þ model has, at least, two

vacuum statesh

j� ð0Þ0 i ¼
Y
v 0

Av 0
O
‘2L2

jei
 !

�
O
v2L2

j0i
 !

and ð23aÞ

j� ð2Þ0 i ¼
Y
v 0

Av 0
O
‘2L2

jei
 !

�
O
v2L2

j2i
 !

ð23bÞ

because there is no transformation, which can be expressed as a product of the

operators Av, Bf and C‘, that can connect these two vacuum states. And once all the

DMðGÞ models reduce to the DðGÞ models when M ¼ 1, the second thing we need to

do here is to note that the same operators (18) produce (pairs of) quasiparticles in

this D3ðZ2Þ model. By the way, since we touched on the subject of the quasiparticle

production, it is also important to note that the operators

W ðg;0Þ
v ¼ MvðgÞ ð24Þ

also need to be listed among those are able to produce (matter) excitations in this

model because, among other things, they de¯ne the D3ðZ2Þ Hamiltonian.i However,

despite the action of these operators (24) on the vacuum state (23a) being identical to

that of the operators (17a) on the unique D2ðZ2Þ vacuum state (9), there is a

\problem" here: after all, as (21) permutes j0iv $ j1iv but ¯xes j2iv, these operators
(24) are completely unable to produce any (matter) excitation on the vacuum state

(23b). That is, the only operators that compose the D3ðZ2Þ Hamiltonian and,

therefore, can excite this vacuum state (23b) are the operators (18).

hNote that (23a) is just a more streamlined way of writing the same vacuum state (9).
iThis comment is in full agreement with the one we already made in the footnote in p. 15.

Quantum double models coupled to matter ¯elds

2350018-21

In
t. 

J.
 Q

ua
nt

um
 I

nf
or

m
. 2

02
3.

21
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

E
 D

E
 S

A
O

 P
A

U
L

O
 o

n 
06

/0
6/

23
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



Nevertheless, it is precisely this \problem" that, for instance, allows us to make

some important observations, and the ¯rst one concerns the relationship between the

D3ðZ2Þ ground state degeneracy and the cardinality of (22). After all, as

. jFix�j ¼ 1 because (21) ¯xes only j2iv, and

. the ¯xation MvðgÞj2iv ¼ j2iv makes the D3ðZ2Þ vertex operator C‘;0 unable to

detect any energy excitation produced by W
ðJ ;1;1Þ
‘ on the vacuum state (23b),

it becomes clear that all the quasiparticles produced by W
ð0;1;1Þ
‘ on this vacuum state

(23b) are not con¯ned. Thus, by

. noting that the action of (20) on the vacuum state (23b) does not lead to an excited

state, and

. considering that

fC�
1; C�

2; . . . ; C�
s�1; C�

sg
is a nonempty set that contains all the noncontractile curves that generate

�1ðM2Þ,
we conclude that all the vacuum states

j� ð2;¸Þ0 i ¼
Ys
p¼1

½O1ð�° �
pÞ��p j� ð2Þ0 i;

where ¸ ¼ ð�1; �2; . . . ; �s�1; �sÞ 6¼ ð0; 0; . . . ; 0; 0Þ, are topologically independent of

each other and, by de¯nition, with respect to the vacuum states (23).13j Here,

. �p ¼ 0; 1, and

. �° �
p is a closed dual path (similar to what appears, in dashed black, in Fig. 6) that

should be interpreted as the discretization of C�
p.

But although we have used the D3ðZ2Þ model to show that there is a DMðZNÞ
model whose ground state degeneracy depends on �1ðM2Þ, it is not di±cult to show

that this also happens with many otherDMðZNÞmodels. And in order to show this, it

is enough to analyze all the DMðZNÞ models where

Fix� ¼ fj�iv 2 HM : MvðgÞj�iv ¼ j�iv for all g 2 ZNg ð25Þ
is a nonempty set. After all, as these models have jFix�j vacuum states

j� ð�Þ0 i ¼
Y
v 0

Av 0
O
‘2L2

jei
 !

�
O
v2L2

j�i
 !

ð26Þ

jThis condition ¸ 6¼ 0 is of paramount importance because, when ¸ ¼ 0, the vacuum state j� ð2;¸Þ0 i is

reduced to (23b).
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whose matter ¯elds cannot be manipulated by using

W ðg;0Þ
v ¼ MvðgÞ;

all the operators

OLð�° �Þ ¼
Y

‘ 02� �
Ó

W
ð0;L;0Þ
‘ 0

Y
‘ 02� �

Ò

ðW ð0;L;0Þ
‘ 0 Þ†; ð27Þ

are completely unable to excite these jFix�j vacuum statesk by acting on a non-

contractile closed dual path �° � that crosses all the edges of a set ��
�
Ó [ ��

�
Ò. Here, ��

�
Ó

and ��
�
Ò are two subsets, whose edges have some counterclockwise and clockwise

orientations, respectively, as shown in Fig. 8.

In other words, all the DMðZNÞ models where jFix�j 6¼ 0 have a set of vacuum

states

j� ð�;¸;LÞ0 i ¼
Ys
p¼1

½OLp
ð�° �

pÞ��p j� ð�Þ0 i

that is degenerate as a function of �1ðM2Þ, where
L ¼ ðL1;L2; . . . ;Ls�1;LsÞ and

¸ ¼ ð�1; �2; . . . ; �s�1; �sÞ 6¼ ð0; 0; . . . ; 0; 0Þ;
with �p ¼ 0; 1.

2.2.5. Another interesting analogy

By continuing to take advantage of this scenario, where each of the vacuum states

(26) is de¯ned by ¯lling all the lattice vertices with the same matter ¯eld j�i, it is
interesting to analyze the di®erences between the DMðZNÞ models that have a trivial

group action � from those that do not. And something that is not di±cult to see is

that, when �

. is a trivial group action, all the DMðZNÞ vacuum states

j� ð�Þ0 i ¼
Y
v 0

Av 0
O
‘2L2

jei
 !

�
O
v2L2

j�i
 !

; ð28Þ

are independent of each other because, from the algebraic point of view, � de¯nes

M orbits containing only one element (i.e. 1-cycles),29 and

. is a nontrivial group action, some of these vacuum states (28) (or perhaps all of

them) can be connected by using some transformation, which can be expressed as a

kNote that, in the case of the DM ðZ2Þ models, these operators (27) reduce to

O1ð�° �Þ ¼
Y
‘ 02�° �

W
ð0;1;0Þ
‘ 0

because ðW ð0;1;0Þ
‘ 0 Þ† ¼ W

ð0;1;0Þ
‘ 0 ¼ �x

‘ 0 . That is, if we ignore the fact that �° � is a noncontractile closed dual

path, it is quite remarkable that this result \coincides" with (20).

Quantum double models coupled to matter ¯elds
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Fig. 8. Here, we see a piece of the same lattice region, at two di®erent times, to explain the meaning of the

edge subsets ��
Ó and ��

Ò. In the ¯rst instant t1 (above) we see a pair of magnetic quasiparticles, which was

produced around the ‘th oriented edge. Observe the presence of a light blue arrow, which points from the

quasiparticle \�" to \þ": this arrow and the ‘th edge de¯ne an ordered basis, whose orientation isÓ. In the
second instant t2 > t1 (below) we see these same quasiparticles, but after one of them has been transported

away from the other along a dual path ° � (highlighted in dashed light black). Observe again the presence of

arrows in this ¯gure: in the case of the light blue arrows, they refer to the same basis \Ó"; now, in the case

of the light red arrows, each of them de¯nes, with the lattice edges that they intersect, another basis that

has an inverse orientationÒ. Alongside these two observations, it is also important to note that, asW
ð0;L;�Þ
‘ 0

always produce pairs of \quasiparticle" and \anti-quasiparticle" in the DM ðZN Þ models, they are also
mathematically capable of transporting all these quasiparticles as long as they are used in a clever way.

This clever way is by using OLð° �Þ ¼Q‘ 02� �
Ó
W

ð0;L;0Þ
‘ 0

Q
‘ 02� �

Ò
ðW ð0;L;0Þ

‘ 0 Þ† as long as the edge subsets ��
Ó and

��
Ò contain only the edges that de¯ne \Ó" and \Ò", respectively.
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product of the operators Av, Bf and C‘ because � de¯nes some orbit(s) containing

more than one element (i.e. k-cycles where k > 1).

As a consequence of this, we can assert that, when �

. is a trivial group action, the DMðZNÞ ground state is n-fold degenerated, where

n ¼ jFix�j 	 dDðZN Þ ð29Þ
is the product between the cardinality of (25) (which, in this case, is equal to M)

and the number dDðZN Þ of vacuum states in the DðZNÞ ground state, and

. is a nontrivial group action, the n-fold degeneracy of the DMðZNÞ ground state is

characterized by

n ¼ norb þ jFix�j 	 dDðZN Þ ð30Þ
because � can also de¯ne norb orbits containing more than one element.

Of course, and for the sake of completeness, it is worth remarking that the de-

generacy degrees of the more general DMðGÞ ground states, where G is not neces-

sarily an Abelian group, can be calculated as

n ¼ Tr
Y
v2L2

Av

Y
f2L2

Bf

Y
‘2L2

C‘

 !
: ð31Þ

That is, all those degeneracy degrees, which were mentioned in the previous para-

graph, can also be obtained through (31). By the way, and also for the sake of

completeness, it is also important to point out that, although we have only paid

attention to these di®erentDMðZNÞ vacuum states, which can be de¯ned by ¯lling all

the vertices of L2 with the same matter ¯eld, it is not di±cult to conclude that this

may also happen with other DMðGÞ models where G is not necessarily an Abelian

group. And in accordance with what was discussed in the previous section, the key

condition for this to occur is that

Fix� ¼ fj�iv 2 HM : MvðgÞj�iv ¼ j�iv for all g 2 Gg
is a nonempty set.

But while this allows us to infer that the ground state degeneracy of these DMðGÞ
models also depends, in some way, on the second group of homology H2ðM2Þ,54 ;l this
also allows us to see something that appears to be a little more relevant. After all, and

regardless of whether G is an Abelian group or not, all these DMðGÞ vacuum states,

which are de¯ned by ¯lling all the vertices of L2 with the same matter ¯eld, are quite

lThere is a connection (between the ground state degeneracy of the DM ðGÞ models and the homology

group H2ðM2Þ) that can be perfectly exploited by using, for instance, a mathematical induction on what
was presented in Ref. 13. Nevertheless, as the pedagogical discussion of this connection deserves a paper

dedicated only to this (even because writing it here would make the this paper even longer than it already

is), we will postpone this for now.
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similar to the one that was proposed by Dirac in 1929,55 who claimed that the

vacuum could be interpreted as an in¯nite \sea" of particles. And this seems to be

more relevant because this similarity is also observed, for instance, in the Abelian

HM=CðZNÞmodels that were discussed in Ref. 23, which can be interpreted as special

cases of the DMðGÞ models where JB ¼ 0.

In order to understand this similarity, it is crucial to keep in mind that we can only

go from one vacuum state j� ð� 0Þ
0 i to another j� ð� 00Þ

0 i if we are able to make exchanges

j� 0iv ! j� 00iv over all the lattice vertices. And this is a task that needs to be done

with the help of some operator W
ðJ ;�Þ
v that, by performing this exchange on the vth

lattice vertex, produces a quasiparticle QðJ ;�Þ there. Note that this is precisely the

situation of the operator

W ð1;0Þ
v ¼ �x 0

0T 1

� �
that, being one of the operators that de¯ne the D3ðZ2Þ Hamiltonian, manages to

excite, for instance, the vacuum state (23a) of the D3ðZ2Þ model. In this fashion, by

remembering that

. W
ð1;0Þ
v is the same operator Mvð1Þ that de¯nes the component A

ð1Þ
v of the D3ðZ2Þ

vertex operators, and

. this A
ð1Þ
v performs lattice gauge transformations that are incapable of changing any

state of the D3ðZ2Þ model,

it is not di±cult to conclude that, despite the action of W
ð1;0Þ
v on a single lattice vertex

produces a quasiparticle Qð1;0Þ, the action of this same operator on all the vertices at

once keeps this lattice system in the same vacuum state (23a) because, for instance,Y
v2L2

W ð1;0Þ
v ¼

Y
v2L2

A ð1Þ
v :

In other words, if we analyze this D3ðZ2Þ model by taking its vacuum state (23a), we

see that there is no di®erence between thinking this quasiparticle Qð1;0Þ (which has a

fusion rule that identi¯es it as its own anti-quasiparticle) as23

. something real, in a situation where W
ð1;0Þ
v acts on the vth vertex of a lattice that

has all its vertices previously coated by vacuum quasiparticles Qð0;0Þ, or

. a hole, in a situation where this same W
ð1;0Þ
v acts on the vth vertex of a lattice

previously ¯lled by quasiparticles Qð1;0Þ.

2.2.6. Why can QðJ ;�Þ be interpreted as quasiparticles?

Of course, even though W
ð1;0Þ
v is such that W

ð1;0Þ
v �W ð1;0Þ

v ¼ v, the fact that it does

not produce Qð1;0Þ in pairs may be making you, the reader, question whether Qð1;0Þ

M. F. Araujo de Resende J. P. Ibieta Jimenez & J. Lorca Espiro
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can actually be interpreted as a quasiparticle or not. After all, since these matter

excitations are not produced in pairs of \particle" and \antiparticle", it is not pos-

sible to transport them over L2 analogous to what happens, for instance, with the

DðGÞ quasiparticles (except by a \teleport" operator

W
ð1;0Þ
v 00 �W ð1;0Þ

v 0

that transports it from one vertex v 0 to another v 00 completely arbitrary).23

Yet, despite this impossibility of transporting Qð1;0Þ, it is interesting to note that,

in addition to the fact that there is nothing preventing this D3ðZ2Þ model from

serving as a guide for the construction of other lattice model(s) that can support this

transport, Qð1;0Þ seems to have some electrical properties. And what allows us to have

this perception about Qð1;0Þ is that, in addition to it fuses (or, at least, overlaps) with

all the electric quasiparticles inherited from the DðZ2Þ model at the same lattice

vertex, it also presents a kind of electrostatic interaction with another, which have

the same °avor (i.e. which have the same ð1; 0Þ index), when � is a nontrivial group

action. After all, when we have only two quasiparticles Qð1;0Þ on two vertices v 0 and
v 00 of L2, the energy of this system is equal to23

. E0 þ 6JC , when v 0 and v 00 are neighbors, and

. E0 þ 8JC , otherwise.

In view of all that we have just said, it is impossible not to recognize that, despite this

impossibility of transporting Qð1;0Þ actually prevents us from ¯nding out its statistics

by changing its spatial position, it is quite sensible to consider it as a quasiparticle.

And since this electrostatic behavior also shows up in the matter excitations that are

produced in the DMðGÞ models whose group actions are not trivial, it also becomes

sensible to consider QðJ ;�Þ as quasiparticles.

2.2.7. On the presence of non-Abelian fusion rules in the Abelian DMðZNÞ models

Note that this clari¯cation, which we have just made about the interpretation of

QðJ ;�Þ as quasiparticles, further reinforces the similarity between all the DMðZNÞ
vacuum states, which are de¯ned by ¯lling all the vertices with the same matter ¯eld

(i.e. with the same matter excitation), and Dirac \seas". But, as we have also said

that all the DMðZNÞ quasiparticles are produced by the same operators that make up

the DMðZNÞ Hamiltonian, this requires us to answer the following question: given

that all these vacuum states can be interpreted as di®erent phases that coexist in the

same energy regime, how is it possible to perform transitions between/among all

these phases since, when jFix�j 6¼ 0, all the operators W
ðJ ;�Þ
v that can be identi¯ed in

the DMðZNÞ Hamiltonian cannot excite jFix�j of these vacuum states?

In order for us to understand the answer to this question, it is pedagogical

to continue using the D3ðZ2Þ model as an example, since it is such that jFix�j ¼ 1.

Quantum double models coupled to matter ¯elds
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By the way, in order for us to really understand the answer to this question by using

the D3ðZ2Þ model, it is crucial to note that the relations (15) indicate that the matrix

representations of W
ðJ ;KÞ
v in this model need to be, at least, such that

W ðJ ;0Þ
v ¼

aJ0 bJ0 cJ0
bJ0 aJ0 cJ0
dJ0 dJ0 rJ0

0@ 1A and W ðJ ;1Þ
v ¼

aJ1 bJ1 cJ1
�bJ1 �aJ1 �cJ1
dJ1 �dJ1 0

0@ 1A;

whose entries must be interpreted as complex numbers. Nonetheless, according to

what Ref. 23 tells us about the H3=CðZ2Þ model, the only operator that manages

to produce a quasiparticle that fosters transitions between the vacuum states (23a)

and (23b) is

W ð2;0Þ
v ¼

0 0 1

0 0 1

1 1 a

0@ 1A: ð32Þ

After all, by noting that a is a complex number, the fact thatm

W ð2;0Þ
v j0iv ¼ W ð2;0Þ

v j1iv ¼ j2iv and W ð2;0Þ
v j2iv ¼ j0iv þ j1iv þ a 	 j2iv

makes it clear that, by considering that the vacuum states (23a) and (23b) corre-

spond to two phases that can coexist in the same energy regime, it is possible to go

from one phase to another, and vice versa, through

. an exchange W
ð2;0Þ
v j0iv ¼ j2iv on all the lattice vertices for a transition from (23a)

to (23b), or

. exchanges, which can be carried out by using (several) combinations of the

operators W
ð1;0Þ
v and W

ð2;0Þ
v that act on all the vertices of L2, for a transition from

(23b) to (23a).

In this fashion, by taking into account that the mission of W
ð2;0Þ
v is to produce a

quasiparticle Qð2;0Þ, this allows us to recognize, for instance, that (23b) is also similar

to a Dirac \sea". And what is special about this operator W
ð2;0Þ
v ? What is special

about it is that, as the composition

W ð2;0Þ
v �W ð2;0Þ

v ¼
1 1 a

1 1 a

a a 2þ a2

0@ 1A ¼ 1 0 0
0 1 0
0 0 1

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

W
ð0;0Þ
v

þ 0 1 0
1 0 0
0 0 1

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

W
ð1;0Þ
v

þa
0 0 1
0 0 1
1 1 a

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

W
ð2;0Þ
v

mHere, we are considering the same single-qudit computational basis states of Ref. 23, where the vector

(ket) jni, with n being a natural number, can be represented by a column matrix whose nth row contains

the number 1 while the others are ¯lled with the number 0.
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is associated with the fusion rule between two excitations Qð2;0Þ, it is clear that the
D3ðZ2Þ model can support non-Abelian fusion rules.14,23 That is, the transition from

(23b) to (23a) is performed by an operator

F ¼
Y
v2L2

W ð2;0Þ
v

that is composed of those that, by acting on each lattice vertex, produce a quasi-

particle that presents a non-Abelian fusion rule

Qð2;0Þ �Qð2;0Þ ¼ Qð0;0Þ þQð1;0Þ þ a 	Qð2;0Þ

with itself.

Note that, although this operator (32) is not included in the D3ðZ2Þ Hamiltonian,

its presence is legitimized, for instance, by Ref. 16. After all, although its authors

have not discussed the need to make transitions among the ¯ve vacuum states

j� ð0Þ0 i ¼
Y
v 0
Av 0

O
‘2L2

jei
 !

�
O
v2L2

j0i
 !

and

j� ð2Þ0 i ¼
Ys
p¼1

½OLp
ð�° �

pÞ��p
Y
v 0

Av 0
O
‘2L2

jei
 !

�
O
v2L2

j2i
 ! ð33Þ

that de¯ne the D3ðZ2Þ ground state (because there are four

¸ ¼ ð0; 0Þ; ¸ ¼ ð0; 1Þ; ¸ ¼ ð1; 0Þ and ¸ ¼ ð1; 1Þ
that de¯ne four vacuum states (33) that are topologically independent of each other),

it observes that these ¯ve vacuum states can be rewritten by using another Hilbert

basis, which allows us to recognize, for instance, that all the lattice vertices have the

same matter ¯eld j0i þ j1i þ a 	 j2i with a ¼ 1. And according to what was said in

p. 25, this ¯ve-fold degeneracy of theD3ðZ2Þ ground state is consistent with the result

(30), since

norb ¼ 1; jFix�j ¼ 1 and dDðZN Þ ¼ 4:

2.2.8. And what do phase transitions tell us about the qðJ ;L;�Þ quasiparticles?

For the sake of completeness, it is important to point out that, although we have used

the D3ðZ2Þ model as an example to show that the presence of these quasiparticles,

which exhibit non-Abelian fusion rules, support phase transitions in the lowest en-

ergy state, it is not di±cult to prove that this presence is also needed to support

these phase transitions when jFix�j 
 1. Incidentally, another thing that we can also

prove is that, by exploring a di®erent point of view, which involves recognizing that

L2 is an example of connected graph,56,57 it is possible to interpret some DMðZNÞ
vacuum states as symmetry-protected topological (SPT) phases and, consequently,

thetransitions among them as some global symmetry breaking. But, since all these

Quantum double models coupled to matter ¯elds
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HM=CðZNÞ models can be interpreted special cases of the DMðGÞ ones, we will not
go into the details of all these proofs here because they can be found, for instance,

in Ref. 23.

Anyway, as we are talking about these phase transitions, it is important to take

the opportunity to explain, for instance, what they tell us about the qðJ ;L;�Þ quasi-
particles. After all, despite these quasiparticles having been inherited from the DðGÞ
models, it is quite clear that, in the nontrivial DMðGÞ models (i.e. in the DMðGÞ
models that are de¯ned by using a nontrivial group action), these quasiparticles

acquire two new properties:

. they can fuse with the QðJ ;�Þ quasiparticles that are produced by manipulating the

matter qudits, and

. at least part of the magnetic quasiparticles can be con¯ned, similarly to what

happens to the quarks that are con¯ned in mesons.

Thus, given these two new properties, a question that naturally arises is: do these two

new properties make these qðJ ;L;�Þ quasiparticles very di®erent from those in the

DðGÞ models? And the answer to this question is not for a very simple reason:

correspondence principle.

In order to understand how the correspondence principle explain this answer, it is

necessary to remember that, in the same way that we can de¯ne these \trivial"

DMðGÞ models, we can also de¯ne the \trivial" DMðGÞ ones (i.e. we can also de¯ne

the DMðGÞ models by using a trivial group action). And despite these \trivial"

DMðGÞ models not being very funny because the DðGÞ and Ising models that de¯ne

them are decoupled, it is precisely this decoupling that, for instance, causes all their

magnetic quasiparticles to become uncon¯ned. Of course, one of the consequences of

this lack of con¯nement is the fact that we can evaluate the spin-statistics of all

these quasiparticles. But since the DðGÞ and Ising models that de¯ne the \trivial"

DMðGÞ models are decoupled, fortunately we do not need to worry about doing

this evaluation: after all, as this decoupling also implies that all the qðJ ;L;�Þ quasi-
particles of these \trivial" DMðGÞ models are unable to interact with all the

QðJ ;�Þ quasiparticles, they just have the same properties inherited from the DðGÞ
models. In other words, all the qðJ ;L;�Þ quasiparticles of these \trivial" DMðGÞ
models are exactly the same quasiparticles of the DðGÞ ones. In this fashion, by

noting that

. the group action � de¯nes how the gauge qudits change the values of the matter

qudits, not the other way around,

. all the qðJ ;L;�Þ quasiparticles in the DMðGÞ models are produced by the same

operators that produce all the quasiparticles in the DðGÞ models, and

. the correspondence principle already requires that the DðGÞ vertex operators

be interpreted as theDMðGÞ vertex operators that are \blind" to the matter qudits,
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it is correct to extend what we said at the end of the last paragraph to the qðJ ;L;�Þ

quasiparticles of all the DMðGÞ models, whether they are \trivial" or not. After all,

since all the vacuum states

j� ð�;¸Þ0 i ¼
Ys
p¼1

½O1ð�° �
pÞ��p

Y
v 0

Av 0
O
‘2L2

jei
 !

�
O
v2L2

j�i
 !

;

where MvðgÞj�iv ¼ j�iv, are mere replicas of the DðGÞ vacuum states, this shows that,

just as the DðGÞ models need to be recovered as a special case of the DMðGÞ ones by
takingM ¼ 1, the correspondence principle also requires that this happens whenM > 2.

3. A Dualization Procedure on the DM(G) Models

Given that the general properties of theDMðGÞmodels are now quite clear, it is really

time for us to turn over a new leaf to (¯nally!) pay attention to the construction of a

new class of lattice gauge models (DKðGÞ) that are dual to theDMðGÞ ones. After all,

in addition to being valid to say that these new DKðGÞ models can give us some clue

as to how it might be possible to get a lattice model that is self-dual, it is also valid to

say that the DMðGÞ models previously discussed give us a tremendous advantage in

this dual context. And by considering, for instance, the content of Fig. 9, which

illustrates the existence of a dual lattice L�
2 (i.e. a lattice whose vertices/faces are the

faces/vertices of L2), it becomes clear that one of the aspects of this tremendous

advantage is in the fact that this geometric duality can be used as a ¯rst guide to

de¯ne the DKðGÞ models as the algebraic duals of the DMðGÞ ones.
In order to begin to show how this geometric duality can be used as this ¯rst guide,

it is important to remember that the self-duality of the DðGÞ models is not only

characterized by the fact that, for each quasiparticle detected by the vertex operator

Av, there is always another one, with the same properties, that is detected by the face

operator Bf , and vice versa: this self-duality of the can also be characterized by the

fact that theseDðGÞ vertex and face operators can be interpreted as the duals of each

other. In other words, although it is already clear that Av and Bf e®ectively act on

the edges that de¯ne the vertices and faces of L2, respectively, it is not di±cult to see,

from this geometric dual point of view of Fig. 9, that these same operators also e®ec-

tively act on the edges that de¯ne the faces and vertices of L�
2, respectively. And this

is an important reminder because, as with the DMðGÞ models previously analyzed,

there must be a (mathematical) correspondence between the DðGÞ and DKðGÞ models

so that the ¯rst ones (i.e. the DðGÞ models) can be recovered as special cases of the

second ones (i.e. the DKðGÞ models). In this sense, and by bearing in mind all the dual

issues that have already been observed with the aid of Fig. 9, it is not di±cult to

conclude that, if these DKðGÞ models really exist, their Hamiltonian operators must be

expressed as

HDKðGÞ ¼ �J 0
A

X
v2L2

A 0
v � J 0

B

X
f2L2

B 0
f � J 0

C

X
‘2L2

C 0
‘: ð34Þ
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Here, J 0
A, J 0

B and J 0
C are three positive parameters; andA 0

v,B
0
f and C 0

‘ are the \new"

vertex, face and link operators, respectively, whose de¯nitions and properties will be

discussed from now on.

3.1. Some considerations about the vertex, face and edge operators

Because these newDKðGÞmodels also need to be interpreted as generalizations of the

DðGÞ models, an obvious fact that we have to keep in mind is that all these operators

A 0
v, B

0
f and C 0

‘ also need to act on the same Hilbert (sub)space

HjGj � . . .� HjGj|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
N‘ times

that was already associated with L2 in the DðGÞ and DMðGÞ models. And given that

the obviousness of this fact lies in our desire to recognize the DMðGÞ and DKðGÞ
models as duals of each other, it is worth noting that, because the sectors Sv and Sf

Fig. 9. Piece of the same oriented square lattice L2 that supports the DM ðGÞ models, where the presence

of its dual lattice L�
2 is now being highlighted by using dotted lines. Observe that, as in Fig. 2, here we are

also highlighting the same the rose (Sv) and baby blue (Sf) colored sectors, which are centered in the vth

vertex and fth face of L2, respectively. Nevertheless, contrary to what happens in Fig. 2, which shows an

orange sector (S‘) composed of an edge and the two vertices that limit it, here we see a new green sector

(S 0
‘) that, despite being centered on an ‘th edge, does not contain the two vertices that limit this edge. But

while these sectors S‘ and S 0
‘ are di®erent from the point of view of L2, it is important to observe that, when

we look at S 0
‘ from the perspective of L�

2, it is equivalent to what S‘ is from the perspective of L2: i.e. when

we look at L�
2, it is quite clear that S

0
‘ is geometrically dual to S‘, and vice versa, because S 0

‘ is composed of

a dual edge and the two dual vertices that limit it. In this way, as L�
2 also shows us that Sv is geometrically

dual to Sf , and vice versa, it becomes clear that, for the DKðGÞ models to be interpreted as duals to the

DM ðGÞ ones, it is necessary that the DKðGÞ Hamiltonian be analogous to (1), but with its vertex, face and

link operators acting on Sv, Sf and S 0
‘, respectively.
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are duals of each other, the DKðGÞ vertex operators need to be exactly the same as

the DðGÞ models. That is, since

. the face operators of the DðGÞ and DMðGÞ models are the same, and

. the DKðGÞ vertex operators need to be dual to the DMðGÞ face operators,

these DKðGÞ vertex operators need to be de¯ned as

A 0
v;J ¼ 1

jGj
X
g2G

�1þJðg�1Þ 	 A ðgÞ
v ; ð35Þ

whose components A
ðgÞ
v are exactly the same as those de¯ned in Fig. 3.

As a matter of fact, a good panorama of how the DKðGÞ vertex, face and link

operators act on L2 can be understood with the help of Fig. 10, which can be

interpreted as a new version of Fig. 9 where despite L�
2 having been \strangely"

Fig. 10. Replica of the previous ¯gure to illustrate how L2 can be used to support the DKðGÞ models.

Although, here, there are no longer the dotted lines of L�
2, we see the same the rose (Sv) and baby blue (Sf)

colored sectors that were highlighted in Fig. 2, which are centered in the vth vertex and fth face of L2,

respectively, and a new sector (S 0
‘), which is centered in the ‘th edge of L2, is highlighted in light green.

Note that, when we compare the present piece with the one shown in Fig. 2, it turns out to be clear that this

light green colored sector can be interpreted as the geometric dual of the light orange colored sector of

Fig. 2. After all, in the same way that the light orange colored sector is de¯ned by one edge and its end
vertices, on which there are two matter ¯elds j�i and j
i, the light green colored sector is also de¯ned by

one (dual) edge and its end (dual) vertices, which also support two new matter ¯elds j~�i and j~
i. These
new matter ¯elds will be denoted in this way (i.e. by using a tilde symbol) only for the convenience of

distinguishing them from the previous matter ¯elds.
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hidden, the presence of the DKðGÞ gauge and matter ¯elds is now being highlighted.

Of course, by looking at this Fig. 10, perhaps you, the reader, are wondering why we

have \strangely" hidden L�
2. And if you are really asking this question, the best

answer that we can give you is that L�
2 was used only as a mere guide so that we

could start to see/explore this duality: after all, remember that the lattice, which is

the main protagonist of all these DðGÞ, DMðGÞ and DKðGÞ models, is L2. In this

way, since the vertices of L�
2 correspond to the faces of L2, this is precisely what

explains why DKðGÞ models need to be de¯ned by assigning matter ¯elds only to

these faces.

3.1.1. How can we de¯ne the face operator B 0
f?

Given our desire to recognize the DMðGÞ and DKðGÞ models as duals of each other,

one thing we can already say about the DKðGÞ face operators is that they obviously

need to act on the matter ¯elds. And in parallel to this, as we already know that the

DðGÞ face operators measure the holonomies around the lattice faces, it is also correct

to say that these DKðGÞ face operators also need to do the \same" thing. That is,

theseDKðGÞ face operators need to measure how deformed are these lattice faces due

to the presence of quasiparticles that, now, can be produced by manipulating gauge

or/and matter qudits. Note that, since the correspondence principle also requires that

the DðGÞ models be recovered as special cases of the DKðGÞ ones in some limit that

will become clear later on, these DKðGÞ face operators need to measure the same

holonomies as the DðGÞ ones when this limit is reached.

Although we still do not know what the exact expressions of these DKðGÞ face

operators are, another thing that we can already say about them is that, in the same

way that the operator Bf in (1) measures °at connections, the operator Bf in (34)

also needs to measure the \trivial holonomies" around the lattice faces. However, as

Fig. 10 already makes it clear that there are matter ¯elds on all these lattice faces,

this \trivial holonomy" may not be exactly the same trivial holonomy that Bf is able

to measure, which explains the use of quotation marks. After all, as these matter

¯elds must support the production of quasiparticles and, therefore, the presence of

these quasiparticles will also be responsible for locally deforming the lattice in some

way, these matter ¯elds must be taken into account in the calculation of these \trivial

holonomies".

Of course, even though we have just said a few words about these \trivial

holonomies", everything we have said is still vague. And since we want to understand

what the exact expressions of these DKðGÞ face operators are, we need to stop being

vague and present the exact de¯nition of these \trivial holonomies". But before we

present this de¯nition, it is important to remember that all the di®erent holonomies,

which can be measured around the lattice faces by the DðGÞ and DMðGÞ face

operators, are de¯ned as

h ¼ a�1b�1cd ð36Þ
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by using the same binary operation that de¯nes G as a group. And why is it im-

portant to remember this? Because this gives us a strong indication that it is perfectly

possible to de¯ne something, which is very similar to a holonomy, as

h 0 ¼ fð~�Þ 	 h ¼ fð~�Þ 	 a�1b�1cd ð37Þ

by using a function f : ~S ! G because this de¯nition makes h 0 an element of G. Here,
~S is a set that indexes the elements of Bm ¼ fj~�i : ~� 2 ~Sg, which is the single-qudit

computational basis of the Hilbert space HK that supports the matter qudits that are

assigned to the lattice faces.

But despite the expression (37) of this \fake holonomy" makes some sense

because, whatever the values of fð~�Þ, it also allows us to de¯ne the same R distinct

(non-equivalent) conjugacy classes

CL ¼ fh 0gLðh 0Þ�1 : h 0 2 Gg;

is there any mathematical result that guarantees that a function f can actually be

used to make (37) model all the possible face deformations in the presence of the

matter ¯elds? And the answer to this question is yes: not only does this mathematical

result exist, but it also serves the purpose of interpreting the DMðGÞ and DKðGÞ
models as duals of each other. After all, by remembering that theDMðGÞmodels were

produced, by coupling the DðGÞ ones to matter ¯elds allocated on the lattice vertices

with the help of a group action � : G� S ! S, if we really want the DMðGÞ vertex
operators to be interpreted as the algebraic dual of theDKðGÞ face operators and vice

versa, the second ones (i.e. the DKðGÞ face operators) need to be de¯ned by using a

co-action

~� 7! Fð~�Þ ¼ fð~�Þ � ~�; ð38Þ

where ~� and fð~�Þ must be elements of ~S and G, respectively. And since f exists, it is

not absurd to use it to de¯ne (37) and, therefore, the expressions of theseDKðGÞ face
operators that need to be dual to those starred by a group action. In this fashion, by

noting that

. this \fake holonomy" (37) can be reduced to the true holonomy (36) in some

special cases, and

. the \trivial holonomies", which B 0
f needs to be able to measure, also need to be

characterized by the neutral element of G,

it seems convenient to de¯ne the DKðGÞ face operators as

B 0
f;h 0 � B

0ðh 0Þ
f ; ð39Þ
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whose components B
0ðh 0Þ
f are de¯ned in Fig. 11). Here, as with all the operators in (1),

the face operator that make up theDKðGÞ Hamiltonian (34) is de¯ned as B 0
f ¼ B

0ðeÞ
f .

3.1.2. How can we de¯ne the link operator C 0
‘?

In view of what we have just said, perhaps you, the reader, are wondering what

guarantees the existence of f. And this is an extremely relevant question whose

answer can be well understood, for instance, by noting that the DðGÞ models are

Hamiltonian realizations of lattice gauge theories based (i) on an involutive Hopf

algebra CðGÞ58 and (ii) on ¯nite quantum groupoids (i.e. on a weak Hopf algebra).59

More speci¯cally, it is possible to a±rm that the DðGÞ Hamiltonian realizes a re-

presentation of the Drinfeld's quantum double22 of these involutive Hopf algebras.60

And why is it important to note this? Because the underlying algebra with involution

is a star-algebra61 that, for instance, allows us to describe the DðGÞ models based on

star-quantum groupoids.59,62 After all, in addition to being possible to prove that,

whenever a groupG acts on a ringA that can be interpreted as a star-algebra, there is

a co-action F : A ! CðGÞ � A, it is also possible to prove that this F can be given by

(38) as long as f is a homomorphism: i.e. this function f, which we need to de¯ne

the \fake holonomy" (37), exists and allows us to interpret (38) as a co-action

homomorphism.n

Another interesting fact, which also points to the convenience of taking (39) as the

DKðGÞ face operators, is that all of them commute with themselves and, according to

Fig. 12, with all the vertex operators inherited from the DðGÞ models. And un-

doubtedly this fact is extremely relevant because, in order to make these DKðGÞ
models exactly solvable, it is essential that all these operators are interpreted as

projectors onto

HDKðGÞ ¼ HjGj � . . .� HjGj|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
N‘ times

�HK � . . .� HK|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Nf times

:

However, as (34) shows us that the DKðGÞ Hamiltonian is also de¯ned by an oper-

ator C 0
‘, which acts only on the dual link sectors of L2, it becomes clear that all the

DKðGÞ link operators also need to commute with themselves and these other

operators for the same reason.

Fig. 11. De¯nition of the components B
0ðh 0 Þ
f that de¯ne the DKðGÞ face operators in terms of their

e®ective action on L2.

nAn excellent discussion of why such inductions exist can be found, for instance, in https://mathover°ow.

net/questions/190812/coaction-of-a-group. And for the sake of completeness, Ref. 63 shows some examples

that make it very clear that such co-action homomorphism can be de¯ned.
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Note that, although we have not yet presented the exact expressions of these

DKðGÞ link operators, one thing we already know about them is: they must be

interpreted as the duals of the DMðGÞ link operators, and vice versa, both from a

geometric and algebraic point of view. But even though Fig. 10 already shows the

need for this geometric point of view, what does it mean to say that the DMðGÞ and
DKðGÞ link operators are the duals of each other from an algebraic point of view?

Based on the dual relationship between the DMðGÞ (DKðGÞ) vertex and DKðGÞ
(DMðGÞ) face operators, it is correct to say that this means that, while the DMðGÞ
link operators just compares two matter ¯elds without performing any transforma-

tion on these ¯elds, the DKðGÞ link operators must

. do this same kind of comparison, in some way, with the help of f, and

. necessarily perform some kind of transformation in the gauge and dual matter

¯elds on which it acts.

And given this scenario, the expression that best ¯ts the needs of the link operator

that make up the DKðGÞ Hamiltonian (34) is

C 0
‘ ¼

1

j ~S j
X
~�2 ~S

C
0ð~�Þ
‘ ; ð40Þ

whose components are de¯ned in Fig. 13.

Fig. 12. Proof that the operators A 0
v and B 0

f;h � B
0ðh 0 Þ
f commute because the elements of G are such that

ðgbÞ�1ðcg�1Þ�1 ¼ b�1ðg�1gÞc�1 ¼ b�1c�1. Here, A 0
v and B 0

f;h act only on the vertex and face sectors whose

intersection is not empty because, when this intersection is empty, these operators commute by de¯nition.
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3.1.3. What are the requirements for A 0
v, B

0
f and C 0

‘ to be projectors?

It is obvious that there are several questions that still need to be answered about all

these DKðGÞ operators. And one of these questions refers, for instance, to the reason

why we have presented a de¯nition for only the link operator C 0
‘ and not for all the

DKðGÞ link operators. Note that a good answer to this question requires us to re-

member that, since all theDKðGÞ vertex, face and link operators must de¯ne three sets

U 0 ¼ fA 0
v;0;A

0
v;1; . . . ;A

0
v;R�1g;

B 0 ¼ fB 0
f;0;B

0
f;1; . . . ;B

0
f;R�1g and

C 0 ¼ fC 0
‘;0;C

0
‘;1; . . . ;C

0
‘;K�1g

of orthogonal projectors onto HDKðGÞ, they must also satisfy the same properties (a),

(b) and (c) as their dual counterparts. After all, as the previous section already made it

clear that the orthogonality of these operators can be delegated, for instance, to the

characters of a group, all the commutation relations that are satis¯ed by A 0
v, B

0
f and

C 0
‘ will apply to those operators that complete U 0, B 0 and C 0. We will return to this

point later on.

As a consequence of this good answer, it is correct to say that, if we want to

evaluate whether C 0
‘ quali¯es as a projector, we need to evaluate the commutation

relations between it and all the operators that make up (34). And because Fig. 14

shows us that the only way to cancel ½A 0
v;C

0
‘� is by taking

fð~	Þ 	 g ¼ g 	 fð~	Þ;
it turns out to be quite clear that, for C 0

‘ to be interpreted as a projector, ImðfÞ �
ZðGÞ (i.e. fð~	Þmust belong to the centre ofG).29 Note that this need is also reinforced

by Fig. 15, since it shows us that

fð~
 � ~�Þ 	 a�1 	 ½fð~�Þ 	 b��1 ¼ fð~
 � ~�Þ 	 ab�1 	 ½fð~�Þ��1 ¼ fð~
Þ 	 a�1b�1 ð41Þ
needs to also be satis¯ed for ½B 0

f ;C
0
‘� to vanish. Here, ½fð~
Þ��1 is the inverse of the

(group) element fð~
Þ. After all, since ImðfÞ � ZðGÞ allows us to conclude that (41) is

equivalent to

fð~
 � ~�Þ 	 ½fð~�Þ��1 ¼ fð~
Þ;
this result is in full agreement with the fact that f is a homomorphism.

Fig. 13. De¯nition of the components C
0ð~�Þ
‘ that de¯ne the link operator (40). Note that, since C

0ð~�Þ
‘ is

de¯ned by taking a 0 ¼ fð~�Þ 	 a, ~� 0 ¼ ~�
�1 � ~� and ~


0 ¼ ~
 � ~�, this shows that C 0
‘ actually performs

transformations in the gauge and matter ¯elds on which it acts. Here, in the same way that the symbol \	"
is used, when necessary, to indicate a product between the elements of the gauge groupG, the symbol \�" is
used to indicate a product between the elements of ~S .
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Fig. 14. Results of the action of the operatorsA 0
v � C 0

‘ and C 0
‘ �A 0

v on the lattice L2, from which it is clear

that ½A 0
v;C

0
‘� will only be equal to zero if fð~�Þ belongs to ZðGÞ (i.e. if fð~�Þ belongs to the center of G).

Analogous to what has already been observed in Fig. 12, A 0
v and C 0

‘ act only on the vertex and edge sectors

whose intersection is not empty because, when this intersection is empty, these operators commute by

de¯nition. Note that the order in which the summations are performed is irrelevant.

Fig. 15. Results of the action of the operators B
0ðh 0Þ
f � C 0

‘ and C 0
‘ �B 0ðh 0 Þ

f on the lattice L2, which not only

reinforces that fð~�Þmust belong to ZðGÞ, but also indicates that fmust be a group homomorphism. Just as

we did in Figs. 12 and 14, it is also worth noting that, here, B 0
f;h 0 and C 0

‘ act only on the face and edge

sectors whose intersection is not empty because, when this intersection is empty, these operators commute

by de¯nition.
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By the way, since f is a homomorphism whose codomain is the gauge group G, it is

of paramount importance to point out that this allows us to conclude that ~S is also a

group (whose neutral element will be denoted by ~") because every homomorphism is

a structure-preserving map between two algebraic structures of the same type.64 And

the importance of pointing this out is that, in addition to the group homomorphism

properties

fð~"Þ ¼ e; ½fð~�Þ�† ¼ fð~��1Þ ¼ ½fð~�Þ��1 and fð~�1Þ 	 fð~�2Þ ¼ fð~�1 � ~�2Þ
ensure that ½A 0

v;C
0
‘� ¼ ½B 0

f ;C
0
‘� ¼ 0, they also ensure that the requirements

~� 00 ¼ ð~� 0Þ�1 � ~� 0 ¼ ð~� 0Þ�1 � ~�
�1 � ~� ¼ ð~� � ~�

0Þ�1 � ~�; ð42aÞ
~

00 ¼ ~


0 � ~�
0 ¼ ~


0 � ð~� � ~�
0Þ and ð42bÞ

a 00 ¼ fð~� 0Þ 	 a 0 ¼ fð~� 0Þ 	 fð~�Þ 	 a ¼ fð~� 0 � ~�Þ 	 a; ð42cÞ

which need to be satis¯ed in the double action of C
ð~�Þ
‘ that appears in Fig. 16, are

respected. In this way, by

. remembering that the DKðGÞ vertex operators were inherited from the DðGÞ
models, and

. noting that the double action of B 0
f;h (on the same face sector of L2) shows that it

is, in fact, a projector because

�ðh 0; fð~�Þ 	 a�1b�1cdÞ 	 �ðh 0; fð~�Þ 	 a�1b�1cdÞ
¼ �ðh 0; fð~�Þ 	 a�1b�1cdÞ;

we can conclude that

. it is actually reasonable that the vertex and face operators in (34) are de¯ned as

A 0
v ¼ A 0

v;0 and B 0
f ¼ B 0

f;0

respectively, with A 0
v;J and B 0

f;L being de¯ned by (35) and (39) also respectively,

and

Fig. 16. Scheme related to the double action of the link operator C
ð~�Þ
‘ on the same edge sector of L2. Here,

~� 00, ~

00
and a 00 are given by the expressions (42), which also reinforce the need for f to be a group

homomorphism.
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. it is correct to assert that C 0
‘, in addition to making the DKðGÞ models exactly

solvable along with the other projectors in U 0 and B 0, can be interpreted as a

special case of the operators

C 0
‘;� ¼ 1

j ~S j
X
~�2 ~S

�1þ�ð~�Þ 	 C ð~�Þ
‘ ð43Þ

(i.e. C 0
‘ ¼ C 0

‘;0) since, as
~S is a group, its characters �1þ�ð~�Þ confer the necessary

orthonormality to the link operators that complete C 0.

3.1.4. The dual behavior of the link operator C 0
‘ as a comparator

Of course, even though it was clear that C 0
‘;� are operators that make the DKðGÞ

models exactly solvable, we still need to evaluate them a little further. After all,

despite them doing some transformations on the gauge and matter ¯elds, we still need

Fig. 17. Here, we see a kind of replica of Figs. 4 and 5 highlighting the situation of the same electric

quasiparticles, at two di®erent times, but now in the D2ðZ2Þ model. In the ¯rst instant t1 (above) we have a

pair of quasiparticles ~q
ð1;0;1Þ
þ and ~q ð1;0;1Þ� (red outlined and purposely indexed with the \þ" and \�" symbols,

respectively), which were produced by the action of a single operator ~W
ð1;0;1Þ
‘ . Note that, since the production

of this pair is detected by C 0
‘;0, the green dot corresponds to the unique vacuum violation detected by this

vertex operator. Now, in the second instant t2 > t1 (below) we have these same quasiparticles after one of

them has been transported away from the other due to the action of operators ~W
ð1;0;1Þ
‘ 0 on all the edges

highlighted in black color. In this latter case, we have new 8 green dots: one for each edge involved in this

transport, making clear the linearity related to the growth of the system energy in this transport.
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to evaluate if, in fact, C 0
‘ can be interpreted as the dual of C‘. That is, we need to

evaluated if C 0
‘ actually behaves as a comparator within some dual context.

In order to make this evaluation, it is imperative to note that, since ImðfÞ � ZðGÞ,
it is highly recommended to assume that ~S is an Abelian group. And even though

there are many good examples of group homomorphisms f : ~S ! G where ImðfÞ �
ZðGÞ and ~S is a non-Abelian group,29 one of the things that reinforces this recom-

mendation is the fact that, when ~S and ImðfÞ are two ¯nite Abelian groups, there is a

Fourier transform65 that allows us to observe that, in fact, C 0
‘ is endowed with the

dual behavior that it needs to portray. After all, note that, since ~S and ImðfÞ are ¯nite
groups, this already allows us to rewrite

C 0
‘j~�; g; ~
i ¼

1

j ~S j
X
~�2 ~S

j~��1 � ~�; fð~�Þ 	 g; ~
 � ~�i

as

C 0
‘j~� 0; g 0; ~
 0i ¼ 1

j ~S j
X
~�2 ~S

��~� 0 ð~�Þ!g 0 ðfð~�ÞÞ�~

0 ð~�Þj~�; g; ~
i ð44Þ

by using the unitary transformations

jg 0i ¼ 1

jGj
X
g2G

!g 0 ðgÞjgi and j~� 0i ¼ 1

j ~S j
X
~�2 ~S

��~� 0 ð~�Þj~�i;

where !g 0 ðgÞ and �~� 0 ð~�Þ are characters of G and ~S , respectively. Now if, in addition

to ~S and ImðfÞ being ¯nite groups, they are also two Abelian groups, there will be a

Fourier transform f̂ 2 Lð ~S �Þ such that

f̂ð�Þ ¼
X
~�2 ~S

fð~�Þ�ð~�Þ and fð~�Þ ¼ 1

j ~S j
X
�2 ~S

�
f̂ð�Þ�ð~�Þ; ð45Þ

where the dual group ~S
�
is isomorphic to ~S .29,66–68 And why is this Fourier

transform important? Because, by noting that an expression of the sort ��~� 0 ð~�Þ�~

0

ð~�Þ ¼ ��f~� 0;~
 0gð~�Þ is also a character, the substitution of (45) into (44) allows to see

that

C 0
‘j~� 0; g 0; ~
 0i ¼ 1

j ~S j
X

�~	2 ~S
�

d½!g 0 � f�ð�~	 Þ
1

j ~S j
X
~�2 ~S

��f~� 0;~
 0gð~�Þ�~	 ð~�Þ
0@ 1Aj~�; g; ~
i

¼ 1

j ~S j
X

�~	2 ~S
�

d½!g 0 � f�ð�~	 Þ 	 �ð�f~� 0;~
 0g; �~	 Þj~�; g; ~
i

¼ 1

j ~S j
d½!g 0 � f�ð�f~� 0;~
 0gÞj~�; g; ~
i:
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In other words, although the exact form of the index f~� 0; ~
 0g depends on the nature

of the group ~S , it is undeniable that, when ~S and ImðfÞ are two ¯nite Abelian groups,

C 0
‘ can actually be interpreted as an operator that compares two neighboring matter

¯elds (i.e. that compares two matter ¯elds that belong to the same dual edge sector)

di®erently, which only becomes clear when this operator acts on a diagonal basis

fj~�; g; ~
i : g 2 G and ~�; ~
 2 ~Sg:
This di®erent way of comparing two neighboring matter ¯elds rests on the

Pontryagin duality, which ensures that there is a one-to-one correspondence between

the characters �~� and the elements of ~S .69

4. General Properties of these DK(G) Models

According to what we saw in the last section, it is impossible not to recognize that,

when ~S and ImðfÞ are Abelian ¯nite groups, all the operators (35), (39) and (43), in

addition to being dual to Bf;L, Av;J and C‘;�, respectively, are also projectors that

make the DKðGÞ models exactly solvable. And since all these properties are only

achieved when ~S and ImðfÞ are Abelian ¯nite groups, it is correct to say that this

duality, which we so wanted to see between the DMðGÞ and DKðGÞ models, only

exists when G is an Abelian ¯nite group. Of course, if f : ~S ! G were a group ho-

momorphism without any commitment to the de¯nition of the co-action (38), the

fact that ImðfÞ � ZðGÞ would be completely incapable of making G also an Abelian

group. But given that

. this f de¯nes (38) as co-action homomorphism, and

. it is well known that, when G and ZðGÞ are both Abelian groups, ZðGÞ ¼ G,29

this is precisely what allows us to assert that the duality between these DMðGÞ and
DKðGÞ models only exists when G is an Abelian ¯nite gauge group.

But by speaking of the projectivity of these operators, it is worth mentioning that,

just as the DMðGÞ vertex, face and link operators are responsible for the decompo-

sition of HDM ðGÞ as (8), all these DKðGÞ vertex, face and link operators are also

responsible for the decomposition of HDKðGÞ into the direct sum

HDKðGÞ ¼ H
ð0Þ
DKðGÞ � H?

DKðGÞ:

Here, H
ð0Þ
DKðGÞ and H?

DKðGÞ are the orthogonal subspaces that contain all the DKðGÞ
vacuum and nonvacuum states, respectively.

As a matter of fact, in the case of the operators A 0
v;0, B

0
f;0 and C 0

‘;0 that make up

the DKðGÞ Hamiltonian, it is crucial to note that they are responsible for projecting

any state onto H
ð0Þ
DKðGÞ. After all, this is what explains not only why the DKðGÞ
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vacuum states are such that

A 0
v;0j~�0i ¼ j~�0i;B 0

f;0j~�0i ¼ j~�0i and C 0
‘;0j~�0i ¼ j~�0i

hold for all the Nv vertices, Nf faces and N‘ edges of L2, but also why

j~� ð0Þ
0 i ¼

Y
‘

C 0
‘

Y
v

A 0
v jei � . . .� jei|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

N‘ times

� j0i � . . .� j0i|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Nf times

ð46Þ

is a vacuum state that is common to all the DKðGÞ models. Alongside this, it is also

very crucial to note that it is the projectivity of the other vertex, face and link

operators on H?
DKðGÞ that explains why all the operators ~W

ðJ ;L;�Þ
‘ and ~W

ðJ ;�Þ
f , which

are such that

~W
ðJ ;L;�Þ
‘ �A 0

v;0 ¼ A 0
v;J � ~W

ðJ ;L;�Þ
‘ ; ð47aÞ

~W
ðJ ;L;�Þ
‘ �B 0

f;0 ¼ B 0
f;L � ~W

ðJ ;L;�Þ
‘ ; ð47bÞ

~W
ðJ ;L;�Þ
‘ � C 0

‘;0 ¼ C 0
‘;� � ~W

ðJ ;L;�Þ
‘ ; ð47cÞ

~W
ðL;�Þ
f �B 0

f;0 ¼ B 0
f;L � ~W

ðL;�Þ
f and ð48aÞ

~W
ðL;�Þ
f � C 0

‘;0 ¼ C 0
‘;� � ~W

ðL;�Þ
f ð48bÞ

respectively, can remove these DKðGÞ models from their ground states by producing

energy excitations when ðJ;L;�Þ 6¼ ð0; 0; 0Þ and ðJ ;�Þ 6¼ ð0; 0Þ. Once again, note

that, since these DKðGÞ models are also quantum-computational models that try/

need to model some reality that can be physically implemented, all the energy

excitations ~q ðJ ;L;�Þ and ~Q
ðJ ;�Þ

, which are locally produced by the action of ~W
ðJ ;L;�Þ
‘

and ~W
ðJ ;�Þ
f , respectively, need to be, at least, such that

~q ðJ 0;L 0;� 0Þ � ~q ðJ 00;L 00;� 00Þ ¼ ~q ðJ 00;L 00;� 00Þ � ~q ðJ 0;L 0;� 0Þ;

~q ðJ 0;L 0;� 0Þ � ~Q
ðJ 00;� 0Þ ¼ ~Q

ðJ 00;� 0Þ � ~q ðJ 0;L 0;� 0Þ and

~Q
ðJ 0;� 0Þ � ~Q

ðJ 00;� 00Þ ¼ ~Q
ðJ 00;� 00Þ � ~Q

ðJ 0;� 0Þ
:

in order to ~q ðJ ;L;�Þ and ~Q
ðJ ;�Þ

can be interpreted as quasiparticles.

4.1. The matrix representation of the DK(ZN) vertex, face

and edge operators

Given that we paid more attention to the DMðGÞ models where G ¼ ZN , it makes

sense that we turn our attention to the DKðGÞ ones where we have this same gauge

group. After all, in addition to allowing us to better compare these DKðZNÞ models

with the DðZNÞ and DMðZNÞ ones, it also seems reasonable to take G ¼ ZN for two

other reasons. And the ¯rst one is that, by remembering that the fact that f is a

group homomorphism suggests that we also take ~S as another cyclic Abelian group
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(because every homomorphism is a structure-preserving map between two algebraic

structures of the same type64), this allows to deal with a well-de¯ned matrix repre-

sentation

A 0
v;J ¼ 1

jGj
X
g2ZN

�1þJðg�1Þ 	
Y

‘ 02S "
v

Xg
‘ 0

0@ 1A Y
‘ 002S #

v

X�g
‘ 00

0@ 1A; ð49aÞ

B 0
f;L ¼ 1

jGj
X
g2ZN

�1þLðgÞ 	 FfðgÞ
Y

‘ 02S Ó
f

Z g
‘ 0

0@ 1A Y
‘ 002S Ò

f

Z�g
‘ 00

0@ 1A and ð49bÞ

C 0
‘;� ¼ 1

j ~S j
X
~	2 ~S

~�1þ�ð~	Þ 	 ð ~X †
f1Þ~	 � F‘ð~	Þ � ð ~Xf2Þ~	 ; ð49cÞ

for the DKðZNÞ vertex, face and link operators. Here,

(i) S "
v and S #

v are disjoint edge subsets of Sv, whose edge orientations pointing in

and out of the vth vertex, respectively,

(ii) SÓ
f and SÒ

f are disjoint edge subsets of Sf , whose edges have counterclockwise

and clockwise orientations, respectively, and

(iii) � and ~� are characters of the matrix representations of G ¼ ZN and ~S ¼ ZK,

respectively.

Note also that, in the case of this matrix representation (49), it leads us to

X ¼
X
h2ZN

jðhþ 1Þ mod Nihhj; Z ¼
X
h2ZN

!hjhihhj; ð50aÞ

~X ¼
X
~�2ZK

jð~� þ 1Þ mod Kih~�j and ~Z ¼
X
~�2ZK

~! ~� j~�ih~�j; ð50bÞ

since the correspondence principle dictates that these DKðZNÞ models must be re-

duced to theDðZNÞ ones in some special cases. Here, ! ¼ eið2�=NÞ and ~! ¼ eið2�=KÞ are
the generators of the gauge (G ¼ ZN) and matter ( ~S ¼ ZK) groups.

o

Now, with respect to the matrices FfðgÞ and F‘ð~	Þ that appear in (49), it is

important to say that they represent how f couples theseDðZNÞmodels to the matter

¯elds. And in order to understand not only how these matrices make this coupling,

but also the second reason why it is reasonable to take G ¼ ZN and ~S ¼ ZK, it is of

oAlthough we have not evaluated the commutation relations when J ;L;� 6¼ 0, the expressions (49) justify

the comment that we made in p. 36 because the only di®erence that exists among them concerns the

characters that multiply each of the components A
0ðgÞ
v , B

0ðgÞ
f and C

0ð~�Þ
‘ . And as these characters are

constants that commute with each other, there is no way not to conclude that

½A 0
v;J ;B

0
f;L� ¼ ½A 0

v;J ;C
0
‘;�� ¼ ½B 0

f;L;C
0
‘;�� ¼ 0

holds not only for all the values of J 0ð0Þ;L 0ð0Þ ¼ 0; 1; . . . ;N � 1 and � 0ð0Þ ¼ 0; 1; . . . ;K � 1, but also for all the

vertices, faces and edges of L2.
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paramount importance to pay attention to the statements of Theorems 1 and 2,

whose proofs are in Refs. 70 and 71, respectively.

Theorem 1. The number of group homomorphisms from ZK into ZN is gcdðK;NÞ
(i.e. this number is the greatest common divisor of K and N).

Theorem 2. Every group homomorphism f : ZK ! ZN can be completely

determined by

fð½~��Þ ¼ ½n~��; ð51Þ
where n is a natural number that assumes values other than zero if, and only if, nK is a

natural number divisible by N .

That is, when we deal with DKðZNÞ models where ~S ¼ ZK, we can rely on these two

theorems and, according to what these theorems claim, all these DKðZNÞ models

have, at least, a description where FfðgÞ and F‘ð~	Þ are identity matrices: after all, for

all the values of N and K, there will always be a group homomorphism

fð½~��Þ ¼ ½e� ð52Þ
that maps all the elements of ZK to the identity element of ZN . Note that, when these

DKðZNÞ models are such that N and K are coprime numbers, the only way to de¯ne

these models is by using this trivial group homomorphism (52).

4.1.1. A ¯rst comment on the DKðZNÞ ground state degeneracy

When we come across this description, where all these models are de¯ned by using

(52), one of the things that we can say about them is that their \fake holonomies"

(37) reduce to the true holonomies (36). And since this reduction allows us to identify

B 0
f;L as the same face operatorBf;L of theDðZNÞ models, there is no way not to conclude

that all the DKðZNÞ models support the same quasiparticles as the DðZNÞ models.

Observe that this conclusion is not surprising because, similar to what was dis-

cussed in Sec. 2, the correspondence principle already requires that all the DKðZNÞ
models support these quasiparticles in some way. And, in fact, this is reinforced by

the fact that the face and link operators of the trivial DKðZNÞ models (i.e. of the

DKðZNÞ models that are de¯ned by using (52)) are given by

B 0
f;L ¼ 1

jGj
X
g2ZN

�1þLðgÞ 	 f

Y
‘ 02S Ó

f

Z g
‘ 0

0@ 1A Y
‘ 002S Ò

f

Z�g
‘ 00

0@ 1A and ð53aÞ

C 0
‘;� ¼ 1

j ~S j
X
~	2 ~S

~�1þ�ð~	Þ 	 ð ~X †
f1Þ~	 � ‘ � ð ~Xf2Þ~	 ð53bÞ

respectively, because this allows us to conclude, for instance, that these operators

cannot detect any matter and gauge quasiparticles also, respectively. In other words,

this allows us to conclude that, in the same way as with the trivial DMðZNÞ models,

the trivial DKðZNÞ ones do not couple the gauge ¯elds with those of matter since
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B 0
f;L and C 0

‘;� are \blind" to the presence of the quasiparticles ~Q
ðJ ;�Þ

and ~q ðJ ;L;�Þ,
respectively. As a consequence, it is correct to say that, due to this \blindness", all

these trivial DKðZNÞ models support the same electric and magnetic quasiparticles,

with the same properties, as the DðZNÞ ones.
In light of these comments, it is also interesting to note that, since

. none of these operators is able to detect any change j~� 0if $ j~� 00if ,p and

. none of the operators ð ~XfÞ~	 (which make all these changes j~� 0if $ j~� 00if) can be

expressed as a product involving the vertex, face and link operators, all the vacuum

states

j~� ð~�Þ
0 i ¼

Y
‘ 0

C‘ 0
Y
v 0

Av 0 �
‘2L2

jei
� �

� �
f2L2

j0i
� �

f 6¼f 00
� j~�if 00 ; ð54Þ

which are de¯ned by taking ~� ¼ 0; 1; . . . ;K � 1, are independent of each other. Here,

the rationale for why all the vacuum states, where the ~� 6¼ 0, have only a single f 00th
lattice face ¯lled with j~�i 6¼ j0i is due to the simple fact that, just in this case, there

are no transformations, which can be expressed as a product of the vertex, face and

link operators, that can connect these K vacuum states (54). Note that, since the

inability of (53b) to detect the quasiparticles ~q ðJ ;L;�Þ implies, for instance, that all of

these quasiparticles can be transported without increasing/decreasing the energy of

the system, it is not di±cult to conclude that the action of an operator

~OLð�	 �Þ ¼
Y

‘ 02� �
Ó

~W
ð0;L;0Þ
‘ 0

Y
‘ 02� �

Ò

ð ~W ð0;L;0Þ
‘ 0 Þ†

does not lead to an excited state when it acts on any of the vacuum states (54). And

since this allows us to recognize that all the vacuum states

j� ð~�;¸;LÞ0 i ¼
Ys
p¼1

½~OLp
ð�	 �

pÞ��p j~� ð~�Þ
0 i ð55Þ

are topologically independent of each other due to the noncontractility of �	 �
p,
13 it is

also not di±cult to conclude that all these

~n ¼ j kerðfÞj 	 dDðZN Þ ð56Þ
vacuum states (55) are mere replicas of the DðZNÞ vacuum states.q

4.2. But what happens when f is not a trivial group homomorphism?

From the point of view of the duality that we want to identify between the DMðZNÞ
and DKðZNÞ models, all these last conclusions/observations about the trivial

pBy paraphrasing the footnote in p. 9: here, we are using the index f only to emphasize that j~�i is an

element associated with a face of L2.
qHere, we are using the same notation used in p. 25, now to refer to the number dDðZN Þ of vacuum states

that de¯ne the DðZNÞ ground state.
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DKðZNÞ models are very welcome. After all, note that, since the co-action that

(52) de¯nes can be always induced by a trivial (sub)group action

~�fðfð~�Þ; ~	Þ ¼ ~	; ð57Þ
which can be represented by the same matrix

FfðgÞ ¼ f

that composes (53a), this trivial (sub)group action de¯nes the set

Fix~� ¼ fj~�if 2 HK : FfðgÞj~�if ¼ j~�if for all g 2 ZNg

of points of HK that are ¯xed by (57). As a consequence, as the cardinality of this

set is precisely equal to j kerðfÞj, it is not di±cult to conclude that the result (56)

corresponds to the same expression (29) that de¯nes the degree of degeneracy of the

ground states of all the trivial DMðZNÞ models.

But given that we already know a lot about these trivialDKðZNÞmodels, it is time

to analyze the main properties of the nontrivial DKðZNÞ ones: i.e. of the DKðZNÞ
models where f is a nontrivial group homomorphism. And in order to start this

analysis, it is interesting to take theD2ðZ2Þmodel as an example. After all, in view of

what was stated by Theorem 1, there are two ways to de¯ne this model:

[1st] one, which we presented in Sec. 4.1.1 by using a trivial group homomorphism, that

has the same quasiparticles, with the same properties, as the DðZ2Þ model; and

[2nd] another that, because it needs to be de¯ned by using a nontrivial group

homomorphism, has vertex, face and edge operators represented by

A 0
v;J ¼ 1

jGj
X
g2ZN

ð�1ÞJg 	
Y
‘2Sv

ð�x
‘ Þg; ð58aÞ

B 0
f;L ¼ 1

jGj
X
g2ZN

ð�1ÞLg 	 FfðgÞ
Y
‘2Sf

ð�z
‘Þg and ð58bÞ

C 0
‘;� ¼ 1

j ~S j
X
~	2 ~S

ð�1Þ�g 	 F‘ð~	Þ
Y
f2S‘

ð�x
fÞ~	 ð58cÞ

respectively, where FfðgÞ and F‘ð~	Þ cannot be identity matrices.

In this fashion, by noting that Theorem 2 guarantees that the only nontrivial group

homomorphism f : Z2 ! Z2 that exists is

fð0Þ ¼ 0 and fð1Þ ¼ 1; ð59Þ
the fact that ImðfÞ ¼ G allows us to conclude that, in this [2nd] way, we have

FfðgÞ ¼ ð�z
fÞg and F‘ð~	Þ ¼ ð�x

‘ Þ~	 :
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And by according to this picture, it is not di±cult to recognize that, in this [2nd]

way, the state

j~� ð~�Þ
0 i ¼

Y
‘ 0

C‘ 0
Y
v 0

Av 0
O
‘2L2

jei
 !

�
O
f2L2

j0i
 !

f 6¼f 00

� j~�if 00

with ~� 6¼ 0 (i.e. with ~� ¼ 1) cannot be interpreted as a vacuum state. After all, as all

the operators

ð�x;z
f Þg and ð�x;z

‘ Þ~	 ;
which compose the vertex, face and link operators (58) (and, consequently, the

Hamiltonian (34)), produce quasiparticles in this model,r it is not di±cult to recog-

nize that

~W
ð1;0Þ
f ¼ �x

f

(which satis¯es (48) with L ¼ 1 and � ¼ 0) produces a quasiparticle ~Q
ð1;0Þ

,

throughout a permutation j0if $ j1if , that can be detected by B 0
f .

4.2.1. Are there \con¯ned" quasiparticles in the DKðZNÞ models?

Another important point that deserves to be mentioned here is that, in addition to

the group isomorphism (59) de¯nes a D2ðZ2Þ model that does not have an algebra-

ically degenerate ground state,s it also makes C 0
‘ able to detect the pairs of quasi-

particles ~q ð1;L;1Þ that are produced by

~W
ð1;L;1Þ
‘ ¼ � z

‘ � ð�x
‘ ÞL or ~W

ð1;L;1Þ
‘ ¼ ð�x

‘ ÞL � � z
‘ :

That is, (59) causes C 0
‘ to be able to detect the same pair of quasiparticles that are

detected individually by the operator A 0
v. And why does this deserve to be mentioned

here? Because this situation is entirely analogous, for instance, to that of the D2ðZ2Þ
model. After all, contrary to what happens in the DðZ2Þ model, where it is possible to

transport the electric quasiparticles without changing the energy of the system, this is

not possible in this D2ðZ2Þ model: whenever the transport of these electric quasi-

particles occurs, the energy of the system increases when f is de¯ned by (59). And since

this increase is not welcome for the same reasons as outlined in Sec. 2, we need to do the

same thing we did before: i.e. we need to ignore that the transport of these quasi-

particles ~q ð1;L;1Þ is mathematically possible and consider all of them to be con¯ned.

In view of this \con¯nement", it is not wrong to say that thisD2ðZ2Þmodel, where

f is a group isomorphism, has properties that are dual to those of the D2ðZ2Þ model.

After all, it is quite clear, for instance, that

. while, in the D2ðZ2Þ model, the \con¯ned" quasiparticles are detected by the face

operator Bf ,

rSee the comments made in the footnote in p. 15.
sThat is, this group isomorphism de¯nes a D2ðZ2Þ model that has a set of vacuum states that are indexed

only by ~� ¼ 0.
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. here, in the D2ðZ2Þ model, the \con¯ned" quasiparticles are detected by the vertex

operator A 0
v, which is dual to Bf .

However, there is, at least, one aspect of this D2ðZ2Þ model that seems to spoil this

duality. What is this aspect? It is the aspect that is related precisely to the fact that

these \con¯ned" quasiparticles ~q ð1;0;1Þ are not detected by B 0
f;L. And why does this

seem to spoil the duality between the D2ðZ2Þ and D2ðZ2Þ models? Because, as these

quasiparticles are not detected by any of the operators that measure the (\fake")

holonomies around the lattice faces, this means that their production cannot be

associated with any type of local deformation of L2. In this way, by noting that the

action of an operator

O1ð�	Þ ¼
Y
‘ 02�	

~W
ð1;0;1Þ
‘ 0 ;

on a set of edges that form a noncontractile closed path �	 , does not have the

slightest importance for the determination of vacuum states that are topologically

independent of13t

j~� ð0Þ
0 i ¼

Y
‘ 0

C‘ 0
Y
v 0

Av 0
O
‘2L2

jei
 !

�
O
f2L2

j0i
 !

; ð60Þ

the fact that the quasiparticles ~q ð1;0;1Þ are \con¯ned" does not prevent the D2ðZ2Þ
ground state from depending on the ¯rst homotopy group �1ðM2Þ. In other words,

the ground state of this D2ðZ2Þ model, where f is given by (59), is made up of all the

vacuum states

j� ð0;¸Þ0 i ¼
Ys
p¼1

½~O1ð�	 �
pÞ��p j~� ð0Þ

0 i;

which are topologically independent of each other due to the noncontractility of �	 �
p.

4.2.2. The DNðZNÞ models as other examples

Given all that we have just understood about theD2ðZ2Þmodel, it is also not di±cult to

conclude that all the otherDNðZNÞ models where f is a group isomorphism (i.e. where f

is a group homomorphism (51) withN ¼ K and n ¼ 1), have the same properties listed

in the last two sections. After all, since this group isomorphism requires that

FfðgÞ ¼ ð ~ZfÞg and F‘ð~	Þ ¼ ðX‘Þ~	 ;
we can conclude that

I. All the operators

ðX‘Þg; ðZ‘Þg; ð ~X‘Þg and ð ~Z ‘Þg;

tObserve that (60) is just a more streamlined way of writing the same vacuum state (46).
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which compose the vertex, face and link operators (16) (and, consequently,

the Hamiltonian (34)), produce quasiparticles in this model.

II. Since the operators

~W
ðg;0Þ
f ¼ ð ~X‘Þg

(which satisfy (48) with L ¼ g and � ¼ 0) can make all the changes j~� 0if $
j~� 00if that are allowed between the elements of Bf , a state

j~� ð~�Þ
0 i ¼

Y
‘ 0

C‘ 0
Y
v 0

Av 0
O
‘2L2

jei
 !

�
O
f2L2

j0i
 !

f 6¼f 00

� j~�if 00 ;

with ~� 6¼ 0, cannot be interpreted as a vacuum state.

III. All the quasiparticles ~q ð0;L;0Þ, which are produced by an operator

~W
ð0;L;0Þ
‘ ¼ ðX‘ÞL;

can be transported without increasing/decreasing the energy of the system,

while the others ~q ðJ ;L;�Þ, which are produced by any operator

~W
ðJ ;L;�Þ
‘ ¼ ðZ‘ÞJ � ðX‘ÞL or ~W

ðJ ;L;�Þ
‘ ¼ ðX‘ÞL � ðZ‘ÞJ

with J 6¼ 0, should be regarded as \con¯ned".

IV. As a consequence of items II and III, the ground state of these DNðZNÞ
models are made up of

j� ð0;¸;LÞ0 i ¼
Ys
p¼1

½~OLp
ð�	 �

pÞ��p

Y
‘ 0

C‘ 0
Y
v 0

Av 0
O
‘2L2

jei
 !

�
O
f2L2

j0i
 !

since all these vacuum states are topologically independent of each other due.

However, something that becomes quite clear from Theorems 1 and 2 is that,

except that N is a prime number, all these DNðZNÞ models can also be de¯ned by

using an f that is neither a trivial group homomorphism nor a group isomorphism.

This is, for example, the case of theD4ðZ4Þmodel that, in addition to being able to be

de¯ned by using these two group homomorphisms, can also be de¯ned by using

fð0Þ ¼ fð2Þ ¼ 0 and fð1Þ ¼ fð3Þ ¼ 2: ð61Þ

4.2.3. And what may happen when f is not a group isomorphism?

Although Theorem 2 shows us that

fð0Þ ¼ 0; fð1Þ ¼ 3; fð2Þ ¼ 2 and fð3Þ ¼ 1 ð62Þ
is another nontrivial group homomorphism that can also be used to de¯ne this

D4ðZ4Þ model, the group homomorphism (61) seems to be more interesting because

j kerðfÞj > 1 and jImðfÞj ¼ 2:
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After all, besides (62) is not very di®erent from the group isomorphism f : Z4 ! Z4,
u

one of the things that this (61), where kerðfÞ ¼ f0; 2g, allows us to see is that the

ground state of this model is de¯ned by

j� ð~�;¸;LÞ0 i ¼
Ys
p¼1

½~OLp
ð�	 �

pÞ��p

Y
‘ 0

C‘ 0
Y
v 0

Av 0
O
‘2L2

jei
 !

�
O
f2L2

j0i
 !

f 6¼f 00

� j~�if 00 ;

where ~� 2 kerðfÞ. In other words, we are faced with a D4ðZ4Þ model that has

an algebraically degenerate ground state, but where this algebraic degeneracy is

neither a maximum nor a minimum.

Another interesting aspect of this D4ðZ4Þ model, which is de¯ned by using (61), is

related to the fact that

FfðgÞ ¼ ð ~Z 2
fÞg and F‘ð~	Þ ¼ ðX 2

‘ Þ~	 :
And why is this interesting? Because, when we substitute these matrices into (49), it

is not di±cult to see that not all quasiparticles, which are detected individually by the

operator A 0
v, can be considered as \con¯ned". And how can we see it? By noting that

. the quasiparticles, which are detected by the operator A 0
v, are produced by

~W
ðg;0;�Þ
‘ ¼ ðZ‘Þg; and

. the link operators can be represented by

C 0
‘;� ¼ 1

4

X
~	2 ~S

ðiÞ�~	 	 ð ~X †
f1Þ~	 � ðX 2

‘ Þ~	 � ð ~Xf2Þ~	 ;

where i ¼ eið2�=4Þ is the generator of the matter group.

After all, as the generator of the gauge group is also equal to i in this case where

N ¼ 4 and, therefore, the operators (50a) are such that

ZgXh ¼ i ½ðgþhÞ mod ð4Þ�XhZg;

it is not di±cult to conclude that all the quasiparticles ~q ð2;0;0Þ, which are produced by

an operator ~W
ð2;0;0Þ
‘ , are \uncon¯ned" (i.e. these quasiparticles can be transported

without increasing/decreasing the energy of the system) because

Z 2X 2 ¼ i ½4 mod ð4Þ�X 2Z 2 ¼ X 2Z 2:

Consequently, as there areN � 1 quasiparticles ~q ð2;L;0Þ that are produced by the operators

~W
ðg;L;0Þ
‘ ¼ ðZ‘Þg � ðX‘ÞL or ~W

ðg;L;0Þ
‘ ¼ ðX‘ÞL � ðZ‘Þg

uNote that, as this group isomorphism is de¯ned by

fð0Þ ¼ 0; fð1Þ ¼ 1; fð2Þ ¼ 2 and fð3Þ ¼ 3; ð63Þ

the only di®erence between it and (62) can be justi¯ed in terms of a permutation.
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through a fusion

~q ð2;2;0Þ ¼ ~q ð2;0;0Þ � ~q ð0;2;0Þ ¼ ~q ð0;2;0Þ � ~q ð2;0;0Þ

between the quasiparticles ~q ð2;0;0Þ and ~q ð0;L;0Þ, all these quasiparticles ~q ð2;L;0Þ are also

interpreted as \uncon¯ned" since all ~q ð0;L;0Þ are also \uncon¯ned".

4.3. The ground state degeneracy and the classi¯ability

of the DK(ZN) models

In view of what we have just seen in this last section, one thing that you, the reader,

might be wondering is: is there some rule to determine when theDKðZNÞmodels have

quasiparticles ~q ðJ ;L;0Þ that are \uncon¯ned" ? And in order for us to answer this

question, it is very interesting to pay attention, for instance, to the trivial DKðZNÞ
models, because the trivial group homomorphisms f : ZK ! ZN always map every

element of ZK to the identity element of ZN . And since the de¯nition of link operators

makes it clear that it is precisely the result of this mapping that needs to change the

gauge ¯elds on which these operators act, it is also very clear that, when fð~�Þ ¼ e,

. these operators become \blind" to the presence of the electric quasiparticles, and

(therefore)

. the electric quasiparticles become \uncon¯ned".

Note that, although the D4ðZ4Þ model discussed above was not de¯ned by using a

trivial group homomorphism, (61) places this model in a situation that, in some way,

is comparable to this one. After all, unlike the (62) and (63), this group homomor-

phism (61) de¯nes two distinct equivalence classes: videlicet,

½0� ¼ fa 2 ZN : a � 0 mod ð4Þg and ½2� ¼ fa 2 ZN : a � 2 mod ð4Þg
since (61) is nothing more than the same group homomorphism (51) where n ¼ 2.

And why is it important to pay attention to the fact that (61) de¯nes these two

distinct equivalence classes? Because (61) is just one example of a group homomor-

phism that can do this: other functions (51), which can also do this, can be identi¯ed

whenever K and N are two even numbers. How? By considering that N ¼ 2n: after

all, as K is also an even number and, therefore, nK will always be divisible by N ,

Theorem 2 guarantees the existence of the group homomorphism

fð½~��Þ ¼ ½n~��; ð64Þ
which can be used to de¯ne two distinct equivalence classes

½0� ¼ fa 2 Z2n : a � 0 mod ð2nÞg and ½n� ¼ fa 2 Z2n : a � n mod ð2nÞg:
The main consequence of this is that, whenever we de¯ne a DKðZ2nÞ model, where K

is an even number, by using this group homomorphism (64), it leads us to

FfðgÞ ¼ ð ~Z n
fÞg and F‘ð~	Þ ¼ ðX n

‘ Þ~	 ;
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and, therefore, all the quasiparticles produced by

~W
ðn;L;0Þ
‘ ¼ ðZ‘Þn � ðX‘ÞL or ~W

ðn;L;0Þ
‘ ¼ ðX‘ÞL � ðZ‘Þn

will never be detected by the DKðZ2nÞ link operators as long as

Z nXn ¼ i ½ðnþnÞmodð2nÞ�XnZ n ¼ XnZ n:

In this fashion, as jImðfÞj is equal to the number of equivalence classes that f de¯nes,

this explains why we take, as an example, this D4ðZ4Þ model where jImðfÞj ¼ 2. That

is, as much as we have highlighted the fact that j kerðfÞj > 1, the necessary condition

for the existence of \uncon¯ned" quasiparticles in the DKðZNÞ models is that

jImðfÞj � 2.

4.3.1. What can we say about the quasiparticles that are produced by

manipulating matter ¯elds?

Notwithstanding, the information that j kerðfÞj > 1 is still relevant because it is

precisely this j kerðfÞj that computes the number of quasiparticles ~Q
ðJ ;�Þ

, which are

produced by manipulating matter ¯elds, that are not able to locally deform L2. And

although we still have not said a word about all these (matter) quasiparticles ~Q
ðJ ;�Þ

,

they are not as surprising as the quasiparticlesQðJ ;�Þ of theDMðZNÞmodels: after all,

as all the operators

~W
ðL;�Þ
f ¼ ð ~XfÞL � ½FfðgÞ�� and ~W

ðL;�Þ
f ¼ ½FfðgÞ�� � ð ~XfÞL ð65Þ

that produce them can be identi¯ed in the expressions of the DKðZNÞ face and link

operators, it is not di±cult to conclude that

. ~Q
ðJ ;�Þ

have Abelian fusion rules, because we always have that

FfðgÞ ¼ ð ~Z n
fÞg

where n takes the values that satisfy Theorem 2, and

. the action of these operators (65), with � ¼ 0, is su±cient to perform transitions

between/among the DKðZNÞ vacuum states.

Note that, just by looking at the DKðZNÞ vacuum states

j� ð~�;¸;LÞ0 i ¼
Ys
p¼1

½~OLp
ð�	 �

pÞ��p

Y
‘ 0

C‘ 0
Y
v 0

Av 0
O
‘2L2

jei
 !

�
O
f2L2

j0i
 !

f 6¼f 00

� j~�if 00 ;

this su±cient condition makes it very clear that all the (matter) quasiparticles, which

are not able to locally deform L2, are produced by the operators ~W
ðL;0Þ
f that reduce

the \fake holonomy" (37) to the true holonomy (36).
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Based on these ¯ndings, it is not di±cult to conclude that all theseDKðZNÞ models

can be completely classi¯ed in terms of an ordered 3-tuple ðN ;K; nÞ, as follows:

A. ðN;K; 0Þ
All the DKðZNÞ models, which are characterized by an ordered 3-tuple where

n ¼ 0, have ground states with an algebraic degeneracy j kerðfÞj that is maximal

(i.e. it is equal to K). As a consequence of this maximality, all the manipulations,

which can be done on the matter ¯elds by using only the operators that make up

the DKðZNÞ Hamiltonian, do not (locally) deform L2 and, therefore, do not

change the energy of the system. In this way, it is valid to a±rm that all these

models, with ðN;K; 0Þ, have the same quasiparticles, with the same properties, as

the DðZNÞ models.

B. ðN;N ;NÞ
When n ¼ N , all theDKðZNÞmodels have an algebraic degeneracy j kerðfÞj that is
minimal (i.e. it is equal to 1). And as one of the consequence of this minimality is

that jImðfÞj ¼ N, we can a±rm that, although these models house all the DðZNÞ
quasiparticles among their energy excitations, all the quasiparticles that are

detected by the DKðZNÞ vertex operators are \con¯ned". Observe that, since this

minimality also implies that all the quasiparticles ~Q
ðL;�Þ
f , where ðL;�Þ 6¼ ð0; 0Þ,

are detectable by theDKðZNÞ face and link operators, the ground state of all these

models can only be indexed by ~� ¼ 0.

C. ðN ;K; nÞ
In this case, where this ordered 3-tuple is di®erent from ðN ;K; 0Þ or ðN;N ;NÞ, it
is possible to a±rm that the DKðZNÞ models may have intermediate properties

between those of A and B. After all, although these models may be perfectly

de¯ned by using group homomorphisms that, for instance, con¯ne all the quasi-

particles ~q ðJ ;L;�Þ with J 6¼ 0, whenever K is an even number and N ¼ 2n we can

also de¯ne such models by using (64): i.e. whenever K is an even number and

N ¼ 2n, we can de¯ne the DKðZ2nÞ models where all the quasiparticles ~q ðJ ;L;0Þ,
with J 2 ½0�, are uncon¯ned. As a consequence of this partial decon¯nement, the

algebraic degeneracy of the DKðZ2nÞ ground state is neither a maximum nor a

minimum because, for instance, all their vacuum states are indexed by 1 <

j kerðfÞj < K values of ~�.

4.3.2. Does the degree of degeneracy of the DKðZNÞ ground state depend on

the (sub)set ImðfÞ?
Note that, as there is no way to manipulate the matter ¯elds when K ¼ 1, the

Hamiltonian of any trivial D1ðZNÞ model (i.e. of any DKðZNÞ model that is classi¯ed

as ðN ; 1; 0Þ) is given by

HDKðGÞ jK¼1 ¼ �J 0
A

X
v2L2

Av � J 0
B

X
f2L2

Bf � J 0
C

X
‘2L2

f1 � ‘ � f2 ;

Quantum double models coupled to matter ¯elds
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which only reinforces the existence of a correspondence principle between the

DKðZNÞ and DðZNÞ models because

HDðZN Þ �HDKðGÞ jK¼1 ¼ ðJ 0
CN‘Þ 	 L2

:

But, although we have said (somewhere in this paper) that the cardinality of ker f

is relevant for determining the degree ~n of degeneracy of the DKðZNÞ ground

states, we have not yet presented the formula for this ~n when f is not a trivial

group homomorphism. So, the natural question that we can ask here is: does this

formula exist?

In order to understand the answer to this question, it is interesting that we

remember, for instance, that we have already managed to determine this formula

when we analyzed the trivial DKðZNÞ models. And an interesting aspect of this

formula (56) that we found is that it clearly shows us that, in fact, there is a dual

correspondence between the trivial DMðZNÞ and DKðZNÞ models. After all,

according to what has been said in p. 44, all the trivial group homomorphisms (52)

always can be induced by a trivial (sub)group action (57) that maximizes jFix~�f
j. But

what happens when, for instance, the DKðZNÞ models can be de¯ned by using

nontrivial group homomorphisms?

One of the things that happens is that, since all these nontrivial group homo-

morphisms are induced by nontrivial (sub)group actions ~�f : ImðfÞ � ~S ! ~S that de-

¯ne only k-cycles where k > 1, this allows us to conclude that the dual correspondence,

between the nontrivial DMðZNÞ and DKðZNÞ models, is not so perfect. Why? Because

there are nontrivial DMðZNÞ models that can be de¯ned, for instance, by using non-

trivial group actions that can de¯ne 1-cycles. In plain English, no DMðZNÞ model,

which is de¯ned by using a nontrivial action that de¯nes 1-cycles, can be interpreted as

the perfect dual of any DKðZNÞ model: this interpretation occurs only when

. ImðfÞ ¼ ZN , and

. the DMðZNÞ gauge group action can be expressed as �fðfð~�Þ; 	Þ because this

induces the co-action homomorphism F .

Note that, as a consequence of these conditions, it also becomes clear that the DM ðZNÞ
models may be interpreted as the perfect dual of the DKðZNÞ models when S ¼ ~S .

Nevertheless, it is also worth noting that, in accordance with the de¯nition of the

DKðZNÞ face and link operators, the elements of ImðfÞ must also act on the elements

of ZN . After all, since ImðfÞ is a normal subgroup of ZN , it is not di±cult to conclude

that ~�‘ allows us to interpret its k-cycles as elements of the quotient group

ZN=ImðfÞ.29 And what does it mean? This means that all the magnetic quasiparticles

that are inherited from the DðZNÞ models are divided into equivalence classes in the

DKðZNÞ ones. Thus, by noting that

. the DðZNÞ models have ground states that are jZN j2-fold degenerated, where is

the genus of M2,
14 and
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. all the magnetic quasiparticles ~q ð0;L;0Þ, which are only detected by the face

operators (49b), are divided into jZN=ImðfÞj equivalence classes,

it becomes clear that the degree of degeneracy of the DKðZNÞ ground states is given

by

~n ¼ j kerðfÞj 	 jZN=ImðfÞj2: ð66Þ
Note that this result is in full agreement with the formula (56) because, when f is a

trivial group homomorphism, ZN=ImðfÞ ¼ ZN .

5. Final Remarks

As we present in this paper, it is very clear that we can perform a dualization

procedure on the DMðGÞ models as long as G is a ¯nite Abelian gauge group. After

all, although it is well known that a group action � : G� S ! S can induce a co-

action with the help of a group homomorphism f : S ! G, the facts of

. the DMðGÞ and DKðGÞ models have the same gauge group, and bring the DðGÞ
models as special cases,

. the commutation relations between the DKðGÞ vertex, face and link operators

show that the DKðGÞ models only are exactly solvable when ImðfÞ � ZðGÞ, and
. the DMðGÞ and DKðGÞ link operators are duals of each other when ~S and G are

two ¯nite Abelian groups

make it clear that the duality between these DMðGÞ and DKðGÞ models exists only

when G is a ¯nite Abelian gauge group. By the way, even though we wrote the entire

Secs. 3 and 4 by denoting the set that indexes the matter qudits by ~S , this duality

context requires that ~S equals S.

Observe that this last requirement is reinforced by the fact that, while the

DMðZNÞ models may di®er from the DðZNÞ ones when M and N are coprime

numbers, the DKðZNÞ models cannot do the same when K and N are coprime

numbers. After all, as K and N index the cyclic groups ~S ¼ ZK and G ¼ ZN ,

respectively, Theorem 2 allows us to interpret theseDKðZNÞmodels, in these cases

where K and N are coprime numbers, as analogues of the DðZNÞ models, but with

an algebraically degenerate ground state, because the only group homomorphism

f : ZK ! ZN that exists is the trivial one. And, no doubt, this is another way of

saying the same thing that we already said in the penultimate paragraph of the

last section: i.e. this is another way of saying that the DMðZNÞ models may be

interpreted as the perfect dual of the DKðZNÞ models when S ¼ ~S .

Given this duality that we were able to recognize between theDMðZNÞ andDðZNÞ
models when G is a ¯nite Abelian group, it is quite tempting to conclude that a new

class of self-dual lattice gauge models can be de¯ned in terms of an overlap of the

Quantum double models coupled to matter ¯elds
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DMðZNÞ and DðZNÞ ones. That is, by coupling the Abelian DðGÞ models to new

qudits, which would be assigned to the vertices and faces of L2, by using the same

gauge group actions and co-action homomorphisms that were presented here, re-

spectively. However, although it is indeed possible to de¯ne this new class, whose

Hamiltonian seems to be better de¯ned as

Htotal ¼ �JA

X
v2L2

Av � J 0
B

X
f2L2

B 0
f � JC

X
‘2L2

C‘ � J 0
C

X
‘2L2

C 0
‘;

its models do not look as nice: as these new lattice gauge models bring the Abelian

DMðGÞ and DKðGÞ ones as special cases, these new models depict a situation where

all the electric and magnetic quasiparticles inherited from the Abelian DðGÞ models

can/may be con¯ned. In other words, this is an important aspect that may not be

very good, for instance, from a quantum-computational point of view.

By speaking of these electric and magnetic quasiparticles, it is important to

summarize some of the reasons why we have said, at various points in this paper, that

they are the same ones that appear in the DðGÞ models. And one of the ¯rst reasons

has to do with the fact that both the DMðGÞ and DKðGÞ models were de¯ned not

only by using the same gauge structure as the DðGÞ ones, but mainly without

modifying it: after all, note that

. in the DMðGÞ models, the gauge qudits act on the matter ones and not the other

way around, and

. as much as theDKðGÞ link operators do transformations on the gauge qudits, these

transformations can also be interpreted as gauge transformations because, as

½B 0
f;R;C

0
‘;�� ¼ 0, they are completely unable to modify the \fake holonomy"

around the lattice faces.

And this is precisely what, for instance, explains the fact that all the electric and

magnetic quasiparticles, which can be produced by manipulating the gauge qudits in

the DMðGÞ and DKðGÞ models, are produced by the operators that have the same

expressions in the DðGÞ models. That is, despite the group actions and co-actions

homomorphisms, which de¯ne the DMðGÞ and DKðGÞ models, respectively, make

these electric and magnetic quasiparticles capable of fusing with the new quasi-

particles that are produced by manipulating the matter qudits, these electric and

magnetic quasiparticles are exactly the same as those of the DðGÞ models. By the

way, and by remembering that all these quantum-computational models are always

de¯ned with the intention of modeling some reality that can be physically imple-

mented, it is also interesting to remember that, even though we know, for instance,

that an electron is already capable of interacting with several particles, there is

nothing that prevents nature from showing that there are other particles that are also

capable of interacting with an electron. And this is precisely one of the other reasons

that allows to assert that theDMðGÞ andDKðGÞ electric and magnetic quasiparticles

are exactly the same as those of the DðGÞ ones, since it does not make much sense
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that an electron ceases to be an electron just because someone discovered that it is

capable of interacting/fusing with this new particle.

Note that, due to the recognition that the DMðGÞ and DKðGÞ electric and

magnetic quasiparticles are exactly the same as those of theDðGÞ ones, it is correct to
say that the operators W

ðJ ;L;�Þ
‘ and ~W

ðJ ;L;�Þ
‘ that produce them, in pairs, may de¯ne

the same ribbon operators (string operators) as in theDðGÞmodels. But what is most

striking about these quasiparticles is the fact that they are con¯nable. And in the case

of theDMðGÞmodels, the fact that the magnetic particles are con¯nable is interesting

for, at least, two reasons. One of them seems to be related, for instance, to the

validation of these DMðGÞ models as an excellent generalization of the DðGÞ ones

because, as

. the DðGÞ models can be understood in terms of pure lattice gauge theories, and

. the Quantum Chromodynamics is precisely the gauge theory whose non-pertur-

bative problems fostered the development of the lattice gauge theories,

this con¯nement of magnetic quasiparticles seems to be quite welcome since, for

instance, there are some works that already explored the possibility that the con-

¯nement of quarks has some magnetic reasons.51 Although the con¯nement of electric

quasiparticles in the DKðGÞ models is perhaps not so interesting from the point of

view of elementary particle physics, it seems to be very interesting from the point of

view of condensed matter physics. After all, as the con¯nement of these electric and

magnetic quasiparticles points, in the latter context, to the possibility of exploring

these DMðGÞ and DKðGÞ models to describe superconductors (or, at least, perfect

diamagnets) and topological insulators, this deserves to be better evaluated in our

future papers.

Lastly, in addition to being important to say that the DKðZNÞ models can be

classi¯ed by the group homomorphism that de¯ne them, one thing we need to re-

member is that there is no impediment, a priori, to de¯ne new generalizations of these

DðGÞ and DMðGÞ models without the arti¯ce of a dualization procedure. Never-

theless, a relevant question that we can ask ourselves because of this possibility is

whether, for instance, any of these new generalizations are able to lead us to the same

results as the AbelianDKðGÞmodels. And a good possibility, which we can explore to

answer this question, is the one where f de¯nes a crossed module72: i.e. the one where f

is a group homomorphism that, together with a group action ~� : G� ~S ! ~S ,

respects two conditions

fð~�ðg; ~�ÞÞ ¼ g 	 fð~�Þ 	 g�1 and ~�ðfð~�Þ; ~
Þ ¼ ~� � ~
 � ~��1;

where the second one is known as the Pei®er condition.73,74 Note that the group

homomorphisms, which de¯ne the Abelian DKðGÞ models, satisfy these two condi-

tions when the co-action homomorphism (38) is induced by a trivial gauge group

action. And the possible advantage of taking f as the group homomorphism that now
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de¯nes a crossed module lies in the fact that it seems possible to recover the DKðGÞ
models as a special case of the higher lattice gauge theories,75 which are based on the

higher-dimensional category theory.76–78 By the way, a good example of this can be

found in Ref. 79, where a 2-lattice gauge theory is de¯ned by using a three-dimen-

sional lattice in which we can measure 1-and 2-holonomies: after all, while the

1-holonomy is identi¯ed as the same \fake holonomy" (37), which is preserved by the

gauge transformations that the operator A 0
v performs, the 2-holonomy80 is preserved

by the action of the operator Y
‘2Sf

C 0
‘;

which corroborates with the perception that the link operator (40) actually performs

another kind of gauge transformation. Note that, if f is the group homomorphism

that de¯nes a crossed module G ¼ ðG; ~S ; f; ~�Þ, the ¯rst and second homotopy groups

of this crossed module can be de¯ned as �1ðGÞ ¼ G=ImðfÞ ¼ cokerðfÞ and

�2ðGÞ ¼ kerðfÞ, respectively,81 whose orders de¯ne, for instance, the formula (66). We

will also return to this topic in another future work.
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