





for some function h {which is independent of y, u and ¢), such that h(u) > 0, for v > 0 and
J5° '/3h(u)du = 1. In this paper, any particular symmetric distribution will be denoted by 5 (, ¢2).
The characteristic function ¥(t) = E(e™) is given by ¥(t) = "p(13¢?), t € R, for some function
¢, with o(z) € R, for z > 0. Provided that they exist, E(y) = p and Var(y) = k¢?, where k > 0
is a constant given by k = —2¢/(0), where ¢’(0) = dy(1)/du|,=0. Thus, the parameter ¢ is a kind
of dispersion parameter. if the distribution S(u, %) has r moments, then z~("+1)/2(z) is integrable
(Kelker, 1970). The probability density function of 2 = (y — u)/¢ is #(v;0,1) = h(v?), v € R, which
does not involve the parameters 2 and ¢, i.e. z~ S(0,1). It is the standardized form of the symmetric
distributions.

The symmetric family of location—scale densities (1) retains the structure of the normal distribution,
while eliminating the specific form of the normal density. Densities in this family are mainly distinguished
by their tail length and some of them may have sharper or flatter tails than the normal form, although
the main interest focuses on flat—tailed distributions. The class of symmetric distributions defined in
(1) has been considered by several authors (Kelker, 1970; Chu, 1973; Cambanis, Huang and Simons,
1981). The properties of these distributions have been explored by Muirhead (1980, 1982), Berkane
and Bentler (1986), Rao (1990) and Fang, Kotz and Ng (1990). It is easy to find many properties of
S(p, #*) parallel to those of N (s, #%). A review of different areas in which symmetric distributions are
applied is given by Chmielewski (1981).

The modern area of research in symmetric distributions starts perhaps with the engineering applica-
tions considered by Blake and Thomas (1968) and McGraw and Wagner (1968). Cambanis, Huang and
Simons (1981) presented a systematic treatment for symmetric distributions and Chmielewski (1981)
gave a detailed survey of these distributions with applications to different areas. The special cases of (1)
listed bellow have a wide range of practical applications in various fields such as engineering, biology,
medicine and economics, among others.

(i) Normal: A(u) = (27)~Y2exp(—u/2);
(i) Cauchy: h(u) = {r(1+4)}%;
(iii) Student’s t: h(u) = v*/2B(1/2,v/2)~ (v + u)‘#, v > 0, where B(-,-) is the beta function;

(iv) Generalized Student’s t: h(u) = s"/2B(1/2, r/2)'1(s+u)"‘§‘l, 8,7 > 0. It includes Student’s
t (s = r = v) and Cauchy distribution (s = r = 1);

(v) Type | logistic: h(u) = ce~(1+ e~*)~2, where ¢ & 1.484300029 is the normalizing constant
which follows from [$° u~/2h(u)du=1;

{vi) Type W logistic: A(x) = e~*'* (1 + e+'/)-3;

(vii) Generalized logistic: h(u) = cB(m,m) " {e~V*(1+e~V¥)=2}m ;. 50, ¢ > 0. The type Il
logistic density corresponds to the case m =1, ¢ = 1;

(viii) Kotz distribution:

rom-n/z
h(u) = F(T';“— !)u exp(—ru), r >0, m > 1,
7]

(Kotz, 1975), where I'(:) is the gamma function. If m = 1 this distribution reduces to the normal
distribution with mean p and variance ¢2/(2r);
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(ix) Generalized Kotz distribution:

3,-(7’"—1)/(2‘)

h(")=T(— mg_—l)"m"lexp(-ru’), r8>0, m>1.

For s = 1, it reduces to Kotz distribution and for m = s = 1 and r = 1/2, it becomes the

N(u, ¢?) distribution. When m = 1, r = 1/2 and ¢ = 1/(1 + k), it coincides with the power
exponential distribution defined below in case (xii);

(x) Contaminated normal:
h(u)=(1- €)—\/;=1rexp(—u/2) + eﬁ- exp{-u/(20%)}, >0, 0<e<L;

(xi) Double exponential: h() = exp(—+/u)/2;
(xii) Power exponential:
h(u) = e(r) exp {—-;—ull(””)} , —l<r<1,

where ¢(r)™} = D(1 + 1$£)21+(147)/2 (Box and Tiao, 1973);

(xiii) Extended power family:

h(u)=K(c,A)exp{-%cpx (1+ = )},

c—-1
where K (c, ) is the normalizing constant, ¢ > 1, A > 0 and

B ifA>0,
P =1 fim 21 = logy, fA=0.
A0

(Albert, Delampady and Polasek, 1991).

The 13 distributions listed above provide a rich source of alternative models for analysing univariate
data containing outlying observations. However, some regularity conditions needed for the validity of our
results do not hold for the Kotz, generalized Kotz and double exponential distributions. Moreover, we
have not developed our results for the contaminated normal and extended power distributions. Therefore,
in what follows, we restric our attention to the following distributions: normal, Cauchy, Student's t,
generalized Student’s t, type | logistic, type Il logistic, generalized logistic and power exponential.

The subject matter of this paper is the symmetric nonlinear regression model

y,'NS([.I..',¢2), i=1,..,n (2)

where y1,...,Yn are assumed to be independent and each y; has a symmetric distribution (1) with
location parameter p; (s; € R) and scale parameter ¢ > 0 which is common to all observations. In
order to introduce a regression structure in the class of models (2), we assume that y; = f(z:; ), where
2; is an m x 1 vector of known explanatory variables associated with the i-th observable response y;
and B € 5 C R” is a p x 1 vector of unknown regression parameters. We further assume that (g is
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compact with interior points and f is an injective and twice continuously differentiable function with
respect to 3 at these interior points. Then, inference about 8 and ¢ can be performed by likelihood
methods analogously to those for the normal nonlinear model. A very convenient way for obtaining the
maximum likelihood estimates (MLEs) 3 and ¢ of 8 and ¢ is given by an iteratively reweighted least
squares algorithm presented in Section 2.

The computation of second-order biases is perhaps one of the most important of all approximations
arising from the theory of estimation by maximum likelihood in nonlinear regression models. The obvious
difficulty with nonlinear estimates is that they cannot be expressed as explicit functions of the data.
Over the last ten years, there have been many advances with respect to bias calculation of nonlinear
MLEs whose second—order biases can be larger than the corresponding standard errors of the estimates
when the sample size n or the total Fisher information is small. In these cases, bias corrections can be
important and the availability of formulae for calculating the biases is useful. Numerous applications
for second-order bias corrections of MLEs are available in the literature, We refer the reader to the
papers by Cook et al. (1986), Young and Bakir (1987), Cordeiro and McCullagh (1991), Paula (1992),
Cordeiro and Klein (1994), Paula and Cordeiro (1995), Cordeiro and Vasconcellos (1997) and Cordeiro,
Vasconcellos and Santos (1998). Except for the paper by Young and Bakir, all other papers deal with
matrix formulae that are useful for applied researchers to compute bias corrections in some classes
of nonlinear regression models. These formulae can be used to obtain bias—corrected estimates by
subtracting the second-order biases from the MLEs. Despite these results, there is still skepticism
from some researchers about the usefulness of second—order bias reduction. We address this issue by
Meonte Carlo simulation to show that bias—corrected estimates of the parameters in symmetric nonlinear
regression models outperform traditional MLEs.

The main goal of this paper is to derive general formulae for the second—order biases of the MLEs
B and ¢ in model (2). The plan of this paper is as follows. Section 2 presents a simple matrix
formula for computing the n~1 bias of . The formula can be of direct practical use since the bias of
,3 is easily obtained as a vector of regression coefficients in an ordmary linear regression conveniently
defined. In Section 3, we apply this formula to derive the n=! bias of /3 for some special models. In
Sectnon 4, we obtain a bias correction for the MLE of ¢. We emphasize that the biases of 3 and
& presented here include as special cases some results due to Cook, Tsai and Wei (1986), Cordeiro
and Vasconcellos (1997) and Cordeiro, Vasconcellos and Santos (1998). Finally, in Section 5, some
Monte Carlo simulation results from model (2) are given on the finite~sample performance of their
bias—corrected MLEs. The simulations indicate that bias—corrected estimates have smaller biases than
the corresponding unadjusted estimates.

2 Bias of the Estimate 3

The purpose of this section is to use Cox and Snell’s (1968) formula (20) for the n"l bias of the MLE
in order to obtain the second—order bias of . In Section 4, we focus on the bias of é.leti= 1(B,4)
be the total log-likelihood function, given the sample 1, ..., y,, for the parameters 3 and ¢ in model
(2). We are interested in jointly estimation by maximum Iikelihood of the parameters 3 and ¢ and in
correcting the biases of these estimates. We have

18,8) = —nlogé + 3 logh(s2), 3)
i=1



where
zi = (yi — pi) /¢
is the standardized i-th observation.

The function [ is assumed to be regular (Cox and Hinkley, 1974; Chapter 9) with respect to all 8
and ¢ derivatives up to third order. Furthermore, the n X p matrix of derivatives of B= By .-y p,.)T
with respect to 3, denoted by D = D(B) = du/8B, is assumed to be of full rank, i.e. rank (D) =
for all B. Inference about 3 and ¢ can be performed by likelihood methods analogous to those for the
normal model. Regularity conditions are also stated in Serfling (1980, p. 144). We must assume that
the MLEs § and ¢ converge to their true parameter values as n — 0o and that their joint asymptotic
distribution is multivariate normal with the usual covariance matrix to the correct order.

We now introduce the notation for moments of the log-likelihood derivatives: x,, =
E(821/8B,0,), kv = E(B1/80,81/80,), krst = E(8°1/08,.05,88:). Not all the ’s are functionally
independent. For example, k,, = —k, , is the typical element of the information matrix for 5. Note
that k., is the covariance between the first derivative of | with respect to §; and the mixed second
derivative of [ with respect to 8. and §,. Furthermore, we define the derivatives of the moments as
s = 8K,5/80;. All k's and their derivatives are assumed to be of order O(n). Also, the following
notation is adopted: d;, = du;/3B, and g;r, = 8%u; /88,08, for the first and second partial derivatives
of y; with respect to the elements of 3.

Now define oy, = E{t(")(2)2*} forr,s = 0,1,2, 3, where t(z) = log h(2?) and t{") (2) = d"¢t(z) /d=".
Differentiating (3) and taking expectations, we obtain

Krs 02 0 E dxr isy Kro = 0, Kgp = ¢2(1 Qz, 2)1 "s-':) = ¢2 Z (dzrgltu + d'tglru)

=1

" a 2020 —
Krst = ‘% Z (diryint + di'yirt + dityl'n)a Kragp = -L‘:pﬂ' Z d,',.d",, Kroép = 0,
=1 =1

Kodgp = —-—(a33+6032 —4)

In view of the global orthogonality between 3 and ¢ (k.4 = 0), the joint information matrix for
these parameters is block-diagonal, i.e. K = diag{Kp,r¢¢}. where Kz = —(a20/¢*)DTD is the
information matrix for 8. The Fisher scoring method can be used to estimate 3 and ¢ simultaneously
by iteratively solving the equations

1 (ptmT pem)=1 pimTelm),

9

{ ~(y— )W (y - #"’")-cb‘"‘”}

ﬂ(M+l) = ﬂ(M) _

1
¢ (1 - az,2)
where (™) = W™ (y — u(™) with W = diag{wy,...,wa} and w; = —z; dlog h(2?) /dz,
Let B(8,) be the n~! bias of Ba. The use of Cox and Snell's formula to obtain B(f,) is greatly
simplified, since § and ¢ are globally orthogonal. We obtain

1
B(ﬂu E’ o (-K-rtu + Kt u) + ZI K (Enr“ + Kré,é) '

rtu

pim+l) = o™ 4



where —x™ and —x%® are the corresponding elements of the inverse of the joint information matrix
K and ¥’ denotes the summation over all combinations of the parameters j,, ..., 5,. Since r4,/2 +

Ket = n,(.',‘) — Ketuf2 and Kegy /2 + K g = nf.ﬁ) rrps/2 =0, it follows that

B(B.) =Y 's*" k™ ( 2 ¢,) X": (dirGitu + dirGiru — diugirt)-

riu i=1

By rearranging the summation terms we have

B(B.) = (2‘;)2 P "d.rz K Gisy-

=1 r

Let d] (1 x p) and g7 (1 X p?) be vectors containing the first and second partial derivatives of ;
with respect to the 3's . We can write the above equation in matrix notation as

~ a
B(fa) = 23;; Z PIKp dig; Vec(Kp l)v
$=1
where p] is the a—th row of the p x p identity matrix and vec(.) is the operator which transforms a
matrix into a vetor by stacking the columns of the matrix one underneath the other. It is straightforward
to check that !
B(B,) = 224:; pa K51 DT Gvec(K3),

where D = 8p/8p = (dy,...,ds)" and G = 8*u/8B87 8B = (g1,...,9s) T denote n x p and n x p?
matrices of the first and second partial derivatives of ;1 with respect to the §'s , respectively. The n™!
bias vector B(ﬂ) of B can then be written as

B(A) = (0™D)” D4, (4)

where d is an n X 1 vector defined as d = (¢?/(2a2,0))Gvec{(DTD)"'}.

A number of remarks are worth making with respect to expression (4). The bias vector B(f) can
be obtained from the simple |east—squares regression of d on the columns of D. Clearly, the bias B(ﬂ)
depends on the symmetric distribution of the data only through the quantity agg and it can be large
when a0 and n are both small. Further, the bias of ﬁ increases with the dispersion parameter ¢. For
some symmetric distributions, the values of a3 g are given in Table 1. For normal models, a9 = —1 and
equation (4) coincide with the result due to Cook, Tsai and Wei (1986, Equation (3)). For t models,
o390 = —={v + 1)/(v + 3) and equation (4) reduces to Cordeiro, Vasconcellos and Santos’s (1998)
formulae (2)-(3). For linear models, G = 0 and then B(f) = 0, as expected.

Equation (4) is easy to be handled algebraically for any type of nonlinear regression, since it involves
only simple operations on matrices and vectors. It will compute B(ﬂ) algebraically with minimal effort
if it is used in conjunction with a computer algebra system such as MATHEMATICA (Wolfram, 1996)
or MAPLE (Abell and Braselton, 1994). For specnal models with closed—form inverse matrix (D7 D)1,
it is possible to obtain closed—form expressions for B(5). In order to obtain B(B) numerlcally, the
quantities D and G in the right-hand side of equation (4) have to be evaluated at the point Qi ,®).
The bias vector B(ﬂ) is equal to the least squares estimate in the linear regression of don D. The
bias-corrected estimate is simply defined as 3, = 5 — B(g), where B(-) denotes the value of B(-) at
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3 Special Regression Models

We now consider a few special models which produce some simplification in equation (4). Other
important special models can also be easily handled because of the simplicity of this equation which
only requires simple operations on matrices and vectors. First, consider a one parameter nonlinear
regression model whose regression function depends on a single parameter 5. Equation (4) yields

BH)= 22, )

where 5, =37, (d f./dﬁ)2 and 83 = Y0, (df;/dB)(d? __f.-/dé’). Now, 35, and s; evaluated at B and
¢ replaced by ¢ yield B(ﬂ) and the corrected estimate is § = 3 — B(ﬁ)
As a second application we consider a partially nonlinear regression model defined by

p=Za+ng(7), (6)
where Z is a known full rank n x (p—2) matrix, g(7) denotes an nx 1 vector and 37 = (a7, 7, 7), where
aT = (o,...,ap-3) and 1 and ¥y are scalar parameters. This class of models is commonly used in the

statistical literature. Forexample, u4 = @121 +0a229+nexp(22) (Gallant, 1975), 4 = a—nlog(z1+yzs)
(Darby and Ellis, 1976; Stone, 1980). Other types of models of the form (6) are discussed by Ratkowsky
(1983, Chapter 5). The n x p matrix D reduces to the form D = (Z, g(7), ndg(7)/d¥) and we obtain
from (4), after some algebra,

B(B) = 7 Cov(, )7, — LVar(3)s,, (7)

where 7, is a pX 1 vector with a one in the last position and zeros elsewhere, 6, =
(DTD)"1DTd?g(y)/dy? is simply the set of coefficients from the ordinary regression of d?g(v)/dv?
on D, and Var(¥) and Cov(#},7) are the large—sample second moments obtained from the appropriate
elements of the asymptotic covariace matrix Cov(f) = = (~¢*/ c0)(DT D). It is clear from
(7) that B(ﬂ) does not depend on the linear parameters a and that it is proportional to ¢?/az .
Moreover, the biases of @ and # are both proportional to the value of 7.

We conclude this section with a nonlinear regression model, known as the Michaelis-Menton model,
which is very useful for estimating growth curves, where it is common for the response to approach an
asymptote as the stimulus increases. The Michaelis-Menton model (McCullagh and Nelder, 1989, p.16)
provides an hyperbolic form for u; against z; given by

nTi
f= 00 8
1 v+ 2z ®)
where the curve has an asymptote at 4 = 1. We can express the n~! biases of # and ¥ in terms of the

quantities .

8y = ; (’7+I )ri
forr= .y 5. We find
B(f) = -2 2alti = o)

azo n(s284 - 83)°



and

B() = #* {s3(28284 — 53) — 8385}
U O.'g'o 1]2 (8234 —_ 8?5)2 '

The biases of ff and 4 involve both 77 and + and are proportional to ¢?/(nazc) and to ¢%/(n%c2,),
respectively. Thus, they tend to be large when the regression parameter 7 is small.

4 Biases of Estimates ¢ and $*

Here we turn to the derivation of the n~! biases B($) and B($’) of ¢ and 32, respectively. To calcule
B($) from Cox and Snell’s (1968) formula, we have to take into account the following sums due to the
orthogonality of 8 and ¢

B() = —3x* 2wt (6495 - L) )

On inserting the expression for the cumulant kg given in Section 2, the first sum in (9), Bl($) say,
follows after some calculation as

P¢ (o331 + 2a20)
2n az,o(t!z gl = 1)'

The second sum, Bg($) say, comes immediately from %%, n&‘:) and Kgg4 as

ass+2a;
O et

Bi(§) =

Finally, we obtain the n~1 bias of ¢ by adding B, (¢) and Bg($) g

@)= 5 {p ( oy 2) + ol 'f’;;} . (10)

Equation (10) gives the n~! bias B(@ of the MLE @ in the class of symmetric nonlinear regression
models (2). The bias B(¢) depends on the symmetric distribution only through the quantities a3,
032, 031 and azg. As equation (10) makes clear, this bias is always a linear function of the dimension
pof 8. In Table 1 we give these quantities for some symmetric models discussed in Section 1. Note
that B(¢) depends directly on the nonlinear structure of the model regression only through the rank p
of D.

We define the corrected MLE ée of ¢ by ¢c é-B (¢) where B (dz) is the value of B(¢) in equation
(10) at @. We give below the n=! biases of ¢ obtained from (10) for some symmetric models :

(i) Normal: B() = —¢(1 + 2p)/(4n), which is in agreement with Cordeiro and Vasconcellos's
(1997) expression (14);

() Cauchy: B(3) = ¢(1 - p)/n;



(iii) Student’s t:

__$w+2)(r+3) v-1
B(§) = dnv(v + 5) (2p+ v+2) !

which is identical to Cordeiro, Vasconcellos and Santos’ (1998) expression (7);

(iv) Generalized Student’s t:

~ (r+2)(r+3) r-T\.
B¢)=—¢ 4nr(r+5) (2p+ fT-I-_2) !

(v) Type | logistic: B(¢) ~ —$(0.47547p+ 0.24972) /n;
(vi) Type Il logistic: B(¢) ~ —¢(0.52445p + 0.05257)/n;
(vii) Generalized logistic:

B(3)= $(2m + 1)

2m?(2m+1)¢'(m+1)
~ In(m+ 1) (2mi (mt 1) +2m + 1) {(2"‘“)” t emi(mi )+ 2m+ 1)} .

In this case, the bias correction is a complicated function of m requiring the evaluation of
polygamma functions. [n order to simplify the evaluation of the bias correction, we give sim-
ple approximations for large m and small m. For large m, we have

‘_5‘;[(1 1 L) (l 3 5 25)] 4
B(¢)__n 2+12m’-8m3 L 4_8m+8m7_m +0(m™),

and for small values of m
~ {1 m 1\ 4 1 2\ 5
B(¢) = —;[(54—7—(—6—4—5)7"4- §+2C(3)+F m” | p

—%zmz + (2((3) + ng) ms] +0(m*),

where ( is the Riemann zeta-function, i.e., {(a) = T, i~(@+1),
(viii) Power exponential: B(¢) = —¢(1 - r +2p)/(4n), for -1 < r < —1/2.

We now give a simple formula for the n~! bias of the MLE of the variance parameter ¢*. This
formula can be easily obtained by expanding G(¢) = ¢? in Taylor series together with the bias of ¢
given in (10). From R R

B(§*) = 26B(9) + Var(¢) + O(n™?)
we obtain to order n~1 P
v ~
B@) = 26B(3) - 5y (1)

The n~! bias of the MLE of the variance Var(y) = k¢? follows easily from equation (11) when one
replaces ¢* by #2. The estimate a‘, = - ﬁ(?) is expected to have better sampling properties than
the uncorrected estimate $2. Applications of equation (11) cover many important cases including the
following distributions, where we give the values of k: normal (k = 1), Student’s t (k = v/(v — 2)),
generalized Student’s t (k = 8/(r — 2)), type | logistic (k = 0.79569), type Il logistic (k = 7%/3),
generalized logistic (k = 2¢'(m)/c) and power exponential (k = 2+ {I'(3(1 +r)/2)/ I'((1+ r}/2)]).
For the normal distribution, equation (11) yields B(¢*) = —p¢*/n, as expected.
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Table 1: Values of anp, 23, a31 and asz for some symmetric
distributions*

Model 30 a2 @31 033
Normal -1 -1 0 0
Cauchy -1/2 1/2 1/2 -1/2

—{v+1 3—v 6(r+1 6(3w=5
Student ¢ V3 Hv+3 GH45) (ZHICS)]

- =r(r+1 3=r 6r(r+1 6(3r—5
Generalized Student ¢ 7%71 {m} TFI4E e ey

Type | logistic -1.47724 -2.01378 -1.27916 -0.50888
Type Il logistic -1/3 -0.42996 1/6 0.64493
- Py 3 3(1-m?¢’(m m3 m3y¢’(m)—
Generalized logistic "(%i o mfl (ﬁﬁﬂm_-i-l)' %ﬂ%‘(ﬁ-ﬁl}
~I((3-r)/2 r=1 rI((3-r)/2 2r(1—r

Power exponential I PI{(r 1 1/2 ¥ F=I(ixr PT{(r+1)/2Z 1+r

* I'(z) is the gamma function and ¥(z) = dlogI'(2)/dz is the digamma function. For the power
exponential distribution, r < —1/3.

5 Simulation Results

We consider the nonlinear regression model ; = z;{1 — ne{=7/%)} for which the biases of 7 and ¥
come easily from (4) as
¢? (5552 — 8-18183)

B(H) =
@ 2a30 1(s082 — 87)*
and
B) = & (3808182 — 25 — 5_1583)
2&2’0 112(8082 = BIi))2 !
where

8 = 2 ,:.‘e(—2‘v/=-')
i=1
for r=-1,0,1and 2.

This section presents Monte Carlo simulation results comparing the performance of the MLEs , §
and ¢ and their bias corrected counterparts 7)., . and ¢, in five symmetric nonlinear models with the
same systematic component given above but with the response generated from the normal, Cauchy,
Student ¢ (¥ = 2 and v = 5) and type Il logjstic distributions. The Cauchy model was generated from
the equation y = i + ¢v; /vz, where vy and v, are independent unit normal random variables. The ¢
model with v degrees of freedom was generated as the distribution of y = p + ¢v(x3/r)~1/2, the two
random variables v (a unit normal variable), and x2 (a chi-squared random variable with v degrees of
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freedom) being mutually independent. The type Il logistic distribution was obtained as the distribution
of y = u + $log{u/(1 — u)}, where u is a standard uniform (0, 1) random variable.

For the simulations we have set 7 = 3, v = 2 and ¢ = 2 for the cases n = 30 and n = 40.
The covariates values z}s were obtained as random draws from a uniform U(2, 4) distribution and their
values were held fixed throughout the study with equal samples sizes. For each model, we generated
10, 000 vectors y of observations. For each replication, we fitted the model in GLIM using Cordeiro and
Paula’s (1989) offset algorithm in order to compute the MLEs 7, 7 and Q their biases B(") B(3) and
B(), and the corrected estimates 7, = 5 — B@#), 5.=9- B(3) and ¢ = ¢ B(¢) evaluating the
biases (given by formulae in this section and (10)) at the estimates (7,7) and ¢. Further, we computed
the sample means of the estimates #, ¥, &, 7, 7. and @ from all 10, 000 replications. The figures are
given in Table 2 for n = 30 and in Table 3 for n = 40 with the respective standard errors in brackets.

For all five models, the bias correction tends to shrink the uncorrected estimates of the parameters
n and v, whereas for the parameter ¢ the bias correction tends to increase the values of the uncorrected
estimates. The bias correction in all cases reported in these tables bring the estimates closer to their true
values, thus correctly signalizing the direction of the such biases. This suggest that the second—order
bias of MLEs should not be ignored in samples of small to moderate size since they can be nonnegligible.
As expected, the bias correction has less impact as n increases. Also, the mean squared errors of the
corrected estimates are smaller than those of the uncorrected estimates, although in a few cases the
standard errors of the corrected estimates were slightly greater than those of the uncorrected estimates
with the accuracy of four decimal places. Therefore, the bias correction yields a second—order reduction
in the mean squared errors of the modified estimates.

Table 2: Uncorrected and corrected estimates, five symmetric nonlinear
models and n = 30.

True Values
=3 =2 ¢=2
Estimate f fie ¥ Ye L o
Normal 3.43 3.11 2.13 2.05 1.90 1.97

(0.02) (0.02) (0.03)  (0.02) (0.00) (0.00)

Cauchy 391 334 2.23 208 188 194
(0.04) (0.04)  (0.05)  (0.04) (0.02) (0.02)

Student t, v =2 3.70  3.16 226 213 181 189
(0.03) (0.03)  (0.04)  (0.04) (0.02) (0.02)

Student t, =5 357 3.14 217 209 183 191
(0.02) (0.02)  (0.03)  (0.03) (0.01) (0.01)

Type Il logistic 397 3.28 231 212 175 189
(0.04) (0.03)  (0.05)  (0.04) (0.01) (0.01)
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Table 3: Uncorrected and corrected estimates, five symmetric nonlinear
models and n = 40.

True Values
n=3 y=2 ¢=2
Estimate f e ¥ ¥ - @ P
Normal 320 313 2.09 206 193 198

(0.02) (0.02)  (0.03)  (0.02) (0.00) (0.00)

Cauchy 348 326 2.17 210 187 192
(0.03) (0.03)  (0.04)  (0.03) (0.02) (0.01)

Student £,y =2 3.35 3.20 2.19 212 186 194
(0.03) (0.03)  (0.03)  (0.03) (0.01) (0.01)

Student t, »=5 331  3.18 2.15 211 184 193
(0.02) (0.01)  (0.02)  (0.02) (0.00) (0.00)

Type ll logistic  3.62  3.33 2.28 214 188 195
(0.03) (0.03)  (0.04)  (0.04) (0.01) (0.01)
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