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Abstract 

In this paper we derive general formulae for second-order biases of maximum likelihood estimatu in a class of 

symmetric nonlinear regression models. This class of models is commonly used for the analysis of data r:ontaining 

extreme or outlying observations in samples from a supposedly normal distribution. The formulae of the biases 

can be computed by means of an ordinary linear regression. They generalize some previous results by Cook, Tsai 

and Wei (1986), Cordeiro and Va1a1ncell05 (1997) and Cordeiro, Vasconcellos and Santos (1998). We derive 

simple closed-form expressions for these biases in special models. Simulation ruults are presented assessing the 

performance of the bias corrected utimates which indicate that they have i;maller biases than the corresponding 

unadjusted estimatu. 

Keywords: Bias correction; Maximum likelihood estimate; Nonlinear regression; Symmetric distribution; t distri­

bution. 

1 Introduction 

It is well known that the normal model is not always a good model for representing data containing 

extreme or outlying observations and there is presently a widespread awareness of the danger posed 

by the occurence of outliers. To overcome these problems, new statistical models that are not so 

easily affected by outlying observations have been developed. The symmetric family of distributions 

provides a useful extension of the normal distribution for statistical modeling of data sets involving 

errors with longer-than-normal tails. Symmetric distributions are appearing with increasing frequency 

in the statistical literature to model several types of data containing more outlying observations than 

can be expected based on a normal distribution. Specifically, a symmetric distribution with flat tails 

or with tails that decrease to zero more slowly than those of the normal distribution provides a useful 

model for achieving robust statistic.al inference in the analysis of such types of data. For these models, 

the inference remains trustworthy even if a certain amount of data is contaminated. 

The random variable y is said to have a symmetric distribution with location parameter µ E R and 

scale parameter <P > 0 if its density function is of the form 

1 ((y- µ)2) 11"(y; µ, <P) == t - <P- , y E R, (1) 

'Correspon~ to: Gauss M. Cordeiro, Departamento de Estatlstica. CCEN/UFPE, C~ UniYet'$itaria, Recife/PE, 

50740-5-40, Brazil. 
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for some function h (which is independent of y, µ and </>), such that h(u) > 0, for u > 0 and 
J0

00 u-1f2h(u)du = 1. In this paper, any particular symmetric distribution will be denoted by S(µ, <{>2). 

The characteristic function v,(t) = E(ei'11) is given by 1/J(t) = ei1"<p(t24>2), t E R, for some function 
q,, with <p(z) e R, for z > 0. Provided that they exist, E(y) = µ and Var(y) = k<t>2, where k > 0 
is a constant given by k = -2<p'(0), where <p'(0) = dq,(u)/dul,.=0- Thus, the parameter <f> is a kind 
of dispersion parameter. If the distribution S(µ, ,/,2) has r moments, then z-(r+l)/2h(z) is integrable 
(Kelker, 1970). The probability density function of z = (y- µ)/<f> is ,r(v; 0, 1) = h(v2

), v ER, which 
does not involve the parametersµ and <f>, i.e. z ~ S(O, 1). It is the standardized form of the symmetric 
distributions. 

The symmetric family of location-scale densities (1) retains the structure of the normal distribution, 
while eliminating the specific form of the normal density. Densities in this family are mainly distinguished 
by their tail length and some of them may have sharper or flatter tails than the normal form, although 
the main interest focuses on flat-tailed distributions. The class of symmetric distributions defined in 
(1) has been considered by several authors (Kelker, 1970; Chu, 1973; Cambanis, Huang and Simons, · 
1981). The properties of these distributions have been explored by Muirhead (1980, 1982), Berkane 
and Bentler (1986), Rao (1990) and Fang, Kotz and Ng (1990). It is easy to find many properties of 
S(µ, </>2) parallel to those of N(µ, if). A review of different areas in which symmetric distributions are 
applied is given by Chmielewski (1981). 

The modern area of research in symmetric distributions starts perhaps with the engineering applica­
tions considered by Blake and Thomas (1968) and McGraw and Wagner (1968). Cambanis, Huang and 
Simons (1981) presented a systematic treatment for symmetric distributions and Chmielewski (1981) 
gave a detailed survey of the;e distributions with applications to different areas. The special cases of (1) 
listed bellow have a wide range of practical applications in various fields such as engineering, biology, 
medicine and economics, among others. 

(i) Normal: h(u) = (2,r)-1l2 exp(-u/2); 

(ii) Cauchy: h(u) = {,r(l+u)}-1; 

(iii) Student's t: h(u) = vvf2B(l/2,v/2)-1(v+u)-~, 11 > O, where B(·,·) is the beta function; . 

(iv) Generalized Student's t: h(u) = s'"l2 B(l/2, r/2)-1(s + u)-~, s, r > 0. It includes Student's 
t (s = r = 11) and Cauchy distribution (s = r = 1); 

(v) Type I logistic: h(u) = ce-uc1 + e-u)-2 , where c ~ 1.484300029 is the normalizing constant 
which follows from J0

00 u-1l2h(u)du = 1; 

(vi) Type II logistic: h(u) = e-"
1

'
2 

(1 + e-"''')-2; 

(vii) Generalized logistic: h(u) = cB(m, m)-1{e-,,.;.(1 + e-0vu)-2}m, m > O, c > O. The type II 
logistic density corresponds to the case m = 1, c = 1; 

(viii) Kotz distribution: 

r(2m-1)/2 
h(u) = r(¥) um-1 exp(-ru), r > O, m ~ 1, 

(Kotz, 1975), where f(•) is the gamma function. If m = 1 this distribution reduces to the normal 
distribution with mean µ and variance <f>" / (2r); 
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{ix) Generarized Kotz distribution: 

sr(2m-1)/(2,) 

h(u) = r(¥) um-l exp(-ru'), r,s > 0, m ~ 1. 

For s = I, it reduces to Kotz distribution and for m = s = I and r = 1/2, it becomes the 

N(µ, t/,2) distribution. When m = 1, r = 1/2 and s = 1/(1 + k), it coincides with the power 

exponential distribution defined below in case (xii); 

(x) Contaminated normal: 

1 1 
h(u)=(l-t:) rn=exp(-u/2)+t: rn= exp{-u/(2u2

)}, u>O, 0$t:$1; 
v2~ v2~u 

(xi) Double exponential: h(u) = exp(-Ju)/2; 

(xii) Power exponential: 

h(u) = c(r) exp {-~ul/(t+r)}, -1 < r::; 1, 

where c(r)-1 = f(l + 1¥)21+(1+r)/2 (Box and Tiao, 1973); 

(xiii) Extended power famUy: 

h(u) = K(c, ~) exp{-~cp~ ( 1 + c ~ 
1
)}, 

where K(c, A) is the normalizing constant, c > 1, A ~ O and 

{ 
!C._fl, 

~ V = > p ( ) lim " -t = logv 
.\--+O -x- ' 

(Albert, Delampady and Polasek, 1991). 

if A> O, 

if ~=O . 

The 13 distributions listed above provide a rich source of alternative models for analysing univariate 

data containing outlying observations. However, some regularity conditions needed for the validity of our 

results do not hold for the Kotz, generalized Kotz and double exponential distributions. Moreover, we 

have not developed our results for the contaminated normal and extended power distributions. Therefore, 

in what follows, we restric our attention to the following distributions: normal, Cauchy, Student's t, 

generalized Student's t, type I logistic, type II logistic, generalized logistic and power exponential. 

The subject matter of this paper is the symmetric nonlinear regression model 

Yi ~ S(µi, ef,2), i = 1, ••• , n, (2) 

where Yl, ••• , y,. are assumed to be independent and each Yi has a symmetric distribution (1) with 

location parameter µi (µ; E R) and scale parameter tJ, > 0 which is common to all observations. In 

order to introduce a regression structure in the class of models (2), we assume thatµ;= f(z;;/3), where 

z; is an m x 1 vector of known explanatory variables associated with the i-th observable response Yi 

and /j E 0,e C R" is a p x 1 vector of unknown regression parameters. We further assume that Op is 
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compact with interior points and f is an injective and twice continuously differentiable function with 
respect to fJ at these interior points. Then, inference about /j and ¢, can be performed by likelihood 
methods analogously to those for the normal nonlinear model. A very convenient way for obtaining the 
maximum likelihood estimates (MLEs) /J and ef, of fJ and t/> is given by an iteratively reweighted least 
squares algorithm presented in Section 2. 

The computation of second-order biases is perhaps one of the most important of all approximations 
arising from the theory of estimation by maximum likelihood in nonlinear regression models. The obvious 
difficulty with nonlinear estimates is that they cannot be expressed as explicit functions of the data. 
Over the last ten years, there have been many advances with respect to bias calculation of nonlinear 
MLEs whose 1eCOnd-order biases can be larger than the corresponding standard errors of the estimates 
when the sample size n or the total Fisher information is small. In these cases, bias corrections can be 
important and the availability of formulae for calculating the biases is useful. Numerous applications 
for second-order bias corrections of MLEs are available in the literature. We refer the reader to the 
papers by Cook et al. (1986), Young and Bakir (1987), Cordeiro and McCullagh (1991), Paula (1992), 
Cordeiro and Klein (1994), Paula and Cordeiro (1995), Cordeiro and Vasconcellos (1997) and Cordeiro, 
Vasconcellos and Santos (1998). Except for the paper by Young and Bakir, all other papers deal with 
matrix formulae that are useful for applied researchers to compute bias corrections in some classes 
of nonlinear regression models. These formulae can be used to obtain bias-corrected estimates by 
subtracting the second-order biases from the MLEs. Despite these results, there is still skepticism 
from some researchers about the usefulness of second-order bias reduction. We address this issue by 
Monte Ca,-lo simulation to show that bia9-COl"reaed enimates of the parameters in aymmetri<: nonlinear 
regression models outperform traditional MLEs. 

The main goal of this paper is to derive general formulae for the second-order biases of the MLEs 
P and ef, in model (2). The plan of this paper is as follows. Section 2 presents a simple matrix 
for,mula for computing the n-1 bias of /J. The formula can be of direct practical use since the bias of 
/J 'is easily obtained as a vector of regression coefficients in an ordinary linear regression conveniently 
defined. In Section 3, we apply this formula to derive the n-1 bias of /J for some special models. In 
Section 4, we obtain a bias correction for the MLE of ¢,. We emphasize that the biases of /J and 
ef, presented here include as special cases some results due to Cook, Tsai and Wei (1986), Cordeiro 
and Vasconcellos (1997) and Cordeiro, Vasconcellos and Santos (1998). Finally, in Section 5, some 
Monte Carlo limulation results from model (2) are given on the finite-sample performance of their 
bia-corrected MLEs. The simulations indicate that bia-corrected estimates have smaller biases than 
the corresponding unadjusted estimates. 

2 Bias of the Estimate {3 

The purpose of this section is to USII!! Cox and Snell's (1968) formula (20) for the n-1 bias of the MLE 
in order to obtain the second-order bias of /J. In Section 4, we focus on the bias of~ . Let l = 1(/j, ~) 
be the total log-likelihood function, given the sample !11, ••• , y,., for the parameters /j and ¢, in model 
(2). We are interested in jointly estimation by maximum likelihood of the parameters /j and tj, and in 
correcting the biases of these estimates. We have 

" l(f:J,¢,) = -nlog~+ }:)ogh(zl}, (3) 
;=I 
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where 

is the standardized i-th observation. 

The function l is assumed to be regular (Cox and Hinkley, 1974; Chapter 9) with respect to all fJ 
and </> derivatives up to third order. Furthermore, the n x p matrix of derivatives ofµ= (µ1 , . •. , µ..) T 

with respect to /3, denoted by D = D(/3) = lJµ/lJ/3, is assumed to be of full rank, i.e. rank (D) = p 
for all /3. Inference about /J and </J can be performed by likelihood methods analogous to those for the 
normal model. Regularity conditions are also stated in Serfling (1980, p. 144). We must assume that 
the MLEs /J and J converge to their true parameter values as n ➔ oo and that their joint asymptotic 
distribution is multivariate normal with the usual covariance matrix to the correct order. 

We now introduce the notation for moments of the log-likelihood derivatives: K,. = 
E(lJ2l/&f3rf3o), Kr,,= E(lJl/lJ{JrlJl/lJfJ,), Kr,t = E(fJ3l/&f3r&f3,lJf3t). Not all the K1

S are functionally 
independent. For example, Kr, = -Kr,, is the typical element of the information matrix for {3. Note 
that Kr,,t is the covariance between the first derivative of l with respect to /31 and the mixed second 
derivative of l with respect to f3r and /3,. Furthermore, we define the derivatives of the moments as 

K~1 = lJKro/&/3,. All K1s and their derivatives are assumed to be of order O(n). Also, the following 
notation is adopted: d,r = lJµ;/&/3r and g;,. = lJ2µ;/&/3r&f3, for the first and second partial derivatives 
of µ, with respect to the elements of (3. 

Now define Or,,= E{t(r)(z)z'} for r, s = 0, 1, 2, 3, where t(z) = log h(z2) and t(r)(z) = drt(z)/dzr. 
Differentiating (3) and taking expectations, we obtain 

Kr,</1 = 0, ~(u) _ 02,0 ~ (.1, g· + _,_ g· ) 
"'rt - 7"' {;j_ ut:r 1tu Uott 1ru , 

n 
K~ = - f3 (oa,a + 602,2 - 4). 

In view of the global orthogonality between f3 and tp (Kr,., = 0), the joint information matrix for 
these parameters is block-diagonal, i.e. K = diag{Kp, K41,41}, where Kp = -(02,o/</>2)DT D is the 
information matrix for /J. The Fisher scoring method can be used to estimate /3 and 'P simultaneously 
by iteratively solving the equations 

13(m+t) = 13<m) - _ l_ (D(m)T v<ml)-1 v(m)T ,<ml, 
02,0 

<f>(m+l) = tp!m) + 1 {~(y- µ(m))Tw(m)(y- µ<ml) - tpCm)2
}' 

tp(ml(l - 02,2) n 

where (Cm) = w(ml (y - µ(ml) with W = diag{w1, ... , w .. } and w; = -z11d log h(zl}/dz,. 
Let B(Pa) be the n-1 bias of '/l11 • The use of Cox and Snell's formula to obtain B(Pa) is greatly 

simplified, since /J and tJ, are globally orthogonal. We obtain 
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where -1tr• and -1,,H are the corresponding elements of the inverse of the joint information matrix 
K and E' denotes the summation over all combinations of the parameters /31, ••• , {3,,. Since tt,.1.,/2 + 
"rt,u = 1t!:> - "rtu/2 and "r-H/2 + "r~.~ = "~~ - "rH/2 = 0, it follows that 

B(Pa) = L 1'-ar,_t• ( ;~) t (dir9itu + d;1Uiru - d;,.girt)• 
r,t,u •=1 

By rearranging the summation terms we have 

let df (1 X p) and 9i (1 X p2) be vectors containing the first and second partial derivatives of µ; 
with respect to the {3' s . We can vvrite the above equation in matrix notation as 

.. 
B(/3- ) a2.o ~ TK-ld T (K-1) ., = ----:3" L., p. fJ ;g; vec fJ , 2.,,--- icl 

where pJ is the a-th row of the p x p identity matrix and vec(.) is the operator which transforms a 
matrix into a vetor by stacking the columns of the matrix one underneath the other. It is straightforward 
to check that 

B(/J~ ) a2,o TK-lDTG (K-1) 
Cl = 2qilpc, fJ Vee /J I 

where D = IJµ/8{3 = (d1, ... , d,,)T and G = 82µ/8{3T 8{3 = (gi, ... , g,.) T denote n x p and n x p2 
matrices of the first and second partial derivatives ofµ with respect to the {31s, respectively. The n-1 

bias vector B(/3) of /3 can then be written as 

B(P) = (nT vf1 nT d, (4) 

where d iii an n x 1 vector defined as d = (<fil /(2a2,o))Gvec{(DT D)-1 }. 

A number of remarks are worth making with respect to expression (4). The bias vector B(P) can 
be obtained from the liimple least-squares regressio'! of don the columns of D. Clearly, the bias B(P) 
depends on the symmetric distribution of the data only through the quantity a2,o and it can be large 
when a2,o and n are both small. Further, the bias of jj increases with the dispersion parameter I/>. For 
some symmetric distributions, the values of a2,o are given in Table 1. For normal models, a 2,0 = -1 and 
equation (4) coincide with the result due to Cook, Tsai and Wei (1986, Equation (3)). Fort models, 
a 2,0 = -(11 + l)/(11 + 3) and equation (4) reduces to Cordeiro, Vasconcellos and Santos's (1998) 
formulae (2)-(3). For linear models, G = 0 and then B(P) = 0, as expected. 

Equation (4) is easy to be handled algebraically for any type of nonlinear regression, since it involves 
only simple operations on matrices and vectors. It will compute B(fl) algebraically with minimal effort 
if it is used in conjunction with a computer algebra system such as MATHEMATICA (Wolfram, 1996) 
or MAPLE (Abell and Braselton, 1994). For special models with closed-form inverse matrix (DT D)-1 , 

it is possible to obtain closed-form expressions for B(Ji). In order to obtain B(fi) numerically, the 
quantities D and G Jn the right-hand side of equation ( 4) have to be evaluated at the P_.?int <jT, i). 
The bias vector B(/3) is equal to the least squares estimate in the linear regression of d on D. The 
bin-corrected estimate is limply defined as Pc= 'fj - B(P), where B(·) denotes the value of B(·) at ~­(/3 '!/>) . 
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3 Special Regression Models 

We now consider a few special models which produce some simplification in equation (4). Other 
important special models can also be easily handled because of the simplicity of this equation which 
only requires simple operations on matrices and vectors. First, consider a one parameter nonlinear 
regression model whose regression function depends on a single parameter (3. Equation (4) yields 

(5) 

2 -where 81 = Ef=1 (df;/df3) and 82 = El':1 (df;/d/j)(d2 f,/df32). Now, s1 and s2 evaluated at /j and 
</> replaced by 4> yield .B(fi) and the corrected estimate is~= fj - B(lJ). 

As a second application we consider a partially nonlinear regression model defined by 

µ = Za + 71g(,), (6) 

where Z is a known full rank n x (p-2) matrix, g(1) denotes an nx 1 vector and (3T = (n T, 77, ,), where 
a T = ( a 1 , ••• , a,,_2) and 77 and , are scalar parameters. This class of models is commonly used in the 
statistical literature. For example, µ = o:1z1 +o:2z2+71exp(,2z) (Gallant, 1975), µ = a-71 log(x1 +,x2) 
(Darby and Ellis, 1976; Stone, 1980). Other types of models of the form (6) are discussed by Ratkowsky 
(1983, Chapter 5). The n x p matrix D reduces to the form D = (Z, g(1), 77(Jg(1)/d1) and we obtain 
from (4), after some algebra, 

(7) 

where r,, is a p x 1 vector with a one in the last position and zeros elsewhere, o,, == 
(DT n)-1 DT d2g(,)/d,2 is simply the set of coefficients from the ordinary regression of d2g('Y)/d,2 

on D, and Var(9) and Cov(ri,9) are the large-sample second moments obtained from the appropriate 
elements of the asymptotic covariace matrix Cov(P) == K"p1 == (-</>2 / et2,o)(DT D)-1. It is clear from 

(7) that B(lJ) does not depend on the linear parameters a and that it is proportional to </>2 /a2,o­
Moreover, the biases of o and ,; are both proportional to the value of fl· 

We conclude this section with a nonlinear regression model, known as the Michaelis-Menton model, 
which is very useful for estimating growth curves, where it is common for the response to approach an 
asymptote as the stimulus increases. The Michaelis-Menton model (McCullagh and Nelder, 1989, p.16) 
provides an hyperbolic form forµ. against z; given by 

flX; 

µ. == 'Y + x;' 
(8) 

where the curve has an asymptote atµ= 71. We can express the n-1 biases of ff and 9 in terms of the 
quantities 

for r = 2, ... , 5. We find 
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and 
B('?) = £. {83(28284 - ~) - 8~Bs} 

02,0 112 (8284 - 8lP 

The biases of fj and 'y involve both 77 and"'( and are proportional to 4>2 /(7702,0) and to q,2 /(77202,0), 
respectively. Thus, they tend to be large when the regression parameter 77 is small. 

4 Biases of Estimates 4> and ¢2 

Here we turn to the derivation of the n-1 biases B(i) and B(ef,') of i and ¢,', respectively. To calcule 
B(efi) from Cox and Snell's (1968) formula, we have to take into account the following sums due to the 
orthogonality of /3 and 4> 

B(~);:; -½,-# E',_tu1t,1u + (1-,/,,/,)2(11:~ - ½11:u.), 
1,u 

(9) 

On inserting the expression for the cumulant 11:,,u given in Section 2, the first sum in (9), B1(i) say. 
follOW$ after some calculation as 

Bi(i) = p,f, (03,1 + 202,0). 
2n 02,0( 02,2 - 1) 

The second sum, B2(i) say, comes immediately from 11:H, tc~1 and,. ... as 

B2(i) = .1.._ { 03,3 + 202,2}. 
2n (02,2 - 1)2 

Finally, we obtain the n-1 bias of~ by adding B1 (4') and B-l(i) : 

B(i) = 4> {p ( 03,1 + 2) + 03,3 + 202,2}. 
2n(o2,2 - 1) 02,0 (02,2 - 1) 

(10) 

Equation (10) gives the n-1 bias B(efi} of the MLE 4, in the dass of symmetric nonlinear regression 
models (2). The bias B(i) depends on the symmetric distribution only through the quantities 0 2,0, 

02,2, 03,1 and 03,3. As equation (10) makes dear, this bias is always a linear function of the dimension 
p of {3. In Table 1 we give these quantities for some symmetric models discussed in Section 1. Note 
that B(J) depends directly on the nonlinear structure of the model regression only through the rank p 
of D. 

We define the corrected MLE ~c of¢, by ~c = i-B(i) where B(i) is the value of B(i) in equation 
(10) at i. We give below the n-1 biases of ~ obtained from (10) for some symmetric models : 

(i) Normal: B(i) = -4>(1 + 2p)/(4n), which is in agreement with Cordeiro and Vasconcellos's 
(1997) expression (14); 

(ii) Cauchy: B(J) = 4>{1 - p)/n; 
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(iii) Student'• t: 

B(~ = - ef,(11 + 2)(11 + 3) (2 + II - 7) 
4nv(v+5) p 11+2 ' 

which is identical to Cordeiro, Vasconcellos and Santos' (1998) expression (7); 

(iv) Generalized Student's t: 

B(J) = -¢> (r + 2){r + 3) ( 2 + r - 7). 
4nr(r+5) p r+2 ' 

(v) Type I logistic: B(J) Rj -ef>(0.47547p+ 0.24972)/n; 

(vi) Type II loglstic: B(i) ~ -ef>(0.52445p+ 0.05257)/n; 

(vii) Generalized logistic: 

B(2)- </>(2m+ 1) {<2 l 2m
2
(2m+l)tJ,'(m+l)} 

'I' - -2n(m+l)(2m2t/,'(m+l)+2m+ 1) m+ )p+ (2m2tJ,1(m+1)+2m+I) · 

In this case, the bias correction is a complicated function of m requiring the evaluation of 
polygamma functions. In order to simplify the evaluation of the bias correction, m:: give sim­

ple approximations for large m and small m . For large m, we have 

- ef, ((1 1 1 ) (1 3 5 25 )] -• 
B(ef>)"" n 2 + 12m2 8m3 p+ 4 Sm+ 8m2 96ml + O(m ), 

and for small values of m 

B(J) = -~ [ ( ½ + ; - ( ,r: + ½) m
2 + (½ + 2((3) + ~

2
) m3) p 

- ~

2 

m2 + (2((3) + ~ir
2
) m3

] +O(m"), 

where ( is the Riemann zeta-function, i.e., ((a)= Li=l r(a+i). 

(viii) Power exponential: B(~) = -ef>(l - r + 2p)/(4n), for- -1 < r < -1/2. 

We now give a s.imple formula for the n-1 bias of the MLE of the variance parameter 1/)2 . This 

formula can be easily obtained by expanding G(4>) = ¢>2 in Taylor series together with the bias of J 
given in (10). From 

we obtain to order n-1 

1l - ¢>2 
B(ip ) = 21/>B(i,) - ( l). 

n o2,2 -
(11) 

The n-1 bias of the MLE of the variance Var(y) = kl/>2 follows easily from equation (11) when one 

replaces i,2 by ?,2. The estimate~= ef,2 - .B(4'2) is expected to have better sampling properties than 

the uncorrected estimate ef,'-. Applications of equation (11) cover many important cases including the 

following distributions, where we give the values of k: normal (k = 1), Student's l (k = 11/(11 - 2)), 

generalized Student's t (A: = a/(r - 2)), type I logistic (A: = 0.79569), type II logistic (k = 1r
2 /3), 

generalized logistic (k = 2tt,'(m)/c) and power exponential (A:= 21-tr {f(3(1 + r)/2)/ r((l + r)/2)}). 
For the normal distribution, equation (11) yields B(ef,'-) = -JXl,2 /n, as expected. 
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Table 1: Values of 02,0, 02,2, 03,1 and 03,3 for some symmetric 
distributions• 

Model 02,0 a:z.:i 03,1 03,3 

Normal -1 -1 0 0 

Cauchy -1/2 1/2 1/2 -1/2 

Student t ~ ~ 6 v+l ~3"-5) 
3 3 .. +J .. +s (a,+3)(11+5) 

Generalized Student t ~ ~ 6r r+l 6 3r-5 
3 3 • r+3 r+5 r+3 r+5 

Type I logistic -1.47724 -2.01378 -1.27916 -0.50888 

Type II logistic -1/3 -0.42996 1/6 0.64493 

Generalized logistic ~ 2 
(2m'l.1) 

2(1-m2,t,1~m)) 
(2m+1 

~m2 
(2m+1l(m+1) 

6(m2.,'1m)-1l 
(2m+1 (m+l 

Power exponential =1 
r+l 

• r(z) is the gamma function and ¢(z) = d log r(z)/dz is the digamma function . For the power 
exponential distribution, r < -1/3. 

5 Simulation Results 

We consider the nonlinear regression model µ; = z;{l - 17el4 /~,)} for which the biases of fi and 9 
come easily from (4) as 

and 

where .. 
llr = E z;-e(-2-,/.r;) 

•=1 
for r = -1, 0, 1 and 2. 

This section presents Monte Carlo simulation results comparing the performance of the MLEs fi, 9 
and ~ and their bias corrected counterparts fie, % and ic in five symmetric nonlinear models with the 
same systematic component given above but with the response generated from the normal, Cauchy, 
Student t (11 = 2 and 11 = 5) and type II logistic distributions. The Cauchy model was generated from 
the equation y = µ + 4'vi/V<J, where Vi and 1'2 are independent unit normal random variables. The t 
model with II degrees of freedom was generated as the distribution of y = µ + q,v(i:,/11)-112, the two 
random variables v (a unit normal variable), and x~ (a chH;quared random variable with II degrees of 
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freedom) being mutually independent. The type II logistic distribution was obtained as the distribution 
of 'II=µ + 4> log{ u/(1 - u)}, where u is a standard uniform (0, 1) random variable. 

For the simulations we have set 11 = 3 , "( = 2 and </, = 2 for the cases n = 30 and n = 40. 
The covariates values z:s were obtained as random draws from a uniform U(2, 4) distribution and their 
values were held fixed throughout the study with equal samples sizes. For each model, we generated 
10,000 vectors y of observations. For each replication, we fitted the model in GLIM using Cordeiro and 
~a~a•s (1989) offset algorithm in order to co'!'pute the MLEsJ. 9 and ~. thei! bia__~ B(fj), B(9) and 
B(</,), and the corrected estimates fie= fj- B(ff), 9c = 9 - B(9) and <Pc= ip - B(ip), evaluating the 
biases (given by formulae in this section and (10)) at the estimates (ij, 9) and i. Further, we computed 
the sample means of the estimates ij, 9, 4,, fie, 9c and 4'c from all 10, 000 replications. The figures are 
given in Table 2 for n = 30 and in Table 3 for n = 40 with the respective standard errors in brackets. 

For all five models, the bias correction tends to shrink the uncorrected estimates of the parameters 
11 and 'Y, whereas for the parameter </, the bias correction tends to increase the values of the uncorrected 
estimates. The bias correction in all cases reported in these tables bring the estimates closer to their true 
values, thus correctly signalizing the direction of the such biases. This suggest that the second-order 
bias of MLEs should not be ignored in samples of small to moderate size since they can be nonnegligible. 
As expected, the bias correction has less impact as n increases. Also, the mean squared errors of the 
corrected estimatu are smaller than those of the uncorrected estimates, although in a few cases the 
standard errors of the corrected estimates were slightly greater than those of the uncorrected estimates 
with the accuracy of four decimal places. Therefore, the bias correction yields a second-order reduction 
in the mean squared errors of the modified estimates. 

Table 2: Uncorrected and corrected estimates, five symmetric nonlinear 
models and n = 30. 

True Values 
11=3 1=2 </>=2 

Estimate ij fie 9 9c <I> <Pc 
Normal 3.43 3.11 2.13 2.05 1.90 1.97 

(0.02) (0.02) (0.03) (0.02) (0.00) (0.00) 

Cauchy 3.91 3.34 2.23 2.08 1.88 1.94 
(0.04) (0.04) (0.05) (0.04) (0.02) · (0.02) 

Student t, 11 = 2 3.70 3.16 2.26 2.13 1.81 1.89 
(0.03) (0.03) (0.04) (0.04) (0.02) (0.02) 

Student t, 11 = 5 3.57 3.14 2.17 2.09 1.83 1.91 
(0.02) (0.02) (0.03) (0.03) (0.01) (0.01) 

Type II logistic 3.97 3.28 2.31 2.12 1.75 1.89 
(0.04) (0.03) (0.05) (0.04) (0.01) (0.01) 
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Table 3: Uncorrected and corrected estimates, five symmetric nonlinear 
models and n = 40. 

True Values 

17=3 1=2 <I>= 2 
Estimate rj fie 9 9c <I> </>c 
Normal 3.29 3.13 2.09 2.06 1.93 1.98 

(0.02) (0.02) (0.03) (0.02) (0.00) (0.00) 

Ca11chy 3.48 3.26 2.17 2.10 1.87 1.92 
(0.03) (0.03) (0.04) (0.03) (0.02) (0.01) 

Student t, 11 = 2 3.35 3.20 2.19 2.12 1.86 1.94 
(0.03) (0.03) (0.03) (0.03) (0.01) (0.01) 

Student t, 11 = 5 3.31 3.18 2.15 2.11 1.84 1.93 
(0.02) (0.01) (0.02) {0.02) (0.00) (0.00) 

Type II logistic 3.62 3.33 2.28 2.14 1.88 1.95 
(0.03) (0.03) (0.04) (0.04) (0.01) (0.01) 
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