

**Universidade de São Paulo
Instituto de Física de São Carlos**

**XIV Semana Integrada do Instituto de
Física de São Carlos**

Livro de Resumos da Pós-Graduação

**São Carlos
2024**

Ficha catalográfica elaborada pelo Serviço de Informação do IFSC

Semana Integrada do Instituto de Física de São Carlos

(13: 21-25 ago.: 2023: São Carlos, SP.)

Livro de resumos da XIII Semana Integrada do Instituto de Física de São Carlos – Universidade de São Paulo / Organizado por Adonai Hilário da Silva [et al.]. São Carlos: IFSC, 2023.

358p.

Texto em português.

1. Física. I. Silva, Adonai Hilário da, org. II. Título.

ISSN: 2965-7679

3

Convolutional neural networks for classifying central and peripheral nodes

MERENDA, João Vitor¹; BRUNO, Odemir Martinez¹

joao.merenda@usp.br

¹Instituto de Física de São Carlos -USP

Identifying central and peripheral nodes within network science has gained significant attention due to its wide range of applications across physics, engineering, biology, and social science. For example, in social networks, central nodes often correspond to influential individuals who can affect information dissemination (1), while in biological networks, central nodes might represent critical proteins or genes essential for cellular functions. Over the years, numerous algorithms have been devised to address this task, utilizing centrality measures and statistical tools (2). In the past decade, artificial neural networks (ANNs) have ruled machine learning methodologies, demonstrating remarkable success in various domains. However, their application to graphs and networks remains relatively unexplored, with few notable success stories (3). This study introduces a novel ANN architecture based on convolutional neural networks, designed specifically for node classification, including the critical task of distinguishing between central and peripheral nodes. The proposed ANN was applied to classify nodes in the four major synthetic network models: Barabasi-Albert, Erdos-Renyi, Waxman, and Watts-Strogatz. Additionally, the ANN was tested on real-world networks, demonstrating its versatility and effectiveness.

Palavras-chave: Network science; Redes complexas; Pattern recognition.

Agência de fomento: CAPES (88887.937922/2024-00)

Referências:

- 1 ACEMOGLU, D.; OZDAGLAR, A.; YILDIZ, E. Diffusion of innovations in social networks. *In: IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE*, 50., 2011, Orlando. **Proceedings** [...] Orlando: IEEE, 2011. p. 2329–2334. DOI: 10.1109/CDC.2011.6160999.
- 2 ARRUDA, G. F. *et al.* Role of centrality for the identification of influential spreaders in complex networks. **Physical Review E**, v. 90, n. 3, p. 032812. 2014. DOI: 10.1103/PhysRevE.90.032812.
- 3 GROVER, A.; LESKOVEC, J. Node2vec: scalable feature learning for networks. *In: ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING*, 16., 2016, San Francisco. **Proceedings** [...]. San Francisco: ACM, 2016. p. 855–864. DOI: 10.1145/2939672.2939754.