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Abstract
The aim of this paper is to give an overview of the participation of our research 
group in the development of nonassociative algebras.
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Algebraic structures, not necessarily associative, appear naturally in connection with 
other areas of Mathematics and even more in other branches of Science, such as 
Biology, Physics, etc. Apart from Lie algebras, which are the most known and inves-
tigated nonassociative structures, many other classes of nonassociative algebras have 
been widely studied in the world. For instance, Jordan algebras originated in 1934 in 
order to formalize algebraic properties of observables in quantum mechanics. Alter-
native algebras appeared even before. The octonions were discovered by Graves in 
1843 and, independently, by Cayley in 1845. Alternative algebras also were used by 
Zorn and Moufang in problems related to projective geometry.

The main results of the research group of nonassociative algebras in IME-USP, 
through the collaboration of its members with researchers from other centers, gradu-
ate and pos-doc students, are briefly mentioned in the sections that follow.
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The investigation on nonassociative algebras in IME-USP started in 1980 by Rob-
erto C. F. Costa. The research group grew up with professors formed in the Institute 
itself and the coming of external researchers. In this paper, we describe part of the stud-
ies developed by this group. The research on Lie Algebras is reported in another paper 
in the same volume of this journal. Besides the authors of this paper and our colleagues 
who work in the area of Lie algebras, the members of the research group in the Univer-
sity of São Paulo are Alexandre Grishkov, Henrique Guzzo Jr., Iryna Kashuba and Juan 
Carlos Gutiérrez Fernández. The group has many collaborators around the world. In 
1985 the first postgraduate student was formed. Since then, there have been 23 Master 
and 32 PhD students formed by this part of the group.

1 � Structure and representations

1.1 � Alternative and Jordan algebras and superalgebras

We will remind the main definitions used in the paper.
An algebra is called alternative if it satisfies the identities

where (x, y, z) = (xy)z − x(yz) denotes the associator of the elements x, y, z. A classi-
cal example of nonassociative alternative algebra is the algebra of octonions.

An algebra is called Jordan if it satisfies the identities

A typical example of Jordan algebra is the algebra A(+) obtained from an associa-
tive algebra A over a field of characteristic ≠ 2 by introducing a new multiplica-
tion a ⋅ b =

1

2
(ab + ba) . A Jordan algebra J is called special if it is isomorphic to 

a subalgebra of the algebra A(+) for a certain associative algebra A. Otherwise it is 
called exceptional. The most known example of an exceptional Jordan algebra is 
the Albert algebra of 3 × 3 Hermitian matrices over octonions (with the symmetric 
product a ⋅ b).

A superalgebra is a ℤ2-graded algebra A = A0 ⊕ A1 , that is, AiAj ⊆ Ai+j (mod 2)
 . A rep-

resentative example of a superalgebra is the Grassmann algebra G generated over a 
field F by elements 1, e1,… , en,… with eiej = −ejei . The products

form a basis of G over F. Denote by G0 and by G1 the subspaces generated respec-
tively by products of even and odd length; then G = G0 ⊕ G1 is the direct sum of 
these subspaces which provides G with a superalgebra structure.

Let now A = A0 + A1 be a superalgebra over F. Consider the tensor product of 
F-algebras G⊗ A . The subalgebra

(x, x, y) = 0, (x, y, y) = 0,

xy − yx = 0, (x, y, x2) = 0.

1, ei1ei2 … eik , i1 < i2 < ⋯ < ik,

G(A) = G0 ⊗ A0 + G1 ⊗ A1
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is called the Grassmann envelope of the superalgebra A.
Let M be a variety of algebras over F. A superalgebra A = A0 + A1 is called an 

M-superalgebra if the Grassmann envelope G(A) belongs to M . In this way, one 
can define alternative, Jordan, Lie, etc. superalgebras.

If A = A0 + A1 is an associative superalgebra, then the superalgebra A+s obtained 
by introducing on A a super-symmetric multiplication a ⋅ b =

1

2
(ab + (−1)āb̄ba) 

is a Jordan superalgebra. Here, ā denotes the index of parity of the element 
a ∈ A0 ∪ A1 ∶ ā = i if a ∈ Ai . Similarly to the case of algebras, we have notions of 
special and exceptional Jordan superalgebras.

1.1.1 � Speciality of Jordan superalgebras defined by brackets

An important class of Jordan superalgebras was introduced by I. Kantor [110]. Let 
A be an associative commutative algebra with a bracket, that is, an anticommutative 
product {a, b} . Let Ā = {a ∶ a ∈ A} be a linear copy of A, consider the direct sum of 
vector spaces Kan(A) = A⊕ Ā , and define on it a multiplication ⋅ by the rules

where a, b ∈ A and ab is the product in A. Define a ℤ2-grading on J = Kan(A) by 
putting J0 = A, J1 = Ā . Then J becomes a commutative superalgebra. If J is Jordan 
then the bracket {a, b} is called a Jordan bracket, and the superalgebra J is called 
a Jordan superalgebra of brackets. An important example of Jordan bracket is the 
Poisson bracket (see Sect. 4.1.1).

A natural question that arises is: “Whether and when is the Jordan superalgebra 
of brackets special?” McCrimmon proved that a simple superalgebra of the classi-
cal Poisson bracket is not special. In 1994, I. Shestakov proved that for any Poisson 
algebra A, the superalgebra Kan(A) is i-special, that is, it is a homomorphic image 
of a special algebra. In [137], it was proved that any superalgebra of Jordan brackets 
can be embedded into a Jordan superalgebra of Poisson brackets, hence it is i-spe-
cial. In [175], I. Shestakov presents a condition that is necessary for such a superal-
gebra be special. The sufficiency of this condition, however, is still open.

1.1.2 � Irreducible representations of the Jordan superalgebra of Grassmann Poisson 
bracket

The definition of Jordan algebra of brackets Kan(A) may be easily extended to the 
case when A = A0 + A1 is a commutative superalgebra; in this case one has to define 
J(A) = (A0 + A1)⊕ (A0 + A1) with the grading J(A)0 = A0 + A1, J(A)1 = A1 + A0 , 
and a natural control over signs in the products. For the Grassmann Poisson superal-
gebra on n odd generators, Kan(n) , A. Stern, C. Martínez and E. Zelmanov obtained 
a classification of irreducible representations in zero characteristic and when n ≥ 5 , 
using the Tits-Kantor-Koecher functor (TKK-functor), which associates to a Jordan 
(super)algebra J a Lie (super)algebra TKK(J) . In [194], I. Shestakov and O. Folleco 
Solarte generalize this previous classification, obtaining the description of irreduc-
ible bimodules over Kan(n) , over any algebraically closed field of characteristic not 

a ⋅ b = ab, a ⋅ b̄ = ā ⋅ b = ab, ā ⋅ b̄ = {a, b},
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2 and n ≥ 2 . Their proof is direct and does not use the structure of Lie modules over 
the Lie superalgebra TKK(Kan(n)).

1.1.3 � Engel theorem for Jordan superalgebras

It is well known that finite dimensional Jordan nil algebras are nilpotent. This 
fact does not hold for Jordan superalgebras [170]. Nevetherless, I. Shestakov and 
K. Okunev [180] proved that, over an infinite field of characteristic not 2, a finite 
dimensional Jordan superalgebra J which satisfies the Engel condition on homo-
geneous elements (that is, the right multiplication Ra is nilpotent, for any homo-
geneous element a ∈ J ) is nilpotent.

The question remains open for superalgebras over finite fields.

1.1.4 � Wedderburn Principal Theorem for Jordan superalgebras

The validity of an analogue of the Wedderburn Principal Theorem for finite 
dimensional Jordan superalgebras is investigated by F. Gomez González in [63, 
64] under the supervision of I. Shestakov. The theorem is proved in the case J  is 
a finite dimensional Jordan superalgebra over a field of characteristic zero, with 
radical N such that N2 = 0 , and

•	 J∕N ≅ Mn|m(F)
(+) , and no homomorphic image of N, considered as J∕N-bimod-

ule, contains a subbimodule isomorphic to the Mn|m(F)
(+)-regular bimodule [63];

•	 J∕N is a simple Jordan superalgebra of one of the types: K10 , the 10-dimen-
sional Kac superalgebra, K3 , the 3-dimensional Kaplansky superalgebra, the 
Jordan superalgebra of a superform or a superalgebra in the 1-parametric fam-
ily Dt of 4-dimensional superalgebras, over an algebraically closed field [64]. 
As in the first case, some additional conditions on N must be imposed.

In all cases, it is shown that the restrictions made on N are needed, by means of 
counterexamples.

1.1.5 � Commuting U‑operators in Jordan algebras

In [177] I. Shestakov presents an example of Jordan algebra with elements a, b 
such that ab = 0 but the quadratic operators Ua and Ub do not commute. This gives 
an answer to the open question published by J. Anquela, T. Cortés and H. Peters-
son in [4]. Moreover, he gives a simpler proof of the main result (in characteristic 
not 2) of that paper: in any non degenerate Jordan algebra, the condition ab = 0 
implies [Ua,Ub] = 0 . In [5] J. Anquela, T. Cortés and I. Shestakov generalize the 
construction in [177] and, as a consequence, obtain examples of Jordan algebras 
which cannot be imbedded in nondegenerate algebras.
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1.1.6 � Finitely presented Jordan algebras

It is known that if R is a finitely generated associative algebra over a field F of 
characteristic not 2, then the Jordan algebra R(+) is finitely generated as well. If the 
algebra R has an involution ∗ then the space of symmetric elements H(R, ∗) is also 
finitely generated. Finite presentability of the Jordan algebras R(+) and H(R, ∗) are 
considered in [189]: I. Shestakov and E. Zelmanov provide an example of a finitely 
presented associative algebra R for which the Jordan algebra R(+) is not finitely pre-
sented. Also, they prove that if R is a unital associative finitely presented algebra 
with involution that has at least 3 orthogonal connected symmetric idempotents then 
the Jordan algebra H(R, ∗) is finitely presented. In particular, if A is a finitely pre-
sented associative algebra then the Jordan matrix algebra M3(A)

(+) is finitely pre-
sented. The corresponding question is open for matrices of order 2.

1.1.7 � Representations of alternative and Jordan superalgebras of characteristic 3

Simple alternative superalgebras were classified by I. Shestakov and E. Zelmanov. 
It was proved by I.  Shestakov that a simple alternative superalgebra which is not 
just a ℤ2-graded alternative algebra should have characteristic 3 and is isomorphic 
to one of the superalgebras: B(1, 2) of dimension 3 and B(4, 2) of dimension 6 (see 
[171]). Irreducible superbimodules and superbimodules with superinvolution over 
these superalgebras are classified by M.C.  López Diaz and I.  Shestakov in [131]. 
They prove that, besides a certain two-parametric series of bimodules V(�,�) over 
B(1, 2), all other unital irreducible superbimodules for these superalgebras are regu-
lar or opposite to them. Also, they prove that every unital B(4, 2)-superbimodule is 
completely reducible. Moreover, they obtain an analogue of the Kronecker factoriza-
tion theorem for alternative superalgebras B containing B(4, 2) as a unital subsuper-
algebra: B = B(4, 2)⊗̃U , for a convenient associative commutative superalgebra U. 
In the case of superbimodules with superinvolution, they obtained the same super-
bimodules for B(4, 2); however, the family V(�,�) does not occur for B(1, 2). As a 
consequence, they obtain that every unital supermodule with a superinvolution with 
symmetric elements in the nucleus over B(1, 2) is completely reducible and admits a 
Kronecker factorization as above.

Representations of simple Jordan superalgebras of 3 × 3 hermitian matrices over 
the exceptional simple alternative superalgebras B(1, 2) and B(4, 2) of characteris-
tic 3 are described in [132]. It is proved that every irreducible bimodule over these 
superalgebras is either a regular bimodule or opposite to them and every unital 
supermodule over these superalgebras is completely reducible. They also obtain a 
Kronecker factorization theorem for Jordan superalgebras that contain H3(B(1, 2)) 
and H3(B(4, 2)).

1.1.8 � Representations of alternative algebras and superalgebras

The complete classification of irreducible alternative bimodules of arbitrary dimen-
sion and characteristic as well as finite dimensional irreducible alternative superbi-
modules for any characteristic over an algebraically closed field were obtained by 
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I. Shestakov and M. Trushina. They proved that if M is a nonassociative irreducible 
bimodule over an alternative algebra A of arbitrary dimension then A is simple, cen-
tral, has finite dimension over its center and satisfies one of the following cases

•	 A is a quaternion algebra and M is the Cayley bimodule over A;
•	 A is an octonion algebra and M is the regular bimodule over A.

In the case of superalgebras, they proved that if a superalgebra A = A0 + A1 has an 
irreducible superbimodule M then A0 = 0 or A is a prime superalgebra. In the case 
A0 = 0 , M has dimension 2 or 4 over its centroid and is isomorphic to one of the two 
bimodules considered in [170]. When A0 ≠ 0 and A is prime, they obtained a clas-
sification of irreducible A-superbimodules in the following cases

•	 A is finite dimensional;
•	 A has characteristic ≠ 3;
•	 A has characteristic 3 and is simple.

It remains only the case when A is a non simple prime superalgebra of characteristic 
3. These results can be found in [181].

1.1.9 � Associative representations of nonassociative algebras

Let L be a Lie algebra. The Poincaré–Birkhoff–Witt Theorem states the existence 
of an associative algebra U(L) and an injective linear map � ∶ L → U(L) such that 
�(xy) = [�(x),�(y)] , for x, y ∈ L . In order to generalize this situation, the notion 
of associative representation for algebras was defined by I. Shestakov and A. Kor-
nev in [125]: for an algebra A and an associative algebra with involution (B, ∗) , a 
linear map � ∶ A → B is called an associative representation of A in (B, ∗) if there 
exists a bilinear polynomial f(x, y) such that �(ab) = f

(
�(a),�(b)

)
 , for a, b ∈ A . If 

ker� = 0 , the representation is called faithful. They prove the existence of faithful 
associative representations of any alternative, Malcev and Poisson algebras for the 
polynomials f (x, y) = xy +

1

2
[x∗, y] +

1

2
[x, y∗] , g(x, y) = [x, y] + [x∗, y] + [x, y∗] , and 

p(x, y) = xy −
1

4
yx +

1

4
yx∗ +

1

4
y∗x −

1

4
y∗x∗ , respectively. They also exhibit an explicit 

associative representation for the Cayley-Dickson algebra in the 8 × 8 matrix algebra 
over a field of characteristic not 2 or 3.

1.1.10 � Basic superranks for varieties of algebras

Let V be a variety of algebras and Vr be a subvariety of V generated by the free V
-algebra of rank r. If the chain

stabilizes and r is the minimal number with the property that Vr = V , then r is called 
the basic rank of the variety V . Otherwise, we say that V has infinite basic rank. 
It is known that the varieties of associative, Lie and special Jordan algebras have 

V1 ⊆ V2 ⊆ ⋯ ⊆ Vr ⊆ ⋯ ⊆ V
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basic rank 2 and the varieties of alternative, Malcev and (−1, 1) algebras have infi-
nite basic rank. Also, proper subvarieties of varieties with finite basic rank can have 
infinite basic rank; for instance, the associative variety generated by the Grassmann 
algebra on infinite number of generators has infinite basic rank.

This notion of basic rank for varieties of algebras was generalized to the concept 
of basic superrank by I. Shestakov and A. Kuzmin [127]: for a variety V of algebras, 
a pair of positive integers (m, n) is a superrank of V if this variety coincides with 
the variety generated by the Grassmann envelope of the free V-superalgebra with 
m even and n odd generators. It is a consequence of Kemer’s proof of the Specht 
Problem (see Sect. 6.4.4) that every subvariety of associative algebras over a field of 
characteristic zero has a finite basic superrank.

It was proved, for varieties of metabelian alternative, Jordan and Malcev algebras, 
that the superrank is finite. However, the variety of all metabelian algebras has infi-
nite superrank and, for each pair (m, n), there exists a metabelian variety of algebras 
with superrank (m, n).

1.1.11 � Differentially simple algebras

I. Shestakov, V. Zhelyabin and A. Popov present, in [197], the first examples of dif-
ferentially simple algebras which are not free modules over their centroid. These 
examples were constructed in the varieties of associative, alternative, Jordan, Lie 
and Malcev algebras.

1.1.12 � Invariants of G2 and Spin(7) in positive characteristic

Let F be an infinite field of odd characteristic. Polynomial invariants under the diag-
onal action of the Chevalley group G2(F) and Spin(7,F) over n copies of octonion 
algebra over F were studied by A. Zubkov and I. Shestakov in [200]. The authors 
proved that the known generators of degree less than or equal to 4 for the algebra R 
of polynomial invariants, obtained by G.W. Schwarz over the complex number field 
ℂ , is also a generating set for the algebra R over the field F.

1.2 � Coordinatization theorems

Coordinatization theorems are very useful in structure theory. They state that cer-
tain algebras are “rigid” and define a structure of an algebra which contains them: 
the bigger algebra has a similar structure though not over the basic field but over cer-
tain algebra which “coordinatize” it. The first coordinatization theorem was obtained 
by J.M. Wedderburn, in 1907: “If A is an unital associative algebra which contains a 
subalgebra isomorphic to Mn(F) (the algebra of n × n matrices over the field F) with 
the same unity then A = Mn(F)⊗F B , for a convenient subalgebra B.” In this case, B 
coordinates the algebra A. There are known, for instance, coordinatization theorems for 
unital alternative algebras containing matrix algebras of order greater than or equal to 
3 (M. Zorn, 1930), for unital alternative algebras containing octonions (I. Kaplansky, 
1951 and N.  Jacobson, 1954), for unital Jordan algebras containing the exceptional 
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Albert algebra (N. Jacobson, 1954), and unital Jordan algebras containing n × n hermi-
tian matrices over the ground field, n ≥ 3 (N. Jacobson, 1954). Very often, the whole 
algebra and the subalgebra that coordinates it have equivalent categories of bimodules.

1.2.1 � Jordan superalgebras

C. Martínez, I. Shestakov and E. Zelmanov [138] extend Jacobson’s Coordinatiza-
tion Theorem for unital Jordan superalgebras J  containing at least three strongly 
connected ortogonal idempotents. (The orthogonal idempotents ei, ej ∈ J  are 
strongly connected if there exists an element aij in the Peirce component Jij such that 
a2
ij
= ei + ej .) They show that these algebras are coordinated by an alternative super-

algebra B with nuclear superinvolution. As in the case of algebras, the problem of 
classifying irreducible Jordan superbimodules for J  can be reduced to the descrip-
tion of irreducible alternative superbimodules with nuclear superinvolution for B. 
Using this reduction, they classify Jordan bimodules over simple Jordan superalge-

bras of types Q(n)+ and JP(n), for n ≥ 3 , where Q(n) =
{(

a b

b a

)
∶ a, b ∈ Mn(F)

}
 

are associative superalgebras and JP(n) stands for the Jordan superalgebra of sym-
metric elements in the associative superalgebra Mn+n(F) considered with the super-
involution � defined by

where at is the usual transpose matrix. The case Q(2) is also treated in the paper. 
The authors use the Tits-Kantor-Koecher construction and representation theory of 
Lie superalgebras for this remaining case.

1.2.2 � Noncommutative Jordan superalgebras

A Coordinatization Theorem for noncommutative Jordan algebras was obtained by 
K. McCrimmon in 1971. In [160], A. Pozhidaev and I. Shestakov prove an analo-
gous theorem for noncommutative Jordan superalgebras with n ≥ 3 connected idem-
potents. Given � an element of the ground field (of characteristic not two), and a 
superalgebra (A, ⋅) , the �-mutation of A is the superalgebra A(�) = (A, ⋅�) , where

They prove that if U is a strictly noncommutative Jordan superalgebra (that is, there 
are homogeneous elements x, y ∈ U such that xy ≠ (−1)x̄ȳyx ), then U = D(�)

n
 , where 

Dn is a superalgebra of n × n matrices with entries are in an associative superalgebra 
D.

1.2.3 � Alternative algebras

V. López Sólis, under the supervision of I. Shestakov, proved coordinatization theo-
rems for unital alternative algebras and superalgebras [133]. More specifically, it is 

(
a b

c d

)�

=

(
dt −bt

ct at

)
,

x ⋅𝜆 y = 𝜆x ⋅ y + (−1)x̄ȳy ⋅ x.
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proved, for any characteristic, that alternative algebras with unity which contains 
the matrix algebra Mn(F) with the same unity are associative if n ≥ 3 . As a con-
sequence, they obtain that unital alternative bimodules over Mn(F) are associative, 
if n ≥ 3 . This result was already proved by N. Jacobson if the characteristic of the 
ground field is different from 2.

The analogous are obtained for superalgebras: if m + k ≥ 3 , alternative super-
algebras with unity that contain the associative superalgebra M(m|k)(F) with the 
same unity are associative and isomorphic to M(m|k)(F)⊗F Z where Z is an asso-
ciative superalgebra. Also, every unital alternative superbimodule over M(m|k)(F) is 
associative.

Alternative algebras and superalgebras containing the Cayley-Dickson algebra � 
with the same unity are also described. In the case of algebras, they complete the 
previous results obtained by N.  Jacobson, for characteristic not 2, and by Kaplan-
sky, for the split Cayley algebra. The complete reducibility of unital alternative 
bimodules over � is obtained. For superalgebras, they prove that if the even part 
of an alternative superalgebra with unity contains � with the same unity then the 
superalgebra is isomorphic to Ω⊗F � , where Ω is a supercommutative associative 
superalgebra.

Finally, V. López Sólis and I. Shestakov [134] have proved a coordinatization the-
orem for unital alternative algebras containing 2 × 2 matrix algebra with the same 
identity element 1. This solves an old problem by Nathan Jacobson on the descrip-
tion of alternative algebras containing a generalized quaternion algebra H with the 
same 1, for the case when the algebra H is split. In particular, this is the case when 
the basic field is finite or algebraically closed.

1.2.4 � Right alternative algebras

S. Pchelintsev, O. Shashkov and I. Shestakov [145] proved that the coordinatization 
theorem is verified for unital right alternative algebras which contain the octonion 
algebra. As a consequence, if a unital right alternative algebra contains the octonion 
algebra with the same unity then it is alternative.

1.3 � Representation type of Jordan algebras

The (bi)representation type of an algebra A in a variety M is defined similarly to 
associative case [53]:

•	 A is of finite representation type if A has a finite number of non-isomorphic inde-
composible M-bimodules;

•	 A is of tame representation type if for any natural n, A has a finite number of 
1-parametric series of non-isomorphic indecomposible M-bimodules of dimen-
sion n;

•	 A is of wild representation type if A is not of tame type.
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It is well known that, similarly to the associative case, semisimple finite dimen-
sional Jordan algebras are of finite type. The study of Jordan bimodules over non-
semisimple finite dimensional Jordan algebras was initiated by I.  Kashuba and 
I. Shestakov in [119], where they considered Jordan algebras J  whose semisim-
ple component is a sum of fields (these algebras are called basic). The authors 
describe all 3-dimensional Jordan algebras and obtained a criterion for determin-
ing the representation type for a nilpotent Jordan algebra. In this way, they have 
found a general criterion for deciding whether a Jordan algebra with a sum of 
fields as semisimple part has finite or tame type.

The systematic study of Jordan bimodules over non-semisimple finite dimen-
sional Jordan algebras over an algebraically closed field of characteristic not 2 
and 3 was initiated by I.  Kashuba, S.  Ovsienko and I.  Shestakov in [116]. The 
notions of diagram of a Jordan algebra and of Jordan tensor algebra of a bimodule 
are introduced, as well as the construction of a mapping (Qui) which associates 
the diagram of a Jordan algebra to the quiver of its universal associative envel-
oping algebra. The authors consider algebras whose semisimple component is a 
direct sum of Jordan matrix algebras, obtaining a criterion of finiteness and tame-
ness for one-sided representations, in terms of diagram and mapping Qui, for Jor-
dan tensor algebras and for algebras having null radical square.

In [117], the same authors study basic Jordan algebras over an algebraically 
closed field of characteristic zero. They describe all basic Jordan algebras with 
null radical square which are of finite or tame type. They considered the quiver 
of the multiplicative envelope U(J) which is a basic algebra. The classification 
is obtained in terms of the dimensions of the Peirce components of Rad(J) , 
the radical of the algebra J  , relative to a complete set of primitive orthogonal 
idempotents.

The relationship between representations of a Jordan algebra and the Lie alge-
bra obtained from it by the Tits-Kantor-Koecher construction was explored by 
I. Kashuba and V. Serganova in [118]. The authors use the equivalence between 
the category of unital representations of a Jordan algebra J  and the category of 
representations of the Lie algebra TKK(J) which have a ℤ3-grading to classify 
Jordan algebras J  whose semisimple part is a sum of Jordan algebras of quad-
ratic forms and the category of unital bimodules for J  is tame.

1.4 � Lie algebras and superalgebras

1.4.1 � Simple Lie algebras over a field of characteristic 2

The classification of simple Lie algebras is known for algebras over a field of char-
acteristic not 2 or 3. Some contributions for the classification of simple Lie algebras 
in characteristic 2 was given by A. Grishkov and M. Guerreiro. For instance, in [75] 
they classify 7-dimensional simple Lie algebras over an algebraically closed field 
and in [76] they give a characterization of finite dimensional simple Lie algebras of 
type B2l,C2l,D2l+1,E7 and E8 in terms of some gradations of these algebras.
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1.4.2 � Modules for Schur superalgebras

Schur algebras are examples of quasi-hereditary algebras, which play an impor-
tant role in representation theory of Lie algebras. They also appear in the theory 
of algebraic groups and of quantum groups. Given positive integers n, r, the Schur 
algebra S(n, r) can be defined in the following way: consider F[xij] the commuta-
tive algebra of polynomials in n2 variables xij , i, j = 1,… , n , over the field F with 
the canonical coalgebra structure ( Δ(xij) =

∑
l xil ⊗ xlj , �(xij) = �ij ). Let AF(n, r) 

the subspace of homogeneous polynomials of degree r. Then AF(n, r) is a sub-
coalgebra of F[xij] and S(n, r) is defined to be the dual algebra of AF(n, r) , that is, 
S(n, r) = HomF(AF(n, r),F) , with multiplication satisfying (fg)(xij) =

∑
l f (xil)g(xlj) . 

The notions of standard and costandard modules are central in the theory of Schur 
algebras. These concepts are related to a ordering of the set of all irreducible mod-
ules of the given algebra. Costandard modules, for instance, are obtained consid-
ering certain maximal submodules of the injective hull of simple modules. Some 
generalizations of these algebras were considered, for instance, Schur superalgebras. 
The Schur superalgebra S(m|n, r) is obtained taking (m + n)2 variables xij , with par-
ity of xij defined as i + j(mod 2) . Schur superalgebras are not always quasi-heredi-
tary. This property holds if and only if the superalgebra is semisimple. However, it is 
still relevant to describe their (co)standard modules.

The description of costandard modules for the Schur superalgebra S(2|1, r) over a 
field of characteristic p is obtained by A. Grishkov, F. Marko and A. Zubkov in [79]. 
In particular, the classification of irreducible S(2|1, r)-modules in positive character-
istic is obtained.

Irreducible modules for the Schur superalgebra S(2|2,  r) are classified by 
A. Grishkov and F. Marko in [77]. The authors consider two cases: characteristic 
zero and p > 2 . As a continuation of this study, the same authors describe, in [78], 
the costandard modules ∇(�) of restricted highest weight � for the Schur superalge-
bra S(2|2, r) over an algebraically closed field of odd characteristic.

1.4.3 � Filtered multiplicative basis

Let A be an associative algebra over a field F. A F-basis B of A is called a filtered 
multiplicative basis if B ∪ {0} is closed under multiplication and B ∩ rad (A) is a 
basis of rad (A) , the Jacobson radical of A. The existence of filtered multiplicative 
basis in a given class of algebras implies that the number of isomorphism classes 
of algebras in this class is finite and the problem of classification of these algebras 
becames combinatorial. For instance, finite dimensional algebras with finite repre-
sentation type have filtered multiplicative basis.

In [21], V. Bovdi, A. Grishkov and S. Siciliano study the problem of the existence 
of filtered multiplicative bases of a restricted enveloping algebra u(L), for L a finite 
dimensional and p-nilpotent restricted Lie algebra over a field of positive character-
istic p. They prove that the p-enveloping algebra of a nil abelian Lie algebra affords 
a filtered multiplicative basis if and only if L is a direct sum of nil-cyclic restricted 
Lie algebras.
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In [22] the same authors deal with the existence problem of a filtered multiplica-
tive basis for finite dimensional associative algebras and when this property is pre-
served by homomorphic images. This is used to determine when some restricted 
enveloping algebras in characteristic 2 have filtered multiplicative basis.

1.4.4 � Normal enveloping algebras

An algebra A with involution ∗ over a field F is called normal if xx∗ = x∗x , for all 
x ∈ A . In [80], A. Grishkov, M. Rasskazova and S. Siciliano investigate when ordi-
nary and restricted enveloping algebras of Lie algebras are normal, when considered 
with their canonical involution, that is, the involution which satisfies x∗ = −x , for 
every x in the Lie algebra.

They give necessary and sufficient conditions in order to the restricted envelop-
ing algebra of a Lie algebra over a field of characterist p > 0 be normal and use this 
result to obtain the classification of Lie algebras over arbritrary fields for which their 
ordinary enveloping algebra are normal. In both cases, or the Lie algebra L is abe-
lian or p = 2 and L is nilpotent of class 2.

1.4.5 � Automorphism groups

In [81] A. Grishkov and M. Rasskazova describe the group of automorphisms of ℤp

-diagonal forms of the Lie algebra sl2(ℚp).

1.5 � More general classes of algebras

1.5.1 � Structurable superalgebras

Introduced by I.  Kantor [109] and B.  Allison [2], structurable algebras are unital 
algebras with involution defined by an identity of degree 4. They include associa-
tive, alternative and Jordan algebras and admit a generalization of the famous Tits-
Kantor-Koecher construction, which associates a Lie algebra with (−2, 2)-gradua-
tion to each structurable algebra. Using this construction, one can obtain all finite 
dimensional simple Lie algebras over a field of characteristic zero in a unified way.

A.  Pozhidaev and I.  Shestakov contributed to the classification of structurable 
superalgebras. They obtained the description of simple structurable superalgebras 
of Cartan type in [162, 163]. With this classification and the results obtained by 
J. Faulkner [55] a complete classification of finite dimensional simple structurable 
superalgebra over an algebraically closed field of characteristic zero is obtained.

1.5.2 � Noncommutative Jordan superalgebras

The class of noncommutative Jordan algebras form a wide generalization of Jordan 
algebras, which includes alternative, quasi-associative, quadratic flexible, and anti-
commutative algebras. They are defined by the identities
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The classification of central simple finite dimensional noncommutative Jordan 
superalgebras in any characteristic was obtained by I. Shestakov and A. Pozhidaev 
in [160, 161, 164, 165], including a Coordinatization Theorem (see Sect. 1.2.2).

1.5.3 � Right alternative algebras and superalgebras

An algebra is called right alternative if it satisfies the identity

Therefore, this class of algebras contains alternative algebras. Although finite 
dimensional simple right alternative algebras are alternative, these classes of alge-
bras seem to be not so close. One of the inkling for this belief is the behaviour of 
bimodules over matrix algebras in both classes of algebras.

Right alternative bimodules over M2(F) , where F is a field of characteristic not 2, 
were considered in [144] by L. Murakami and I. Shestakov. The authors have found 
an infinite family of non isomorphic 4-dimensional irreducible bimodules, as well as 
a family of 4n-dimensional irreducible bimodules. On the other side, there are only 
two non isomorphic irreducible alternative bimodules for M2(F).

In [159], J. Picanço, L. Murakami and I.  Shestakov use the 4-dimensional family 
of irreducible right alternative bimodules to prove the existence of an infinite family 
of 8-dimensional simple right alternative superalgebras which have M2(F) as even 
part.

In [143], L. Murakami, S. Pchelintsev and O. Shashkov investigate the structure 
of finite dimensional unital right alternative superalgebras with semisimple alterna-
tive even part over an algebraically closed field. The notion of weak annihilator is 
introduced and the classification of superalgebras with zero weak annihilator in this 
class of superalgebras is obtained. Also, it is proved that every superalgebra in this 
class splits into the direct sum of its weak annihilator and a superalgebra with zero 
weak annihilator.

1.5.4 � Lie‑Jordan algebras

An algebra L with a bilinear operation [a,  b] and a trilinear operation {a, b, c} is 
called a Lie-Jordan algebra if it is a Lie algebra with respect to [a, b], it is a triple 
Jordan system with respect to operation {a, b, c} , and these operations are related by 
the identities

Any associative algebra A becomes a Lie-Jordan algebra A± under the operations 
[a, b] = ab − ba, {a, b, c} = abc + bca . A Lie-Jordan algebra L is called special if 
it can be embedded into a Lie-Jordan algebra A± for some associative algebra A. 
A. Grishkov and I. Shestakov in [82] prove that any Lie-Jordan algebra is special.

(x, y, x) = 0 and (x2, y, x) = 0.

(x, y, y) = 0.

{a, b, c} − {b, a, c} =[[a, b], c],

[a, {b, c, d}] ={[a, b], c, d} + {b, [a, c], d} + {b, c, [a, d]}.
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In [83] they prove that a Lie algebra L admits a triple product {a, b, c} under 
which it becomes a Lie-Jordan algebra if and only if it is a Lie algebra of skew-
symmetric elements in an associative algebra with involution.

2 � Nonassociative Lie Theory: Malcev enveloping algebras, Sabinin 
algebras and non associative Hopf algebras

Malcev algebras are a generalization of Lie algebras. They were introduced in 1955 
by A.I. Malcev as tangent algebras of analytic Moufang loops (see the definition of 
Moufang loop in Sect. 5.1). A Malcev algebra is an anticommutative algebra which 
satisfies the identity

where J(x, y, z) = (xy)z + (yz)x + (zx)y. If A is an alternative algebra then the algebra 
A− , which is obtained from A considering the new product given by the comutator 
[x, y] = xy − yx , is a Malcev algebra.

The universal enveloping algebras of Malcev algebras are, in general, nonassocia-
tive. However, they have a structure close to Hopf algebras. They admit a cocommu-
tative and coassociative coalgebra structure and the Malcev algebra is recovered as 
the space of primitive elements. The multiplication and comultiplication are related 
by a Hopf version of the Moufang identities.

The connection between Malcev algebras and local analytic Moufang loops is 
an extension of the relationship between Lie algebras and local Lie groups. This 
connection can be more extended to Bol algebras and local analytic Bol loops 
(see Sect. 4.3.14 for the definition of Bol algebras and Sect. 5.1 for the definition 
of Bol loops). In order to have a Lie correspondence between these structures, it 
was needed to consider two operations on the tangent space of local analytic loops. 
The corresponding algebra is called Akivis algebra (see Sect. 2.3.1). Moreover, in 
order to have a Lie correspondence for arbitrary analytic loop, one needs an infi-
nite sequence of multilinear operations on the tangent space. The algebraic structure 
obtained is now called Sabinin algebra.

2.1 � Enveloping algebras for Malcev algebras

In the development of the theory of universal envelopes for Lie algebras, the study 
of their centers and the structure of the enveloping algebra as a module over its 
center play an importante role. For instance, it is known that the center of the uni-
versal envelope U(L), for a finite dimensional simple Lie algebra L over a field of 
characteristic zero, is a polynomial ring with n variables, where n is the dimension 
of Cartan subalgebra of L. Moreover, the classical Kostant Theorem states that U(L) 
is a free module over its center Z

(
U(L)

)
.

J.M. Pérez Izquierdo and I. Shestakov prove in [153] that, for every Malcev alge-
bra M, there is an algebra U(M) and a monomorphism from M to the commutator 
algebra U(M)− such that the image of M lies into the alternative center of U(M), and 

J(x, y, xz) = J(x, y, z)x,
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U(M) is a universal object with respect to such homomorphisms. The algebra U(M), 
in general, is not alternative, but it has a nonassociative Hopf algebra structure and 
has some similar properties to the universal enveloping algebras of Lie algebras.

The similarity between properties of enveloping algebras of Lie algebras and 
enveloping algebras of Malcev algebras indicated above was reinforced in [198]. 
V. Zhelyabin and I. Shestakov prove that if M is finite dimensional semisimple Mal-
cev algebra over a field of characteristic zero and U = U(M) is its universal envelope 
then the center Z = Z(U) is a polynomial ring in n variables, where n is the dimen-
sion of the Cartan subalgebra of M and U is a free module over its center Z.

There is only one 4-dimensional non Lie Malcev algebra. Its enveloping alge-
bra U is not alternative and has infinite dimension. In [23], M. Bremner, I. Hentzel, 
L. Peresi and H. Usefi determine some structural constants of U and the quotient 
algebra of U by its alternator ideal, obtaining its universal alternative envelope.

The center of the universal nonassociative enveloping algebra of the 7-dimen-
sional simple Malcev algebra over a field of characteristic p > 3 was studied by 
J.M.  Pérez Izquierdo and I.  Shestakov in [154]: the center is an extension of the 
polynomial ring in 7 variables by an element which is analogous to the Casimir 
element.

In [155], the same authors prove that, over fields of characteristic zero, any bial-
gebra deformation of the universal enveloping algebra of the algebra of traceless 
octonions satisfying the dual of the left and right Moufang identities must be coas-
sociative and cocommutative. This result shows that Malcev algebras of traceless 
octonions are rigid in the category of Hopf-Moufang algebras.

2.2 � Free Malcev algebras and superalgebras

One of the most important questions for any class of algebras is the structure of free 
algebras.

It is known that the free Malcev algebra of rank more than 4 is not semiprime, 
that is, it contains nilpotent ideals. In [179], A. Kornev and I. Shestakov prove that 
the prime radical of a free Malcev algebra M of rank more than 2 over a field of 
characteristic not 2 coincides with the set of all engelian elements of M . This result 
is an analogue of the similar characterizations obtained by I. Shestakov and E. Zel-
manov for radicals of free alternative and free Jordan algebras. It is still an open 
question whether the free Malcev algebras of rank 3 and 4 are semiprime.

Contrary to Lie algebras, effective bases of free Malcev algebra are unknown. 
I. Shestakov in [173] constructs a basis of the free Malcev superalgebra M on one 
odd generator, which produces a basis of the subspace of multilinear skew-symmet-
ric elements in the free Malcev algebra of countable rank. As a corollary, an infinite 
series of central skew-symmetric elements in the free alternative algebra of count-
able rank is constructed. The first element in this series was found earlier by I. Hent-
zel and L.Peresi [101] with computer algebra.

The free Malcev superalgebra M on one odd generator and some related 
superalgebras were studied later by I. Shestakov and N. Zhukavets in [190, 191]. 
It was proved that M is special, that is, it can be embedded in a superalgebra A− , 
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for some alternative superalgebra A. In these papers, in particular, a basis for the 
Malcev Poisson superalgebra S̃(M) is constructed, as well as a pre-basis for the 
free alternative superalgebra A on one odd generator, that is, a set which spans A 
as a vector space. In [192, 199], the authors prove that the elements of that pre-
basis are linearly independent. As a consequence, some results on the structure 
of the radical and the center of the free alternative algebra of infinite rank are 
obtained. A basis for the Grassmann alternative algebra is also constructed.

2.3 � Akivis and Sabinin algebras

2.3.1 � Akivis algebras

Akivis algebras are generalization of Malcev algebras. An Akivis algebra is a vec-
tor space V endowed with a skew-symmetric bilinear product [x, y] and a trilinear 
product A(x, y, z) that satisfy the identity

These algebras were introduced in 1976 by M. A. Akivis [1] as local algebras of 
three-webs. For any (non-associative) algebra B one may obtain an Akivis alge-
bra Ak(B) by considering in B the usual commutator [x, y] = xy − yx and associa-
tor A(x, y, z) = (xy)z − x(yz) . M. A. Akivis posed the problem whether every Akivis 
algebra is isomorphic to a subalgebra of Ak(B) for a certain algebra B. This problem 
was positively solved by I. Shestakov in [172].

2.3.2 � Primitive elements in free nonassociative algebra and Sabinin algebras

Let F{X} be a free nonassociative algebra on a set of generators X. It follows 
from [172] that the subalgebra Ak{X} of the Akivis algebra Ak(F{X}) gener-
ated by X is a free Akivis algebra on a set of generators X. It was conjected by 
K. Hofmann and K. Strambach in [106] that the algebra Ak{X} coincides with the 
subspace of primitive elements Prim{X} = {f ∈ F{X} |Δ(f ) = f ⊗ 1 + 1⊗ f } , 
where Δ ∶ F{X} → F{X}⊗ F{X} is a comultiplication homomorfism defined by 
the condition Δ(x) = x⊗ 1 + 1⊗ x, x ∈ X . The conjecture has been proved not to 
be true: I. Shestakov and U. Umirbaev in [183] prove that the space Prim{X} is 
generated by an infinite number of multilinear operations and forms with respect 
to these operations, a so called Sabinin algebra which was introduced earlier by 
P. Mikheev and L. Sabinin [168] in their study of local analytic loops, as a tan-
gent algebra, generalizing Lie, Malcev, and Akivis algebras.

Sabinin algebras play a role of Lie algebras in the Nonassociative Lie Theory, 
which establishes an equivalence of categories of Sabinin algebras, nonassocia-
tive Hopf algebras, and formal loops. A survey on this theory is given in [140].

[[x, y], z] + [[y, z], x] + [[z, x], y] = A(x, y, z) +A(y, z, x) +A(z, x, y) −A(y, x, z) −A(x, z, y) −A(z, y, x).
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2.3.3 � Nilpotent Sabinin algebras

Properties of nilpotent Sabinin algebras are presented by J. Mostovoy, J.M. Pérez 
Izquierdo and I. Shestakov in [141]. It is shown that these algebras can be inte-
grated to produce nilpotent loops, satisfy an analogue of the Ado Theorem (which 
states the existence of finite dimensional associative enveloping algebra for finite 
dimensional Lie algebras) and have nilpotent Lie envelopes.

2.3.4 � Nonassociative Baker–Campbell–Hausdorff formula

An analogue to the famous Baker–Campbell–Hausdorff formula for associative 
algebra of formal power series in two non commutative variables over a field of 
characteristic zero was proved to arbitrary nonassociative algebras by J. Mosto-
voy, J.M. Pérez Izquierdo and I. Shestakov in [142]. The authors use the fact that 
the unital algebra of formal power series in a set of free non associative and non 
commutative variables has a structure of a nonassociative Hopf algebra.

2.3.5 � A base of free Sabinin algebra

In [32] E. Chibrikov, under the supervision of I. Shestakov, constructs an efec-
tive base for a free Sabinin algebra. As a consequence, it is obtained that every 
subalgebra of a free Sabinin algebra is free. In other words, the variety of Sabinin 
algebras is a Schreier variety.

2.3.6 � Loops of diffeomorphisms and their Hopf algebras

A.  Frabetti and I.  Shestakov [59] investigate the functor of diffeomorphisms 
which associate to a nonassociative and noncommutative algebra a loop (an ana-
logue of Nottingham groups). It is proved that this functor is representable in a 
nonassociative Hopf algebra which generalize the Faà di Bruno Hopf algebra.

2.3.7 � PBW‑pairs of linear algebras

A.A. Mikhalev and I. Shestakov in [139] introduce the notion of a Poincaré–Birk-
hoff–Witt (PBW)-pair of varieties of linear algebras. Examples of PBW-pairs are 
given. It is proved that if (V, W) is a PBW-pair and the variety W is homogeneous 
and Schreier, then so is V; the results similar to the Schreier property for PBW-
pairs are also true for the Freiheitssatz and the Word Problem. In particular, it 
follows that the Freiheitssatz is true for the varieties of Akivis and Sabinin alge-
bras. Moreover, examples of varieties that do not satisfy the Freiheitssatz are also 
given. It is shown that an element u of a free algebra W[X] in a homogeneous 
Schreier variety of algebras W satisfying the Freiheitssatz is a primitive element 
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(a coordinate polynomial) if and only if the factor algebra of W[X] by the ideal 
generated by the element u is a free algebra in W.

3 � Geometric aspects

3.1 � Geometric structure of Jordan and alternative algebras

For 3-dimensional Jordan algebras, the description and the number of irreduc-
ible components is given by I. Kashuba and I. Shestakov in [111, 119]. Invariants 
of corresponding components, such as radicals and automorphism groups is also 
described.

The estimate of the dimension of irreducible components in the variety of 
alternative and Jordan algebras was investigated by the same authors in [120]. 
The authors prove that if Ω is an arbitrary family of non isomorphic n-dimen-
sional alternative algebras over an algebraically closed field which depends con-
tinuously on parameters p1,… , pN then the asymptotic dimension of Ω is 
4

27
n3 + O(n8∕3) . They also formulate a conjecture for the asymptotic of parameters 

which determine a family of irreducible n-dimensional Jordan algebras: 
N =

1

6
√
3
n3 + O(n8∕3) . This conjecture is confirmed for a certain closed subvariety 

of Jordan algebras.
The classification of 4-dimensional Jordan algebras is given by I.  Kashuba 

and M.E. Martin in [112]. The authors give a list of 73 non isomorphic algebras, 
describe all deformation between these algebras and determine the rigid ones. 
The same was done for 3-dimensional real Jordan algebras, by the same authors 
in [113] and, in [114], they obtain the geometric classification of 5-dimensional 
nilpotent Jordan algebras. Rigid algebras and families of semi-rigid algebras are 
described.

3.2 � Algebraic geometry over Lie algebras

Recently, a newsworthy area has been intensively developed in algebra: the alge-
braic geometry over algebraic systems. For instance, a successful achievement in 
this area is the solution of the famous Tarski Problem obtained by O. Kharlampov-
ich and A. Myasnikov, by using algebraic geometry over groups.

N. Romanovsky and I. Shestakov contributed to the theory of algebraic geometry 
over Lie algebras. Algebraic geometry over free metabelian Lie algebras and free 
Lie algebras are studied in [167]. An interesting problem in this field is to deter-
mine whether a finitely generated free solvable Lie algebra is equationally Noethe-
rian, that is, whether for each n, every system of equations in n variables over A 
is equivalent to a finite subsystem of the given system. The authors prove that the 
finitely generated free solvable Lie algebra of index 2 is equationally Noetherian 
with respect to the equations of its universal enveloping algebra.
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3.3 � Automorphic equivalence of the representations of Lie algebras

The basic notions of the algebraic geometry of representations of Lie algebras are 
defined in a similar way to the basic notions of the algebraic geometry of repre-
sentations of groups. I. Shestakov and A. Tsurkov in [182] prove that if a field F 
has no nontrivial automorphisms then the automorphic equivalence of representa-
tions of Lie algebras coincides with the geometric equivalence.

4 � Combinatorial aspects

4.1 � Free algebras, their automorphisms and derivations

4.1.1 � The Nagata Problem

Let A be a free algebra in the variables x1,… , xn on a class of algebras over a 
field F of characteristic zero. An automorphism f of A is called elementary if it 
fixes all but one of the variables xi and, for this xi , f (xi) = �xi + g , with � ∈ F is 
nonzero and g is a polynomial which does not contain the variable xi . An auto-
morphism of A is tame if it is a composition of elementary automorphisms; in 
other case, it is called wild. The classical Jung Theorem states that, in the case 
A = F[x, y] , the polynomial algebra, all automorphisms of A are tame. I. Shesta-
kov and U. Umirbaev [184–186] presented an algorithm for deciding if an auto-
morphism of F[x, y, z] is tame or wide, using methods of Poisson brackets and 
estimates for the degree of elements of subalgebras of F[x1,… , xn] generated by 
two elements. In particular, they proved that the famous Nagata automorphism is 
wild. Therefore, tame automorphisms of Aut(F[x, y, z]) form a proper subgroup of 
Aut(F[x, y, z]).

In the proof of the Nagata Conjecture, the free Poisson algebras were effec-
tively used. The free Poisson algebras are closely related to algebras of polynomi-
als, free Lie algebras, and free associative algebras.

A Poisson algebra is a vector space B over a field F with two bilinear opera-
tions x ⋅ y (multiplication) and [x, y] (a Poisson bracket) which satisfies the fol-
lowing conditions

•	 B is a commutative associative algebra with x ⋅ y;
•	 B is a Lie algebra with [x, y];
•	 [x ⋅ y, z] = [x, y] ⋅ y + x ⋅ [y, z] (Leibniz identity).

If L is a Lie algebra, {l1,… , lk,…} is a F-basis and P(L) denotes the algebra of 
polynomials on the variables l1,… , lk,… , then the operation [x, y] of the Lie alge-
bra L can be uniquely extended to a Poisson bracket on P(L) which makes P(L) 
into a Poisson algebra. If L is a free Lie algebra then P(L) is a free Poisson alge-
bra on the same set of generators.
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4.1.2 � Algebraic dependence in free Poisson algebras

Let P be a free Poisson algebra over a field of characteristic zero and let Q be its 
field of quotients. The structure of Poisson algebra of P can be naturally extended 
from P to Q. In [136], L. Makar-Limanov and I. Shestakov prove that a pair of ele-
ments f , g ∈ Q are Poisson dependent (which means that the subalgebra generated 
by f and g is not a free Poisson algebra) if, and only if, f and g are algebraically 
dependent. This result is used to give a new proof of the tameness of automorphisms 
for free Poisson algebras of rank two.

4.1.3 � Free generic Poisson fields and algebras

The concept of generic Poisson algebra was introduced by I.  Shestakov in 2000. 
The difference between classic and generic Poisson algebras is that in the last case, 
the Poisson bracket does not need to satisfy the Jacobi identity. Free generic Poisson 
algebras (GP-algebras) over a field of characteristic zero are considered by I. Kay-
gorodov, I. Shestakov and U. Umirbaev in [121]. It is proved that some properties 
of free Poisson algebras are true for free GP-algebras. For instance, the left depend-
ence of a finite system of elements is algorithmically recognizable in the universal 
multiplicative enveloping algebra of the free GP-algebra U(GP⟨X⟩) ; the universal 
multiplicative enveloping algebra of a free GP-field is a free ideal ring; also, the 
Poisson and polynomial dependence of two elements are equivalent in the free GP-
field GP(x1,… , xn) . As a consequence, all automorphisms of the free GP-algebra 
GP(x, y) are tame.

4.1.4 � The Freiheitssatz for generic Poisson algebras

The Freiheitssatz for generic Poisson algebras over a field F of characteristic zero 
was proved by P.  Kolesnikov, L.  Makar-Limanov and I.  Shestakov in [124]: let 
P = P[x1,… , xn] be the free generic Poisson algebra and let f ∈ P be an element 
which contains xn . Then, the intersection of the ideal ⟨f ⟩ generated by f and the sub-
algebra P[x1,… , xn−1] is trivial, and the image of the subalgebra P[x1,… , xn−1] in 
the quotient algebra P∕⟨f ⟩ is a free algebra. As a consequence, it was proved that 
automorphisms of the free algebra P[x, y] are tame. Moreover, there exists an iso-
morphism between Aut (P[x, y]) and Aut (F[x, y]) , where F[x, y] is the polynomial 
algebra over the field F.

4.1.5 � Locally nilpotent derivations

A derivation D of an algebra A is called locally nilpotent if for any a ∈ A there exists 
n = n(a) such that Dn(a) = 0 . If D is a locally nilpotent derivation of an algebra A over 
a field of characteristic 0 then exp(D) = 1 + D + D2∕2! +⋯ is an automorphism of A. 
An example of a locally nilpotent derivation of a free algebra of some variety with gen-
erators x1,… , xn is given by D(x1) = 0, D(x2) = f1(x1),… ,D(xi) = fi(x1,… , xi−1),… . 
A derivation D is called triangulable if has the above form under certain choice of gen-
erators x1,… , xn . The classical Rentchler theorem says that in a ring of polynomials 
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F[x, y] over a field F of characteristic 0 every locally nilpotent derivation is triangu-
lable. I. Shestakov and his PhD student S.D. Crode generalize this theorem to the free 
associative algebra F⟨x, y⟩ in [52].

4.1.6 � Constants of partial derivations and primitive operations

The description of the algebras of constants of the set of all partial derivations in free 
algebras of unitarily closed varieties over a field of characteristic zero is given by 
S. Pchelintsev and I.  Shestakov in [147]. It is proved that a subalgebra of proper poly-
nomials coincides with the subalgebra generated by values of commutators and Umir-
baev-Shestakov primitive elements on a set of generators for a free algebra. Varieties 
of all algebras, all commutative algebras, right alternative algebras and Jordan algebras 
were considered.

4.1.7 � Rings of constants of linear derivations on Fermat rings

The characterization of all linear ℂ-derivations of the Fermat ring is presented in [195]. 
M. Veloso and I. Shestakov prove that the Fermat ring has linear ℂ-derivations with 
trivial ring of constants and some examples are constructed.

4.1.8 � Free Jordan algebras

Let J(D) be the free D-generated Jordan algebra (without unit) over a field F of char-
acteristic zero. Then J(D) = ⊕n≥1 Jn(D) , where Jn(D) is the homogenous component 
of degree n of J(D). I. Kashuba and O. Mathieu [115] make the following conjecture 
about the dimension an of each homogenous component Jn(D) of J(D):

The sequence an is the unique solution of the following equation:

where � = Dzt−1 + (1 − Dz) − t.
It is easy to see the equation provides a recurrence relation to uniquely determine the 

integers an , but a closed formula is not known.
Let sl2J(D) be the Tits-Allison-Gao construction of J(D) [3]. The authors state two 

natural conjectures for the homology of Lie algebra sl2J(D) , and each of them implies 
the previous conjecture.

The cyclicity of the Jordan structures, namely that the symmetric group �D+1 acts on 
the multilinear part of J(D), plays an essential role to connect the Lie algebra homology 
of sl2J(D) and the dimension of Jn(D).

Rest=0 �

∞∏

n

(1 − zn(t + t−1) + z2n)andt = 0,
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4.2 � Lie algebras and related algebras

4.2.1 � Self‑iterated associative, Lie and Jordan algebras

First examples of infinite dimensional nil affine algebras were constructed in 1964 
by E.S. Golod and I.R. Shafarevich [62]. These algebras have strictly exponential 
growth. In 2000, L.  Bartholdi and R.I.  Grigorchuk [14] proved that the Lie alge-
bra associated to the Grigorchuk self iterated group is graded, nil and has Gelfand-
Kirillov dimension equal to 1. Using this result, L. Bartholdi [13] constructed, in 
2006, an infinite dimensional affine associative algebra over a field of characteris-
tic 2 which is graded, nil and has Gelfand-Kirillov dimension equal to 2. In 2007, 
T. Lenagan and A. Smoktunowicz [128] constructed a family of infinite dimensional 
affine nil algebras with finite Gelfand-Kirillov dimension over an arbitrary countable 
field. In 2006, V. Petrogradsky [156] constructed a self iterated Lie algebra L with 
two generators over an arbitrary field of characteristic 2 which is nil and satisfies 
1 < GK dim L < 2.

More properties were obtained for this algebra L and its associative envelope A, 
by V. Petrogradsky and I. Shestakov: 

	 (i)	 GK dimL = ln 2∕ ln((1+
√
5)∕2),

	 (ii)	 GK dimA = 2GK dimL,

	 (iii)	 L has a nil 2-application,
	 (iv)	 L and A are direct sum (as vector spaces) of two locally nilpotent subalgebras.

These properties are analogous to Grigorchuk and Gupta-Sidki groups. Moreover, 
similar results were obtained for arbitrary fields of characteristic p > 0 , by V. Petro-
gradsky, I. Shestakov and E. Zelmanov. See [157, 188] and [158].

4.2.2 � Binary Lie algebras and assocyclic algebras

An anticommutative algebra A is called binary Lie algebra if every pair of ele-
ments of A generates a Lie algebra. Every Malcev algebra is a binary Lie alge-
bra. An algebra is assocyclic if the identity (a, b, c) = (b, c, a) is satisfied, where 
(a, b, c) = (ab)c = a(bc) is the associator of a, b and c. The class of assocyclic alge-
bras contains alternative algebras and it is well known that the algebra A(−) , for A 
an alternative algebra, is Malcev. However, it is an open problem if every Malcev 
algebra is special, that is, is isomorphic to a subalgebra of A(−) , for an alternative 
algebra A.

V. Filippov noticed that for each assocyclic algebra A, the algebra A(−) is a binary 
Lie algebra and formulated the question if every binary Lie algebra is special in this 
sense, that is, is isomorphic to a subalgebra of A(−) , for some assocyclic algebra A. 
This problem was solved by M. Arenas and I. Shestakov in [6]. They proved that the 
answer is negative, constructing a binary Lie algebra which does not belong to the 
variety generated by special binary Lie algebras. The construction is based on an 
example of a finite dimensional simple binary Lie superalgebra which is not a Mal-
cev superalgebra.
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4.2.3 � Derivations of the Lie algebra of infinite strictly upper triangular matrices 
over a commutative ring

Let R be a commutative ring with unity. Then, the set T(∞,R) of infinite ℕ × ℕ

-upper triangular matrices over F is an associative ring with the usual operations 
and T(∞,R)− is a Lie algebra with respect to the Lie product [A,B] = AB − BA . 
The Lie subalgebra of T(∞,R)− of strictly upper triangular matrices is denoted by 
N(∞,R).

In [108], W.  Holubowski, I.  Kashuba and S.  Zurek describe the Lie algebra 
N(∞,R) . They show that every derivation of N(∞,R) is a sum of diagonal and 
inner derivations.

4.3 � Identities

4.3.1 � Gradings of simple algebras and superalgebras

The description of all group gradings on a finite dimensional simple associative 
superalgebra over and algebraically closed field by a finite abelian group is given 
by Y. Bahturin and I. Shestakov in [9].

In the case of gradings on simple Jordan algebras by abelian groups, some 
results were obtained. For instance, all group gradings of the simple Jordan alge-
bra of a non-degenerate symmetric form over a field of characteristic not 2 were 
described in [8] by Y. Bahturin and I. Shestakov and all group gradings by a finite 
abelian group on some types of simple Jordan (and Lie) algebras over an algebra-
ically closed field of characteristic zero was presented in [10] by the same authors 
in collaboration with M. Zaicev.

In [7], Y. Bahturin, M. Bresar and I. Shestakov apply the method of so called 
functional identities to the study of group gradings by an abelian group on simple 
Jordan algebras, under mild restrictions on the grading group or the base field of 
coefficients. The method allows one to reduce the question of describing the grad-
ings by abelian groups on simple Jordan algebras to the same problem on associa-
tive algebras.

4.3.2 � Skew‑symmetric identities of octonions

The question concerning identities for octonions has been investigated for a long 
time. An explicit basis of octonions identities is known only when the field is 
finite. When the field has characteristic zero, the algebra of octonions possesses a 
finite basis of identities, however, such a basis is still unknown. Using computer 
algebra, I. Hentzel and L. Peresi [100] found a new identity of degree 6.

Using the basis of a free alternative superalgebras on one odd generator con-
structed by I. Shestakov and N. Zhukavets in [192] and introducing the concept 
of quadratic alternative superalgebra, the same authors describe in [193] all 
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skew-symmetric identities of octonions and prove that all of them are conse-
quence of octonions being quadratic.

4.3.3 � Associative identities of octonions

As in Sect.  4.3.2, another direction in order to understand octonions identities is 
developed by I. Shestakov in [176]. The aim here is to describe a basis of identities 
modulo an associator ideal of a free alternative algebra. More specifically, let I(O) 
the T-ideal of polynomial identities for the octonions in the free alternative algebra. 
The homomorphic image Ias(O) of I(O) in the free associative algebra is studied and 
a basis of generators of the T-ideal Ias(O) is obtained.

4.3.4 � Graded identities of octonions

F. Henry, a PhD student of I. Shestakov, described in [97] the graded identities of 
octonions under the ℤ3

2
 and ℤ2

2
 gradings related with the Cayley-Dickson process.

4.3.5 � Polynomial identities for ternary algebras

In [24], M. Bremner and L. Peresi use representation theory of the symmetric group 
S3 to classify, up to equivalence, all ternary operations over the rational field.

The classic triple products are: Lie, Jordan and anti-Jordan. Each one of these 
products, together with their polynomial identities, defines the corresponding vari-
ety of triple systems.

For a representative of each equivalence class, the polynomial identities of degree 
less than or equal to to 5 satisfied by the ternary operation in every totally associa-
tive ternary algebra are obtained in [25]. These identities are obtained as a null space 
of a big matrix with integer coefficients. Lenstra-Lenstra-Lovász algorithm is used 
for reducing the number of terms and the size of the coefficients. Using the same 
techniques, polynomial identities of degree less than or equal to 9 in two and three 
variables which are satisfied by the ternary cyclic sum [a, b, c] = abc + bca + cab in 
totally associative ternary algebras are obtained in [27].

4.3.6 � Identities of finitely generated Malcev algebras

I. Shestakov in [178] proves that for any n there exists N(n) such that for any Mal-
cev algebra with n generators all multilinear skew-symmetric polynomials of degree 
≥ N(n) are trivial ( = 0).

4.3.7 � Codimension growth in finite dimensional nonassociative algebras

Let A be an algebra over a field F of characteristic zero. A quantitative estimate of 
the polynomial identities satisfied by A is achieved through the study of the asymp-
totics of the sequence of codimensions of A. This sequence is defined as follows. Let 
F{X} be the free non-associative algebra over F on X = {x1,… , xn,…} . Let Id(A) be 
the T-ideal of polynomial identities satisfied by the algebra A and let Pn be the space 
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of multilinear polynomials in x1,… , xn . The sequence of codimensions of A is the 
sequence cn(A) = dim

Pn

Pn∩Id(A)
 , n = 1, 2,….

It was proved by Regev that this sequence is exponentially bounded for associa-
tive PI-algebras. He also showed, in this case, that limn→∞

n
√
cn(A) exists and is an 

integer. The exponent of A is defined to be exp(A) = limn→∞
n
√
cn(A) , if this limit 

exists.
However, in general, the sequence of codimensions of an arbitrary algebra can 

have overexponential growth. For that ones which have exponentially bounded 
sequence of codimensions, one can ask if their exponents exist and if the exponent is 
a integer number.

The codimension growth for finite dimensional algebras in several classes of 
algebras were investigated by A. Giambruno, I. Shestakov and M. Zaicev in [61]. 
They proved that in a wide class of simple algebras including noncommutative Jor-
dan algebras, exp(A) exists and is equal to the dimension of A. Also, they determine 
finite dimensional algebras, including Jordan and alternative algebras, for which 
exp(A) exists and is a non negative integer.

4.3.8 � Polynomial identities for finite dimensional simple algebras

It is well known that two non isomorphic algebras may have the same identities. For 
instance, over the field ℝ of real numbers, the quaternion algebra ℍ and the matrix 
algebra M2(ℝ) are not isomorphic. However they have the same identities, because 
ℍ⊗ℝ ℂ and M2(ℝ)⊗ℝ ℂ are isomorphic. In [187], I.  Shestakov and M.  Zaicev 
prove that over an algebraically closed field, two finite dimensional simple algebras 
are isomorphic if, and only if, they satisfy the same polynomial identities.

4.3.9 � Prime degenerate algebras

Identities of prime degenerate algebras in the variety of Jordan, alternative and 
(−1, 1) type were investigated. This kind of algebras was called monsters since the 
first examples of such algebras, obtained by S. Pchelintsev, were very complicated. 
After that, Yu.  Medvedev, E.  Zelmanov and I.  Shestakov have constructed other 
monsters using the theory of superalgebras. In [146] S. Pchelintsev and I. Shestakov 
prove that the variety of algebras generated by the Pchelintsev’s prime degenerate 
(−1, 1)-algebra is the same as the generated by the Grassmann (−1, 1)-algebra and 
the same variety is generated by the Grassmann envelope of any simple nonasso-
ciative (−1, 1)-superalgebra. Moreover, this variety is the smallest variety of (−1, 1)
-algebra that contains monsters. Similar results were obtained for Jordan algebras.

4.3.10 � Associative nil algebras over finite fields

Let F be a field. Denote by CF
n,d

 the nilpotency index of the relatively free algebra 
with d generators in the variety of algebras defined by the identity xn = 0 . In [130], 
A. Lopatin and I. Shestakov prove that if F is a finite field then CF

3,d
 is determined for 

any F and, if #F > n then CF
n,d

 does not depend on the cardinality of F.
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4.3.11 � Nuclear elements of the free alternative algebra

In 1953 E. Kleinfeld proved that, for every pair of elements x, y in an alternative 
algebra, [x, y]4 is a nuclear element. This fact was used to prove that every simple 
alternative algebra is associative of a Cayley-Dickson algebra. Since then, many 
authors have found nuclear elements in an alternative algebra.

In [101], I. Hentzel and L. Peresi present another element of degree 7 in the 
center of free alternative algebras. I.  Shestakov and N.  Zhukavets, in [190], 
showed that this element is the first one in a infinite set of central elements.

For free alternative algebras over ℤ103 , I. Hentzel and L. Peresi prove that the 
least degree of a nuclear element is 5 and all nuclear elements of degree 5 and 6 
are obtained. These results can be found in [102–104].

4.3.12 � Identities of nonhomogeneous subalgebras of Lie and special Jordan 
superalgebras

Polyomial identities satisfied by nonhomogeneous subalgebras of Lie and special 
Jordan superalgebras are considered in [26] by M.  Bremner and L.  Peresi. The 
authors ignore the grading and regard the superalgebra as an ordinary algebra. 
The Lie case has been studied earlier by I. Volichenko and A. Baranov: they have 
found identities in degrees 3, 4 and 5 which imply all the identities in degrees 
less than or equal to 6. Their identities of degree 5 were simplified and it was 
shown that there are no new identities in degree 7. For the Jordan case, identi-
ties of degree less than or equal to 6 are also found. The method used is the same 
as described in Sect. 4.3.5: representation theory of symmetric groups and Len-
stra–Lenstra–Lovász algorithm.

4.3.13 � Special identities for quasi‑Jordan algebras

Algebras which satisfy identities a(bc) = a(cb), (ba)a2 = (ba2)a   and   
(b, a2, c) = 2(b, a, c)a , are called quasi-Jordan algebras. An associative dialgebra 
is a vector space with two bilinear operations a ⊣ b and b ⊢ a satisfying

If (D,⊣,⊢) is an associative dialgebra, the algebra D+ with multiplication 
a ⊲ b = a ⊣ b + b ⊢ a defined on the vector space D is a quasi-Jordan algebra. A 
quasi-Jordan algebra is special if it is isomorphic to a subalgebra of D+ , for some 
associative dialgebra D. An identity is called special if it is satisfied by special 
quasi-Jordan algebras, but not for every quasi-Jordan algebra. In [28] M. Bremner 
and L. Peresi show that the least degree of a special identity is 8 and examples of 
such identities are presented. Some of these identities are noncommutative preim-
ages of the Glennie identity for Jordan algebras.

(a ⊢ b) ⊢ c =(a ⊣ b) ⊢ c, a ⊣ (b ⊣ c) = a ⊣ (b ⊢ c),

(a ⊣ b) ⊣ c =a ⊣ (b ⊣ c), (a ⊢ b) ⊢ c = a ⊢ (b ⊢ c), (a ⊢ b) ⊣ c = a ⊢ (b ⊣ c).



1 3

São Paulo Journal of Mathematical Sciences	

4.3.14 � Special identities for Bol algebras

The role of Bol algebras in the generalization of Lie algebras as tangent algebras of 
Lie groups was mentioned in Sect. 2. A (left) Bol algebra is a vector space equipped 
with a binary operation [a, b] and a ternary operation {a, b, c} which satisfy

If A is a left or right alternative algebra then Ab is a Bol algebra, where 
[a, b] = ab − ba is the commutator of a and b, and {a, b, c} = ⟨b, c, a⟩ is the Jordan 
associator (b◦c)◦a − b◦(c◦a) . A special identity is an identity satisfied by Ab , for all 
right alternative algebra A, but not satisfied by the free Bol algebra. In [105] I. Hent-
zel and L.  Peresi prove that there are no special identities of degree less than or 
equal to 7 and obtain all the special identities of degree 8 in partition six-two.

4.3.15 � Malcev dialgebras

The notion of a dialgebra in any variety of algebras was given by Kolesnikov, in 
[123]. Using this approach, M. Bremner, L. Peresi and J. Sanchez considered Mal-
cev dialgebras in [30]. They define the dicommutator {a, b} = a ⊣ b − b ⊢ a and 
show that if D is an alternative dialgebra then D− = (D,+, {, }) is a Malcev dialge-
bra. A special identity for Malcev dialgebra is an identity which holds for D− , for 
any alternative dialgebra D but do not hold for every Malcev dialgebra. They prove 
that any special identity for Malcev dialgebras must have degree at least 7. They also 
introduce a trilinear operation which makes any Malcev dialgebra into a Leibniz tri-
ple system.

4.3.16 � Identities for the ternary commutator

Polynomial identities for the trilinear operation

in the free associative algebra are studied by M. Bremner and L. Peresi in [29]. The 
authors use representation theory of the symmetric group to prove the existence of 
new identities in degree 11.

5 � Applications and generalization

5.1 � Loops

A loop is a set L with a binary operation which admits a neutral element 1 and, 
for every a, b ∈ L , the equations ax = b and ya = b have unique solutions in L. 

[a, b] + [b, a] = 0, {a, b, c} + {b, a, c} = 0, {a, b, c} + {b, c, a} + {c, a, b} = 0,

[{a, b, c}, d] − [{a, b, d}, c] + {c, d, [a, b]} − {a, b, [c, d]} + [[a, b], [c, d]] = 0,

{a, b, {c, d, e}} − {{a, b, c}, d, e} − {c, {a, b, d}, e} − {c, d, {a, b, e}} = 0.

[a, b, c] = abc − acb − bac + bca + cab − cba
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Therefore, for each a ∈ L , the left and right translations La,Ra ∶ L → L are bijec-
tions of L. The multiplication group of L, Mult(L) , is the permutation group gener-
ated by all left and right translations. The stabilizer of 1 ∈ L in Mult(L) is the inner 
group Inn(L) of L. A loop L is called automorphic loop if every element of Inn(L) is 
an automorphism of L.

A loop L is a Moufang loop is the identities

hold in L. If a loop L satisfies the first identity above, it is called a left Bol loop. The 
second identity define the class of right Bol loops.

A loop L is an algebraic loop if L is an algebraic variety over an algebraically 
closed field F with regular morphisms m,�,� ∶ L × L → L and an element e ∈ L 
such that the identities

hold for x, y ∈ L . In this case, m is the multiplication of L and � and � are, respec-
tively, the left and right divisions. If m,�,� ∶ L × L → L are well-defined rational 
maps for which the identities above hold on a Zariski open subset of L × L then L is 
called a local algebraic loop.

5.1.1 � Moufang loops and alternative algebras

In [174] I.  Shestakov constructed an example of a Moufang loop which is not 
embedded into a loop of invertible elements of a unital alternative algebra.

5.1.2 � Commutative Moufang loops and alternative algebras

In [84] A. Grishkov and I. Shestakov prove that a free commutative Moufang loop L 
of exponent 3 (that is, x3 = 1 , for all x ∈ L ) with at most 7 generators can be embed-
ded in the free commutative alternative algebra over a field of characteristic 3. As a 
consequence, the order of this loop is determined.

5.1.3 � Self‑dual gauge fields in seven dimension

In [129] A. Grishkov and E. Loginov apply the theory of Moufang loops to the con-
struction of a gauge-invariant Lagrangian and to find a solution of modified Yang-
Mills equations in seven dimension.

5.1.4 � Algebraic Bol loops

In [70] A.  Grishkov and G.  Nagy study the category of algebraic Bol loops over 
an algebraically closed field. They apply techniques from the theory of algebraic 
groups and obtain structural theorems for this category: if B is an algebraic right Bol 
loop then the set Multr(B) of all right translations of B is an algebraic group. It is 
shown that these loops lack some nice properties of algebraic groups. For instance, 

((zx)y)x = z((xy)x), x(y(xz)) = (x(yx))z

x = m(e, x) = m(x, e) = m(y,�(x, y)) = m(�(x, y), y)
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they construct local algebraic Bol loops which are not birationally equivalent to 
global algebraic loops.

5.1.5 � Kimmerle conjecture for the Held and O’Nam sporadic simple groups

The Kimmerle conjecture for the Held and O’Nam sporadic simple groups is proved 
by V. Bovdi, A. Grishkov and A. Konovalov in [20]. For a finite group G, this con-
jecture states that �(G) and �

(
V(ℤG)

)
 coincide, where �(G) is the Gruenberg–Kegel 

graph, which has the prime divisors of the group order as its vertices and two ver-
tices p and q are connected if and only if G possesses an element of order pq, and 
V(ℤG) is the normalised unit group of the integral group ring ℤG.

5.1.6 � Moufang loops

Moufang loops have been studied by A. Grishkov and A. Zavarnitsine since 2005. 
For instance, an analog of Lagrange’s Theorem for finite Moufang loops was 
obtained in [85]. Groups with triality are naturally connected with Moufang loops 
and the description of groups with triality associated with a given Moufang loop 
was given in [86]. An analog of the first Sylow Theorem giving a criterion for the 
existence of a p-Sylow subloop and the maximal order of p-subloops in the Mou-
fang loops that do not possess p-Sylow subloops are presented in [87]. Using groups 
with triality they construct a series of nonassociative Moufang loops in [88]. Cer-
tain members of this series contain an abelian normal subloop with the correspond-
ing quotient being a cyclic group. In particular, they give a new series of examples 
of finite abelian-by-cyclic Moufang loops. Some of the examples are shown to be 
embeddable into a Cayley algebra. And, also using groups with triality, they obtain 
in [89] some general multiplication formulas in Moufang loops, construct Moufang 
extensions of abelian groups, and describe the structure of minimal extensions for 
finite simple Moufang loops over abelian groups.

In [60], S. Gagola and A. Grishkov worked on the principal problem in the theory 
of finite Moufang loops: to describe loops without abelian normal subloops. They 
proved that any Moufang loop M which contains an associative simple normal sub-
loop N such that M/N is a cyclic group of order p ≠ 3 (p prime) is a group.

5.1.7 � Commutative automorphic loops

In [11] D. Barros, A. Grishkov and P. Vojtechovsky classify loops in the class of all 
2-generated commutative automorphic loops Q possessing a central subloop Z ≅ ℤp 
such that Q∕Z ≅ ℤp × ℤp.

In [12] the same authors construct the free commutative 2-generated loop of nil-
potency class 3. It turns out that it has dimension 8 over the integers.

Solvability of commutative automorphic loops was studied by A.  Grishkov, 
M. Knyon and P. Nagy in [69]. It is proved that every finite commutative automor-
phic loop is solvable and that every automorphic 2-loop is solvable.
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5.1.8 � Automorphic loops

A general construction of automorphic loops is given by A.  Grishkov, 
M.  Rasskazova and P.  Vojtechovsky in [73]. If R is a commutative ring, V is 
a R-module, E = EndR(V) is the ring of R-endomorphisms of V and W is a sub-
group of (E,+) such that ab = ba , for every a, b ∈ W , and 1 + a is invert-
ible for every a ∈ W , then the space W × V  with multiplication defined by 
(a, u)(b, v) =

(
a + b, u(1 + b) + v(1 − a)

)
 , for a, b ∈ W and u, v ∈ V  , is an automor-

phic loop. In the same paper, it is shown an example of an infinite 2-generated abe-
lian-by-cyclic automorphic loop of prime exponent.

5.1.9 � Steiner loops

A Steiner triple system is an incidence structure consisting of points and blocks such 
that every two distinct points are contained in precisely one block and any block 
has exactly 3 points. There is a loop (Steiner loop) associated to each Steiner triple 
system, defining xy as the third element in the block containing x and y and adjoin-
ing an element e such that x ⋅ e = e ⋅ x = x and x ⋅ x = e . Reciprocally, a Steiner loop 
determines a Steiner triple system.

The paper [71] is devoted to the study of free objects in the variety of Steiner 
loops and of the combinatorial structures behind them, focusing on their automor-
phism groups. A. Grishkov, D. Rasskazova, M. Rasskazova, and I. Stuhl prove that 
all automorphisms are tame and the automorphism group is not finitely generated 
if the loop is more than 3-generated. For the free Steiner loop with three generators 
they describe the generator elements of the automorphism group and some relations 
between them.

In [72] the same authors describe Steiner Loops of nilpotency class 2 and estab-
lish the classification of finite 3-generated nilpotent Steiner loops of nilpotency class 
2.

5.2 � Commutative power associative nilalgebras

Power associative algebras are a natural generalization of associative, alternative, 
and Jordan algebras. An algebra A is power associative if, for each a ∈ A , the subal-
gebra of A generated by a is associative. The class of commutative power associative 
algebras generalizes Jordan algebras and some results connecting these two varie-
ties of algebras are known. For instance, every simple commutative power associa-
tive algebra of degree greater than 2 is Jordan and a commutative power associative 
algebra of degree 2 is Jordan if and only if it is stable. If the characteristic of the 
ground field is zero, then every semisimple commutative power associative algebra 
is Jordan.

For Jordan algebras it is true that every finite dimensional nilalgebra must be 
nilpotent. In 1948, A. Albert asked if the same occurs in the variety of commu-
tative power associative algebras. This question was answered by D. Suttles, who 
constructed a 5-dimensional algebra which is commutative power associative, nil of 
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index 4, but it is not nilpotent. However, this algebra is solvable. Since then, the fol-
lowing question has remained open.

Albert Problem: Is every finite dimensional commutative power associative nila-
lgebra solvable?

In [91], J.C.  Gutiérrez proves that every commutative power associative nila-
lgebra of dimension n and nilindex greater than or equal to n − 2 is solvable, for 
algebras over a field of characteristic zero or of sufficiently high characteristic com-
pared to the nilindex. It is also shown that every commutative nilalgebra of dimen-
sion less than or equal to 6 over a field of characteristic not 2, 3 or 5 is solvable. 
In [95] J.C. Gutiérrez and A. Suazo improve this result, proving that commutative 
power associative nilalgebras of dimension less than or equal to 8 over a field of 
characteristic not 2, 3 or 5 are solvable. The fact that every power associative nilal-
gebra of dimension n and niindex greater than n is either nilpotent of the same index 
or isomorphic to the Suttles’ example was obtained by L.  Elgueta, A.  Suazo and 
J.C. Gutiérrez in [54].

Modules over a trivial algebra of dimension two in the variety of commuta-
tive and power associative algebras were studied by J.C.  Gutiérrez, A.  Grishkov, 
M.  Montoya and L.   Murakami in [94] and irreducible modules were classified. 
These results were used to understand the structure of finite dimensional power 
associative algebras of nilindex 4.

The description of commutative, power associative nilalgebra of dimension n and 
nilindex n over a field of characteristic not 2, 3 or 5 was given by J.C. Gutiérrez, 
C. Garcia and M. Montoya in [93] and special cases of algebras of dimension n ≥ 6 
and nilindex n − 1 are treated in [92] by J.C. Gutiérrez, C. Garcia, J. Martínez and 
M. Montoya.

6 � Baric algebras

As mentioned before, the study of nonassociative algebras was initiated at IME-USP 
by R. Costa in 1980. Inicially it was concentrated in the study of algebras describ-
ing genetic inheritance; see A.  Wörz-Busekros [196] and M.  Reed [166]. Let F 
be a field. If the otherwise is not stated, in this section all algebras are over F and 
char (F) ≠ 2.

Let A be a K-algebra, where K is a commutative ring with a unit element. The 
duplicate D(A) of A consists of the tensor product K-module A⊗ A with multipli-
cation (a⊗ b)(c⊗ d) = ab⊗ cd . Now, suppose that A is commutative. In general 
D(A) is not commutative. But the quotient algebra A⊗ A∕I , where I is the ideal 
of A generated as a submodule by {a⊗ b − b⊗ a | a, b ∈ A} , is commutative. The 
K-algebra A⊗ A∕I is called the commutative duplicate of A.

A baric algebra is a pair (A,�) where A is an algebra and � ∶ A → F is a nonzero 
homomorphism of algebras. The homomorphism � is called the weight function 
and, for x ∈ A , �(x) is the weight of x. We denote by N the kernel of �.
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6.1 � Gametic and zygotic algebras of a 2m‑ploid population

A genetic algebra is a real nonassociative algebra for which there exists a basis 
c0, c1,… , cn , with a multiplication table satisfying the following conditions: if 
cicj =

∑n

k=0
�ijkck then �000 = 1, �0jk = �j0k = 0 for k < j and �ijk = 0 for i, j > 0 and 

k ≤ max(i, j) . Such a basis is called a canonical basis. Any genetic algebra is baric 
since the linear map � defined by w(c0) = 1 , �(ci) = 0 (1 ≤ i ≤ n) is a homomor-
phism. The tj = �0jj are independent of the particular canonical basis since they 
are eigenvalues of any linear transformation y → xy , x an element of weight 1. 
They are called the left train roots.

Let G = G(n + 1, 2m) be the gametic algebra of a 2m-ploid population with 
n + 1 alleles D0,D1,… ,Dn . Each monomial in the D’s of degree m represents one 
of the gametic types of the population, and so the algebra has dimension (
m + n

m

)
 . H.  Gonshor [65] proved that G is genetic, the elements of a certain 

canonical basis can be represented formally by all monomials Xm−p

0
Xi1

…Xip
 of 

degree m in the variables X0,X1,… ,Xn . The nonzero products are

where p + q ≤ m and c(p, q) =
(

2m

p + q

)−1(
m

p + q

)
 . The monomial Xm

0
 is an idem-

potent and G2 = G . The c(p, q) are completely determined by the left train roots of 
G. The corresponding zygotic algebra Z = Z(n + 1, 2m) is the commutative dupli-
cate of G. Using the technique of duplication, Gonshor gave a canonical basis of Z.

The Lie algebra ℝn ⊕ gl(n,ℝ) is the derivation algebra of the affine group A(n) 
of ℝn . R. Costa [38, 39] studied the derivations of G and Z. The main results are 
that for G and Z the derivation algebra is isomorphic to ℝn ⊕ gl(n,ℝ).

L. Peresi [148] proved that the automorphism group of G is isomorphic to A(n) 
and constructed a more comprehensive class Ω(m, n) of algebras of dimension (
m + n

m

)
 , determined by their left train roots. For any algebra A in Ω(m, n) , A(n) 

is isomorphic to a subgroup of the automorphism group of A. For 1 ≤ m ≤ 5 , n 
arbitry, all algebras in Ω(m, n) having the automorphism group isomorphic to A(n) 
were obtained. Hence it is clear that the derivation algebra of any algebra in 
Ω(m, n) contains a subalgebra isomorphic to ℝn ⊕ gl(n,ℝ) . In [150], for 
1 ≤ m ≤ 5 , n arbitry, L. Peresi determined all algebras in Ω(m, n) having deriva-
tion algebra isomorphic to ℝn ⊕ gl(n,ℝ).

Let A be a K-algebra. Assume that A2 = A and A has an idempotent. L. Peresi 
[149] proved that A,   D(A) and the commutative duplicate of A have isomorphic 
automorphism groups and isomorphic derivation algebras. The condition A2 = A 
is necessary. It was proved later that the other condition is not. As a consequence, 
the automorphism group of Z is isomorphic to A(n).

The gametic algebra G(n + 1, 2) satisfies x2 = �(x)x . For this algebra, R. Costa 
[40] proved that all identities of minimal degree are consequences of commu-
tativity and 2((ab)c)d − ((bc)a)d − ((bc)d)a + 2((cd)b)a − 2(ab)(cd) = 0 . Using 

(X
m−p

0
Xi1

…Xip
)(X

m−q

0
Xj1

…Xjq
) = c(p, q)X

m−(p+q)

0
Xi1

…Xip
Xj1

…Xiq
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computer algebra, M. Bremner, Y. Piao and S. Richards [31] proved that every 
identity for G(n + 1, 2) follows from commutativity and Costa’s identity. These 
authors also proved that every identity for the zygotic algebra Z(n + 1, 2) follows 
from commutativity and 2((ab)c)d − ((ab)d)c − ((ac)b)d − ((bc)a)d + (ab)(cd).

6.2 � Indecomposable baric algebras

R. Costa and H. Guzzo [42] introduced the notion of indecomposable baric alge-
bra and proved an analogous to the Krull-Schmidt Theorem. A baric algebra (A,�) 
with an idempotent of weight 1 is decomposable if there are non trivial ideals N1 
and N2 of A, both contained in N, such that N = N1 ⊕ N2 . Otherwise, it is inde-
composable. For every n ≥ 1 and m ≥ 2 , G(n + 1, 2m) is indecomposable. The 
additive group (N,+) can be endowed with a structure of an abelian M-group. The 
set M is formed by all right and left multiplications Ra and La , where a belongs 
to A ∪ F . In this case, the M-subgroups of (N,+) are the ideals of the algebra A, 
contained in N. If (A,�) has an idempotent e of weight 1 then A = Fe⊕ N . 
The join of (A1,𝜔1) = Fe1 ⊕ N1 and (A2,𝜔2) = Fe2 ⊕ N2 is the baric algebra 
(A1 ∨ A2,�1 ∨ �2) where A1 ∨ A2 = F(e1 + e2)⊕ N1 ⊕ N2 , �1 ∨ �2(e1 + e2) = 1 
and 𝜔1 ∨ 𝜔2(N1 ⊕ N2) = 0 . If (A,𝜔) = Fe⊕ N and the M-group N satisfies the 
d.c.c. then there exist m indecomposable baric subalgebras (Ai,�i) of (A,�) such that 
(A,�) = (A1 ∨⋯ ∨ Am,�1 ∨⋯ ∨ �m).

The Krull-Schmidt Theorem is as follows. Suppose that for (A,𝜔) = Fe⊕ N the 
M-group Nsatisfies both a.c.c. and d.c.c.. Let (Ai,�i) and (Bj,�j) be indecomposable 
baric algebras such that

Then m = n and for some permutation i → j of indices, (Ai,�i) ≅ (Bj, �j) . R. Costa 
and H.  Guzzo [43] obtained some classes of baric algebras for which the Krull-
Schmidt Theorem is valid. They prove also that the commutative duplicate of an 
indecomposable commutative baric algebra A such that A2 = A is indecomposable.

6.3 � Bar‑radical and Wedderburn decomposition

In [96], H. Guzzo introduced the bar-radical, and obtained results on Noetherian 
and Artinian baric algebras and the join of baric algebras. Let A = (A,�) be a baric 
algebra and denote bar(A) = ker(�) . A baric subalgebra of A is a subalgebra B of A 
such that B ⊈ bar(A) . In this case, (B,�|B) is a baric algebra. If, furthermore, bar(B) 
is a two-sided ideal of bar(A) then B is called normal. A baric algebra A is called 
baric simple if bar(B) = {0} or bar(B) = bar(A) for all normal baric subalgebras B of 
A. The bar-radical Rb(A) of A is defined as follows: Rb(A) = {0} if A is baric simple; 
otherwise, Rb(A) =

⋂
bar(B) , where B runs over the maximal normal baric subal-

gebras of A. When Rb(A) = {0} , A is called baric semisimple. The algebra A has a 
Wedderburn baric decomposition if A decomposes as a direct sum (of vector spaces) 

(A,�) = (A1 ∨⋯ ∨ Am,�1 ∨⋯ ∨ �m, (A,�) = (B1 ∨⋯ ∨ Bn, �1 ∨⋯ ∨ �n),
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A = S⊕ T ⊕ Rb(A) , where S is a semisimple baric subalgebra of A and T is a vector 
subspace of bar(A) such that T2 ⊂ Rb(A).

Let A = (A,�) be a finite dimensional baric algebra. Denote by Nil(A) the nilradical 
(maximal nilideal). If A is alternative, or unital Jordan, or of ( � , �)-type (char(F)≠ 2, 3, 5 
in this last case) then Rb(A) = Nil(A) ∩ (bar(A))2 . See M. Couto and H. Guzzo [51], 
J. Ferreira and H. Guzzo [57, 58]. In [56], B. Ferreira, J. Ferreira and H. Guzzo proved 
that if A is of ( � , �)-type over algebraically closed field F of characteristic ≠ 2, 3, 5 then 
A has a Wedderburn baric decomposition.

6.4 � Bernstein algebras

In 1923 S. Bernstein proposed the problem of describing all evolution operator that 
achieves equilibrium in the second generation. Let a1,… , an be n hereditary types. 
Denote by �ijk the probalility to obtain ak from ai and aj (�ijk = �jik ≥ 0,

∑n

k=1
�ijk = 1) . 

If x = (x1,… , xn) , x1,… , xn ≥ 0 and 
∑n

i=1
xi = 1 , represents the frequency distribution 

of hereditary types in a given generation, then the frequency distribution in the next 
generation is x� = (x�

1
,… , x�

n
) , where x�

k
=
∑n

i,j=1
xixj�ijk (k = 1,… , n).

The evolution operator is the quadratic operator V defined by V(x) = x� . The popula-
tion achieves equilibrium in the second generation if and only if V2 = V ; in this case, 
we say that V is stationary. Bernstein solved the problem for n = 3 and obtained some 
results for arbitrary n. Y. Lyubich (see [135]) solved the problem for the regular and 
exceptional cases, and J.C. Gutiérrez [90] for the non-regular case completing the solu-
tion of Bernstein problem.

Lyubich (and also P.  Holgate [107]) introduced the notion of Bernstein algebra, 
given an algebraic formulation for the Bernstein problem. Let V(x) = x� be the evolu-
tion operator. Let {e1,… , en} be a basis of ℝn . Considering in ℝn the multiplication 
given by eiej =

∑n

k=1
�ijkek , we obtain an algebra AV . In terms of AV , V(x) = x2 and sta-

bility in the second generation is given by x2x2 = x2 . It is easy to see that the linear form 
�V ∶ AV → ℝ defined by �V (x) =

∑n

i=1
xi is a homomorfism and x2x2 = �V (x)

2x2 , for 
all x ∈ AV . A Bernstein algebra is a baric algebra (A,�) , where A is a commutative 
algebra over F , such that x2x2 = �(x)2x2 (∀x ∈ A) . In particular, (AV ,�V ) is a Bern-
stein algebra. For a Bernstein algebra, the weight function � is unically determined.

Let (A,�) be a Bernstein algebra. If y ∈ A and �(y) ≠ 0 then (y∕�(y))2 is an idem-
potent. Chosen an idempotent e, the Peirce decomposition is A = Fe⊕ U ⊕ V , where 
U = {n ∈ N | en =

1

2
n} and V = {n ∈ N | en = 0} . The subspaces U and V satisfy 

U2 ⊂ V , UV ⊂ U, V2 ⊂ U, UV2 = 0 . Invariant means that it does not depend on 
the choise of the idempotent. The condition U2 = 0 is invariant and defines the subclass 
of exceptional Bernstein algebras. Also the conditions UV = 0 and V2 = 0 are invari-
ants and define the subclass of normal Bernstein algebras. When (A,�) is exceptional it 
satisfies (xy)(xy) = �(xy)xy ; and when is normal it satisfies x2y = �(x)xy.

A class of exceptional Bernstein algebras associated to finite simple graphs was 
constructed by R.  Costa and H.  Guzzo [44]. And it was proved by R.  Costa and 
A. Grishkov [68] that an isomorphism between exceptional Bernstein algebras associ-
ated to two graphs implies an isomorphism of the graphs.
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6.4.1 � Nilpotency and solvability

Let (A,�) be a Bernstein algebra and N = ker(�) . As proved by A. Grishkov [74], 
the question about the nilpotency of N arises because Bernstein algebras are genetic 
algebras if and only if N is nilpotent. A. Grishkov proved that if A2 = A and A is 
finite dimensional then N is nilpotent. I. Hentzel and L. Peresi [99] have shown that 
N is not in general nilpotent but is solvable for any finitely generated Bernstein alge-
bra. Grishkov conjectured that if A2 = A and A is finitely generated by n genera-
tors then there is c = c(n) such that N is nilpotent with index ≤ c . L. Peresi [151] 
proved that the conjecture is true without finding c. A. Krapivin [126] also proved 
that the conjecture is true and gave c. For arbitrary Bernstein algebras in characteris-
tic ≠ 2, 3 , I. Hentzel, D. Jacobs L. Peresi and S. Sverchkov [98] proved that N2 is nil-
potent of index at most 9 and N is solvable of index at most 4. The key fact to obtain 
these results, verified by computer algebra, is that if J is a commutative nilring of 
nilindex 3 and characteristic ≠ 2, 3 then J2J2J2J2J = 0 . J. Bernad, S. González and 
C. Martínez [16] improved these results. Let (A,�) be a Bernstein algebra. Then N is 
solvable of index at most 3 and N2 is nilpotent of index at most 5.

6.4.2 � Bernstein‑Jordan algebras

Let A = Fe⊕ U ⊕ V  be a Bernstein algebra. The set L = {u ∈ U | uU = 0} is an 
ideal of A and A/L is a Bernstein-Jordan algebra. The ideal L is invariant. When 
L = 0 we say that A is reduced. Bernstein-Jordan algebras of dimension 5 over the 
real field were classified by I. Correa and L. Peresi [35].

T.  Cortés and F.  Montaner [37] defined direct products of Bernstein algebras, 
together with the related notions of decomposable and indecomposable algebras, 
and obtained some of their properties, including a Krull-Schmidt theorem of unique-
ness of such decompositions. These authors define J(A) as the smallest ideal of A 
such that A/J(A) is a Bernstein-Jordan algebra. They show that the correspondence 
A → A∕J(A) is a functor preserving the direct product.

T.  Cortés and F.  Montaner [37] sugested the following approach for the struc-
ture of the finite dimensional Bernstein algebras (A,�) : the first step is to calculate 
the reduced algebra A/L; the second step is to decompose this reduced algebra as a 
direct product of indecomposable algebras; the final step consists in classifying the 
indecompossable Bernstein-Jordan algebras. This approach works for low dimen-
sions, since in dimension 7 there are an infinity number of indecomposable Bern-
stein-Jordan algebras that are not isomorphic.

T. Cortés and F. Montaner [36] used the above approach to classify Bernstein-Jor-
dan algebras of dimension ≤ 5 when F is algebraically closed. First, they described 
all reduced Bernstein algebras of dimension ≤ 5 throught their indecomponsable 
factors. Next, they described the Bernstein-Jordan algebras of dimension ≤ 5 using 
the following argument: if (A,�) is such an algebra then A/L is reduced, hence is one 
of the already listed algebras; finally, they obtained the algebra A from A/L.
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6.4.3 � Radical and complete Bernstein algebras

S. González, C. Martínez and A. Grishkov [66] introduced the concepts of radical 
and complete algebra for the finite dimensional Bernstein algebra A over an alge-
braically closed field of characteristic 0. Denote by As(A) the subalgebra of End(A2) 
generated by the right multiplications Ra (a ∈ A) . The radical of A is the set 
R(A) = {x ∈ A | Rx ∈ J(As(A))} , where J(As(A)) is the Jacobson radical of As(A).

If (A,�) is a Bernstein algebra and t ∶ A → A is a linear map, we define the alge-
bra A1 and the homomorphism �1 in the following way: A1 = A⊕ Ft and the multi-
plication is given by

We say that t is an A-map if (A1,�1) is a Bernstein algebra. If e is an idempotent of 
A, we say that the A-map t is an e-map if t(e) = 0 . The A-map t is called inner when 
there exists a ∈ A such that t(x) = Ra(x) (∀x ∈ A2).

If A = Fe⊕ U ⊕ V , u, u1, u2 ∈ U, v1, v2 ∈ V  , the maps t1, t2, t3 are e-maps, 
where

The Bernstein algebra A is called complete when t1, t2, t3 are inners for any idempo-
tent e de A.

Suppose that the finite dimensional Bernstein algebra A is not complete. Then A 
can be embedded into a complete finite dimensional Bernstein algebra. The e-map 
t = ti for some i (i = 1, 2, 3) is not inner. The algebra A1 = A⊕ Ft is constructed and 
A is embedded into A1 . If A1 is complete the process ends. If A1 is not complete, 
the process continues, obtaining an algebra An (n ≥ 2) and A is embedded into An . 
Since A2 = A2

1
= ⋯ = A2

n
, An is complete for some n. Let A be a finite dimensional 

Bernstein algebra over an algebraically closed field F of characteristic 0. The rad-
ical R(A) is a nilpotent ideal. If A is complete and e is an idempotent of A then 
A = Fe⊕ R(A)⊕ T  , where eT = 0 and J = {Rx ∶ A2

→ A2 | x ∈ T} is a Jordan 
algebra with Nil(J) = 0.

6.4.4 � Basis of identities

(Polynomial) identities have an important role in the structure theory of algebras. 
The problem of classifying all algebras does not have a satisfactory answer. It turns 
out interesting to study classes of algebras satisfying a set of identities.

Another problem consists in finding identities for a class of algebras. The central 
question in this direction is Specht Problem: Given a class of algebras C , is it true 
that any algebra A in C has a finite basis of identities (that is, the T-ideal of identities 
T(A) is generated by a finite number of identities without dependency relations)? In 

(a1 + �1t)(a2 + �2t) = a1a2 + �2t(a1) + �1t(a2),

w1(a) = w(a) (a ∈ A), w(t) = 0.

t1 =Rv1
◦Rv2

,

t2(e) =0, t2 = Ruv1
Rv2

+ Ruv2
Rv1

in U ⊕ V ,

t3(e) =0, t3 = R(u1u2)v1
Rv2

+ R(u1u2)v2
Rv1

in U ⊕ V .
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1950, W. Specht proposed this problem for associative algebras over a field of char-
acteristic 0. A. Kemer [122] gave a complete solution: Any associative algebra over 
a field of characteristic 0 has a finite basis of identities. For positive characteristic, 
A. Belov [15], A. Grishin [67] and V. Shchigolev [169] independently constructed 
T-ideals of the free associative algebra that do not have a finite basis of identities. 
Results similar to Kemer’s theorem are valid for finite dimensional alternative, Jor-
dan and Lie algebras over a field of characteristic zero.

A weak form of Specht Problem is the following: Given a class of algebras C , is it 
true that the T-ideal of identities T(C) of C has a finite basis of identities?

The class of Bernstein algebras is not a variety of algebras, that is, cannot be defined 
by a set of identities. Over a field of characteristic ≠ 2, 3, 5 , I. Correa, I. Hentzel and 
L. Peresi [34] obtained by computer algebra the identities of minimal degree, which are 
not consequence of commutativity, for Bernstein algebras, normal Bernstein algebras 
and exceptional Bernstein algebras. For Bernstein algebras, all identities of minimal 
degree are consequences of

I. Correa [33] studied commutative algebras satisfying one of these identities. Let A 
be a commutative algebra over a field F of characteristic zero containing an idempo-
tent and satisfying (x2x2, y, x) − 2(x2, y, x)x2 = 0 . Then the Peirce decomposition is 
A = A1 ⊕ A 1

2

⊕ A0 and we have: (i) A is a Bernstein algebra if and only if 
dim A1 = 1 ,    A2

1

2

⊂ A0 and A2
0
⊂ A 1

2

 . (ii) A is a Jordan algebra if and only if A0 is a 

Jordan algebra and j(xy) = (jx)y + (jy)x for all x, y ∈ A0 and j ∈ A 1

2

.
For normal Bernstein algebras, all identities of minimal degree are consequences of

And, for exceptional Bernstein algebras, they are consequences of

J.  Bernad, S.  González, C.  Martínez and A. Iltyakov [17] gave an example of an 
exceptional Bernstein algebra that does not have a basis of identities. Therefore, 
Specht Problem does not have a positive solution for the class of Bernstein algebras. 
For certain subclasses the problem has a positive solution. They proved that if (A,�) 
is a Bernstein-Jordan algebra or a Bernstein algebra satisfying A2 = A , over a field 
of caracteristic 0, then T(A) has a finite basis of identities.

Denote by N  the subclass of normal Bernstein algebras, and by M the subclass of 
exceptional Bernstein algebras satisfying UV = 0 . J. Bernad, S. González, C. Martínez 
and A. Iltyakov [18] found 5 identities that generate T(N) and 7 identities that generate 

(x2x2, y, x) − 2(x2, y, x)x2 = 0,

(y, x2x2, x) − 2(yx2, x, x2) + 2y(x2, x2, x) + 2(x, (yx)x, x2) = 0.

3(yx2)x = 2((yx)x)x + yx3,

2(xy)(xy) = (x2y)y + (y2x)x,

(x, yz, t) + (z, yt, x) + (t, yx, z) = 0.

(ae, bd, c) + (be, cd, a) + (ce, ad, b) + (a, bd, ce) + (b, cd, ae) + (c, ad, be)

+ (a, e, b)(cd) + (b, e, c)(ad) + (c, e, a)(bd) = 0.
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T(M) in characteristic 0. L. Peresi [152] proved that there are dependence relations 
among the generators and obtained bases of identities. A basis of identities for T(N) is

A basis of identities for T(M) is

For normal Bernstein algebras, the three identities of minimal degree mentioned 
above form also a basis of identities [152].

6.4.5 � Multiplication algebra

Let (A,𝜔) = Fe⊕ U ⊕ V  be a finite dimensional Bernstein algebra. The dimensions 
r = dimU and s = dimV  are invariant and (1 + r, s) is the type of (A,�).

The multiplication algebra M(A) is the subalgebra of End(A) generated by 
Lx ∶ A → A , where x ∈ A and Lx(a) = xa . The following basic results on M(A) were 
obtained by R.  Costa and A.  Suazo [50]:    M(A) is baric with weight function 𝜔̄ 
defined by 𝜔̄(Lx) = 𝜔(x) and 2L2

e
− Le is an idempotent of weight 1;  

Ũ ≅ U ⊕ U2 and an isomorphism is given by x ∈ U ⊕ U2
→ 𝜓x ∈ Ũ , where 

�x(e) = x and �x(N) = 0 ;    the idempotent 4Le − 4L2
e
∈ Ṽ  gives the usual Peirce 

decomposition Ṽ = Ṽ11 ⊕ Ṽ10 ⊕ Ṽ01 ⊕ Ṽ00 and the dimensions of Vij are invariant.
Further results on M(A) were obtained by R. Costa, L. Murakami and A. Suazo 

[45]. The subspace {Lu − 2LeLu | u ∈ U} of Ṽ01 has the same dimension as U/L, so 
dim Ṽ01 ≥ dimU − dim L . If r ≥ 1 then the following hold: Ṽ11 ≠ 0 ;    A is normal 
if and only if Ṽ10 = 0 ;   A is exceptional if and only if Ṽ01 = 0 ;   U(UV) = 0 if and 
only if Ṽ00 = 0 , and in this case dim Ṽ01 = dimU − dim L ; if Ṽ01 = 0 or Ṽ10 = 0 then 
Ṽ00 = 0 ;   dimM(A) ≥ r + 2 , and the equality occurs if and only if N2 = 0 . If A2 = A 
and s ≥ 1 then dimM(A) ≥ 3 + r + s = 2 + dimA and, when dimA ≥ 3 , there is up 
to isomorphism one Bernstein algebra where A2 = A and the equality occurs.

We summarize some more main results obtained in [45] and by 
R.  Costa and L.  Murakami [46]. Let (A,�), (A1,�1) and (A2,�2) be 
finite dimensional Bernstein algebras. (i) (A,�) is normal if and only if 
dimM(A) = 2 + 2 dimU + dimU2 − dim L . (ii) Assume that (A1,�1) and (A2,�2) 
have isomorphic multiplication algebras. Then A1 is exceptional (normal) if and 
only if A2 is exceptional (normal). Also A2

1
 and A2

2
 have the same type. (iii) The 

ideal N of A is nilpotent if and only the ideal Ñ = Ũ ⊕ Ṽ  of M(A) is nilpotent. (iv) 

(a, b, c)d + (d, b, a)c + (c, b, d)a = 0, (x, x, y2) − 2(x, y, y)x = 0.

(a, (bc)d, e) − 2(a, bc, e)d = 0,

(a, b, c)(de) − 2 ((a, b, c)d)e = 0, 3 (x, x2, x2) − 2 (x, x, x2)x = 0,

(a, c, bd) − (b, c, ad) − (a, d, bc) + (b, d, ac) − 3(a, c, b)d + 3(a, d, b)c = 0.

M(A) = F(2L2
e
− Le)⊕ Ũ ⊕ Ṽ ,

Ũ = {𝜎 | 𝜎(A) ⊂ N, 𝜎(2L2
e
− Le) = 𝜎},

Ṽ = {𝜎 | 𝜎(A) ⊂ N, 𝜎(2L2
e
− Le) = 0};

Ũ2 = 0, ŨṼ = 0, ṼŨ ⊂ Ũ, Ṽ2 ⊂ Ṽ;
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Assume that (A,�) has type (1 + r, s) . If N is nilpotent then all the idempotents in 
{𝜎 ∈ M(A) | 𝜎(A) ⊂ N} have rank r. The converse is true if A is non exceptional.

Two numerical invariants of Bernstein algebras derived from their multiplication 
algebras were studied by R. Costa and L. Murakami [47]. The first one is the maximum 
rank �(A) of the elements of M(A). They investigated the bounds of �(A) and its rela-
tions with the dimension of the invariant subspace U(UV). Assume that (A,�) has type 
(1 + r, s) . Then 1 + r ≤ �(A) ≤ r + s , and �(A) = 1 + r if and only if U(UV) = 0 . In 
particular, when A is exceptional or normal we have U(UV) = 0 and then �(A) = 1 + r . 
More generally, if dimU(UV) = t then �(A) ≤ 1 + r + t . The other invariant is the 
maximum dimension of M(A). It is proved that

for each one of the following classes of Bernstein algebras: exceptional; r > 1 and 
U(UV) = 0 ; r > s and N is nilpotent; dimU(UV) = 1 . For every r ≥ 1 and s ≥ 2 , 
there exists an exceptional algebra with dimM(A) = 1 + r + r2 + rs.

R. Costa and L. Murakami [48] proved that if A2 = A then the group of automor-
phisms of M(A) has a proper subgroup isomorphic to the group of automorphims of A.

6.4.6 � Other invariants

Let (A,𝜔) = Fe⊕ Ue ⊕ Ve be a finite dimensional Bernstein algebra of type (1 + r, s) . 
The set of nonzero idempotents of (A,�) is Ip(A) = {e + u + u2 ∶ u ∈ Ue} . Let 
p = p(U,V) be a polynomial on the commutative and nonassociative variables U and 
V without constant term and all the coefficients equal to 1. Let pe = p(Ue,Ve) be the 
corresponding subspace of (A,�) . The polynomial p is invariant if pe = pf  and has 
invariant dimension if pe and pf  have the same dimension, for all nonzero idempotents 
e and f. Well-known examples of polynomials which have invariant dimension are 
U,V ,UV + V2 and U2.

R. Costa and J. Picanço [49] proved that every polynomial p has invariant dimension 
in every Bernstein-Jordan algebra, and in every Bernstein algebra if pe ⊂ Ve . Since 
Ue(UeV

(k)
e
) ⊂ Ve the monomial U(UV (k)) has invariant dimension for all k ≥ 0 . The 

Bernstein algebra is n-exceptional if n is the least integer for which Ue(UeV
(n)
e
) = 0 . 

See N. Bezerra and R. Costa [41].
N. Bezerra, R. Costa and J. Picanço [19] obtained some results for p and for the 

monomial UV. Let �p = max{dim pe ∶ e ∈ Ip(A)} , �p = min{dim pe ∶ e ∈ Ip(A)} and 
Ω(p) = �p − �p . The main results are: (i) 0 ≤ Ω(p) ≤ dimL ≤ r , and dimL ≤ r − 1 
when (A,�) is n-exceptional. (ii) In a n-exceptional Bernstein algebra (A,�) the mono-
mial UV is invariant if and only if n = 0 or n = 1 and U2

e
Ve ⊂ UeVe for every e ∈ Ip(A) . 

(iii) Let (A,�) be a Bernstein algebra with r ≥ 2 . Then Ω(UV) = r − 1 if and only if 
there exists e ∈ Ip(A) such that UeVe = 0 and dimU2

e
Ve = r − 1.
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