





to thing about new methods of measuring evidence. In a more philosophical
terms, [Goo 83] discuss, in & great detail, the concept of evidence. The method
we suggest in the present paper has simple arguments and a geometric inter-
pretation. It can be easily implemented using modern numerical optimization
and integration techniques. To illustrate the method we apply it to standard
statistical problems with multinomial distributions. Also, to show its broad
spectrum, we consider the case of comparing two gamma distributions, which
has no simple solution with standard procedures. It is not a situation that ap-
pears in regular textbooks. These examples will make clear how the method
should be used in most situations. The method is “Full” Bayesian and consists
in the analysis of credible sets. By Full we mean that one needs only to use
the posterior distribution without the need for any adhockery, a term used by
[Goo 83].

2 THE EviDENCE CALCULUS

Consider the random variable D that, when observed, produces the data d. The
statistical apace is represented by the triplet (Z,A,©) where Z is the sample
space, the set of possible values of d, A is the Borel o-algebra of subsets of =
and O is the parameter space. We define now a prior model (S, B, ng), which is
a probability space defined over ©. Note that the -algebra B has to be defined
in such a way that Pr{A |0} turns out to be B-measurable, for all A € A and
# € ©. As usual after observing data d, we obtain the posterior probability
model (©, B, n4), where 74 is the conditional probability measure on B given
the observed sample point, d. In this paper we restrict ourselves to the case
where the functions x4 has a probability density function.

To define our procedure we should concentrate only on the posterior prob-
ability space (6, B, 74). First we will define T, as the subset of the parameter
space where the posterior density is greater than ¢,

T, ={0€0] f(8) > ¢}
The credibility of T, is its posterior probability,

:c=/;"f(6]d)do=/ef¢(8|d)d0

where f,(z) = f(z) if f(z) > ¢ and zero otherwise.
Now, we define f* as the maximum of the posterior density over the null
hypothesis, attained at the argument 6*,

0" €argmax f(6) , f* = f(6")
€6
and define T" = Ty. as the set “tangent” to the null hypothesis, H, whose

credibility is ™. Figures 1 and 2 show the null hypothesis and the contour of
set T* for Examples 2 and 3 of Section 4.



The measure of evidence we propose in this article is the complement of the
probability of the set T". That is, the evidence of the null hypothesis is

Ev(H)=1-kK" or 1-m(T")

If the probability of the set T is “large”, it means that the null set is in
a region of low probability and the evidence in the data is against the null
hypothesis. On the other hand, if the probability of T* is “small”, then the nuil
set is in a region of high probability and the evidence in the data is in favor of
the null hypothesis.

Although the definition of evidence above is quite general, it was created
with the objective of testing precise hypotheses. That is, a null hypothesis for
which the dimension is smaller than that of the parameter space, i.e. dim(©g) <
dim(©).

3 NUMERICAL COMPUTATION

In this paper the parameter space, ©, is always a subset of R", and the hy-
pothesis is defined as a further restricted subset ©g C © C R". Usually, 8 is
defined by vector valued inequality and equality constraints:

80 = {0€©[g(8) <0AAB) =0}.

Since we are working with precise hypotheses, we have at least one equal-
ity constraint, hence dim(©g) < dim(©). Let f(6) be the probability density
function for the measure my; i.e., xg(b) = [, f(6)d6.

The computation of the evidence measure defined in the last section is per-
formed in two steps, a numerical optimization step, and a numerical integration
step. The numerical optimization step consists of finding an argument §* that
maximizes the posterior density f(#) under the null hypothesis. The numeri-
cal integration step consists of integrating the posterior density over the region
where it is greater than f(€*). That is,

¢ Numerical Optimization step:
= arg;x;g::f(ﬂ) , o= f" = f(6%)
e Numerical Integration step:
K" = / fo(0]d)do
e

where f,(z) = f(z) if f(2) > ¢ and zero otherwise.



Efficient computational algorithms are available for local and global op-
timization as well as for numerical integration in {Fle 87), [Hor 95], [Pin 95],
[Kro 98], [Nem 89), and [Slo 94). Computer codes for several such algorithms
can be found at software libraries as NAG and ACM, or at internet sites as
www.ornl.org.

We notice that the method used to obtain 7* and to calculate x* can be used
under general conditions. Our purpose, however, is to discuss precise hypothesis
testing, under absolute continuity of the posterior probability model, the case
for which most solutions presented in the literature are controversial.

4 EXAMPLES

In the sequel we will discuss five examples with increasing computational dif-
ficulty. The first four are about the Multinomial model. The first example
presents the test for a specific success rate in the standard binomial model,
and the second is about the equality of two such rates. For these two exam-
ples the null hypotheses are linear restrictions of the original parameter spaces.
The third example introduces the Hardy-Weinberg equilibrium hypothesis in a
trinomial distribution. In this case the hypothesis is quadratic.

Forth example considers the test of independence of two events in a 2 x 2
contingency table. In this case the parameter space has dimension three, and
the null hypothesis, which is not linear, defines a set of dimension two.

Finally, the last example presents two parametric comparisons for two gamma
distributions. Although straightforward in our paradigm, it is not presented by
standard statistical textbooks. We believe that, the reason for this gap in the
literature is the non-existence of closed analytical forms for the test.

In order to be able to fairly compare our evidence measure with standard
tests, like Chi-square tail (pV), Bayes Factor (BF), and Posterior-Probability
(PP), we always assume a uniform prior distribution. In these examples the
likelihood has finite integral over the parameter space. Hence we have posterior
density functions that are proportional to the respective likelihood functions.
In order to achieve better numerical stability we optimize a function propor-
tional to the log-likelihood, L(6), and make explicit use of its gradient, dL, and
constraints Jacobian, J.

For the 4 examples concerning multinomial distributions we present the fol-
lowing figures (Tables 1, 2, and 3):

¢ Our measure of evidence, Ev, for each d;
o the p-value, pV obtained by the x? test; that is, the tail area;

¢ the Bayes Factor,

BF = Pr{€©¢}Pr{d| 64}

= (1= PriGo})Pr{d |6 - G5} ™™




o the posterior probability of H,
PP = Pr{0 |d} = {1+ (BF) '}

For the definition of the Bayes Factor and properties we refer to [Goo 83]
and [Ait 91].

4.1 Success rate in standard binomial model

This is a standard example about testing that a proportion, 8, is equal to a spe-
cific value, p. Consider the random variable, D being binomial with parameter 8
and sample size n. Here we consider n = 20 trials, p = 0.5 and d is the observed
success number. The parameter space is the unit interval © = {0 < ¢ < 1}.
The null hypothesis is defined as H : § = p. For all possible values of d, Table 1
presents the figures to compare our measure with the standard ones. To com-
pute the Bayes Factor, we consider a priori Pr{H} = Pr{# = p} =0.5and a
uniform density for § under the “alternative” hypothesis, A:  # p. That is,

BF = (n+1)( ; )pd(l__p)n-d

Table 1: Standard Binomial Model

d| Ev| pV | BF | PP
0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.00 | 0.02 | 0.02
0.01 | 0.01 | 0.10 | 0.08
0.02 | 0.03 | 0.31 | 0.24
0.06 | 0.07 | 0.78 | 0.44
0.16 | 0.18 | 1.55 | 0.61
0.35 | 0.37 | 2.52 | 0.72
0.64 | 0.65 | 3.36 | 0.77
1.00 | 1.00 | 3.70 | 0.79

PO N = O

b

4.2 Homogeneity test in 2 x 2 contingency table

This model is useful in many applications, like comparison of two communities
with relation to a disease incidence, consumer behavior, electoral preference,
etc. Two samples are taken from two binomial populations, and the objective
is to test whether the success ratios are equal. Let z and y be the number of



successes of two independent binomial experiments of sample sizes m and n,
respectively. The posterior density for this multinomial model is,

f(0|2,y,n,m) 676370367
The parameter space and the null hypothesis set are:
0={0<8<1|b1+0:=1A03+0,=1})
€ ={0€O|8 =6}
The Bayes Factor considering a priori Pr{H} = Pr{6, = 63} = 0.5 and

uniform densities over © and © — ©y is given in the equation below. See
{Iro 86] and [Iro 95] for details and discussion about properties.

BF = (f: )(:) (m+1)(n+1)
iy <0 m+n+1

z+y

Left side of Table 2 presents figures to compare Ev(d) with the other stan-
dard measures for m = n = 20. Figure 1 presents H and 7* for z = 10 and
y=4withn=m=20.

4.3 Hardy-Weinberg equilibrium law

In this biological application there is a sample of n individuals, where z; and
z3 are the two homozigote sample counts and z3 = n ~ z) —~ 23 is hetherozigote
sample count. § = [#,, 83, 85] is the parameter vector. The posterior density for
this trinomial model is
f(0|z) x 6763°65°
The parameter space and the null hypothesis set are:
e={920|91+03+03=1}

80 ={0€06=(1- V7))
The problem of testing the Hardy-Weinberg equilibrium law using the Bayes
Factor is discussed in detail by [Per 84] and [Mon 98].
The Bayes Factor considering uniform priors over ©p and © — 9y is given
by the following expression:

(n+2)1 ¢! (2n —t)! 222 [5/6_ 2t +1)(2n—t+1)
(2n + 1)! z,! 25! 25! (27 + 2)(2n + 3)
Here t = 2z, 43 is a sufficient statistic under H. This means that the likelihood
under H depends on data d only through ¢.
Right side of Table 2 presents figures to compare Ev(d) with the other
standard measures for n = 20. Figure 2 presents H and T for z; = 5, ys = 10
and n = 20.

BF =




Table 2: Tests of Homogeneity and Hardy-Weinberg equilibrium

Homogeneity Hardy-Weinberg

x| y| Ev| pV| BF| PP |2, |z3| Ev]| pV | BF | PP
5| 0]0.05(0.02]0.25]0.20 1] 210.01]0.00]0.01]0.01
5| 1)018)|0.08 /087|046 1| 3|0.01]|0.010.04]0.04
5 2)043)021170/063| 1| 4|0.04]0.02|0.11]0.10
5 3[071]043 (247|071 1| 5/0.090.040.250.20
5| 4093071295 0.75 1| 6/(0.18 | 0.08 | 0.46 | 0.32
5/ 5|1.00(100(305/075( 1| 7/0.31]0.15]|0.77 | 0.44
5| 6|094 /072|280 0.74 1| 8048026 1.16 | 0.54
5( 7(077|049]231|0.70 1] 9066|039 | 1.69 | 0.61
5| 8058 |031)175/|0864| 1| 10/0.83]|0.57|2.00]0.67
5| 9)039]0.18 | 1.21 | 0.55 1111)0.95]0.77 | 2.34 | 0.70
5|10 0.240.10 | 0.77 | 0.43 112 1.00 | 0.99 | 255 | 0.72
0| 0.00 | 0.00 | 0.00 | 0.00 113096 0.78 | 257 | 0.72
1/000(000)002|002| 114084055 239]0.71
210.01|0.01]0.07 | 0.06 1|15 0.66 | 0.33 | 2.05 | 0.67
31006002019 | 0.16 1|16 (047 | 0.16 | 1.58 | 0.61
4012|005 | 041 | 0.29 1{1710.27 | 0.05 | 1.06 | 0.51
5|024 010|077 | 0.43 1|18 0.12 | 0.00 | 0.58 | 0.37
6041020 123|055 5| 0]0.02|0.01]0.05]|0.05
71061034174 | 0.63 5| 1|009)|0.04 025|020

8 | 0.81 | 0.53 | 2.21 | 0.69 5| 2)029|0.14 | 0.60 | 0.38

9 (0.95|0.756 | 2.54 | 0.72 5| 3|0.61|0.34| 100 0.50
10 | 1.00 | 1.00 | 2.66 | 0.73 5| 4|0.89 | 0.65 | 1.29 | 0.56
0| 0.00 | 0.00| 0.00 | 0.00 5| 5 1.00 | 1.00 | 1.34 | 0.57

1| 0.00|0.00 | 0.000.00 5| 6090|066 | 1.18 | 0.54

2| 0.00 | 0.00 | 0.01 | 0.01 5| 7066|039 089 | 047
31001)000 004|004 5| 8| 040|020 0.58 | 0.37
4(0.03)0.01(0.10 | 0.09 5| 91021009 (032 0.24
5/007)003|024|019| 5|10 0.09 | 0.04 | 0.16 | 0.13
6|0.14 | 0.06 | 0.46 | 0.32 9| 0]0.21)0.09 073 0.42
71026)0.11 | 0.80 | 0.44 9| 1066|039 |1.59]0.61
81042021 1124055 9| 2099|091 | 177 | 0.64
9/1062(034)173|063) 9| 3|0.86| 0.59|1.33 |0.57
10 | 0.81 | 0.53 | 2.21 | 0.69 9| 41049 0.26 | 0.74 | 0.43

9| 5,021 0.0 032|024

9| 6| 0.06|003]0.11[0.10

91 710.01]0.01]0.03/(0.03




4.4 Independence test in a 2 x 2 contingency table

Suppose that laboratory test is used to help in the diagnostic of a disease. It
should be interesting to check if the test results are really related to the health
conditions of a patient. A patient chosen from a clinic is classified as one of the
four states of the set

{(h,2) | h,t=00r 1}

in such a way that A is the indicator of the occurrence or not of the disease
and 1 is the indicator for the laboratory test being positive or negative. For a
sample of size n we recard (290, o1, Z10, 211), the vector whose components are
the sample frequency of each the possibilities of (, s). The parameter space is
the simplex

© = {(f00, 601, 010,011) | 635 20 A Y 6;; =1}
ig

and the null hypothesis, h and t are independent, is defined by
60 = {0 € © | B0 = Bne040, Gos = bo0 + Bo1, Be0 = B0o + b10).

The Bayes Factor for this case is discussed by [Iro 95] and has the following
expression:

BF = ( :z; >n( ::: ) {(n+2) {(n+3) - (n&-n?_)'_lli’)(l -P)+Q(1 —Q)]}}
Ze0

where ziy = Zio + i1, o5 = Zoj + 215, P = £3%, and Q = S8,

Table 3: Test of Independence

Z0oo | o1 | ®10 | 21y Eu pV BF PP
12 6] 95| 35| 096|057 473083
48 | 25 9| 10| 054 |0.14 | 1.04 | 0.51
96 | 50| 18| 20| 0.24 { 0.04 | 0.50 | 0.33
18 5| 39| 300.29 |0.06|050]|0.33
36| 10| 78| 60 | 0.06 | 0.01 | 0.11 | 0.10

4.5 Comparison of two gamma distributions

This model may be used when comparing two survival distributions, for exam-
ple, medical procedures and pharmacological efficiency, component reliability,

8



financial market assets, etc. Let [z,1,213,...,21,0,) and [23,1,233,..-,%2,n,)
be samples of two gamma distributed survival times. The sufficient statistic for
the gamma distribution is the vector [n, s, p], i.e. the sample size, the observa-
tions sum and product. Let [a;, 5] and [a3, B3], all positive, be these gamma
parameters. The likelihood function is:

ﬂa ﬁa’ oi~1,—018; az=1 -I-’al:
f(nlrahﬁllﬂhamﬂ? Idat'a) X I.( )ﬂl l‘(ag)"?pl € 2

This likelihood function is integrable on the parameter space. In order to al-
low comparisons with classical procedures, we will not consider any informative
prior, i.e., the likelihood function will define by itself the posterior density.

Table 4 presents time to failure of coin comparators, a component of gaming
machines, of two different brands. An entrepreneur was offered to replace brand
1 by the less expensive brand 2. The entrepreneur tested 10 coin comparators
of each brand, and computed the sample means and standard deviations. The
gamma distribution fits nicely this type of failure time, and was used to model
the process. Denoting the gamma mean and standard deviation by u = /8
and ¢ = /p/f, the first hypothesis to be considered is H’ : g3 = p2. The
high evidence of H’', Ev(H') = 0.89, corroborates the entrepreneur decision of
changing its supplier. Note that the naive comparison of the sample means could
be misleading. In the same direction, the low evidence of H : ;3 = u3 A oy = o,
Ev(H) = 0.01, indicates that the new brand should have smaller variation on
the time to failure. The low evidence of H suggests that costs could be further
diminished by an improved maintenance policy [Mar 72].

Table 4: Comparing two gamma distributions

Brand 1 sample
39.27 31.72 1233 2767 56.66
28.32 53.72 29.711  23.76  33.55
mean; = 33.67 std; = 13.33
Brand 2 sample
28.32 53.72 2971  23.76  33.55
24.07 33.79 33.10 2693 27.23
meang = 29.25 stdp = 3.62
Evidence
Ev(H') = 0.89 Ev(H) =0.01
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5 FINAL REMARKS

The theory presented in this paper, grew out of the necessity of testing pre-
cise hypotheses made on the behavior of software controlled machines. The
hypotheses being tested are software requirements and specifications. The real
machine software is not available, but the machine can be used for input-output
black-box simulation. The authors had the responsibility of certifying whether
gaming machines were working according to Brazilian law (requirements) and
manufacturer’s game description (specifications). Many of these requirements
and specifications can be formulated as precise hypotheses on contingency ta-
bles, like the simple cases of Examples 1, 2 and 4. '

The standard methodologies, in our opinion, where not adequate to our
needs and responsibilities. The classical p-value does not consider the alternative
hypothesis that, in our case, is as important as the null hypothesis. Also the
p-value is the measure of a tail in the sample space, whereas our concerns are
formulated in the parameter space. On the other hand, we like the idea of
measuring the significance of a precise hypothesis.

The Bayes factor is indeed formulated directly in the parameter space, but
needs an ad hoc positive prior probability on the precise hypothesis. First we had
no criterion to assess the required positive prior probability. Second we would
be subject to Lindley’s paradox, that would privilegiate the null hypothesis.

The methodology of evidence calculus based on credible sets presented in
this paper is computed in the parameter space, considers only the observed
sample, has the significance flavor as in the p-value, and takes in to account the
geometry of the null hypothesis as a manifold imbedded in the whole parameter
space. Furthermore, this methodology takes into account only the location of
the maximum likelihood under the null hypothesis, making it consistent with
“benefit of the doubt” juridical principle. This methodology is also independent
of the null hypothesis parametrization. This parametrization independence gives
the methodology a geometric characterization, and is in sharp contrast with
some well known procedures, like the Fisher exact test [Per 87).

Recalling [Roy 97) in its Chapter 6, —“...recognizing that likelihoods are the
proper means for representing statistical evidence simplifies and unifies statis-
tical analysis.”- the measure Ev(H) defined in this paper is in accord with this
Roayall’s principle.
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