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Abstract 

A Bayesian measure of evidence for precise hypotheaes is presented. 
The intention is to give a Bayesian alternative to significance teatl or, 
equivalently, to p-value,. In fact, a set is defined in the parameter Bp&Ce 
and the p01terior probability, its credibility, is evaluated. Thia 1et I.a 
the "Highest P01terior Density Region" that is "tangent" to the set that 
defines the null hypothesis. Our measure of evidence is the complement 
of the credibility of the "tangent• region. 

Kc11111onu: Bayes factor, numerical integration, global optimization, 
p-value, po&terior density, 

1 INTRODUCTION 

The objective of this paper is to provide a coherent Bayesian measure of ev­
idence for precise null hypotheses. Significance tests [Cox 77] are regarded as 
procedures for measuring the consistency of data with a null hypothesis by the 
calculation of a p-value (t&il area under the null hypothesis). [Ber 87] con­
sider the p-value aa a measure of evidence of the null hypothesis and present 
alternative Bayesian measures of evidence, the Bayes Factor and the posterior 
probability of the null hypothesis. As pointed out in {Cox 77], the first dif­
ficult to define the p-value is the way the sample space is ordered under the 
null hypothesis. [Per 93] suggested a p-value that always regards the alterna­
tive hypothesis. To each of these measures of evidence one could find a great 
number of counter arguments. The most important argument against Bayesian 
test for precise hypothesis is presented by [Lin 57]. Arguments against the clas­
aical p-valu. are full in the literature. The book by (Roy 97] and its review 
by [Vie 98] preaent interesting and relevant arguments to the statisticians start 
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to thing about new methods of measuring evidence. In a more philosophical 
terms, (Goo 83) diacu88, in a great detail, the concept or evidence. The method 
we suggest in the present paper has simple arguments and a geometric inter­
pretation. It can be easily implemented using modern numerical optimization 
and integration techniques. To illustrate the method we apply it to standard 
statistical problems with multinomial distributions. Also, to show its broad 
spectrum, we consider the case of comparing two gamma distributions, which 
has no simple aolution with standard procedures. It is not a situation that a~ 
pears in regular textbooks. These examples will make clear how the method 
should be used in most situations. The method is "Full" Bayesian and consists 
in the analysis of credible sets. By Full we mean that one needs only to use 
the posterior distribution without the need for any adhockery, a term used by 
[Goo 83). 

2 THE EVIDENCE CALCULUS 

Consider the random variable D that, when observed, produces the data d. The 
statistical apace is represented by the triplet {E,A,8) where Eis the sample 
space, the set or p088ible values of d, A is the Borel o--algebra of subsets of E 
and 8 i.e the parameter epace. We define now a prior model (81 B, wd), which i& 
a probability space defined over 0. Note that the o--algebra B has to be defined 
in such a way that Pr{A j 9} turns out to be B-measurable, for all A EA and 
9 E 0. As usual after observing data d, we obtain the posterior probability 
model (0, B, ,r,), where ,r, is the conditional probability measure on B given 
the observed sample point, d. In this paper we restrict ourselves to the case 
where the functions 1r, has a probability density function. 

To define our procedure we should concentrate only on the posterior prob­
ability space (8, B, 1r,). First we will define T., as the subset of the parameter 
space where the posterior density is greater than ip. 

T.,. = {9E01/(9) > ip} 
The credibility of T,,, is its posterior probability, 

IC= 1 1(01 d)d9 = r ,.,.cs I d)do JT. la 
where /.,(z) = /(:r:) if /(:r:) > ip and zero otherwise. 

Now, we define r as the maximum of the posterior density over the null 
hypothesis, attained at the argument 9* , 

9• E arg max/(0) , r = /(0-} > fE8e . 

. and define r = Tr as the set "tangent" to the null hypothesis, H, whose 
~redibility is ,c•. Figures 1 and 2 show the null hypothesis and the contour of 
set r for Examples 2 and 3 of Section 4. 
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The measure of evidence we propose in this article is the complement of the 
probability of the aet r. That is, the evidence of the null hypothesis ia 

Ev(H) = 1- ,.,. or 1- ,r,(r) 

If the probability of the aet r is "large", it means that the null set is in 
a region of low probability and the evidence in the data is against the null 
hypothesis. On the other hand, if the probability of r is "small", then the null 
set is in a region of high probability and the evidence in the data is in favor of 
the null hypothesis. , 

Although the definition of evidence above is quite general, it was created 
with the objective of testing precise hypotheses. That is, a null hypothesis for 
which the dimenaion ia smaller than that of the parameter space, i.e. dim( 80) < '--­
dim( 8). 

3 NUMERICAL COMPUTATION 

In this paper the parameter space, e, is always a subset of R", and the hy­
pothesis is defined u a further restricted subset 80 C 8 ~ R". U1ually, 80 is 
defined by vector valued inequality and equality constraints: 

80 = {8 E 8 I g(O) SO t-. h(O) = O}. 

Since we are working with precise hypotheses, we have at least one equal­
ity constraint, hence dim(0o) < dim(0). Let /(0) be the probability density 
function for the measure 1r,1; i.e., 1r,1(6) = f,, /(8)d9. 

The computation of the evidence measure defined in the last section is per­
formed in two steps, a numerical optimization step, and a numerical integration 
step. The numerical optimization step consists of finding an argument 9• that 
maximizes the posterior density /(8) under the null hypothesis. The numeri­
cal integration step consists of integrating the posterior density over the region 
where it is greater than /(8•). That is, 

• Numerical Optimization step: 

o• E arg max/(9) , ip = r = /(9•) ,ee. 

• Numerical Integration step: 

,c• = l /,,(8 I d)d9 

where /,,(z) = /(z) if /(z) > ip and zero otherwise. 
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Efficient computational algorithrne ue available for local and global op­
timization as well u for numerical integration in [Fie 87), [Hor 95], [Pin 95], 
[Kro 98), [Nem 89], and (Slo 94]. Computer codes for several such algorithms 
can be found at &0ftware libraries as NAG and ACM, or at internet sites as 
WWUl.oml. org. 

We notice that the method used to obtain r and to calculate ,c• can be used 
under general conditions. Our purpose, however, is to discuss precise hypothesis 
testing, under absolute continuity of the poeterior probability model, the cue 
for which mOBt &0lutions presented in the literature are controversial. 

4 EXAMPLES 

In the sequel we will disc\188 five example, with increasing computational dif­
ficulty. The first four are about the Multinomial model. The first example 
presents the test for a specific 1uccess rate in the standard binomial model, 
and the second is about the equality of two 1uch rates. For these two exam­
ples the null hypotheses are linear restrictions of the original parameter spaces. 
The third example introduces the Hardy-Weinberg equilibrium hypothesis in a 
trinomial distribution. In this case the hypothesis is quadratic. 

Forth example considers the teat of independence of two events in a 2 x 2 
contingency table. In this case the parameter space has dimension three, and 
the null hypothesis, which is not linear, defines a set of dimension two. 

Finally, the last example presents two parametric comparisons for two gamma 
distributions. Although straightforward in our paradigm, it is not presented by 
standard statistical textbooks. We believe that, the reason for this gap in the 
literature is the non-existence of closed analytical forms for the test. 

In order to be able to fairly compare our evidence measure with standard 
tests, like Chi-square tail (p V), Bayes Factor (BF), and Posterior-Probability 
(PP), we always assume a uniform prior distribution. In these examples the 
likelihood has finite integral over the parameter space. Hence we have posterior 
density functions that are proportional to the respective likelihood functions. 
In order to achieve better numerical stability we optimize a function propor­
tional to the log-likelihood, L(6), and make explicit use of its gradient, dL, and 
constraints Jacobian, J. 

For the 4 examples concerning multinomial distributions we present the fol-
lowing figures (Tables 1, 2, and 3): 

• Our measure of evidence, Ev, for each d; 

• the p-value, p V obtained by the x2 test; that is, the tail area; 

• the Bayes Factor, 

Pr{0o}Pr{d I 80} 
BF= (1- Pr{0o})Pr{d I 8-80} ;and 
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• the posterior probability of H, 

For the definition of the Bayes Factor and properties we refer to (Goo 83) 
and [Ait 91). 

4.1 Success rate in standard binomial model 

This is a standard example about testing that a proportion, 8, is equal to a spe­
cific value, p. Consider the random variable, D being binomial with parameter 8 
and sample size n. Here we consider n = 20 trials, p = 0.5 and dis the observed 
success number. The parameter space is the unit interval 8 = {O :S 8 :S 1}. 
The null hypothesis is defined as H : 8 = p. For all possible values of d, Table 1 
presents the figures to compare our measure with the standard ones. To com­
pute the Bayes Factor, we consider a priori Pr{H} = Pr{8 = p} = 0.5 and a 
uniform density for 8 under the "alternative" hypothesis, A: 8 -:/: p. That is, 

BF= (n + 1) ( ~ ) pd(l - p)n-d 

Table 1: Standard Binomial Model 

d Ev pV BF pp 
0 o.oo 0.00 0.00 o.oo 
1 0.00 0.00 0.00 0.00 
2 0.00 0.00 0.00 0.00 
3 0.00 0.00 0.02 0.02 
4 0.01 0.01 0.10 0.09 
5 0.02 0.03 0.31 0.24 
6 0.06 0.o7 0.78 0.44 
7 0.16 0.18 1.55 0.61 
8 0.35 0.37 2.52 0.72 
9 0.64 0.65 3.36 0.77 

10 1.00 1.00 3.70 0.79 

4.2 Homogeneity test in 2 x 2 contingency table 
This model is useful in many applications, like comparison of two communities 
with relation to a disease incidence, C011Sumer behavior, electoral preference, 
etc. Two samples are taken from two binomial populations, and the objective 
is to test whether the success ratios are equal. Let z and JI be the number of 
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successes of two independent binomial experiments of sample aizes m and n, 
respectively. The posterior density for this multinomial model ia, 

J(O I z, V, n, m) oc Of 8i-"8J8:--11 

The parameter apace and the null hypothesis set are: 

e = {o::; 8::; 1181 + 8, = 1" 83 + 84 = 1} 

80 = {8 E 0 I 81 = Oa} 
The Bayes Factor considering a priori Pr{H} = Pr{81 = Ila} = 0.5 and 

uniform densities over 0 0 and 8 - 8 0 ia given in the equation below. See 
[Iro 86] and [Iro 95] for details and discussion &bout propertiea. 

(;)(:) 
( ~+n) 

z + V 

BF= (m + l)(n + 1) 
m+n+ l 

Left side of Table 2 presents figures to compare Ev(cl) with the other stan­
dard measures form= n = 20. Figure 1 presents H and r for z = 10 and v = 4 with n = m = 20. 

4.3 Hardy-Weinberg equilibrium law 
In this biological application there is a sample of n individuals, where z1 and 
za are the two homozigote sample count.a and 2:2 = n - z1 - zs is hetherozigote 
sample count. (J = [81, 8,, 83) is the parameter vector. The posterior density for 
this trinomial model is 

/(8 I z) oc Of10;2D;1 

The parameter space and the null hypothesis set are: 

e = {8 2: 0 I 81 + 82 + 83 = 1} 

80 = {8 Ee I Ba= (1- y"o';)2
} 

The problem of testing the Hardy-Weinberg equilibrium law using the Bayes 
Factor is discuased in detail by {Per 84) and [Mon 98). 

The Bayes Factor considering uniform priors over 80 and 0 - 80 is given 
by the following expression: 

BF= (n + 2)1 ti (2n -t)I ~a [s/6 _ 2(t + 1)(2n - t + l)] 
(2n + 1)1 z1I z2! zal (2n + 2)(2n + 3) 

Here t = 22:1 +z2 is a sufficient statistic under H. This meana that the likelihood 
under H dependa on data d only through t 

Right aide of Table 2 presents figures to compare Ev(cl) with the other 
standard measurea for n = 20. Figure 2 presents H and r for 2:1 = 5, J/3 = 10 
'and n = 20. 
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Table 2: Tests of Homogeneity and Hardy-Weinberg equilibrium 

Homogeneity Hardy-Wemberg 
X y Ev pV BF pp Zt Z3 Ev pV BF pp 
5 0 0.05 0.02 0.25 0.20 1 2 0.01 0.00 0.01 0.01 
5 1 0.18 0.08 0.87 0.46 1 3 0.01 0.01 0.04 0.04 

• 5 2 0.43 0.21 1.70 0.63 1 4 0.04 0.02 0.11 0.10 
5 3 0.71 0.43 2.47 0.71 1 5 0.09 0.04 0.25 0.20 
5 4 0.93 0.71 2.95 0.75 1 6 0.18 0.08 0.46 0.32 

• 5 5 1.00 1.00 3.05 0.75 l 7 0.31 0.15 0.77 0.44 
5 6 0.94 0.72 2.80 0.74 1 8 0.48 0.26 1.16 0.54 
5 1 0.77 0.49 2.31 0.70 1 9 0.66 0.39 1.59 0.61 
5 8 0.58 0.31 1.75 0.64 1 10 0.83 0.57 2.00 0.67 
5 9 0.39 0.18 1.21 0.55 1 11 0.95 0.77 2.34 0.70 
5 10 0.24 0.10 0.77 0.43 1 12 1.00 0.99 2.55 0.72 

10 0 0.00 0.00 0.00 0.00 1 13 0.96 0.78 2.67 0.72 
10 1 0.00 0.00 0.02 0.02 1 14 0.84 0.55 2.39 0.71 
10 2 0.01 0.01 0.07 0.06 1 15 0.66 0.33 2.05 0.67 
10 3 0.06 0.02 0.19 0.16 1 16 0.47 0.16 1.58 0.61 
10 4 0.12 0.05 0.41 0.29 1 17 0.27 0.05 1.06 0.51 
10 6 0.24 0.10 0.77 0.43 1 18 0.12 0.00 0.58 0.37 
10 6 0.41 0.20 1.23 0.55 5 0 0.02 0.01 0.05 0.05 
10 1 0.61 0.34 1.74 0.63 5 1 0.09 0.04 0.25 0.20 
10 8 0.81 0.53 2.21 0.69 5 2 0.29 0.14 0.60 0.38 
10 9 0.95 0.75 2.54 0.72 5 3 0.61 0.34 1.00 0.50 
10 10 1.00 1.00 2.66 0.73 5 4 0.89 0.65 1.29 0.56 
12 0 0.00 0.00 0.00 0.00 5 5 1.00 1.00 1.34 0.57 
12 1 0.00 0.00 o.oo 0.00 5 6 0.90 0.66 1.18 0.54 
12 2 0.00 0.00 0.01 0.01 5 1 0.66 0.39 0.89 0.47 
12 3 0.01 0.00 0.04 0.04 5 8 0.40 0.20 0.58 0.37 
12 4 0.03 0.01 0.10 0.09 5 9 0.21 0.09 0.32 0.24 • 
12 5 0.07 0.03 0.24 0.19 6 10 0.09 0.04 0.16 0.13 
12 6 0.14 0.06 0.46 0.32 9 0 0.21 0.09 0.73 0.42 
12 7 0.26 0.11 0.80 0.44 9 1 0.66 0.39 1.59 0.61 
12 8 0.42 0.21 1.24 0.55 9 2 0.99 0.91 1.77 0.64 
12 9 0.62 0.34 1.73 0.63 9 3 0.86 0.59 1.33 0.57 
12 10 0.81 0.53 2.21 0.69 9 4 0.49 0.26 0.74 0.43 

9 5 0.21 0.09 0.32 0.24 
9 6 0.06 0.03 0.11 0.10 ' 
g 7 0.01 0.01 0.03 0.03 
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4.4 Independence test in a 2 x 2 contingency table 
Suppose that laboratory test ia used to help in the diagnoatic of a disease. It 
should be interesting to check if the test results are really related to the health 
conditions of a patient. A patient chosen from a clinic is classified as one of the 
four states of the set 

{(h,t) I h,t = 0 or l} 

in such a way that h is the indicator of the occurrence or not of the disease 
and t is the indicator for the laboratory test being positive or negative. For a 
sample of size n we record (~oo, zo1, z10, zu), the vector whose components are 
the sample frequency of each the possibilities of (t, h). The parameter space is 
the simplex 

e = {(800,801,810,811) I fJ,J 2: o " Ee,;= 1} 
iJ 

and the null hypothesis, h and t are independent, is defined by 

80 = {8 E 8 I 800 = 80,IJ,o, IJo, = 800 + 801, 8,o =Boo+ 810}, 

The Bayes Factor for this case is discussed by [Iro 95] and has the following 
expression: · 

( 
ZOt ) ( Z1t ) 

BF_ zoo z11 { (n + 2) {(n + 3) - (n + 2)[P(l - P) + Q(l - Q)]}} 
- ( n ) 4(n + 1) 

z,o 

where :i:,. = z,o + :i:;1,Z•J = ZoJ + Z1J, P =~.and Q = ~-

Table 3: Test of Independence 

zoo Zo1 z10 z11 Ev pV BF pp 
12 6 95 35 0.96 0.57. 4.73 0.83 
48 25 9 10 0.54 0.14 1.04 0.51 
96 50 18 20 0.24 0.04 0.50 0.33 
18 5 39 30 0.29 0.06 0.50 0.33 
36 10 78 60 0.06 0.01 0.11 0.10 

4.5 Comparison of two gamma distributions 
rhis model may be used when comparing two survival distributions, for exam­
ple, medical procedures &nd pharmacological efficiency, component reliability, 
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financial market asset.a, etc. Let (z1,1, z1,2, ... , z1,n1] and (z2,1 1 z2,2, ... , z2,nJ 
be samples of two gammadistributed survival times. The sufficient statistic for 
the gamma distribution is the vector (n, •• p), i.e. the sample size, the observa­
tions sum and product. Let (01,,81] and [02,.82], all positive, be these gamma 
parameiers. The likelihood function is: 

/J':lnl /J:2n2 
/(n1 01 /J1 n2 cr2 R_ I data) oc 1 2 pa1-le-l'••1pa2-le-l'2•2 

I I I I 'J'3 f(cri)"1 f(cr2)"' 1 2 

Tliis likelihood function is integrable on the parameter space. In order to aJ. 
low comparisons with classical procedures, we will not consider any informative 
prior, i.e., the likelihood function will define by itself the posterior density. 

Table 4 presents time to failure of coin comparators, a component of gaming 
machines, of two different brands. An entrepreneur was ofl'ered to replace brand 

• • 1 by the less expensive brand 2. The entrepreneur tested 10 coin comparators 
of each brand, and computed the sample means and standard deviations. The 
gamma distribution fits nicely this type of failure time, and was used to model 
the process. Denoting the gamma mean and standard deviation by µ = a/ P 
and " = ,/jj[P, the first hypothesis to be considered is H' : µ1 = µ2. The 
high evidence of H', Ev(H') = 0.89, corroborates the entrepreneur decision of 
changing its supplier. Note that the naive comparison of the sample means could 
be misleading. In the same direction, the low evidence of H : /JI = /J'J A 0'1 = u2, 

E1J(H) = 0.01, indicates that the new brand should have smaller variation on 
tfie 1ime to failure. The low evidence of H suggests that costs could be further 
diminished by an improved maintenance policy [Mar 72]. 

■ Table 4: Comparing two gamma distributiona 

• Brand I sample 
39.27 31.72 12.33 27.67 66.66 
28.32 53.72 29.71 23.76 33.55 

• mean1 = 33.67 std1 = 13.33 
Brand 2 sample 

28.32 53.72 29.71 23.76 33.55 
24.07 33.79 33.10 26.93 27.23 
mean2 = 29.25 std2 = 3.62 

Evidence 
Ev(H' ) = 0.89 Ev(H) = 0.01 

• 
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Figure 1: Homogeneity test with x-10, y-4 Mid n-m-20 
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5 FINAL REMARKS 

The theory presented in this paper, grew out of the necessity of testing pre­
cise"" hypotheses made on the behavior of software controlled machines. The 
hypotheses being tested are software requirements and specifications. The real 
machine soft.ware is not available, but the machine can be used for input-output 
black-box simulation. The authors had the responsibility of certifying whether 
gaming machines were working according to Brazilian law (requirements) and 
ma.nufacturer's game description (specifications). Many of these requirement& 
and specifications can be formulated aa precise hypotheses on contingency ta-
bles, like the simple cases of Examples 1, 2 and 4. · 

J'he standard methodologies, in our opinion, where not adequate to our 
needs and responsibilities. The classical p-value does not consider the alternative 
hypothesis that, in our case, is as important aa the null hypothesis. Also the 
p-value is the measure of a tail in the sample space, whereas our concerns are 
formulated in the parameter space. On the other hand, we like the idea of 
measuring the significance of a precise hypothesis. 

The Bayes factor is indeed formulated directly in the parameter space, but 
needs an ad hoc positive prior probability on the precise hypothesis. First we had 
no criterion to assess the required positive prior probability. Second we would 
be subject to Lindley's paradox, that would privilegiate the null hypothesis. 

The methodology of evidence calculus based on credible sets presented in 
this paper is computed in the parameter space, considers only the observed 
sample, .hu the significance flavor as in the p-tJalue, and takes in to account the 
geometry of the null hypothesia aa a manifold imhedded in the whole parameter 
space. Furthermore, this methodology takes into account only the location of 
the maximum likelihood under the null hypothesis, making it consistent with 
"benefit of the doubt" juridical principle. This methodology is also independent 
of the null hypothesis parametrization. This parametrization independence gives 
the methodology a geometric characterization, and is in sharp contrast with 
some well known procedures, like the Fisher exact test [Per 87]. 

Recalling [Roy 97) in its Chapter 6, -" ... recognizing that likelihood& are the 
proper means for repre9enting statistical evidence simplifies and unifies statis­
tical analysis."- the measure Ev(H) defined in this paper is in accord with this 
Roayall'e principle. 
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