
Exploring the Space of Probabilistic Sentential Decision Diagrams

Lilith Mattei∗ 1 Décio L. Soares∗ 2 Alessandro Antonucci 1 Denis D. Mauá 2 Alessandro Facchini 1

Abstract

Probabilistic sentential decision diagrams (PS-
DDs) are annotated circuits providing a possibly
compact specification of joint probability mass
functions consistent with a formula over a set
of propositional variables. PSDD inference is
tractable in the sense that marginal queries can
be achieved in linear time with respect to the cir-
cuit size by traversal algorithms. Unlike other
probabilistic graphical models such as Bayesian
networks, the problem of learning the structure
for PSDDs received relatively little attention. We
discuss some preliminary ideas related to the de-
velopment of pure likelihood-score-based search
methods for the learning of PSDD structures fit-
ting a formula and a data set of consistent obser-
vations. A sampling algorithm for these models
is also provided.

1. Introduction
Probabilistic graphical models (e.g., Bayesian networks)
allow for the compact specification of joint probability mass
functions by exploiting conditional independences between
variables (Pearl, 1988; Darwiche, 2009; Koller & Friedman,
2009). The space-efficient representation does not imply
efficient inference (Cooper, 1990), which lead researchers
to consider novel classes of tractable models, which allow
for polynomial-time inferences at the cost of a decrease in
expressiveness or interpretability. (Meila & Jordan, 2000;
Darwiche, 2003; Chechetka & Guestrin, 2007; Lowd &
Domingos, 2008; Elidan & Gould, 2008; Roth & Samdani,
2009; Rahman et al., 2014).

Sum-product networks (SPNs) (Poon & Domingos, 2011)
are currently the most popular example of tractable models.
A SPN specifies a joint mass function by means of an arith-

*Equal contribution 1Istituto Dalle Molle di Studi
sull’Intelligenza Artificiale (IDSIA), Lugano, Switzerland
2University of São Paulo (USP), São Paulo, Brazil. Correspon-
dence to: Alessandro Antonucci <alessandro@idsia.ch>.

3rd Tractable Probabilistic Modeling Workshop, 36 th Interna-
tional Conference on Machine Learning, Long Beach, California,
2019. Copyright 2019 by the author(s).

metic circuit whose edges are annotated with probabilities.
By enforcing certain structural constraints over the circuit,
one can ensure that the probability of any event can be com-
puted in linear time in the circuit size, without sacrificing
representational power. SPNs have been used in a varied set
of machine learning tasks (Poon & Domingos, 2011; Amer
& Todorovic, 2012; Sguerra & Cozman, 2016; Llerena &
Mauá, 2017), with performances often comparable to those
of deep neural networks (Peharz et al., 2018), with the ad-
vantage of a clear probabilistic interpretation not provided
by the latter models.

Probabilistic sentential decision diagrams (PSDDs) (Kisa
et al., 2014) are similar to SPNs, but unlike SPNs can na-
tively embed logical constraints. Given a formula over a
set of propositional variables, PSDDs allow for the specifi-
cation of a joint probability mass function consistent with
the formula, i.e., assigning zero probability to the universes
that are impossible for the formula. This enables learning in
highly structured spaces such as in the case of preference
learning (Choi et al., 2015) and routing problems (Shen
et al., 2018).

Algorithms for structure learning of standard graphical mod-
els such as Bayesian networks are usually categorized into
constraint-based (Spirtes & Meek, 1995), if they build a
model by identifying independences in data, search-based
(Teyssier & Koller, 2005), if they build a model by optimiz-
ing a score function, or hybrid (Tsamardinos et al., 2006),
if they combine both approaches. Despite the early success
of constraint-based approaches, search-based methods have
come to dominate the literature (Scanagatta et al., 2018),
most likely due to their ability to trade off accuracy and
computational cost, and robustness to learning parameters.

Compared to standard graphical models, structure learn-
ing of tractable models has received less attention. For
SPNs, constraint-based approaches are largely more popular
(Gens & Domingos, 2013; Vergari et al., 2015; Rooshenas
& Lowd, 2014), possibly due to the cost of obtaining score-
maximizing parameters, unless additional constraints are
imposed (Peharz et al., 2016). Unlike SPNs, PSDDs al-
low for closed-form maximum likelihood estimators of the
parameters (Kisa et al., 2014). This feature, shared with
other tractable models (e.g., cutset networks, thin junction
trees and tree Bayesian networks), might be used to imple-

Exploring the Space of Probabilistic Sentential Decision Diagrams

ment search-based approaches to structure learning using
(penalized) log-likelihood score. Yet, to our knowledge, the
only approach to PSDD structure learning is LearnPSDD,
an algorithm mixing constraint-based methods with local
score-improving transformations (Liang et al., 2017), for
which a discriminative counterpart of that algorithm has
been also proposed (Liang & Van den Broeck, 2019).

In this work, we give the very first steps towards learn-
ing PSDD structures by a pure search-based algorithm
guided by (penalized) likelihood scores. Parallel to work on
order-based Bayesian network structure learning (Teyssier
& Koller, 2005), we propose to search for PSDD structures
by sampling in the space of structures constrained to an
ordering of the variables. While in Bayesian networks an
ordering is represented by a permutation of the variables, in
PSDDs the ordering is decided by a vtree (Choi & Darwiche,
2013), a full binary tree whose leaves are identified with the
variables. This introduces extra complexity to the procedure
that needs to be addressed. There is yet another difficulty.
There are many PSDDs consistent with a given vtree, un-
less strong assumptions are adopted (such as compression),
which drastically reduce their representation power. Thus,
we propose to search for ordered PSDDs by a second sam-
pling of maximally uncompressed structures followed by
random partial compressions.

The paper is organised as follows. We review some neces-
sary background material about vtrees and PSDDs in Sec-
tion 2. The role of compression and the structure of the
space of uncompressed PSDDs is discussed in Section 3.
Our sampling procedure is sketched in Section 4. A demon-
strative example and some preliminary tests are reported in
Section 5. Conclusion and outlooks are finally discussed in
Section 6.

2. Background
We first review some basic concepts leading to the defi-
nition of sentential decision diagram and its probabilistic
extension.

Let us introduce a notion of decomposition of a formula.
Definition 1. Given a Boolean formula φ over X , consider
a set of tuples {(pi, si)}ki=1 such that pi is a formula over
X ′ and si a formula over X ′′, with X ′ ∩X ′′ = ∅ and
X ′ ∪X ′′ = X . We say that the tuples are a (X ′,X ′′)-
decomposition of φ if and only if:

φ(x′,x′′) =

k∨
i=1

pi(x
′) ∧ si(x′′) , (1)

for each x′ ∈ {>,⊥}|X′| and x′′ ∈ {>,⊥}|X′′|.

The decomposition is strongly deterministic if and only if
pi ∧ pj = ⊥ for each i 6= j. If this is the case, the tuple

(pi, si) is called an element of the decomposition and, in
particular, pi is a prime and si a sub, for each i = 1, . . . , k,
where k is called the size of the decomposition. If the primes
of a strongly deterministic (X ′,X ′′)-decomposition of φ
are also consistent and exhaustive, we call the decomposi-
tion a X ′-partition. Note that in a X ′-partition ⊥ cannot be
a prime, while > is a prime if and only if the partition has
size one.

The following definition provides a generalisation of the
notion of order over a set of variables X := (X1, . . . , Xn).

Definition 2. A vtree over X is a full binary tree whose
leaves are in one-to-one correspondence with X .

We call by the same name a node v and the subtree rooted
at v. Notation v← (resp. v→) is used to denote the left
(resp. the right) child of node v as well as the corresponding
subtree. A vtree induces a total order over its variables, but
two distinct vtrees can induce the same order.

Vtrees and partitions define sentential decision diagrams.

Definition 3. A sentential decision diagram (SDD) α for
a vtree v over variables X is either a terminal node or a
decomposition node for v. It is defined as follows, where 〈α〉
- its interpretation - denotes the Boolean formula represented
by α:

• v is a leaf with variable X and α is either a constant,
α ∈ {⊥,>}, or a literal, α ∈ {X,¬X}. In this case α
is a terminal node and its interpretation is respectively
〈α〉 = ⊥, 〈α〉 = > and 〈α〉 = X , 〈α〉 = ¬X .

• v is an internal node and α = {(pi, si)}ki=1, where:
the pi’s and the si’s are SDDs for v← and v→ respec-
tively, such that {(〈pi〉, 〈si〉)}ki=1 is an X ′-partition of
〈α〉, where X ′ are the variables of v←. In this case α
is called a decomposition (or decision) node, and its
interpretation is

〈α〉 =

k∨
i=1

〈pi〉 ∧ 〈si〉 . (2)

As a decomposition node α is interpreted as a disjunctive
formula and each of its elements as a conjunctive one, we
can intend a SDD α as a logical circuit (hence a directed
acyclic graph) providing a representation of its interpretation
〈α〉. Observe that by definition of X ′-partition, the OR
gates associated to decision nodes act as XOR gates.

The next notion, characterizing paths in SDDs, is needed for
a global interpretation of parameters when extending SDDs
with probabilities. For the sake of simplicity we assume the
SDD singly connected, while the extension to the general
case is straightforward.

Exploring the Space of Probabilistic Sentential Decision Diagrams

Definition 4. Let q be a node of a SDD. Denote as
(p1, s1) . . . (pl, sl) the path from the root to node q. Then
the conjunction of the interpretations of the primes encoun-
tered in this path, i.e., 〈p1〉∧ . . .∧〈pl〉, is called the context
of q and denoted as γq. The context γq is feasible if and
only if si 6= ⊥ for each i = 1, . . . , l.

The interpretation of a node is implied by its context and
by the interpretation of the SDD to which it belongs, i.e.,
for each node q of a SDD r, 〈r〉 ∧ γq |= 〈q〉. Moreover,
nodes for the same vtree node have mutually exclusive and
exhaustive contexts.

We are now in the condition of providing a formal definition
of PSDDs as parametrised SDDs inducing a probability
mass function over the variables of the vtree.

Definition 5. A probabilistic sentential decision diagram
(PSDD) is a SDD with the following parameters assigned:

• For each terminal node >, a positive parameter θ is
provided such that 0 ≤ θ ≤ 1.1 The notation for such
a terminal node is X : θ, where X is the variable of its
correspondent leaf vtree node. Terminal nodes other
than > appear as they are;

• For each decision node {(pi, si)}ki=1, each prime pi
is provided with a positive parameter θi, such that
θ1 + . . .+ θk = 1 while θi = 0 if and only if si = ⊥.
Notation {(pi, si, θi)}ki=1 is used.

In other words, PSDDs are just SDDs with probability mass
functions associated to the terminal and decision nodes.

Each node q of a PSDD α induces a probability mass func-
tion Prq over the variables of the vtree node q is defined
for. According to the Base Theorem for PSDDs [Theorem 1,
(Kisa et al., 2014)], Prq assigns zero probability to events
which do not respect the propositional sentence associated
to the SDD q, more precisely, for any instantiation x of
variables X of the vtree q is defined for, Prq(x) > 0 if and
only if x |= 〈q〉.

The joint mass function induced by a PSDD r satisfies the
following independence relations: for each node q in r de-
fined for vtree node v, for each feasible context γq of node q,
variables inside v are independent of those outside v given
γq with respect to Prr [Theorem 5, (Kisa et al., 2014)].
Moreover, the probabilities Prr(〈pi〉|γq) are the parameters
θi of q = {(pi, si, θi)}ki=1 [Corollary 1, (Kisa et al., 2014)].
Such a semantics allow to learn in a closed form the max-
imum likelihood estimators of the parameters of a PSDD
from a dataset D of complete consistent observations.

1We consider PSDDs assigning zero probability only to logi-
cally impossible configurations of its variables.

Figure 1. Pre-vtrees with four leaves.

The size of a PSDD is the number of free parameters in
the model. Each decision node with k elements contributes
k − 1 free parameters, while each terminal node > con-
tributes with one free parameter. We remove from this count
parameters whose values are defined by the semantics of PS-
DDs; for example, parameters θi associated with elements
such that 〈pi〉 is either implied or contradicted by its context
γq , as well as decision nodes with infeasible contexts. Note
that the size of the underlying SDD (given by the number
of nodes) can be much larger than the size of the PSDD,
as many elements have their value fixed by the semantics.
For example, the PSDD in Figure 3 has size 15, while the
underlying SDD has size 81.

3. Coping with Uncompressed PSDDs
Given a formula φ over the n propositional variables in X
and a dataset D of consistent observations let us denote as
Π(n, φ) the set of all the PSDDs we can learn from D.

Counting vtrees and PSDDs. To characterize Π(n, φ),
let us first consider all the vtrees we can define over X . We
call pre-vtree a vtree as in Definition 2 before the specifica-
tion of the one-to-one correspondence between the elements
of X and the n leaves. Figure 1 shows all pre-vtrees with
four leaves. Each pre-vtree corresponds to n! vtrees, and
the number of pre-vtrees with n leaves is (n− 1)-th Cata-
lan number, i.e., Cn−1 := (2n−2)!

n!(n−1)! (Choi & Darwiche,
2013). Cn−1 is exponential with respect to n. This makes
a potential difference between the space of the directed
acyclic graphs to be considered for the structural learning of
a Bayesian network and that of PSDDs. Given an ordering
over X , the best Bayesian network structure with topol-
ogy consistent with the ordering can be found efficiently
(Teyssier & Koller, 2005), while, due to the exponential
number of vtrees consistent with an ordering, a similar re-
sult cannot be easily derived for PSDDs.

The role of compression. The situation is indeed even
more twisted. Given vtree v, let Π(n, φ, v) denote the set
of PSDDs based on SDDs for v implementing the formula
φ. To discuss the cardinality of Π(n, φ, v) we better need to
invoke the basic notion of compression of a partition.

A X′-partition is compressed if and only if its subs are
distinct. Uncompressed partitions can be compressed by
merging the elements with the same sub in a single element

Exploring the Space of Probabilistic Sentential Decision Diagrams

with the same sub and whose prime is the disjunction of the
primes. E.g., (p, s) and (p′, s) becomes (p ∨ p′, s). An in-
verse operation of decompression might be also considered.
Compression and decompression clearly preserve partitions.

The notion of compression can be extended to SDDs: an
SDD is compressed if and only if the partitions of its deci-
sion nodes are compressed. We say that a PSDD is com-
pressed if and only if its underlying SDD is compressed. A
less strict notion of compression for PSDDs is provided in
[Theorem 10, (Kisa et al., 2014)].

Compressed elements of Π(n, φ, v) are, by construction,
the elements of smallest size in this class. Coping with
compressed PSDDs might be therefore not appealing from
a structural learning perspective. Consider for instance the
following case.

Example 1. Given n = 3, φ = > and the vtree v in the left
side of Figure 2. A compressed SDD for v implementing the
formula φ is the one in right side of Figure 2. The PSDD
associated to this model defines a joint mass function such
that Pr(A,B,C) = Pr(A) · Pr(B) · Pr(C).

Compressed PSDDs have been used in (Shen et al., 2017)
and (Shen et al., 2019). Yet, following the discussion in
the example, we consider uncompressed PSDDs as more
expressive dependence models.

1

A 3

B C

θA

3

1

θB θC

Figure 2. A vtree (left) and a compressed PSDD (right).

Building uncompressed PSDDs. The following proce-
dure allows to explore the space of uncompressed PSDDs
for a given vtree v over variables X representing a formula
φ over X .

1. Let X ′ be the variables of v←. Define, for each x′ in
{⊥,>}|X′|, the formula:

εx′ =
∧

X′∈X′

δx′ , (3)

where:

δx′ =

{
X ′ if x′ = >
¬X ′ if x′ = ⊥ , (4)

and x′ is the element of x′ associated to X ′. Formulae
in Equation (3) are our primes (by construction they
are consistent, mutually exclusive and exhaustive). The
sub s of prime εx′ is φ(x′, ·), i.e., the restriction to X ′′

of φ for instantiation x′ ∈ {⊥,>}|X′|. This gives an
X ′-partition which we will call expanded. Note that
the elements of this partition that are inconsistent with
the formula in the root of the vtree can be removed.

2. The size of the above decomposition is exponential in
the number of variables in X ′. A compression can be
achieved by merging together elements with the same
sub, i.e.,

p =
∨

x′:φ(x′,·)=s

εx′ , (5)

for complete compression, while the disjunction is
only over some x′ such that φ(x′, ·) = s for partial
compression.

The above two-step procedure can be iterated (every time
with arbitrary choices of compression) for each prime (sub)
with vtree v← (v→) until v← (v→) is empty.

Figure 3 shows an example of expanded PSDD obtained
by the above procedure using a left linear vtree, with
φ = > in the root. This PSDD represents the factorisation
Pr(ABCD) = Pr(ABC) · Pr(D|ABC), and therefore
does not encodes independences. It has size 24 − 1 = 15,
denoting the number of “learnable” parameters; the remain-
ing parameters have their value fixed by the semantics. For
example, the parameters in the subtree rooted at node 3 are
all 0/1-valued (these subtrees can be removed for efficiency,
if one is willing to cope with unnormalised circuits).

When the formula φ at the root is a tautology, every ex-
panded PSDD generated in such way will have the maxi-
mum number of free parameters, hence will encode the same
representation (they differ only in the way that the joint mass
function is factorised, but do not imply any independence).
For example, the expanded PSDD in Figure 4 represents
Pr(ABCD) = Pr(A) Pr(B|A) Pr(C|AB) Pr(D|ABC).
As with the PSDD in Figure 3, it has 15 free parameters
(and 23 nodes). The PSDD in Figure 5 is obtained by a par-
tial compression of the one in Figure 3. Such PSDD encodes
the fact that, given A and C, B and D are independent.

Our procedure for constructing PSDDs depends on the for-
mula φ. The following result is easy to prove and ensures
that the above procedure allows to navigate through the
whole set Π(φ, n, v)

Exploring the Space of Probabilistic Sentential Decision Diagrams

1

A B ¬A⊥

1

A¬B ¬A>

C ⊥

3

5

θ1 : D

1 0 1 0

1 0

θABC

θAB¬C

θA¬BC

θA¬B¬C
θ¬ABC

θ¬AB¬C

θ¬A¬BC

θ¬A¬B¬C

5

3 D

1 C

A B

Figure 3. Fragment of the expanded PSDD generated using a tau-
tology and the left linear vtree on the bottom right. The missing
parts are copies of the left subtree.

Proposition 1. Any X ′-partition of a formula φ can be
obtained by starting from the expanded one and then pro-
ceeding with a number of compressions.

4. Sampling the PSDDs Space
Vtree sampling. Following the discussion in the previous
section, we might sample vtrees by separately sampling pre-
vtrees and orderings (i.e., permutations) of the n model vari-
ables to be linked to the leaves of the pre-vtree. While a uni-
form sampler for permutations can be obtained by classical
methods (e.g., Knuth’s shuffle), doing the same in the space
of pre-vtrees is more tricky. Here we achieve that by ex-
ploiting the one-to-one correspondence between pre-vtrees
and Dyck words, i.e., a balanced string of square brackets.
Sampling a Dyck word of length w can be achieved by w
calls of a biased square bracket random generator, such that:

P ([) =
r(k + r + 2)

2k(r + 1)
, (6)

and P (]) = 1− P ([), where r is the number of unmatched
left brackets and k is the difference between w and the
current length of the word (Arnold & Sleep, 1980). The
equivalence between Dyck words and pre-vtrees follows
from the fact that their spaces have the same cardinality.

The following recursion converts a Dyck word of length
w in a pre-vtree with n = w/2 + 1 leaves. Call cut of
the word the leftmost symbol for which the number of left
and right brackets is matched. Obtain two sub-words by
splitting the word in the cut and initialize a tree with two
children. The left child is associated to the first sub-word

after the removal of the first and last symbol, while the
right one is associated to the second sub-word. A recursive
application of this procedure until only empty words appear
produces the pre-vtree, whose leaves are eventually labelled
according to the selected permutation by a depth-left-first
traversal. An example is in Figure 6.

PSDDs sampling. Given a randomly generated vtree v
and a formula φ, the procedure to build uncompressed PS-
DDs can be used as a sampling algorithm for these models
based on different (random) choices of the level of compres-
sion in Equation (5). Since each compression makes the
possible dependency of the sub on the two or more merged
primes drop, by applying compression operations we even-
tually loose some dependence relations. As an alternative to
random compression, for each iteration, we might perform
independence tests in the dataset in order to decide whether
to compress or not elements with identical subs. All the
PSDD structures can be generated in this way because of
Proposition 1.

A likelihood score for PSDDs. The above described sam-
pling procedure might be used to search the best PSDD
explaining the datasetD. Analogously to what is commonly
done for Bayesian networks, a likelihood based score can
be used to select the best model. This typically gives higher
scores to larger models, whose high number of parameters
makes easier to fit the data. To prevent over-fitting, the (log)
likelihood should be penalized by a term taking into account
the number of parameters (i.e., the PSDD size) . Accord-
ingly, we adopt the Bayesian information criterion score.
Thus if D := {x(i)}di=1, the score of the PSDD α is

BIC(α) :=

d∑
i=1

ln Prα(x(i))− ln d

2
|α| , (7)

where |α| denotes the size of the PSDD. Note that the prob-
ability of the complete observation x(i) can be computed
in time O(|α|). Such score is analogous to what has been
proposed in (Bekker et al., 2015). The structural learning
should be therefore intended as a combinatorial optimiza-
tion task for which the score in Equation (7) should be opti-
mized over the PSDD space Π(φ, n). The above described
sampling procedure can be intended as a very preliminary
approach to such a complex discrete optimization task.

5. A Demonstrative Example
As a very first and preliminary application of the previously
discussed ideas we consider a small setup with n = 4 and
φ = >. We generate a dataset of 3300 instances by sam-
pling from a PSDD with structure and vtree as in Figure 7.
We randomly select 300 instances for training the model
parameters, and leave the rest for evaluation.

Exploring the Space of Probabilistic Sentential Decision Diagrams

θA θ¬A

A ¬A

¬B

¬C

¬B

¬C ¬C ¬C

B B

C C C CθD|ABC θD|AB¬C θD|A¬B¬CθD|A¬BC θD|¬ABC θD|¬AB¬C θD|¬A¬BC θD|¬A¬B¬C

1

3 3

5 5 5 5

θB|A θ¬B|A
θ¬B|¬A

θ¬C|AB θ¬C|A¬B θ¬C|¬AB θ¬C|¬A¬BθC|AB θC|A¬B θC|¬AB θC|¬A¬B

θB|¬A

1

3

5

A

B

C D

Figure 4. Expanded PSDD generated using a tautology and the right linear vtree in the middle.

θA θ¬A

A ¬A

¬B

¬C

B

C θD|AC θD|A¬C

1

3

5

θB|A θ¬B|A

θ¬C|Aθ¬C|A

1

3

5

A

B

C D

¬B

¬C

B

C θD|¬AC θD|¬A¬C

3

5

θB|¬A θ¬B|¬A

θ¬C|¬AθC|¬A

Figure 5. Partially compressed PSDDs obtained from the PSDD in Figure 4.

Exploring the Space of Probabilistic Sentential Decision Diagrams

[[][]][[]]

[][]

[]

[[]]

[]

Figure 6. The pre-vtree associated to the word [[][]][[]].

Table 1. Results for PSDDs generated with our approach.
Vtree V-Order # compr. LL(train) LL(test) Size BIC

135 1234 0 -641.73 -6528.66 15 -6588.71
135 2341 0 -641.74 -6529.01 15 -6589.06
135 4231 0 -641.74 -6529.01 15 -6589.06
135 3142 0 -641.74 -6530.44 15 -6590.49
531 1234 0 -641.73 -6528.50 15 -6588.55
531 2341 0 -641.74 -6529.00 15 -6589.04
531 4231 0 -641.74 -6529.01 15 -6589.06
531 3142 0 -641.73 -6530.21 15 -6590.26
531 1234 1 -642.56 -6527.93 12 -6575.97
531 2341 1 -673.58 -6760.25 12 -6808.29
531 4231 1 -652.38 -6586.72 12 -6634.76
531 3142 1 -648.64 -6539.35 12 -6587.39
531 1234 2 -654.47 -6599.15 7 -6627.17
531 2341 2 -701.63 -6940.68 7 -6968.71
531 4231 2 -654.71 -6598.90 7 -6626.92
531 3142 2 -657.77 -6531.67 7 -6559.69

We sample PSDD structures using left and right linear pre-
vtrees and permuting the variable ordering at the leaves (so
as to obtain vtrees). We learn the parameters from data using
a 0.1 smoothing to circumvent issues with zero counts.

Table 1 shows train and test log-likelihoods (LL), size and
BIC scores for the PSDDs sampled. Column # compr. de-
notes the number of compression operations performed (0
corresponds therefore to expanded PSDDs). The highlighted
row indicates the performance of the PSDD with same struc-
ture as the one we used to generate the data. One can see
that it maximises test log-likelihood, and ranks second in
BIC score.

6. Conclusions and Outlooks
This paper presents a preliminary analysis of the space of
PSDDs. This suggests possible directions for the learning
of PSDD structures by a search based on a likelihood score.
As a future work we intend to derive efficient navigation
strategies to achieve such a search and define a notion of
equivalence for PSDDs analogous to what has been already
done for Bayesian networks.

References
Amer, M. R. and Todorovic, S. Sum-product networks for

modeling activities with stochastic structure. In Proceed-
ings of Computer Vision and Pattern Recognition, pp.
1314–1321, 2012.

Arnold, D. B. and Sleep, M. R. Uniform random genera-
tion of balanced parenthesis strings. ACM Transactions
on Programming Languages and Systems, 2(1):122–128,
1980.

Bekker, J., Davis, J., Choi, A., Darwiche, A., and Van den
Broeck, G. Tractable learning for complex probability
queries. In Advances in Neural Information Process-
ing Systems 28, pp. 2242–2250. Curran Associates, Inc.,
2015.

Chechetka, A. and Guestrin, C. Efficient principled learning
of thin junction trees. In Advances in Neural Information
Processing Systems 20, pp. 273–280. Curran Associates,
Inc., 2007.

Choi, A. and Darwiche, A. Dynamic minimization of sen-
tential decision diagrams. In Proceedings of the Twenty-
Seventh AAAI Conference on Artificial Intelligence, 2013.

Choi, A., Van den Broeck, G., and Darwiche, A. Tractable
learning for structured probability spaces: A case study
in learning preference distributions. In Twenty-Fourth
International Joint Conference on Artificial Intelligence,
2015.

Cooper, G. F. The computational complexity of probabilis-
tic inference using Bayesian belief networks. Artificial
intelligence, 42(2-3):393–405, 1990.

Darwiche, A. A differential approach to inference in
Bayesian networks. Journal of the ACM, 50(3):280–305,
2003.

Darwiche, A. Modeling and Reasoning with Bayesian Net-
works. Cambridge University Press, 2009.

Elidan, G. and Gould, S. Learning bounded treewidth
Bayesian networks. Journal of Machine Learning Re-
search, 9:2699–2731, 2008.

Gens, R. and Domingos, P. Learning the structure of sum-
product networks. In International Conference on Ma-
chine Learning, pp. 873–880, 2013.

Kisa, D., Van den Broeck, G., Choi, A., and Darwiche, A.
Probabilistic sentential decision diagrams. In Fourteenth
International Conference on the Principles of Knowledge
Representation and Reasoning, 2014.

Koller, D. and Friedman, N. Probabilistic Graphical Mod-
els: Principles and Techniques. MIT press, 2009.

Exploring the Space of Probabilistic Sentential Decision Diagrams

θA θ¬A

A ¬A

¬B ¬B

¬C

¬C ¬C

B B

C

C C

θD|AC θD|A¬C

θD|¬ABC θD|¬AB¬C θD|¬A¬BC θD|¬A¬B¬C

1

3 3

5

5 5

θB|A θ¬B|A
θ¬B|¬A

θ¬C|A

θ¬C|¬AB θ¬C|¬A¬B

θC|A

θC|¬AB θC|¬A¬B

1

3

5

θB|¬A

A

B

C D

Figure 7. Partially compressed PSDDs obtained from the PSDD in Figure 4, used to generate data for the experiment.

Liang, Y. and Van den Broeck, G. Learning logistic circuits.
In Proceedings of the Thirty-Third AAAI Conference on
Artificial Intelligence, 2019.

Liang, Y., Bekker, J., and Van den Broeck, G. Learning
the structure of probabilistic sentential decision diagrams.
In Proceedings of the Thirty-Third Conference on Uncer-
tainty in Artificial Intelligence, 2017.

Llerena, J. V. and Mauá, D. D. On using sum-product
networks for multi-label classification. In Proceedings of
the Sixth Brazilian Conference on Intelligent Systems, pp.
25–30, 2017.

Lowd, D. and Domingos, P. Learning arithmetic circuits. In
Proceedings of the Twenty-Fourth Conference on Uncer-
tainty in Artificial Intelligence, UAI, pp. 383–392, 2008.

Meila, M. and Jordan, M. I. Learning with mixtures of trees.
Journal of Machine Learning Research, 1:1–48, 2000.

Pearl, J. Probabilistic reasoning in intelligent systems: net-
works of plausible inference. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 1988.

Peharz, R., Gens, R., Pernkopf, F., and Domingos, P. On
the latent variable interpretation in sum-product networks.
Journal of Transactions on Pattern Analysis and Machine
Intelligence, pp. 1–14, 2016.

Peharz, R., Vergari, A., Stelzner, K., Molina, A., Trapp,
M., Kersting, K., and Ghahramani, Z. Probabilistic deep
learning using random sum-product networks. arXiv
preprint arXiv:1806.01910, 2018.

Poon, H. and Domingos, P. Sum-product networks: A new
deep architecture. In 2011 IEEE International Confer-
ence on Computer Vision Workshops, pp. 689–690. IEEE,
2011.

Rahman, T., Kothalkar, P., and Gogate, V. Cutset networks:
a simple, tractable, and scalable approach for improving
the accuracy of Chow-Liu trees. In Proceedings of the Eu-
ropean Conference on Machine Learning and Knowledge
Discovery in Databases, pp. 630–645, 2014.

Rooshenas, A. and Lowd, D. Learning sum-product net-
works with direct and indirect variable interactions. In
Proceedings of the Thirty-First International Conference
on Machine Learning, pp. 710–718, 2014.

Roth, D. and Samdani, R. Learning multi-linear represen-
tations of distributions for efficient inference. Machine
Learning, 76(2–3):195–209, 2009.

Scanagatta, M., Corani, G., de Campos, C., and Zaffalon, M.
Approximate structure learning for large Bayesian net-
works. Machine Learning, 107(8-10):1209–1227, 2018.

Sguerra, B. M. and Cozman, F. G. Image classification
using sum-product networks for autonomous flight of
micro aerial vehicles. In Proceeding of the Fifth Brazilian
Conference on Intelligent Systems, pp. 139–144, 2016.

Shen, Y., Choi, A., and Darwiche, A. A tractable prob-
abilistic model for subset selection. In Proceedings of
the Thirty-Third Conference on Uncertainty in Artificial
Intelligence, 2017.

Exploring the Space of Probabilistic Sentential Decision Diagrams

Shen, Y., Choi, A., and Darwiche, A. Conditional PS-
DDs: Modeling and learning with modular knowledge.
In Thirty-Second AAAI Conference on Artificial Intelli-
gence, 2018.

Shen, Y., Goyanka, A., Darwiche, A., and Choi, A. Struc-
tured bayesian networks: From inference to learning with
routes. In Proceedings of the Thirty-Third AAAI Confer-
ence on Artificial Intelligence, 2019.

Spirtes, P. and Meek, C. Learning Bayesian networks with
discrete variables from data. In Proceedings of the First
International Conference on Knowledge Discovery and
Data Mining, pp. 294–299, 1995.

Teyssier, M. and Koller, D. Ordering-based search: A simple
and effective algorithm for learning Bayesian networks.
In Proceedings of the Twenty-First Conference on Uncer-
tainty in Artificial Intelligence, pp. 584–590, 2005.

Tsamardinos, I., Brown, L. E., and Aliferis, C. F. The max-
min hill-climbing Bayesian network structure learning
algorithm. Machine Learning, 65:31–78, 2006.

Vergari, A., Di Mauro, N., and Esposito, F. Simplifying, reg-
ularizing and strengthening sum-product network struc-
ture learning. In Proceedings of the Joint European Con-
ference on Machine Learning and Knowledge Discovery
in Databases, pp. 343–358, 2015.

