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Abstract Following a nonperturbative formulation of strong-field QED developed in our earlier works, and using the Dirac model
of the graphene, we construct a reduced QED3,2 to describe one species of the Dirac fermions in the graphene interacting with an
external electric field and photons. On this base, we consider the photon emission in this model and construct closed formulas for
the total probabilities. Using the derived formulas, we study probabilities for the photon emission by an electron and for the photon
emission accompanying the vacuum instability in the quasiconstant electric field that acts in the graphene plane during the time
interval T . We study angular and polarization distribution of the emission as well as emission characteristics in a high-frequency
and low-frequency approximations. We analyze the applicability of the presented calculations to the graphene physics in laboratory
conditions. In fact, we are talking about a possible observation of the Schwinger effect in these conditions.

1 Introduction

Graphene and similar nanostructures (topological insulators, etc.) belong to the class of so-called Dirac semimetals, the theoretical
and experimental study of which has recently received much attention. In particular, this is due to the hopes for possible applications
of these structures in the next generation of semiconducting devices. It should be noted that already in the early theoretical works
[1–3] it was indicated that the physics of the graphene is not only described under certain conditions by QFT (quantum field theory),
but can be a fertile area for the latter where its validity within extreme limits can be verified in laboratory conditions. This possibility
is related to the fact that low-energy single-electron motion in graphene monolayers (at the charge neutrality point) and similar
nanostructures is described by the Dirac model, being a 2+1 dimensional version of massless QED (quantum electrodynamics) with
Fermi velocity vF � 106m/s playing the role of the light speed in the relativistic dynamics of the corresponding Dirac fermions
[1] (see also the review [4] for more details). Such a model is usually called reduced QED3,2. It should be noted that in the QED3,2

model the electromagnetic field itself is not confined to the graphene plane z � 0, but rather propagates (with the speed of light c)
according to corresponding classical or quantum equations in the ambient 3 + 1-dimensional space-time. The electromagnetic field
couples minimally to electrons situated on the graphene plane. Thus, we note once again that in the QED3,2 there are two distinct
velocities, one of charged particles (Dirac fermions) and another one of the electromagnetic fields. Since the Dirac fermions in the
model are considered as almost massless, any low-frequency electric field is for them supercritical (the so-called Schwinger critical
field Ec � m2c3/e� is almost zero). The latter fact allows one a laboratory verifying QED predictions for superstrong fields, in
particular, real studying the Schwinger effect. From the theoretical point of view, what has been said means that the vacuum state
in the model is sometimes unstable with respect to the Dirac fermion creation, such that the interaction with electric-like external
field must be taken into account nonperturbatively. That is why the standard theory of the photon emission represented in QED text
books cannot help. From our point of view, adequate nonperturbative calculations with respect to the external field can be done
using a general approach to QED with strong external fields [5–8] (based on the existence of special exact solutions of the Dirac
equation with these fields) and its further development [9, 10]. Thus, the QED3,2 model with a part of electric-like electromagnetic
field considering as an external classical one must always be treated by the abovementioned nonperturbative methods. Note that the
effects due to high-frequency electromagnetic fields, which are often considered in connection with the optical response of Dirac

D. M. Gitman contributed equally to this work.

a e-mails: gavrilovsergeyp@yahoo.com; gavrilovsp@herzen.spb.ru (corresponding author)
b e-mail: gitman@if.usp.br

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjp/s13360-023-03786-9&domain=pdf
mailto:gavrilovsergeyp@yahoo.com
mailto:gavrilovsp@herzen.spb.ru
mailto:gitman@if.usp.br


  171 Page 2 of 23 Eur. Phys. J. Plus         (2023) 138:171 

fermions in graphene, do not require the use of the mentioned nonperturbative methods. In the QED3,2 model, there are actually two
species of fermions corresponding to excitations about two distinct Dirac points in the Brillouin zone of the graphene. Taking into
account the presence of two spin polarization of excitations of each kind, we have, in fact, four species of fermions in the model.
Calculations of mean values can be done for one of the specie with some further extension to four species using the degeneracy
factor N f � 4.

Until now, in 3 + 1 QED, there were presented various nonperturbative calculations of zero-order processes in the framework
of the general approach [5–10]; for example, see Refs. [11, 12] and references therein. These are processes of charged particle
scattering, and processes of charge particle creation and annihilation related to the vacuum instability. In QED3,2, the graphene
conductivity modification due to the particle creation by external constant electric field (the Schwinger effect) was calculated as a
zero-order process in Ref. [13]. Processes involving photon emission and annihilation in the presence of the vacuum instability are
processes of higher order in radiative corrections. Their study is technically more complicated then the study of zero-order processes.
Nevertheless, recently, there appeared publications devoted to the photon emission in the graphene due to external electric field
in the framework of the Dirac model. In particular, a free electron--hole recombination was studied in Refs. [14] and [15] for
the thermal equilibrium. A discussion of the photon emission by charged carries in the graphene due to constant uniform electric
field was published in Ref. [16]. Due to the recent detection of an optical radiation in the graphene accompanying the creation
of electron--hole pairs by a terahertz pulse [17, 18], it becomes possible to make a comparison of the corresponding theoretical
calculations with experiments. It must be said that the emission of a photon by an electron moving in a constant electric field in 3 + 1
dimensions was studied first nonperturbatively by Nikishov [19, 20].

Peculiarities of physics of the graphene allows one studying the Schwinger effect in laboratory conditions. Theoretical calculations
presented in the work [13] and their comparison with experimentally observed results of the dc conductivity in the graphene near
the Dirac point testify in favor of the fact that it is the Schwinger effect that determines the nature of the conductivity. In addition, it
has been found that the radiation of a time-dependent mean current, forming the backreaction to the electric field on the graphene
plane, is emitted to the three-dimensional space in the form of linearly polarized and of very low-frequency plane electromagnetic
waves. However, an observation of such waves and the dc conductivity is not a simple task in the presence of the background noise
in the vicinity of the graphene sample. We believe that the emission and absorption of high-frequency photons accompanied the
electronic quantum transport in the graphene are more realistic for possible experimental observations.

We stress that general equations allowing nonperturbative calculations of the higher-order processes in strong-field QED are
clearly formulated in the Refs. [5–10]. In the present study, we specify these equations for the above described QED3,2 model and
with their help we consider processes of photon emission by the Dirac excitations in the graphene subjected by external constant
electric field. In these calculations, effects of the vacuum instability are taken into account exactly, such that we study the process
of the photon emission which is accompanied by creation from the vacuum additional Dirac excitations.

In contrast to the works known to us, in this article we consider effects in the QED3,2 model with an intense external electric
field, which is uniform and slowly varying, and which we interpret as a macroscopic external field. These effect differ principally
from effects arising in magnetic-like fields or in fields of high-frequency electromagnetic waves. In condensed matter, the Dirac
model is used primarily in the context of the relativistic quantum mechanics, or in the framework of the Matsubara’s imaginary
time formalism of QFT, where electrons are assumed to be in thermal equilibrium; see, e.g. Refs. [21–31] . However, a macroscopic
electric field acting on charged particles may destroy their thermal equilibrium, such that conclusions based on the latter assumption
may be not correct.

The article is organized as follows: In Sect. 2 we, following the general theory [5–8], construct the reduced QED3,2 to describe
one species of the Dirac fermions in the graphene interacting with an external electric field and photons. The required basic elements
that we need to describe zero-order processes with respect to the electron--photon interaction are derived from Ref. [13]. Then, we
consider the photon emission in this model and construct closed formulas for the total probabilities. In order to find the corresponding
mean values in real graphene, results obtained for one species of the Dirac fermions must be multiplied by the factor N f � 4 (the
number of all charged species). In Sect. 3, we apply the developed formulation to calculating probabilities of the one-photon emission
by an electron and of the one-photon emission accompanying the vacuum instability in a quasiconstant electric field that acts in
the graphene plane during the time interval T . In Sect. 4, we analyze the obtained emissions characteristics in a high-frequency
approximation. We study angular and polarization distribution of the emissions. The low-frequency approximation is considered in
Appendix A. We analyze conditions of the applicability of the presented calculations in possible experimental conditions. In the last
Sect. 5, we summarize the main results of the present work. Some useful mathematical details are placed in Appendix B.

2 The photon emission in the graphene in the framework of the QED3,2 model

2.1 General

In this section, we consider general equations that will be used by us further to study the photon emission in a flat graphene monolayer
in the framework of the nonperturbative approach [5–8] applied to the QED3,2 model described schematically above.

123



Eur. Phys. J. Plus         (2023) 138:171 Page 3 of 23   171 

We consider an infinite flat graphene sample to which an uniform electric field is applied, directed constantly along the axis x on
the plane of the sample. We assume that the applied field is a strong external macroscopic low-frequency electric-like field that can
treated as a quasiconstant one. We consider the case of zero temperature and chemical potential (i.e., at the charge neutrality point),
so that the Dirac model can be used near the Dirac point.

As was already said the graphene sample in subjected to the action of a strong external macroscopic low-frequency electric-like
field, some suppositions about which were already mentioned above. This field is parallel to the graphene plane, z � 0. By r �
(x, y), we denote the two-dimensional position vector on the graphene plane. In which follows, we use boldface symbols for any
two-dimensional vectors in z � 0 plane. The electromagnetic field couples minimally to the current of the Dirac fermions in the

graphene plane. The external field can be given by two-dimensional vector potential Aext(t, r,z) �
(
Aext
x , Aext

y

)
(the scalar potential

is chosen to be zero, A0 � 0). In the model under consideration, charged particles of each kind in the graphene are described by the
Dirac field which is two component spinor ψα(t, r), α � 1, 2 on 2+1 dimension. In this dimension, the algebra of the corresponding
γ -matrices has two inequivalent representations,

γ 0 � σ 3 , γ 1 � iσ 2 , γ 2 � −iςσ 1 , (1)

where the σ j are Pauli matrices, and by ς � ±1 inequivalent representations are labeled. Distinct (pseudo spin) representations are
associated with each Dirac point. For all integral quantities, since intervalley scattering can be neglected, the presence of two valleys
related to each ς � ±1 inequivalent representation is taken into account simply by multiplying by introducing the degeneracy factor
2. Taking into account the spin degeneracy factor 2, the total number of different species of Dirac fermions is N f � 4. In order to
find mean values of a physical quantity in the graphene, a mean value obtained for one species are multiplied by N f . Remembering
the origin of the Dirac model for the graphene description (see [1]), we believe that each component ψα(t, r) of the Dirac spinor is
a projection of a Schrödinger wave function φα(t, r, z) in 3 + 1 dimensions with a support in a specific sublattice of the honeycomb
lattice of the graphene. These wave functions can be represented as:

φα(t, r, z) � ψα(t, r)ϕ(z) eipz z/� , (2)

where the function ϕ(z) describes the width of the graphene. A detailed description of ϕ(z) is not necessary for our purposes, except
for the fact that it decays rapidly outside the xy plane and is normalized according to

∫
dz‖ϕ(z)‖2. In which follows, we assume the

usual dipole approximation so that the exponential in Eq. (2) is approximated by the zeroth-order constant term. In this approximation,
we replace Aext(t, r, z) by its value Aext(t, r,0) at z � 0. Then we can simplify the notation as follows: Aext(t, r,0) � Aext(t, r). We
allow the graphene sheet to have a global momentum pz along the z axis, in order to account for the possibility of a momentum
transfer in this direction with respect to some external system. The Dirac equation with an external field that couples minimally to
electrons on graphene plane reads:

i� ∂tψ(t, r) � H extψ(t, r ) ,

H ext � vFγ 0
{
γ
[
p +

e

c
Aext(t, r)

]
+ mvF

}
, (3)

where p �(px , py
)

is the in-plane component of the momentum operator, γ� (
γ 1, γ 2

)
, γ -matrices satisfy the standard anticom-

mutation relations
[
γ μ, γ ν

]
+ � 2ημν , ημν � diag (+1,−1,−1), μ, ν � 0, 1, 2, and e > 0 is the absolute value of the electron

charge.
In Eq. (3), a mass term in the Hamiltonian H ext is introduced for one to be able to generalize the consideration to the presence

of the possible mass gap �ε � mv2
F . Such a mass gap in the graphene band structure can appear in different ways. One of the

examples is given by graphene nanoribbons (see [26] for a review). However, in our consideration below, we set m � 0.
Dirac Heisenberg operators �̂(t, r) and �̂†(t, r) are assigned to the Dirac fields ψ(t, r) and ψ†(t, r). These fields obey both the

Dirac Eq. (3) with the potential A ext(t, r)] and the following nonvanishing equal time anticommutation relations:[
�̂(t, r), �̂

(
t, r′)]

+
,
[
�̂(t, r), �̂†(t, r′)]

+
� �δ(2)

(
r − r′). (4)

The quantized free electromagnetic field is described by two-dimensional operators of vector potential Â(t, r,z). As for the classical
potentials, the dipole approximation allows us to replace Â(t, r,z) by its value Â(t, r) � Â(t, r,0).

The total quantum Hamiltonian of the model reads:

Ĥ(t) � Ĥe,Aext + Ĥe, + Ĥ ,

Ĥe,Aext �
∫

�̂†(t, r)H ext�̂(t, r)dr,

Ĥe, � −
∫

ĵ (t, r)Â(t, r)dr , ĵ(t, r) � −evF
2c

[
�̂†(t, r), γ 0�̂(t, r)

]
− , (5)

where Ĥe,Aext is the Hamiltonian of charged particles interacting with an external electric-like field given by the time-dependent
potential Aext(t, r), Ĥe, is the Hamiltonian of the electron--photon interaction, and Ĥ is the free photon Hamiltonian. The integral
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on the graphene plane is taken over an area S . We assume that the area S is sufficiently large to be macroscopic then boundary
effects can be neglected.

The decomposition of the operator Â(t, r) in terms of annihilation and creation operators of free photons, CKϑ and C†
Kϑ reads:

Â(t, r) � c
∑
K,ϑ

√
2π�

εVω
εKϑ

[
CKϑ ei(kr−ωt) + C†

Kϑ e−i(kr−ωt)
]
, (6)

where ϑ � 1, 2 denotes a polarization index, εKϑ are mutual orthogonal unit polarization vectors transversal to three-dimensional
wave vector K � (k, kz). The two-dimensional vector k � (

kx , ky
)

is a projection of K on the graphene plane, ω � cK , K � |K|,
V is the volume of the box regularization, and ε is the relative permittivity (for the graphene suspended in the vacuum ε � 1).

2.2 In- and out-states of charged particles

Following the general nonperturbative approach [5–8], we have to construct the corresponding in- and out-states. of charged particles
of all the kinds with the help of exact solutions of Eq. (3) the electric-like external field. As was already mentioned above, the external
field in the model is a slowly varying uniform electric-like field directed along the axis x. It is assumed that for t < t1 and for
t > t2, the electric field is absent, therefore initial |0, in〉e and final |0, out〉e are vacuum state of free in- and out-charged particles,
respectively. These vacua are different due to a difference of initial and final values of external electromagnetic field potentials.
During the time interval t2 −t1 � T , the Dirac field interacts with the external field. There exists a set of creation and annihilation
operators a†

n(in) and an(in) of in-particles (electrons), and operators b†
n(in) and bn(in) of in-antiparticles (holes), at the same time

there exists a set of creation and annihilation operators a†
n(out) and an(out) of out-electrons and operators b†

n(out) and bn(out) of
out-holes,

an(in)|0, in〉e � bn(in)|0, in〉e � 0, ∀n,

an(out)|0, out〉e � bn(out)|0, out〉e � 0, ∀n,
(7)

In both cases, by n we denote complete sets of quantum numbers describing in- and out- charged particles. As will be seen further
in the case under consideration n � p. The in- and out-operators obey the nonzero anticommutation relations:

[an(in), a†
n′ (in)]+ � [an(out), a†

n′ (out)]+ � �δn,n′ ,

[bn(in), b†
n′ (in)]+ � [bn(out), b†

n′ (out)]+ � �δn,n′ .

The in-operators are associated with a complete orthonormal set of solutions
{

ζ ψn(t, r)
}

(ζ � + for electrons and ζ � − for holes)
of the Dirac equation with an external electric field. Their asymptotics as t < t1 can be classified as free particles and antiparticles.
The out -operators are associated with a complete orthonormal out-set of solutions

{
ζ ψn(t, r)

}
of the Dirac equation with an external

electric field. Their asymptotics as t > t2 can be classified as free particles and antiparticles. The conserved inner product reads
(
ψ,ψ ′) �

∫
ψ†(t, r)ψ ′(t, r)dr,

where the integration is over the finite area S of the standard box regularization. The orthonormality conditions are:
(

ζ ψn, ζ ′ψn′
) � δζ,ζ ′δn,n′ ,

(
ζ ψn,

ζ ′
ψn′

)
� δζ,ζ ′δn,n′ . (8)

The in- and out-operators are defined by the two representations of the quantum Dirac field �̂(t, r) in the Heisenberg representation
(it means here: in the zero-order approximations with respect of interaction with photons)

�̂(t, r) �
∑
n

[
an(in) +ψn(t, r) + b†

n(in) −ψn(t, r)
]

�
∑
n

[
an(out) +ψn(t, r) + b†

n(out)) −ψn(t, r)
]
. (9)

The in- and out-solutions with given quantum numbers n are related by a linear transformation of the form:

ζ ψn(t, r) �gn
(

+| ζ
)

+ψn(t, r) + gn
(
−| ζ

)
−ψn(t, r) ,

ζ ψn(t, r) �gn
(+| ζ

) +ψn(t, r) + gn
(−| ζ

)−ψn(t, r) , (10)

where the g′s are some complex coefficients, g
(

ζ ′ | ζ

)
�
(

ζ | ζ ′)∗
. These coefficients obey the unitarity relations:

gn
(
ζ |+

)
gn
(

+| ζ
)

+ gn
(
ζ |−

)
gn
(
−| ζ

) � 1 ,

gn
(
ζ |+)gn

(+| ζ

)
+ gn

(
ζ |−)gn

(−| ζ

) � 1 ,

gn
(

+|+)gn
(+|−

)
+ gn

(
+|−)gn

(−|−
) � 0 ,
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gn
(+|+

)
gn
(

+|−) + gn
(+|−

)
gn
(
−|−) � 0 , (11)

which follow from the orthonormalization and completeness relations for the corresponding solutions. It is known that all the
coefficients can be expressed in terms of two of them, e.g. of g

(
+
∣∣+ ) and g

(
−
∣∣+ ). However, even the latter coefficients are not

completely independent,
∣∣gn

(
−
∣∣+ )∣∣2 +

∣∣gn
(

+
∣∣+ )∣∣2 � 1. (12)

Then a linear canonical transformation (Bogolubov transformation) between in- and out-operators which follows from Eq. (9) is
defined by these coefficients

an(out) � gn
(+|+

)
an(in) + gn

(+|−
)
b†
n(in),

b†
n(out) � gn

(−|+
)
an(in) + gn

(−|−
)
b†
n(in). (13)

Using relations (13), one finds that the differential mean numbers N (ζ )
n of electrons (holes) created from the vacuum in the zero-order

approximations with respect of the electron--photon interaction are:

N (+)
n � e〈0, in|a†

n(out)an(out)|0, in〉e � ∣∣gn
(
−|+)∣∣2,

N (−)
n � e〈0, in|b†

n(out)bn(out)|0, in〉e � ∣∣gn
(

+|−)∣∣2. (14)

We see that that the mean numbers of electrons (holes) created are equal and are also equal to the mean number of the pairs created,
N (+)
n � N (−)

n � N cr
n . All the information about electrons and holes creation, annihilation, and scattering in an electric field in the

zero-order approximations with respect of the electron-photon interaction can be extracted from the coefficients can be extracted

from the coefficients g
(

ζ | ζ ′)
(see Ref. [5–8] for details).

2.3 In- and out-states with definite numbers of charged particles and photons

We note that the Fock space of the complete system under consideration is a tensor product of the Fock space of the electron
subsystem and the Fock space of the free photon subsystem. As was pointed out above due to the vacuum instability, the in- and
out-states of the electron subsystem are different in the general case. At the same time, the photon vacuum |0〉 remains unchanged.
Denoting by |0, in〉 and |0, out〉 the initial and final vacuum states of the complete system, we can write:

|0, in〉 � |0, in〉e ⊗ |0〉, |0, out〉 � |0, out〉e ⊗ |0〉 .

The initial and final states of the complete system with definite numbers of charged particles of all the kinds and photons have the
form:

|in〉 � C† . . . b†(in) . . . a†(in) . . . |0, in〉,
|out〉 � C† . . . b†(out) . . . a†(out) . . . |0, out〉. (15)

Probability amplitude of a transition from an initial to a final state (15) has the following form:

W � 〈out|S|in〉, (16)

where S is the scattering matrix in the external field,

S � T exp

{
− i

�

∫ tout

tin
Hintdt

}
, Hint ≈ −

∫
j(t, r)A(t, r)dr ,

j(t, r) � −evF
2c

[
�†(t, r), γ 0�(t, r)

]
− , (17)

where �(t, r), �†(t, r), and A(t, r) are quantum field operators in the interaction representation, the symbol T - is the chronological
ordering operator and tout − tin → ∞ is macroscopic time of the radiative interaction.

Below we are going to consider the emission of a photon from the vacuum and from a single-electron state. These processes will
be studied in the first-order approximation for amplitudes which corresponds to the second-order approximation for the probabilities.
In this case:

S ≈ 1 + iϒ(1), ϒ(1) � 1

�

∫
j(t, r)A(t, r)drdt

=⇒ 〈out|S|in〉 ≈ i〈out|ϒ(1)|in〉 (18)

It is known that the QED3,2 model is renormalizable. In the first-order approximation, we only have to believe that fields, the electric
charge, and electron mass (if m �� 0) are already given in the renormalized form, namely the charge e represents its physical value
and the fine-structure constant is α � e2/�c � 1/137.
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The probabilities of the one-photon emissions with quantum numbers K, ϑ and at the same time with the production of M ≥ 1
pairs of charged particles of one kind from the vacuum read:

PM (K,ϑ) �
∑

{m}{n}
(M! )−2

∣∣〈0, out|bnM (out) . . . bn1(out)

× amM (out) . . . am1(out)CKϑ iϒ
(1)|0, in〉

∣∣∣
2
. (19)

Summing these probabilities over M, we obtain the probability of the one-photon emission with full allowance for the possible
instability of the vacuum with respect to the production of one kind of charged particles,

P(K,ϑ) �
∞∑

M�1

PM (K,ϑ). (20)

The probabilities of the one-photon emission with quantum numbers K, ϑ and at the same time with the production of M ≥ 0 pairs
of charged particles of one kind from a single-electron state which is characterized by a quantum numbers l reads:

PM

(
K, ϑ | +

l

)
�

∑
{m}{n}

[M! (M + 1)!]−1
∣∣〈0, out|bnM (out) . . . bn1(out)

× amM+1(out) . . . am1(out)CKϑ iϒ
(1)a†

l (in)|0, in〉
∣∣∣
2
. (21)

The same probability from a single-hole state has the form:

PM

(
K, ϑ |−l

)
�

∑
{m}{n}

[M! (M + 1)! ]−1
∣∣〈0, out|bnM (out) . . . bn1(out)

× amM+1(out) . . . am1(out)CKϑ iϒ
(1)b†

l (in)|0, in〉
∣∣∣
2
. (22)

Summing these probabilities over M, we obtain the probability of the one-photon emission from a single-electron (hole) state with
full allowance for the possible instability of the vacuum with respect to the production of charged particles of one kind,

P
(
K, ϑ |±l

)
�

∞∑
M�0

PM

(
K, ϑ |±l

)
. (23)

If the probability of the creation of pairs from the vacuum is small, then main contributions to probabilities (23) and (20) are due
minimal possible numbers of created pairs,

P(K,ϑ) ≈ P1(K,ϑ), P
(
K, ϑ |±l

)
≈ P0

(
K, ϑ |±l

)
. (24)

To construct an perturbation theory for the probability amplitudes, one needs to reduce the S-matrix to a generalized normal form
with respect to the vacua 〈0, out| and |0, in〉 (see Ref. [5–8]).

To this end, one has explicitly divide the Dirac field operators into parts, creative with respect to the vacuum 〈0, out| and
annihilative with respect to the vacuum |0, in〉. In the first-order approximation, it is sufficient to reduce the operator j(t, r) to the
generalized normal form,

Nout−in{j(t, r)} � j(t, r) − 〈j(t, r)〉c,
〈j(t, r)〉c � 〈0, out|j(t, r)|0, in〉c−1

v , (25)

where cv � 〈0, out |0, in〉 is the vacuum to vacuum transition amplitude. Note that, in the general case, the vacuum polarization
current 〈j(t, r)〉c is not zero. It may contribute to a tadpolediagram. However, in the case under consideration (uniform and slowly
varying external electric field), such a diagram has a notable value only in a very infrared range, which is not considered here. In
particular, in the limiting case of a constant uniform field, this contribution can be safely neglected.1

Thus, the quantities under consideration can be represented as:

P0

(
K, ϑ |±l

)
� P(0)

v

∑
n

∣∣∣∣w(1)

(
±
n; K,ϑ |±l

)∣∣∣∣
2

, P(0)
v � |cv|2,

w(1)

(
±
n; K,ϑ |±l

)
� ic

�

√
2π�

εVω

∫
εKϑ j

(
±
n
∣∣∣
±
l

)
ei(ωt−kr)dtdr ,

1 We note that this diagram can cause non-vanishing contributions when appearing as a part of a higer order diagram; see Ref. [32].
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j
(

+
n
∣∣∣
+
l

)
� c−1

v 〈0, out|an(out)Nout−in{j(t, r)}a†
l (in)|0, in〉,

j
(

−
n
∣∣∣
−
l

)
� c−1

v 〈0, out|bn(out)Nout−in{j(t, r)}b†
l (in)|0, in〉 , (26)

and

P1(K,ϑ) � P(0)
v

∑
n,l

∣∣∣∣w(1)

(
−
n

+
l ; K,ϑ |0

)∣∣∣∣
2

,

w(1)

(
−
n

+
, l; K,ϑ |0

)
� ic

�

√
2π�

εVω

∫
εKϑ j

(
−
n

+
, l

∣∣∣∣0
)
ei(ωt−kr)dtdr ,

j
(

−
n

+
, l

∣∣∣∣0
)

� c−1
v 〈0, out|bn(out)al(out)Nout−in{j(t, r)}|0, in〉 . (27)

One can express matrix elements in Eqs. (27) and (26) via the solutions ζ ψn(t, r) and ζ ψn(t, r), and coefficients g as follows:

j
(

+
n,

−
l

∣∣∣∣0
)

� −evF
c

gl
(

+|+)−1
+ψ̄l(t, r) −ψn(t, r)gn

(−|−
)−1

,

j
(

+
n
∣∣∣l+
)

� −evF
c

gn
(

+|+)−1
+ψ̄n(t, r) +ψl(t, r)gl

(
+|+)−1

,

j
(−
n
∣∣∣l−

)
� evF

c
gl
(−|−

)−1 −ψ̄l(t, r) −ψn(t, r)gn
(−|−

)−1
, (28)

where ψ̄n � ψ
†
nγ 0 .

It seems that the matrix elements in Eqs. (19)-(23) can be written in a similar manner. However, this is only useful in the case of
a not very strong electric field, when the approximation (24) is applicable. In the case of an intense external field, there exist many
transition channels corresponding to the violation of the vacuum stability. Considering the photon emission by massless charged
particles in the graphene any quasiconstant electric field has to be treated as a strong one. By this reason, it is effective to calculate
mean characteristics of the emission using the unitarity condition for the S matrix as in the way described below.

Probabilities (20) and (23) can be represented as a trace of the operators CKϑ S|in〉〈in|S−1C†
Kϑ with respect to the final basis,

P(K, ϑ |in) � tr
[
CKϑS|in 〉〈in|S−1C†

Kϑ

]
, (29)

where |in〉 is one of the following states: |0, in〉, a†
l (in)|0, in〉, or b†

l (in)|0, in〉. One can see that trace (29) can be written as a mean
value of the photon number operator,

P(K, ϑ |in) � 〈in|S−1C†
kϑCkϑS|in〉 . (30)

In course of constructing a perturbation theory with respect to the radiative interaction, one needs to reorganize the S-matrix in the
normal form : . . . : with respect to the in-vacuum (see Ref. [5–8]). In the first-order approximation, it is sufficient to represent only
the operator j(t, r) in such a form,

j(t, r) � : j(t, r) : + 〈j(t, r)〉in , 〈j(t, r)〉in � 〈0, in|j(t, r)|0, in〉 . (31)

The vacuum mean current 〈j(t, r)〉in is a sum of a vacuum polarization current and of a current of created charged particles. It is
not zero in a slowly varying electric field and depends on the definition of the initial vacuum, |0, in 〉 and on the evolution of the
electric field from the initial time t1 of switching on to the time instant t. After the time t2 of switching the electric field off, the term
〈j(t, r)〉in represents the current density of the created pairs of charged particles. This current is a source in the Maxwell equations
for a mean electromagnetic field. Such a mean field is a slowly varying crossed field emitted perpendicular to the graphene plane
(see Ref. [13] for details). One can see that in the frequency range of the photon emission ω � T−1, which is interesting to us, the
contribution due to the current 〈j(t, r)〉in can be neglected.

In particular, it follows from Eq. (30) that probabilities (20) and (23) read:

P(K,ϑ) �
∑
l

P(l; K,ϑ |0), P(l; K,ϑ |0) �
∑
n

∣∣∣∣w(1)
in

(
−
n

+
l ; K,ϑ |0

)∣∣∣∣
2

,

w
(1)
in

(
−
n

+
, l ; K,ϑ |0

)
� ic

�

√
2π�

εVω

∫
εKϑ jin

(
−
n

+
, l

∣∣∣∣0
)
ei(ωt−kr)dtdr ,

jin

(
−
n

+
, l

∣∣∣∣0
)

� 〈0, in|bn(in)al(in) : j(t, r) : |0, in〉 , (32)
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where P(l; K,ϑ |0) is the probability of one photon emission with quantum numbers K, ϑ which is accompanied by the production
of pairs of one kind with a quantum number l , and

P
(
K, ϑ |±l

)
�
∑
n

∣∣∣∣w(1)
in

(
±
n; K, ϑ |±l

)∣∣∣∣
2

,

w
(1)
in

(
±
n; K,ϑ |±l

)
� ic

�

√
2π�

εVω

∫
εKϑ jin

(
±
n
∣∣∣
±
l

)
ei(ωt−kr)dtdr,

jin

(
+
n
∣∣∣
+
l

)
� 〈0, in|an(in) : j(t, r) : a†

l (in)|0, in〉,

jin

(
−
n
∣∣∣
−
l

)
� 〈0, in|bn(in) : j(t, r) : b†

l (in)|0, in〉. (33)

In order to find the probability of one photon emission with quantum numbers K, ϑ which is accompanied by the production of
pairs of all the kinds in the graphene, the probability (32) is multiplied by the number of species N f � 4,

PN f (K,ϑ) � N f P(K,ϑ). (34)

One can express matrix elements in Eqs. (32) and (33) via the solutions ζ ψn(t, r) as follows:

jin

(
−
n

+
, l

∣∣∣∣0
)

� −evF
c

+ψ̄l(t, r) −ψn(t, r),

jin

(
±
n
∣∣∣
±
l

)
� ∓evF

c
±ψ̄n(t, r) ±ψl(t, r). (35)

Note that, in the general case, the matrix elements w
(1)
in

(
−
n

+
, l; K,ϑ |0

)
and w

(1)
in

(
±
n; K,ϑ |±l

)
considered separately are quite different

from the amplitudes of the relative probabilities w(1)

(
−
n

+
, l; K,ϑ |0

)
and w(1)

(
±
n; K,ϑ |±l

)
given by Eqs. (27) and (26), respectively.

Only if the mean number of the pairs created are sufficiently small, Nn, Nl � 1, the difference between the solutions ζ ψn(t, r) and
ζ ψn(t, r) at a given ζ can be neglected.

3 Photon emission in a constant electric field

3.1 Exact solutions

Next, we proceed to direct calculations of the photon emission in graphene induced by applied external electric field. The electric
field acts in the graphene plane during the time interval t2 − t1 � T as a constant field E and vanishes out the interval. Such a
field is often called T -constant electric field. In the QED3,2 model which describes massless charged particles, even a seemingly
weak electric field E, if it remains unchanged for a sufficiently long time, creates electron--hole pairs from the vacuum. The vacuum
instability problem in the graphene in T -constant electric field was studied in detail in Ref. [13]. Switching on and off effects of in
the latter field can be neglected if we suppose that the time interval T is sufficiently large, namely

T/�tst � max

{
1,

m2v3
F

|eE |�

}
, (36)

where �tst is a big characteristic time scale �tst in the graphene physics,

�tst � (|eE |vF/�)−1/2 � tγ . (37)

and tγ � �/γ � 0.24fs is the microscopic time scale with γ � 2.7eV being the hopping energy. Then the perturbation theory with
respect to electric field breaks down and the dc response changes from the linear in E time-independent regime to a nonlinear in
E and time-dependent regime (see Ref. [33]). This regime was recently observed in measurements of I − V curves of graphene
devices near the Dirac point (see Ref. [36]).

We recall that the T -constant electric field can be described by the vector potential with only one nonzero component Aext
x (t),

Aext
x (t) � −cE

⎧
⎨
⎩
t1 t ∈ I � (−∞, tin), t1 � −T/2
t, t ∈ Int � [t1, t2]
t2, t ∈ II � (t2,∞) , t2 � T/2

,

such that the corresponding electric field has also only one nonzero component, Ex (t),
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Ex (t) �
{
E > 0, t ∈ Int
0, t ∈ I ∪ II

.

The time scale (37) is specific to the graphene physics. It plays the role of a stabilization time after which differential mean numbers
of created pairs take the form:

N cr
p � e−πλ , λ � vF p2

y + m2v3
F

eE�
. (38)

which is the same for the case of the constant electric field in the finite momentum range

D :

√
vF

eE�

∣∣py
∣∣ < (T/�tst − τ)1/2,

√
vF

eE�
|px | <

1

2
T/�tst − τ, (39)

where τ is an arbitrary number satisfying the condition

T/�tst � τ � max

{
1,

m2v3
F

eE�

}
; (40)

(see Ref. [13] for details). The total number density of electron--hole pairs created by the electric field (multiplied by a degeneracy
factor N f � 4) is:

ncrg � rcrg T , rcrg � N f (2π)−2(vF�
3)−1/2|eE |3/2 . (41)

The QED with an external constant electric field is a consistent model as long as the low-frequency radiation field produced by an
induced current is negligible compared to the external field, which is supported by external sources to remain fixed. In the graphene
with zero mass carries, this imposes the consistency restriction [13]:

T/�tst � π/4α , (42)

where α is the fine-structure constant.
In this case under consideration, the external field can be considered as a good approximation of the effective mean field. In the

presence of the mass gap �ε � mv2
F , restriction (42) is attenuated by a factor exp

[
π(�ε)2/e|E |vF�

]
; see Ref. [37]. We call the

typical time scale related to Eq. (42), �tbr � �tstπ/4α, the time of backreaction. On the other hand, the dimensionless parameter
in the lhs of Eq. (42) satisfies the condition given by Eq. (36). Thus, there is a window in the parameter range where the model
is consistent, tγ � �tst � �tbr . Moreover, this restriction corresponds to a specific regime, which might be relevant to some
known experiments in the graphene physics; see [13, 17] for details. The time T could be treated as a typical time-scale, which we
call the effective time duration Tef f , T � Tef f in what follows. Some kind of dissipation process may truncate the motion of a
particle at Tdis , in which case Tef f � Tdis . In the absence of the dissipation, the transport is ballistic; then, considering a strip with
a lateral infinite width and a finite length Lx , we assume the ballistic flight time Tbal � Lx/vF to be the effective time duration,
Tef f � Tbal . In typical experiments, Lx ∼ 1¯m, which gives Tbal ∼ 10−12s. We note that the experimentally terahertz pulses [17]
are characterized by a similar to Tbal period. Taking T � Tbal in Eqs. (40) and (42), we obtain the following restrictions on the
constant electric field under consideration:

E � aE0, E0 � 1 × 106V/m, 7 × 10−4 � a � 8. (43)

Since the voltage is V � ELx , one finds the inequalities

7 × 10−4 V � V � 8 V . (44)

These voltages are in the range used in experiments in graphene physics.
Solutions of the Dirac Eq. (3) with the T -constant field were studied in detail in Ref. [11]. It was demonstrated that the corre-

sponding initial set
{
ζ ψn(t, r)

}
and final set

{
ζ ψn(t, r)

}
can be chosen in the form:

±ψp(t, r) � (i� ∂t + H ext) ±φp,±1(t, r) , ±φp,±1(t, r) � eip·r/� ±ϕp,±1(t)U±1,

±ψp(t, r) � (i� ∂t + H ext) ±φp,∓1(t, r) , ±φp,∓(t, r) � eip·r/� ±ϕp,∓1(t)U∓1 , (45)

where Us are constant orthonormalized spinors

U+1 � 1√
2

(
1
1

)
, U−1 � 1√

2

(
1

−1

)
.

At early (t < t1 -region I) and late (t > t2 -region II) times, Eq. (3) has plane wave solutions ±ϕp,s(t) and ±ϕp,s(t), respectively,
which satisfy simple dispersion relations:

I : ζ ϕp,s(t) ∼ e−iζεin t/� , II : ζ ϕp ,s(t) ∼ e−iζεout t/� ,
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εin/out � vF

√
(px − eEt1/2)2 + p2

y + m2v2
F . (46)

For t ∈ Int, if the electric field satisfies condition (36), it is enough to use solutions (45) with momenta in range (39). In this range
of momenta, the function ±ϕp,s(t) and ±ϕp,s(t) have the form of the Weber parabolic cylinder functions (WPCF’s):

−
+ ϕp,s(t) � CDν− 1+s

2
[±(1 − i)ξ ] ,+− ϕp,s(t) � CD−ν− 1−s

2
[±(1 + i)ξ ] ,

ξ �
√

vF

eE�
(eEt − px ) , ν � iλ

2
, C � (2eE�vF S)−1/2 exp

(
−πλ

8

)
, (47)

where S is the graphene area. An initial state ±ψp(t, r) describes a particle/hole with a well-defined energy εin at the distant past.
Similarly, a final state ±ψp(t, r) describes a particle/hole with a well-defined energy εout at the distant future. Then, the probability
of the emission of a photon in the T -constant electric field during the time interval T is indistinguishable from the one in the constant
field (T → ∞). Therefore, we assume in what follows that T → ∞.

We note that calculating amplitudes (35), it is convenient to represent solutions ±ψp(t, r) in a different form. By inserting Eq. (47)
in Eq. (45), and taking explicitly derivatives, we find this form:

±ψp(t, r) � eipr/� ±ψp(t),

±ψp(t) � vF

[
(mvF ∓ iζ py) ±ϕp,±1(t)U∓1 + (±1 + i)

√
eE�

vF
±ϕp,∓1(t)U±1

]
. (48)

3.2 Probabilities

The differential probability of one photon emission with a given polarization ϑ and the wave vector situated in the range from K to
K+dK, which is accompanied by the pair production of one kind from the vacuum, reads:

dP(K,ϑ) � PN f (K,ϑ)
VdK

(2π)3 , (49a)

where the quantity PN f (K,ϑ) is given by Eqs. (32) and (34).
The differential probability of one photon emission with a given polarization ϑ and a wave vector situated in the range from K

to K+dK from a single-electron (hole) state is

dP
(
K,ϑ |±p

)
� P

(
K,ϑ |±p

) VdK

(2π)3 , (50)

where the probability P
(
K,ϑ |±p

)
is given by Eq. (33).

Using the parametrization by frequency ω and solid angle d�, dK �c−3ω2dωd�, one can write the probabilities per unit
frequency and solid angle as

dP(K, ϑ)

dωd�
� N f

∑
p

dP(p; K, ϑ |0)

dωd�
,

dP(p; K, ϑ |0)

dωd�
� Vω2

(2πc)3

∑
p′

∣∣∣∣w(1)
in

(−
p

+
p′; K, ϑ |0

)∣∣∣∣
2

; (51)

dP
(
K,ϑ |±p

)

dωd�
� Vω2

(2πc)3

∑
p′

∣∣∣∣∣w
(1)
in

(±
p′; K,ϑ |±p

)∣∣∣∣∣
2

, (52)

where the amplitudes are given by Eqs. (32) and (33), respectively. Integrating over the area S, we obtain that

w
(1)
in

(
−
p

+
p′; K,ϑ |0

)
� ievF�tst

√
2π

�εVω
δp′,p−�kM

0
p′p ,

M0
p′p � − S

�tst

∫ t2

t1
+ψ̄p′ (t)εKϑ −ψp(t)eiωt dt ;

w
(1)
in

(±
p′; K,ϑ |±p

)
� ievF�tst

√
2π

�εVω
δp′,p−�kM

±
p′p ,

M±
p′p � ∓ S

�tst

∫ t2

t1
±ψ̄p′ (t)εKϑ ±ψp(t)eiωt dt , (53)
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where δp′,±p−�k is the Kronecker symbol, the spinor ±ψp(t) is given by Eq. (48), and it is taken into account that the contribution
to the integral over times t ∈ I ∪ II is zero due to the absence of the electric field. Squaring the amplitudes (53) and summing over
the momenta p′, we represent the probability densities (51) and (52) as

dP(p; K,ϑ |0)

dωd�
� α

ε

(vF

c

)2 ω�t2
st

(2π)2

∣∣∣M0
p′p

∣∣∣
2
∣∣∣∣
p′�p−�k

, (54)

dP
(
K, ϑ |±p

)

dωd�
� α

ε

(vF

c

)2 ω�t2
st

(2π)2

∣∣∣M±
p′p

∣∣∣
2
∣∣∣∣
p′�p−� k

. (55)

Using the explicit representations (1) and (48) as well as the substitutions

u �
√

vF

eE�

[
eEt − 1

2

(
px + p′

x

)]
, u

(
t1,2

) � u|t�t1,2 ,

ux �
√

vF

eE�

(
p′
x − px

)
, u± � u ± ux/2, u0 � �tstω , (56)

we obtain

M0
p′p � − exp

(
iω

px + p′
x

2eE

)
exp

[
−π

(
λ + λ′)

8

]

×
{
iχ0,1

ϑ Ỹ00 + (2eE�)−1vF (mvF + iζ p′
y)(mvF + iζ py)χ1,0

ϑ Ỹ11

+ e−iπ/4
√

vF

2eE�

[
−(mvF + iζ p′

y)χ1,1
ϑ Ỹ10 + (mvF + iζ py)χ0,0

ϑ Ỹ01

]}
,

M+
p′p � − exp

(
iω

px + p′
x

2eE

)
exp

[
−π

(
λ + λ′)

8

]

×
{
χ

0,0
ϑ Y00 + (2eE�)−1vF (mvF + iζ p′

y)(mvF − iζ py)χ1,1
ϑ Y11

+

√
vF

2eE�
eiπ/4

[
(mvF + iζ p′

y)χ1,0
ϑ Y10 − i(mvF − iζ py)χ0,1

ϑ Y01

]}
, (57)

where

Y j ′ j (t2, t1) �
∫ u(t2)

u(t1)
D−ν′− j ′ [−(1 + i)u−]Dν− j [−(1 − i)u+]eiu0udu, (58)

Ỹ j ′ j (t2, t1) �
∫ u(t2)

u(t1)
D−ν′− j ′ [−(1 + i)u−]D−ν− j [−(1 + i)u+]eiu0udu, (59)

and

χ
(1−s′)/2,(1−s)/2
ϑ � U †

s′γ
0γ · εKϑUs, ν′ � iλ′

2
, λ′ � λ|py→p′

y
.

One can check that the probability density for an electron and hole in Eq. (55) are easily related by the replacement of p′ � p,

M−
p′p � M+

pp′ . (60)

To evaluate the angular matrix element χ
j ′, j
ϑ , we adopt the convention used in Ref. [14] and define an orthonormal triple

K/K � (sin θ cos φ, sin θ sin φ, cos θ ) ,

εK1 � ez × K/|ez × K|, εK2 � K×εK1/|K×εK1|. (61)

Then

εK1 �(− sin φ, cos φ, 0) ,

εK2 �(− cos θ cos φ, − cos θ sin φ, sin θ ) (62)

for K in the upper spatial region, kz ≥ 0. Thereby, we obtain:

χ
1,1
1 � −χ

0,0
1 � sin φ, χ

0,1
1 � −χ

1,0
1 � iζ cos φ ;

χ
1,1
2 � −χ

0,0
2 � cos θ cos φ, χ

0,1
2 � −χ

1,0
2 � −iζ cos θ sin φ . (63)
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For the momenta px and p′
x satisfying condition (39) and for finite u0 � min(u(t1), |u(t2)|), it is possible to consider limits T → ∞

in integrals (58) and (59). We denote the corresponding limits as:

Y j ′ j � Y j ′ j (t2, t1)
∣∣
T→∞, Ỹ j ′ j � Ỹ j ′ j (t2, t1)

∣∣∣
T→∞ . (64)

These limits can be simplified using the hyperbolic coordinates ρ and ϕ,

ρ �
√
u2

0 − u2
x , tanh ϕ � ux

u0
if u2

0 − u2
x > 0 . (65)

We note that in both cases of the emission, we have p′
x � px − �kx . Therefore, in any frequency range the ratio |ux |/u0 is very

small,

|ux |
u0

� |kx |
K

vF

c
≤ vF

c
, (66)

and the condition u2
0 − u2

x > 0 is fulfilled. This feature of photon emission is due to the fact that the Fermi velocity vF in graphene
is much smaller than the speed of light c.

The ϕ dependence of integrals (64) can be factorized with the help of Eq. (B13) (see Appendix B) and takes the form:

Y j ′ j � exp

[(
i
λ′ − λ

2
+ j ′ + j − 1

)
ϕ

]
J j ′, j (ρ),

J j ′, j (ρ) �
∫ ∞

−∞
D−ν′− j ′ [−(1 + i)u]Dν− j [−(1 − i)u]eiρudu; (67)

Ỹ j ′ j � exp

[(
i
λ′ − λ

2
+ j ′ − j

)
ϕ

]
J̃ j ′, j (ρ),

J̃ j ′, j (ρ) �
∫ ∞

−∞
D−ν′− j ′ [−(1 + i)u]D−ν− j [−(1 + i)u]eiρudu. (68)

These integrals can be expressed via the confluent hypergeometric function � as

J j ′, j (ρ) �(−1) j

√
2

π
�(ν − j + 1)eiπ(ν′+ j ′−1)/2 sinh

πλ

2
I j ′,1− j (ρ), (69)

J̃ j ′, j (ρ) �eiπ(ν+ν′+ j+ j ′)/2 I j ′, j (ρ), (70)

I j ′, j (ρ) �√
π exp

[(
ln

ρ√
2

− iπ

4

)(
ν − ν′ + j − j ′

)
+ i

ρ2

2
− iπ

4

]

× �

(
ν + j, 1 + ν − ν′ + j − j ′; −i

ρ2

2

)
, (71)

where � is the gamma function (see Appendix B for details).

3.3 Natural limits of parameters

In the case under consideration, one should take into account the existence of natural limits of physical parameters characterizing
both the charged particles themselves and their radiation.

Let us consider the domain of the applicability of the perturbation theory with respect of the photon emission in the case under
consideration. In the T -constant electric field there is the natural range of the very low frequency of emission, ω � ωIR � 2πT−1.
In this range the perturbation theory works if the total number of photons is small enough. Otherwise, the radiation must be treated
in the mean field approximation. For our purposes, it is enough to restrict the applicability of the perturbation theory with respect
of the photon emission by the condition ω > ωIR, which is convenient to represent as:

u0 > uIR
0 , uIR

0 � 2π�tst T
−1. (72)

It should be recalled that, in a number of cases, the need to cut off from below the region of the radiation frequencies is often
encountered in QED problems. This makes it possible to deal with divergences (the well-known infrared catastrophe) whose nature
is associated with the impossibility of separating a charged particle from its radiation field; see Appendix A for details. It is known
that such soft photons carry away only a negligibly small part of the energy of emission, so that the corresponding back reaction is
also negligible. In the case under consideration an estimation of the corresponding cut off parameter shows that its value is much less
than the quantity uIR

0 , which means, in turn, that the domain of the applicability of the perturbation theory is bigger than the one that
follows from the inequality (72). Therefore, condition (72) provides the possibility of applicability of the perturbation theory in the
problem we are considering. Thus, we believe that results obtained in section (3.2) may be considered credible in all the frequency
range (72).
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We note now that condition (72) is not a significant limitation when applying our approach to a wide class of similar physical
problems. Indeed, as has been shown in Ref. [13] nonlinear and linear I − V graphs experimentally observed in low and high-
mobility graphene samples [36], can be explained in the framework of strong-field QED3,2 in the mean field approximation, taking
into account the backreaction of the mean current of created carriers to the applied electric field which is set by a constant voltage.
In addition, it has been found that the radiation of a time-dependent mean current, forming the backreaction to the electric field on
the graphene plane, is emitted to the three-dimensional space in the form of very low frequency, ω � ωIR, linearly polarized plane
electromagnetic waves. It can be seen that the backreaction of the mean current can be neglected on the big time intervals of the
time scale �tst order, which is equivalent to the assumption that the electric field is constant. Thus, the backreaction does not effect
the emission of high-frequency photons, because the corresponding formation interval �t is of the order �tst (the latter will be
demonstrated below).

Maximum possible values of particle momenta in the T -constant field were determined by the Eq. (39). The finite dimensions
of graphene samples do not allow us to consider the spectrum of small momenta to be continuous. However, the dependence on
the longitudinal impulses px in the expressions (57), (58), and (59) is such that the discreteness of these momenta can simply be
ignored. Nevertheless, for small lateral width Ly , only those momenta py that are not very small, namely, satisfy the condition

∣∣py
∣∣ � �py, �py � 2π�

Ly
.

In turn, this this limits from below the admissible values of the dimensionless parameter λ,

√
λ � √

λmin,
√

λmin �
√

vF�

eE

2π

Ly
. (73)

In the absence of nanoribbons, we may assume that Ly ∼ 1¯m , then

λmin ∼ 2.7

a
× 10−2, (74)

where the range of allowable values of dimensionless parameter a is given by Eq. (43). In the case of nanoribbons one has to take
into account that typical width of a nanoribbon ly is ly ∼ 1nm and the parameter λ is quantized,

√
λn �

√
vF�

eE

2π

ly
n, n � 0, 1, 2, . . . . (75)

Thus, for the smallest nonzero value of λ1 we have:
√

λ1 ∼ 27/a.
The large time scale is:

�tst ≈ (a)−1/22.6 × 10−14s . (76)

Characteristic frequency

ωsc � �t−1
st ≈ √

a × 0.39 × 1014s−1, (77)

provides a value of one for dimensionless parameter u0 and, therefore, specifies a frequency scale against which high-frequency and
low-frequency emissions regions can be defined. Note that it depends on electric field E value. Characteristic wavelength scale is:

lsc � 2πc

ωsc
≈ 48√

a
× 10−6m (78)

For example, in the case of the typical voltage ∼ 1 V (a ∼ 1) the corresponding high-frequency range is a mid-wavelength infrared.
We stress that terahertz-field induced spontaneous optical emission in the range of 340–600 nm was observed from a monolayer
graphene on a glass substrate [17, 18].

The differential probabilities (49a) and (50) can be integrated over K only between such limits that leave the integral probability
much smaller than unity. Let us demonstrate that for the integration over ω there is a natural cutoff from above. Let us consider the
high-frequency case,

u0 � τγ , τγ � 1, (79)

where τγ is an arbitrary given number. For probability densities of the photon emission with K, given by Eqs. (54) and (55), an
important role is played by definite time intervals (58) and (59). These are intervals where main contributions to the integrals are
formed. On the same intervals the main contributions are formed to probability densities of the photon absorption. We can find this
intervals using the saddle-point method.

Let us consider integral (59). Under condition (79), the mentioned saddle-point is situated in the range where absolute values of
arguments of both WPCF’s involved in integral (59) are big,

|u + ux/2| � max{1, λ} and |u − ux/2| � max{1, λ}. (80)
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In this case, if u ± ux/2 < 0, one uses the following asymptotic expansion:

Dp(z) � e−z2/4z p
[
1 + O

(|z|−2)] if |arg z| <
3π

4
. (81)

If u ± ux/2 > 0, applying Eq. (81), one uses a relation between WPCF’s (see (2.8.2.(7)) in Ref. [44]),

Dp(z) � e−iπpDp(−z) +

√
2π

�(−p)
e−iπ(p+1)/2D−p−1(i z). (82)

Thus one finds that the saddle-point is u � u0/2. Since u0 is positive, the saddle-point can be situated only in the range u±ux/2 > 0
. Following the same way one finds that the saddle-point of the kernel in integral (58) is u � u0/2 and is also situated in the range
u ± ux/2 > 0.

Using substitutions (56) one can see that the saddle-point equation represents a conservation law of the kinetic energy,

vF
[
2eEt − (

px + p′
x

)] � �ω. (83)

In the neighborhood of the saddle-point the corresponding kernels have Gaussian forms with maxima at the time instant

tc � 1

2

(
�t2

stω +
px + p′

x

eE

)
(84)

and with the standard deviation

�tsd � �tst/
√

2. (85)

The time tc corresponds to the position of the center of the formation interval �t for given ω, px , and p′
x . The width of the formation

interval �t must be large enough to accommodate the points u +ux/2 and u−ux/2. In addition, the formation interval must overlap
the interval �tsd , �tsd < �t . It is natural to assume that �t ∼ �tst . It implies the following condition:

|ux | < 1 . (86)

With account taken of the relation p′
x � px − �kx one can see that inequality (86) implies:

vF�tst |kx | � |kx |
K

vF

c
u0 < 1. (87)

Thus, in the case of high frequencies, the width of the formation interval does not depend on the frequency ω and on the momentum
of the particle and is determined entirely by the electric field E. Thus, the variation of the external electric field acting on the particle
within the formation length can be neglected, which allows us to use the locally constant field approximation. By the same reason,
the obtained results can be easily extended to the study of the emission in any slowly varying field configuration. Assuming that
the electric field E decreases quickly enough beyond the formation interval (for example, as a result of the backreaction of created
pairs, see details in Ref. [13]), the upper limitation (43) to the intensity of the constant electric field can be significantly weakened.
This means, for example, that the above considerations may be extended to terahertz pulses of intensity from 100 to 250 kV /cm,
which are used in the existing experiments [17, 18].

The saddle-point of the kernel involved in integral (58) is located in the range u±ux/2 > 0, that is, longitudinal kinetic momenta
of an emitting electron are negative, Px (t) � px − eEt < 0 and P ′

x (t) � p′
x − eEt < 0 (longitudinal kinetic momenta of a hole are

positive, −Px (t) and −P ′
x (t)). According to Eq. (66), Px and P ′

x differ little in magnitude, so we can neglect the contribution from
the small longitudinal component kx in Eq. (83), which gives: 2vF |Px (t)| ≈ �ω. Note that in the T -constant field, the range of px ,
given by Eq. (39), implies that the initial kinetic momenta of an electron under consideration are always positive, Px (t1) > 0 (initial
kinetic momenta of a hole are negative). In the case of the photon emission which accompanies the pair production from the initial
vacuum, the saddle-point of the kernel involved in integral (59) is located in the same range u ± ux/2 > 0, that is, the longitudinal
kinetic momentum of the electron of a pair is negative, P ′

x (t) < 0, while the longitudinal kinetic momentum of the hole of a pair is

positive, P(h)
x (t) � −Px (t) > 0. The conservation law for the kinetic energy at the saddle-point, given by Eq. (83), can be written

in terms of these momenta as vF

[
P(h)
x (t) +

∣∣P ′
x (t)

∣∣] � �ω. It follows from Eq. (84) that

tc ≈ 1

2
�t2

stω +
px
eE

. (88)

It means that for the photon emission of a given frequency ω dependence of the effect on px comes down to just shifting of the
center of the formation interval. On the other hand, for a given momentum px photons with high frequencies are formed later.

It follows from Eq. (88) that for any given px the high-frequency emission, ω/ωsc � τγ , starts when the longitudinal kinetic
momentum Px (t) reaching its threshold value at tc ∼ t0 according to condition (79),

2|Px (t0)|
eE�tst

≈ τγ . (89)
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The minimal frequency where the region of high frequencies starts is:

ωmin � 2|Px (t0)|
eE�tst

ωsc ≈ τγ ωsc . (90)

The smallest possible value of the moment t0 , at which Eq. (90) is satisfied, is achieved at the smallest possible momentum value
px from the finite range (39). Taking it into account, we find

t0 − t1 ∼ (
τγ /2 + τ

)
�tst . (91)

The frequency ω grows from the minimum value ωmin as long as the electric field is acting and reaches the maximum possible for
a given px frequency ω2 at the time instant tc ∼ t2, when the electric field switches off. Photon with such a frequency is emitted
during the formation interval preceding the moment t2 of switching off the electric field. It follows from Eq. (88) that

ω2 ≈ 2|Px (t2)|
eE�tst

ωsc. (92)

Absolute maximum among all possible frequencies ω2 with different momenta px satisfying Eq. (39) is:

ωmax ≈ 2�t−2
st [t2 + max(−px/eE)] ≈ 2(T/�tst )ωsc . (93)

A frequency range between ωmax and ωmin does exists if

ωmax

ωmin
≈ 2T

�tstτγ

> 1, (94)

which means that the field duration time T satisfying Eqs. (36) and (42) is sufficiently large.
In particular, it follows from the estimation (93) that dimensionless parameter u0 is restricted from above,

u0 < ω2�tst < umax
0 , umax

0 � ωmax/ωsc ≈ 2T/�tst . (95)

Note, that if
vF

c
umax

0 < 1, (96)

inequality (87) always holds true. Besides, the lower bound of the range of the frequency, given by Eq. (72), is also defined by the
quantity umax

0 ,

uIR
0 � 4π/umax

0 . (97)

Choosing T � Tbal ∼ 10−12s and taking into account the estimation for the quantity �tst given by Eq.(76), we find

umax
0 ≈ 78

√
a, ωmax ≈ 3.0 × 1015a s−1 . (98)

We believe that at τγ ∼ 3 one can confident enough to identify the range of high frequencies. It follows from estimation (98) and
from restrictions on the parameter a given by Eq. (43) that the high-frequency range u0 � τγ definitely exists for the fields under
consideration.

4 High-frequency approximation

In section 3.2, we have obtained characteristics of the one-photon emission probabilities that are valid in range (72). In the general
case, angular and polarization distributions of the emitted photons have quite complicated form. Nevertheless, their analysis is
greatly simplified in the range of high frequencies (we recall that this range is defined by relation (79)). One can see that namely
the emission in this range makes the main contribution to the one-photon emission considered by us. This is explained by the fact
that in this case, the width of the formation interval is small �t ∼ �tst and does not depend on the frequency ω and on the particles
momenta and is determined entirely by the electric field E. Thus, the obtained results can be extended to the study of the emission
in any slowly varying field configuration. For this reason the emission of high-frequency photons which accompanies the electronic
quantum transport in the graphene is more realistic for possible experimental observations. In which follows, we assume that the
mass gap in the graphene is absent, m � 0, and we neglect the small terms depending on ϕ. At high frequencies,

ρ ≈ u0 > τγ , (99)

and using an asymptotic behavior of the function � given by Eq. (6.13.1.(1)) in Ref. [38], we find:

�

(
ν + j, 1 + ν − ν′ + j − j ′; −i

ρ2

2

)
�
(

−i
ρ2

2

)−ν− j[
1 + O

(
ρ−2( j+1)

)]
.
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Whence it follows that

I j ′ j (ρ) ≈ √
π

(
ρ√
2

)−ν′−ν− j ′− j

exp

{
i

4

[−π + ρ2 + π
(
ν′ + ν + j ′ + j

)]}
(100)

We see that the leading contribution to the amplitude M+
p′p given by Eq. (57) is due to the term with Y01. Using representations (67),

(70), and (100), we find:
∣∣∣M+

p′p

∣∣∣
2
∣∣∣∣
p′�p−�k

≈ f
(
λ, λ′)∣∣∣χ0,1

ϑ

∣∣∣
2
,

f
(
λ, λ′) � 2π sinh

πλ

2
exp

[
−π

4

(
5λ + 7λ′)] , (101)

where χ
0,1
ϑ is given by Eq. (63) and

λ′ � (vF�tst )
2
∣∣ky − py/�

∣∣2. (102)

Thus, we find that the asymptotic behavior of the probability of the one photon emission with a given polarization ϑ from a
single-electron (hole) state per unit frequency and solid angle is:

dP
(
K, ϑ |±p

)

dωd�
� α

ε

(vF

c

)2 ω�t2
st

(2π)2

∣∣∣M±
p′p

∣∣∣
2
∣∣∣∣
p′�p−� k

, (103)

where
∣∣∣M+

p′p

∣∣∣
2

is given by Eq. (101) and
∣∣∣M−

p′p

∣∣∣
2 �

∣∣∣M+
pp′
∣∣∣
2
. Summing probabilities (103) over the polarizations, we obtain the

probability of unpolarized emission from a single-electron (hole) state per unit frequency and solid angle as:

dP
(
K|±p

)

dωd�
� α

ε

(vF

c

)2 ω�t2
st

(2π)2

∣∣∣M̃±
p′p

∣∣∣
2
∣∣∣∣
p′�p−�k

,

∣∣∣M̃−
p′p

∣∣∣
2 �

∣∣∣M̃+
pp′
∣∣∣
2
,

∣∣∣M̃+
p′p

∣∣∣
2
∣∣∣∣
p′�p−�k

≈ f
(
λ, λ′)[1 − sin2 φ

(
1 − cos2 θ

) ]
. (104)

Probabilities (103) and (104) increase monotonically with increasing the frequency ω and reach their maxima, given by Eqs. (92) and
(93), respectively, as ω → ω2 < ωmax . One can find the probability of one-photon emission from given distributions of electrons
and holes of one kind per unit frequency and solid angle as follows:

dP
(
K, ϑ |±in

)

dωd�
� S

(2π�)2

∫ dP
(
K, ϑ |±p

)

dωd�
N (±)
p (in)dpxdpy, (105)

where N (±)
p (in) are some initial differential mean numbers of electrons (+) and holes (−). If the numbers N (±)

p (in) are the same for
all the charge species, the final probability is given by Eq. (105) multiplying it by the number N f of the species.

One can see that for given angles θ and φ the function defined by Eq. (101) has the Gaussian form as a function of the wave

number ky , and besides py/� is the position of its maximum and
(√

7πvF�tst/
√

2
)−1

is the corresponding standard deviation.

Note that this deviation increases with the intensity of the electric field. We note that the emission from a one-electron state depends
essentially on the electron transversal momentum py . This emission takes place only if the latter momentum differs from zero. For
big λ � 1 the probability of the emission decreases exponentially as λ increases. The emission is maximum at tanh πλ

2 � 2
5 , that

is, the main contribution to it comes from electrons with moderate magnitude λ ∼ 1/π. In this case function (101) as the function
of the wave number ky reaches its maximum at λ′ � 0. It is convenient to introduce the quantity ωy � c

∣∣ky
∣∣, which represents a

corresponding contribution to the frequency ω. It is obviously that ωy < ω. Since ω < ωmax, where ωmax is given by Eq. (93), we
obtain the restriction ωy < ωmax. The condition λ′ � 0 implies:

vF

c

ωy

ωsc
� √

λ , (106)

where ωsc is given by Eq. (77). Assuming
√

λ ∼ 1 one can satisfy condition (106) only in the case when ωmax is big enough, such
that

2T vF

�tst c
∼ 1. (107)

It is possible if the dimensionless parameter T/�tst is big enough as well. Otherwise the condition λ′ � 0 is unreachable if
√

λ ∼ 1.
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We see that the leading contribution to the amplitude M0
p′p given by Eq. (57) arrises from the term with Ỹ00. Using representations

(68), (70), and (100), we find:
∣∣∣M0

p′p

∣∣∣
2
∣∣∣∣
p′�−p−�k

≈ f̃
(
λ, λ′)∣∣∣χ0,1

ϑ

∣∣∣
2
, f̃

(
λ, λ′) � πe−π(λ+λ′), (108)

where χ
0,1
ϑ is given by Eq. (63). We note that the quantity f̃

(
λ, λ′) is proportional to the product of differential mean numbers of

electron and hole of a pair created, respectively. Thus, we find that the asymptotic behavior of the probability of the one-photon
emission with a given polarization ϑ , which accompanies the production from the initial vacuum state of pairs of charged species
with a given momentum p per unit frequency and solid angle reads:

dP(p; K,ϑ |0)

dωd�
≈ α

ε

(vF

c

)2 ω�t2
st

(2π)2

∣∣∣M0
p′p

∣∣∣
2
∣∣∣∣
p′�p−�k

, (109)

where
∣∣∣M0

p′p

∣∣∣
2

is given by Eq. (108). The total probability of the one-photon emission with quantum numbers K and ϑ , which

accompanies the pair production of all N f species from the initial vacuum state per unit frequency and solid angle is presented by
an integral over the finite momentum range D, given by Eq. (39),

dP(K,ϑ)

dωd�
� N f S

(2π�)2

∫

D

dP(p; K,ϑ |0)

dωd�
dpxdpy . (110)

Its asymptotic behavior has the form:

dP(K,ϑ)

dωd�
≈ R(K,ϑ)ST, R(K,ϑ) � d

(
ω,ωy

)∣∣∣χ0,1
ϑ

∣∣∣
2
,

d
(
ω,ωy

) � αN f

ε25/2π

ω

ωscl2sc
exp

[
−π

2

(
vFωy

cωsc

)2
]
, (111)

where lsc is the characteristic wavelength scale given by Eq. (78). Note that probability (111) is proportional to the total number
density of electron--hole pairs created, given by Eq. (41). Summing the total probabilities (111) over the polarizations, we obtain the
probability of unpolarized emission which accompanies the pair production from the vacuum per unit frequency and solid angle:

dP(K)

dωd�
≈ R(K)ST, R(K) � d

(
ω,ωy

)[
1 − sin2 φ

(
1 − cos2 θ

) ]
. (112)

The formula (112) was previously obtained in Ref. [16] for ε � 1 in the framework of many-body quantum mechanics, where the
interaction with external electric field is treated nonperturbatively.

Note that the frequency ω in Eqs. (109), (111), and (112) is restricted from the above, ω < ωmax, where ωmax is given by Eq.
(93). This implies the restriction ωy < ω < ωmax for ωy . Therefore,

vFωy

cωsc
<

2T vF

�tst c
.

One can see that the argument of the exponential function in Eq. (111) can significantly affect the value of the probability only under
the condition

2T vF

�tst c
� 1. (113)

In this case one can see that this probability decreases exponentially if ωy → ω and ω → ωmax, that is, for frequencies close to the
maximum ωmax, the emission in the y-axis direction is suppressed. The probabilities (111) and (112) increase monotonically with
increasing frequency ω and reach their maximum as ω → ωmax.

We see that the asymptotic behavior of angular and polarization distributions from one-electron (hole) state and from the vacuum
state are very similar. Nevertheless, one can distinguish between these two types of the radiation. Indeed, probabilities (111) and
(112) are proportional to macroscopic duration time T , which is a consequence of the integration over the large range D of the
momentum px variation, while probability (105) does not depend on T . Therefore, by studying the dependence of the radiation on
T , it is possible, in principle, to identify its origin. In addition, one can stress that the main contribution to the emission is due to
probabilities (111) and (112), if the density of initial electrons (holes) is much less than density (41) of created electron--hole pairs.

The angular distribution is determined by the factor
∣∣∣χ0,1

ϑ

∣∣∣
2

given by Eq. (63). It is quite different for the polarization ϑ � 1

(polarization in the XY plane) and for the polarization ϑ � 2 (polarization in the perpendicular to vector εK1 direction). These
factors are:

∣∣∣χ0,1
1

∣∣∣
2 � cos2 φ � k2

x

k2
x + k2

y
,

∣∣∣χ0,1
2

∣∣∣
2 � |cos θ sin φ|2 � k2

z k
2
y

K 2
(
k2
x + k2

y

) . (114)
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Thus, the emission with the polarization ϑ � 1 has the same probability along all the directions belonging to the plane which is
perpendicular to the one XY and is tilted at the angle φ with respect to the axis x. The maximum of the probability takes place for
a small angle φ, cos2 φ → 1. The emission with the polarization ϑ � 1 is absent in the YZ plane, cos φ � 0. The emission with
the polarization ϑ � 2 is also absent in the XZ and XY planes. The maximum of the emission is observed in the YZ plane in the
directions close to z-axis, |cos θ sin φ|2 → 1. Therefore, the emission in the YZ , XZ , and XY planes is highly polarized. We see that
the unpolarized emission is maximal in the directions defined by the relations cos2 φ → 1 and cos2 θ → 1. An emission in the y
-axis, cos φ � 0 and cos θ � 0, is absent.

The above calculations of the emission are made in the first order of the perturbation theory. This approximation is reasonable
in case if total emission probabilities from a given initial state are small. In this relation, let us consider probability (104). One can
see that

max
∣∣∣M̃±

p′p

∣∣∣
2
∣∣∣∣
p′�p−�k

∼ 1,

Integrating probability (104) all the frequencies in the domain where high-frequency approximation holds true, that is, from ωmin to
ωmax (ωmax is given by Eq. (93)), we can estimate the maximum total emission probability from a one-particle state. The smallness
of this probability implies applicability condition of the perturbation theory:

α

ε

(
vFT

c�tst

)2

� 1. (115)

Since vF/c ∼ 1/300, condition (115) represents weak enough restriction on the field parameter T/�tst satisfying conditions (36)
and (42).

Let us consider probability (112). The function R(K) is restricted from above by the quantity d(ω, 0). Integrating probability
(112) over the angles θ and φ and over the all frequencies in the domain where high-frequency approximation holds true, that is,
from ωmin to ωmax (ωmin and ωmax are given by Eqs. (90) and (93), respectively), we can estimate the maximum total emission
probability Pmax which accompanies the pair production from the vacuum state as:

Pmax ≈ α

ε

27/2N f S

3l2sc

(
T

�tst

)3

. (116)

Probabilities (112) and (116) grow with the increase of the intensity of the electric field. At the same time, the total probability
Pmax grows especially fast due to the linear growth of the frequency range. So, if the electric field increases by q times, then the
probability Pmax increases by q5/2 times.

The smallness of probability (116) implies also the applicability condition of the perturbation theory:

Pmax � 1. (117)

The typical quantity is S ∼ (
10−6m

)2
. Using estimation of lsc given by Eq. (78), we obtain Sl−2

sc ∼ a(48)−2. This parameter can
be considered as a small one. In existing experiment conditions, where T/�tst and a satisfy conditions (36) and (43), respectively,
restriction (117) may impose an essential limit on the applicability of the perturbation theory. However, let us note that relation (43)
follows from the assumption that during the time T the electric field remains constant. Assuming that the electric field E decreases
quickly enough beyond the formation interval, the upper limitation (43) to the intensity of the electric field can be significantly
weakened.

5 Summary

In the present work, we have constructed an appropriate calculation techniques in the framework of the reduced QED3,2 to describe
one species of Dirac fermions interacted with an external electric field and photons in the graphene. In these techniques, effects of
the vacuum instability due to the particle creation by the external electric field are taken into account nonperturbatively. In such a
way, we consider the photon emission in the graphene in the first-order approximation, taking into account a vacuum instability by
using the unitarity relation, and construct closed formulas for total probabilities. Namely, we have calculated the probabilities for
the photon emission by an electron and for the photon emission accompanying the vacuum instability in a quasiconstant electric
field that acts in the graphene plane during macroscopic time interval T . In order to find corresponding mean values in the real
graphene, results obtained for one species of the Dirac fermions are multiplied by the number of species N f � 4. It has been
shown that the frequency of emission grows in proportion to the duration of the electric field and reaches a final maximum value
before the electric field is turned off. The lower limit of applicability of the perturbation theory with respect of the photon emission
is established and showed that the contribution of soft photons beyond this boundary can be neglected. The obtained emission
characteristics are analyzed in a high-frequency approximation which is more suitable for possible experimental observations. The
angular and polarization distributions of the emission are also studied. The asymptotic behavior of the unpolarized photon emission
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accompanying the vacuum instability matches with the previous calculation in Ref. [16], based on many-body quantum mechanics.
We see that the asymptotic behavior of angular and polarization distributions from one-electron (hole) state and from the vacuum
state are very similar. Nevertheless, we point out that one can distinguish between these two types of the radiation by considering
the emission under electric fields with different duration times T . The applicability of the presented calculations to the graphene
physics in existing experimental conditions is shown. This implies also a general possibility of laboratory verifying strong-field
QED predictions, and, in particular, real studying the Schwinger effect.

It was shown that in a high-frequency approximation the variation of the external electric field acting on the particle within the
formation length can be neglected, which justify the applicability of the locally constant field approximation. Thus, the developed
approach can be easily extended to study the emission in any slowly varying field configuration.

In the single graphene sheet there are actually two species of fermions in the Dirac model of graphene. In our consideration, it
is assumed that the two cones of graphene are decupled and the system behaves like two copies of a single Dirac cone. Topological
insulators are characterized by a single Dirac cone on each surface; see [26, 39, 40] for a review. Thus, the results obtained in the
present study could be relevant for a single Dirac cone on a surface of a topological insulator.
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Appendix A: Low-frequency approximation

Let us consider the probability densities, given by Eqs. (54), (55), and (57) in the range of low frequencies,

u0 � 1. (A1)

The ratio |ux |/u0 , given by Eq. (66), is very small such that

ρ ≈ u0 � 1. (A2)

In this limit, the behavior of the function I j ′, j (ρ), given by Eq. (71), can be found using properties of the confluent hypergeometric
function �; see Eqs. (6.8(2)) - (6.8(4)) from Ref. [38]. The only functions I0,1(ρ) and I1,0(ρ) grow as ρ → 0,

∣∣I0,1(ρ)
∣∣ ∼ ∣∣I1,0(ρ)

∣∣ ∼ ρ−1. (A3)

Thus, the leading contribution to the amplitude M+
p′p given by Eq. (57) is due to the terms Y00 ≈ J0,0(ρ) ∼ ρ−1 and Y11 ≈

J1,1(ρ) ∼ ρ−1. The leading contribution to the amplitude M0
p′p given by Eq. (57) is due to the terms Ỹ01 ≈ J̃0,1(ρ) ∼ ρ−1 and

Ỹ10 ≈ J̃1,0(ρ) ∼ ρ−1. Therefore, the both modules squares amplitudes square grow proportionally to u−2
0 ,

∣∣∣M0
p′p

∣∣∣
2
∣∣∣∣
p′�−p−�k

∼ u−2
0 ,

∣∣∣M±
p′p

∣∣∣
2
∣∣∣∣
p′�p−� k

∼ u−2
0 . (A4)

At the same time, the both probability densities (54) and (55) are divergent functions of the order u−1
0 as u0 → 0,

dP(p; K,ϑ |0)

du0d�
∼ α

ε

(vF

c

)2 1

u0
,
dP

(
K, ϑ |±p

)

du0d�
∼ α

ε

(vF

c

)2 1

u0
. (A5)
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Such a behavior is an indication that the perturbative description of such soft photons, does not work. Namely for photons with
frequencies less than a threshold frequency usoft

0 , u0 � u soft
0 , in case when functions (A5) becomes of the order of unity. This makes

it possible to evaluate the quantity usoft
0 ,

usoft
0 ∼ α

ε

(vF

c

)2
. (A6)

The number of such soft photons may be big enough. However, the only physically measurable quantity is the emitted energy. This
energy is a negligibly small in the domain u0 � usoft

0 . This case is called the infrared catastrophe whose nature is associated with
the impossibility of separating a charged particle from its radiation field; see, e.g., section 98 in Ref. [41] and sections 46 and 50.3
in Ref. [42]. The case of the strong-electric field QED is considered in Ref. [43]. The infrared divergences of QED are essentially
classical, and depend on the nature of the external current and on the experimental resolution. The infrared catastrophe is absent from
the complete nonperturbative solution. Thus, one sees that the domain of the applicability of the perturbation theory is u0 > usoft

0
and a contribution from the domain u0 � usoft

0 is negligible.
In the case under consideration, the quantity usoft

0 is very small, usoft
0 ∼ 10−7. It follows from estimation (98) and from restrictions

on the parameter uIR
0 given by Eqs. (72) and (97) that in the realistic values of the parameters usoft

0 � uIR
0 .

Appendix B: Fourier transformation of the product of two WPC functions

Integrals (64) can be reduced to a more simple form using the Nikishov’s representations given by Eq. (65)) for the hyperbolic
coordinates ρ and ϕ (see Ref. [19, 20]). To demonstrate how it works, we note that the integrals represent particular cases of the
more general integrals

J ζ ′ζ
�′�(ρ, ϕ) �

∫ +∞

−∞
du f ζ ′

�′ (u − ux/2) f ζ
�(u + ux/2)eiu0u , (B7)

where f ζ
�(z) are WPCF’s satisfying the differential equation(

d2

dz2 + z2 + �

)
f ζ
�(z) � 0 , (B8)

and u0 and ux , defined by Eq. (56), are:

u0 � ρ cosh ϕ, ux � ρ sinh ϕ if u2
0 > u2

x . (B9)

The functions f ζ
�(z) with different values of ζ � ± are solutions of Eq. (B8) with some complex parameters �. In particular,

J−+
�′�(ρ, ϕ) �Y j ′ j , � � λ + i(2 j − 1), �′ � λ′ + i

(
1 − 2 j ′

)
,

J−−
�′�(ρ, ϕ) �Ỹ j ′ j , � � λ + i(1 − 2 j), �′ � λ′ + i

(
1 − 2 j ′

)
. (B10)

Calculating the derivative of integral (B7) with respect to the hyperbolic angle ϕ, we find:

∂ J ζ ′ζ
�′�(ρ, ϕ)

∂ϕ
�W +

∫ +∞

−∞
iux f

ζ ′
�′ (u − ux/2) f ζ

�(u + ux/2)eiu0udu ,

W � u0

2

∫ +∞

−∞

⎡
⎣ f ζ ′

�′ (u − ux/2)
∂ f ζ

�(z)

∂z

∣∣∣∣∣
z�u+ux/2

− ∂ f ζ ′
�′(z)

∂z

∣∣∣∣∣
z�u−ux /2

f ζ
�(u + ux/2)

⎤
⎦eiu0udu , ux � ∂u0

∂ϕ
, u0 � ∂ux

∂ϕ
.

Integrating by parts and neglecting boundary terms, we can transform W to the following form:

W � i

2

∫ +∞

−∞

⎡
⎣ f ζ ′

�′ (u − ux/2)
∂ 2 f ζ

�(z)

∂z2

∣∣∣∣∣
z�u+ux/2

− ∂2 f ζ ′
�′(z)

∂z2

∣∣∣∣∣
z�u−ux /2

f ζ
�(u + ux/2)

⎤
⎦eiu0udu . (B11)

Using Eq. (B8) in integral (B11), we find:

∂ J ζ ′ζ
�′�(ρ, ϕ)

∂ϕ
� i

2

(
�′ − �

)
J ζ ′ζ
�′�(ρ, ϕ). (B12)
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Solutions of this equation are:

J ζ ′ζ
�′�(ρ, ϕ) � e

i
2 (�

′−�)ϕ J ζ ′ζ
�′�(ρ, 0). (B13)

We use the notation J ζ ′ζ
�′�(ρ) � J ζ ′ζ

�′�(ρ, 0) in what follows. This function satisfies the differential Eq. (19)
[

d2

dρ2 +
1

ρ

d

dρ
+

(
� − �′)2

4ρ2 +
ρ2

4
− � + �′

2

]
J ζ ′ζ
�′�(ρ) � 0 . (B14)

This fact can be verified performing integrations by parts with account taken of Eq. (B8). The differential Eq. (B14) can be reduced
to a confluent hypergeometric equation. Using two linearly independent solutions of such an equation, we find general solution of
the differential Eq. (B14)

J ζ ′ζ
�′�(ρ) � e−η/2

[
C1η

iβ�

(
i�

2
+

1

2
, 1 + 2iβ; η

)
+ C2η

−iβ�

(
i�′

2
+

1

2
, 1 − 2iβ; η

)]
,

η � −iρ2/2, β � (
� − �′)/4 , (B15)

where the C1 and C2 are some undetermined coefficients, which must be fixed by appropriate boundary conditions, so that solution
(B15) corresponds to the original integral (B7).

The confluent hypergeometric function �(a, c; η) is entire in η and a, and is a meromorphic function of c. Note that �(a, c; 0) � 1.

WPCF’s are entire functions of � and �′. One can see that the integrals J ζ ′ζ
�′�(ρ) are entire functions of � and �′ and meromorphic

functions of � − �′. Then one can find a boundary condition J ζ ′ζ
�′�(ρ) at ρ → 0 for some convenient values of j and j ′. The

remaining integrals J ζ ′ζ
�′�(ρ) can be obtained extending domains of � and �′ by an analytic continuation.

Let us start with J̃0,0(ρ) given by Eq. (68). This integral can be represented as a solution of Eq. (B14) where �′ � λ′ + i and
� � λ + i . The coefficients C1 and C2 in Eq. (B15) can be fixed by a comparison with the ρ → 0 limit of integral (68). Let us first
represent this integral as follows:

J̃0,0(ρ) � F0 + F+ + F−, F+ �
∫ ∞

0
f +(u)eiρudu, F− �

∫ 0

−∞
f −(u)eiρudu,

F0 �
∫ ∞

0
f (u)

[
f (u) − f +(u)

]
eiρudu +

∫ 0

−∞
f (u)

[
f (u) − f −(u)

]
eiρudu,

f (u) � D−ν′ [−(1 + i)u]D−ν[−(1 + i)u],

(B16)

where f ±(u) � f (u)|u→±∞. It can be seen that function (B15) is reduced to the oscillations C1η
iβ + C2η

−iβ as ρ → 0. Then
ρ-independent terms do not contribute to the integrals F0 and F±. Taking into account that limρ→0 F0 and limρ→0 F− do not
depend on ρ, one sees that the oscillation terms of F+ are only essential. Using relations (8.2.(7)) and (8.4.(1)) from Ref. [44], one
finds:

J̃0,0(ρ) �√
πeiπ(ν+ν′−1)/4

[
eiπν/2 �

(
ν − ν′)

�(ν)

(
ρ√
2

)ν′−ν

+eiπν′/2 �
(
ν′ − ν

)

�(ν′)

(
ρ√
2

)ν−ν′

as ρ → 0

]
. (B17)

Comparing Eqs. (B15) and (B17), we obtain:

C1 � √
πeiπ(ν+ν′−1/2)/2 �

(
ν′ − ν

)

�(ν′)
, C2 � √

πeiπ(ν+ν′−1/2)/2 �
(
ν − ν′)

�(ν)
. (B18)

Using relation (6.5.(7)) from Ref. [38], one can represent function given by Eqs. (B15) and (B18) as

J̃0,0(ρ) � √
πeiπ(ν+ν′−1/2)/2e−η/2η(ν−ν′)/2�

(
ν, 1 + ν − ν′; η

)
, (B19)

where �
(
ν, 1 + ν − ν′; η

)
is the confluent hypergeometric function,

�
(
ν, 1 + ν − ν′; η

) ��
(
ν′ − ν

)

�(ν′)
�
(
ν, 1 + ν − ν′; η

)

+
�
(
ν − ν′)

�(ν)
ην′−ν�

(
ν′, 1 + ν′ − ν; η

)
. (B20)

Using transformation ν → ν + j and ν′ → ν′ + j ′ in Eq. (B19), one obtains the final form (70) for integral (68).
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The integral J j ′, j (ρ) given by Eq. (67) can be represented as the solution of Eq. (B14) where �′ � λ′ + i
(
1 − 2 j ′

)
and � � λ + i

(2 j − 1). Using relation (8.2.(6)) from Ref. [44], we transform one of the WPCF’s in Eq. (67) to obtain convenient representations:

J j ′, j (ρ) � �(ν − j + 1)√
2π

[
eiπ(ν− j)/2J̃ j ′,1− j (ρ) + e−iπ(ν− j)/2J ′

j ′,1− j (ρ)
]

, (B21)

J ′
j ′,1− j (ρ) �

∫ ∞

−∞
D−ν′− j ′ [−(1 + i)u]D−ν+ j−1[(1 + i)u]eiρudu , (B22)

where J̃ j ′,1− j (ρ) is given by Eq. (70). The integral J ′
j ′,1− j (ρ) is represented by function (B15) where some coefficients C ′

1 and C ′
2

can be fixed by the comparison with ρ → 0 limit of the integral J ′
j ′,1− j (ρ).

Let us start with J ′
0,0(ρ), where �′ � λ′ + i and � � λ + i . In this case, it can be seen that function (B15) takes the form

C ′
1η

iβ + C ′
2η

−iβ as ρ → 0. Hence all ρ-independent terms of J ′
0,0(ρ), given by Eq. (B22), can be ignored at ρ → 0 limit and only

the oscillation terms of following integrals

G+ �
∫ ∞

0
g+(u)eiρudu, F− �

∫ 0

−∞
g−(u)eiρudu,

g±(u) � g(u)|u→±∞, g(u) � D−ν′ [−(1 + i)u]D−ν[(1 + i)u]

(B23)

are essential. Using relations (8.2.(7)) and (8.4.(1)) from Ref. [44] , one finds:

J ′
0,0(ρ) �√

πeiπ(ν′−ν−1/2)/2

[
eiπ(ν−ν′)/4 �

(
ν − ν′)

�(ν)

(
ρ√
2

)ν′−ν

+e−iπ(ν−ν′)/4 �
(
ν′ − ν

)

�(ν′)

(
ρ√
2

)ν−ν′

as ρ → 0

]
. (B24)

Comparing Eqs. (B15) and (B24) we obtain:

C ′
1 � √

πeiπ(ν′−ν−1/2)/2 �
(
ν′ − ν

)

�(ν′)
, C ′

2 � √
πeiπ(ν′−ν−1/2)/2 �

(
ν − ν′)

�(ν)
. (B25)

Using relation (6.5.(7)) from Ref. [38], the function given by Eqs. (B15) and (B25) can be represented as:

J ′
0,0(ρ) � √

πeiπ(ν′−ν−1/2)/2e−η/2η(ν−ν′)/2�
(
ν, 1 + ν − ν′; η

)
. (B26)

Using the transformations ν → ν + 1 − j and ν′ → ν′ + j ′ in Eq. (B26), we obtain the following representation for integral (B22):

J ′
j ′,1− j (ρ) � e−iπ(ν−ν′+1− j− j ′)/2 I j ′,1− j (ρ), (B27)

where I j ′, j (ρ) is given by Eq. (71). Substituting representations (70) and (B27) into Eq. (B21) we find the final form (69).
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