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ABSTRACT

We study the subposet X3(X) of the lattice £1(X) of all Ti-topologies
on a set X, being the collections of all Ts topologies on X, with a view to
deciding which elements of this partially ordered set have and which do
not have immediate predecessors. We show that each regular topology
which is not R-closed does have such a predecessor and as a corollary
we obtain a result of Costantini that each non-compact Tychonoff space
has an immediate predecessor in 5. We also consider the problem of
when an R-closed topology is maximal R-closed.
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1. INTRODUCTION

In a previous paper [3], we studied the problem of when a jump can occur
in the order of the lattice £1(X); that is to say, when there exist T%-topologies
7 and 77 on a set X such that whenever p is a topology on X such that
7 C pC 7t then p =7 or p =77. The existence of jumps in £4(X) and in
the subposet of Hausdorff topologies, has been studied in [5], [2], [10] and [16];
in the last two articles an immediate successor 77 was said to be a cover of
(or simply to cover) 7. In the above cited paper [3], when a topology 7 has a
cover 77 we have called T a lower topology and 7 an upper topology and we
continue to use this terminology here.

In the present work we study the structure of the subposet X3(X) of all
T5-topologies of the lattice £4(X), on a set X with a view to deciding which
elements of this partially ordered sets have and which do not have covers.
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In [1] it was shown that a T-topology on X which is not feebly compact
is an upper topology in ¥3(X) and in [6], Costantini showed that every non-
compact Tychonoff topology on X is upper in ¥5(X). In Section 2 of this paper
we generalize both these results by showing that every Ts-topology which is
not R-closed is upper in ¥3(X). (A Ts-space is R-closed if it is closed in every
embedding in a T3-space.) In Section 3 we consider the problem of the existence
of spaces which are maximal with respect to being R-closed and in Section 4
we study lower topologies in 3. In the final section we pose a number of open
problems.

A set X with a topology ¢ will be denoted by (X,£) and if p € X, then
&(p, X) denotes the collection of all open sets in X which contain p. The closure
(respectively, interior) of a set A in a topological space (X, 7) will be denoted
by cl-(A) (respectively, int-(A)) or simply by cl(A) (respectively int(A)) when
no confusion is possible. All undefined terms can be found in [7] or [13] and
all spaces in this article are (at least) T5. A comprehensive survey of results
on R-closed spaces and many open questions can be found in [8]. We make the
following formal definitions.

Definition 1.1. Say that two (distinct) 75-topologies 71 and 72 on a set X are
adjacent in Y3(X) if whenever o € X3(X) and 74 C o C 79, then cither 0 =7
or 0 = 72. We say that 7 is a lower topology in ¥5(X), 72 is an upper topology
in X3 and 75 is an immediate successor of 1. For a topology 7, 71 will always
denote an immediate successor of 7. A Ts-topology on X is R-minimal if there
is no weaker Ts-topology on X; it is well known that an R-minimal topology is
R-closed. Clearly an R-minimal topology is not upper in X3(X ). In the sequel,
whenever the space X is understood, we will write X3 instead of X3(X).

In [11], it was shown that the structure of basic intervals in Y5 is essentially
different from those of the poset X; of Tychonoff spaces in that not every finite
interval is isomorphic to the power set of a finite ordinal. The following result
is Lemma 22 of [11].

Lemma 1.2. If o is an immediate successor of T in X3, then 7 and o differ
at precisely one point.

An open filter (that is, a filter with a base of open sets) F is a regular filter
if for each U € F there is V € F such that cl(V) C U. A simple application of
Zorn’s Lemma shows that every regular filter can be embedded in a maximal
regular filter and furthermore, in a regular space, if a maximal regular filter
has an accumulation point, then it must converge to that point.

By Theorem 4.14 of [4], a T-space is R-closed if and only if every regular
filter has an accumulation point or equivalently, if and only if every maximal
regular filter converges.

2. UPPER TOPOLOGIES IN X3

The next result generalizes Theorem 2.14 of [1].
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Theorem 2.1. FEach Ts-topology which is not R-closed is upper in Xs.

Proof. Suppose that (X, o) is a Ts-space which is not R-closed. Then there is
some maximal regular filter 7 in (X, o) which is not fixed. Pick p € X and
define a new topology 7 on X as follows:

T={Uecco:pgUtu{Ueco:pelUecF}.

The topologies 7 and o differ only at the point p and hence for each A C X,
cl-(A) Cels(A) U {p}.

We first show that (X, 7) is a Ts-space; suppose that C' C X is 7-closed and
q & C. There are three cases to consider.

1) If p € CU{q}, then there are o-open sets U, V separating C' and ¢ in X\ {p}
and U,V are T-open.

2) If p € C, then C is o-closed and hence there are disjoint g-open sets U and
V such that C' C U and ¢ € V. Furthermore, since F is a free regular filter,
there is W € F such that g € cl;(W) and hence ¢ & cl(W) = ¢l (W) U {p}.
It is now clear that UUW and U \ cl(W) are disjoint 7-open sets containing
C and ¢ respectively.

3) If p = q, then since C' is 7-closed and p & C, it follows that there is some
element W € F such that W N C' = @. Furthermore, since C' is o-closed, there
are disjoint sets U,V € o such that C' C U and p € V. Since F is a regular
filter, there is some 1" € F such that cl;(7") € W. Since cl(T') = cl, (T) U {p},
it is now clear that U \ cl-(T") and V UT are disjoint 7-open sets containing C
and p respectively.

We claim that 7 is the immediate predecessor of ¢ in ¥3. To see this,
suppose that p is a Ts-topology on X such that 7 ¢ o & o; note that g differs
from o and 7 only at the point p. If there is some p-neighbourhood U of p
which misses some element F' € F, then if W is a o-open neighbourhood of
p, it follows that W U F' is a 7-open, hence p-open neighbourhood of p. But
then (WU F)NU =W nU C W is a p-open neighbourhood of p, implying
that 4 = o. Hence every p-neighbourhood of p must meet every element of
F; we claim that this implies that ¢ = 7. To prove our claim, let V, be the
filter of p-open neighbourhoods of p and let G be the open filter generated by
{FNV:FeFandV € V,}. We will show that G is a regular filter in (X, o),
thus contradicting the maximality of F. However, if ' € F and V' € V,, then
there is W € V,, and H € F such that V D ¢l (W) D el (W) and ¢l (H) C F.
Hence WNnH e G and cl,( WNnH)C FnV. O

In [6], the concept of a strongly upper topology was defined. (A topology 7
is strongly upper if whenever g C 7, there is an immediate predecessor 77 of
7 such that 4 C 7= ¢ 7.) A simple modification of the above proof shows that
every regular topology which is not R-closed is in fact strongly upper.

Clearly every R-closed Tychonoff space is compact and hence the following
result of [6] is an immediate corollary.
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Corollary 2.2. FEvery Tychonoff topology which is not compact is (strongly)
upper in 3.

Every completely Hausdorfl topology possesses a weaker Tychonoff topology
(the weak topology induced by the continuous real-valued functions). Thus
every completely Hausdorfl R-minimal topology is compact. The following
question then arises:

Question 2.3. Is every completely Hausdorff Ts-topology which is not compact
an upper topology in 33 ?

Question 2.4. Is every reqular topology which has a compact Hausdor{f subtop-
ology an upper topology in ¥3?

3. MAaxXiMAL R-CLOSED TOPOLOGIES

Recall that a space is submaximal if every dense set is open (we do not as-
sume that a submaximal space must be dense-in-itself). It follows from TM of
[13] that each H-closed topology is contained in a maximal H-closed topology
and that a space is maximal H-closed if and only if it is H-closed and submax-
imal. However, as we show below, the class of submaximal R-closed spaces is
much more restricted. Recall that a space is feebly compact if every locally
finite family of open sets is finite.

Theorem 3.1. Fach submazimal regular, feebly compact topology has an iso-
lated point.

Proof. Suppose that (X, 7) is feebly compact, submaximal and has no isolated
points. Fix p € X and let C be a maximal cellular family of open sets in X so
that for each C' € C, we have p & cl(C). The subset | JC is dense in X and
hence F' = X \ | JC is closed and discrete. Since p € F', there are disjoint open
sets U and Vsothat pe U and F\{p} CV. Let S={UNC:CeCand UN
C' # @}; since p is not isolated, it follows that S is an infinite cellular family of
open sets. Since X is feebly compact, this family must have an accumulation
point in F, and hence its only accumulation point is p. For each UNC € S,
pick z¢ € UNC; since X has no isolated points, the set {xe : UNC € S} U{p}
is closed and discrete and hence there are disjoint opens sets U’ and V' such
that p € U' and {z¢ : UNC € §} C V', It follows immediately that the infinite
family of non-empty open sets {CNU NV’ : UNC € 8} has no accumulation
point in X, contradicting the fact that X is feebly compact. (]

The following theorem is a result of Scarborough and Stone [14]. For com-
pleteness we include the simple proof.
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Theorem 3.2. An R-closed topology is feebly compact.

Proof. Suppose to the contrary that U = {U,, : n € w} is an infinite discrete
family of open subsets of (X, 7). For each n € w, pick x,, € U,. It is then
straightforward to check that the family

B={Ue7:U2 {xy:n =k} for some k € w}

is a regular filter base on X with no accumulation point, contradicting the fact

that (X, 7) is R-closed. O
Corollary 3.3. Fach submazimal R-closed space has an isolated point.

Lemma 3.4. An R-closed space which is scattered and of dispersion order 2
1§ compact.

Proof. Suppose X = Xy U Xy where X is the set of isolated points and X4
is the set of accumulation points of X. For each p € X4, there is a closed
neighbourhood U of p such that U C XU {p}. It is clear that U is clopen and
so X is O-dimensional and hence Tychonoff. Thus X is compact. (]

Stephenson’s examples (see [15] and [9]) show that the previous result is
false for R-closed scattered spaces of dispersion order 3.

Since a subspace of a submaximal space is submaximal, the closure of the
set of isolated points of an R-closed submaximal space is scattered of dispersion

order 2. Thus:

Corollary 3.5. Fach submarimal R-closed space is a compact scattered space
of dispersion order 2.

Proof. Suppose that (X, 7) is an R-closed submaximal space and let X denote
the set of isolated points of X; by Corollary 3.3, Xy # @. Let C = cl(X \
cl(Xp)); If € = @ then we are done, so suppose to the contrary. Then C
is a submaximal space without isolated points and so again by Corollary 3.3,
(C, 7|C) is not feebly compact. Thus there is an infinite locally finite family F
of open sets in (C,7|C'). But then, {F'n (X \ cl(Xy)) : F € F} is an infinite
locally finite family of open sets in X, implying that X is not feebly compact,
which is a contradiction. O

Theorem 3.6. A submazimal R-closed space is mazimal R-closed.

Proof. Suppose that (X, 7) is a submaximal R-closed space. By the previous
corollary, X is compact scattered of dispersion order 2; let X denote the set
of isolated points of X and X; = X \ X;. Suppose that ¢ 2 7 is a regular
topology on X which differs from 7 at a point p. Then there is some o-open
neighbourhood U of p which is not 7-open and hence does not contain any
T-neighbourhood of p; there is also a compact 7-neighbourhood V' of p such
that V' C Xy U {p}. It is then clear that V' \ U is an infinite o-closed subset of
Xy, implying that (X, o) is not feebly compact. (]
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Lemma 3.7. A feebly compact reqular space of countable pseudocharacter is
first countable.

Proof. Suppose that (X, 7) is feebly compact regular space and ¢(X, p) = w.
There is a family B = {B,, : n € w} of open sets such that ({By : n € w} = {p}
and for each n € w, cl(Byy1) € By,. If B is not a local base at p, then there
is some open neighbourhood U of p such that for each n € w, B, € U. It is
straightforward to check that the family of open sets { B, \ (cl;(Bpi1 UU)) :
n € w} is an infinite locally finite family of open sets, contradicting the fact
that X is feebly compact. (]

The next theorem should be compared with Theorem 2.20 of [12].

Theorem 3.8. A regular feebly compact first countable topology is mazimal
among reqular feebly compact topologies.

Proof. Suppose that (X, 7) is a regular feebly compact first countable space
and ¢ 2 7 is a regular topology on X; we will show that (X, o) is not feebly
compact.

To this end, suppose that U € o\ 7; then X \ U is o-closed but not 7-closed
and so since (X, 7) is first countable, there is some sequence {p,} in X \ U
convergent (in (X, 7)) to p € U. By Lemma 4.1 of [2], there is a family of
disjoint 7-open sets {U, : n € w} whose only accumulation point (in (X, 7))
is p and such that p, € U, for each n € w. Now by regularity of (X, o)
there is W € o such that p € W C ¢l (W) C U; then, the collection of sets
U ={Up\clz(W) : n € w} is a locally finite collection of open subsets of (X o)
and so if an infinite number of elements of U are non-empty, then (X, o) is
not feebly compact. However, if for some ng € w, U, \ clo(W) = @ for all
n > ng, then p, € U, C cls(W) for all n = ny contradicting the fact that
pn € X\U C X\ cl(W). O

The following result is now an immediate consequence of Theorems 3.2 and
3.8 and Lemma 3.7.

Corollary 3.9. An R-closed space of countable pseudocharacter is mazimal
R-closed.

Remark 3.10. Note that we have proved something a little stronger: If (X, 7)
is R-closed and o D 7 differs from 7 at a point of countable pseudocharacter,
then (X, o) is not R-closed.

Corollary 3.11. A regular space with a strictly weaker R-closed first countable
topology is upper in 3.

Corollary 3.12. A first countable compact Hausdorf] space is mazrimal R-
closed.

Question 3.13. Is a Fréchet compact Hausdor{f space marimal R-closed?
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4. LOWER TOPOLOGIES

A point p is a maximal regular point of a regular space (X, 7) if the trace
of the regular filter V; generated by 7(p, X) on X \ {p} is a maximal regular
filter.

Lemma 4.1. A point p in a regular topological space (X,T) is a mazimal

reqular point of X if and only if whenever T & o is a regular topology on X
such that o|(X \ {p}) = 7|(X \ {p}) then p is an isolated point of (X, o).

Proof. For the sufficiency suppose that the regular filter V; generated by
7(p, X)) when restricted to X \ {p} is not maximal. Then there is some regular
filter F 2 Vy[(X \ {p}). Define o to be that topology on X generated by the
subbase

Tu{Vulip}:VeF}
it is straightforward to show that o is a regular topology on X strictly finer
that 7 in which p is not an isolated point.

To show the necessity, suppose that p is a maximal regular point of (X, 7).
Then if o 2 7 and o|(X \ {p}) = 7|(X \ {p}), it follows that the trace of the
neighbourhood filter V7 at p on X \ {p} is strictly larger than the trace of the
neighbourhood filter V at p on X \ {p} and since o[(X \ {p}) = 7|(X \ {p}),
V(X \ {p}) is a -open collection strictly larger than the maximal regular
filter V[(X '\ {p}). It follows that p is an isolated point of (X, o). O

It was essentially shown in Theorem 2.13 of [1] that a point of first count-
ability in a space is not a maximal regular point.

Corollary 4.2. If (X, 7) has a mazimal regular point then 7 is a lower topology
in Eg.

In [3] we characterized lower topologies in the poset of Hausdorff spaces as
those having a closed subspace with a maximal point. Example 4.10 below
shows that having a closed subspace with a maximal regular point does not
guarantee that a topology is lower in ¥3. However, we have the following
result:

Lemma 4.3. If 0 € ¥3(X) is a simple extension of T € X3(X) which differs
from T at precisely one point p € X, then o is upper and each lower topology
it corresponding to o has a closed subspace with a marimal reqular point.

Proof. 1t was shown in [6] that if a Ts-topology o is a simple extension of a
Ts-topology 7T that differs from 7 at precisely one point p, then o is upper
in ¥3(X) and is generated by the subbase 7 U {U U {p}} for some U € 7.
Clearly pu{U U {p}} is also a subbase for & and hence p is an isolated point of
A= (X\U)U{p} in the topology o but not in g. Thus p is a maximal regular
point of (A, u|A). O

Remark 4.4, If 7 is a lower topology in X5 and 7 and 71 differ at p € X
then there is some Uy € 7 such that Uy U {p} € 77\ 7. Then since 77 is



8 O. T. Alas and R. G. Wilson

regular, for each n > 1 there is U, € 7 such that U, U {p} € 7% \ 7 and
U, u{p} Cecl (Uy)U{p} C U,_1U{p}. It is clear that 7T is generated by
the subbase 7 U {U,, U {p} : n € w} and hence the character of p in (X, 77) is

no greater than its character in (X, 7).

A family § = {S,, : n € w} is said to be strongly decreasing at p if for each
n € w, cl(Spt1) U {p} C Sn U{p}. We now formulate the above Remark as a
lemma:

Lemma 4.5. Let (X,7) be a Ts-space; if T has an immediate successor 7+ €
Y3, then there is p € X and a familyd = {U, : n € w} C 7 which is strongly
decreasing at p, such that for each n € w, U, U {p} & T and 7" is generated by
the subbase 7 U {U, U{p} :n € w}.

This result allows us to characterize (rather abstractly it must be said)
lower topologies in X3 in the next theorem. In order to simplify the notation
somewhat, when W = {W, :n € w} C7and V = {V,, : n € w} € 7 are strongly
decreasing families at (a fixed) p € X, ny will denote the topology generated
by 7U{W, U{p} : n € w} and WNV will denote the family {W, NV, : n € w}
which is also strongly decreasing at p.

Theorem 4.6. A topology 7 on X is lower in X3 if and only if there is p € X
and a strongly decreasing familyld = {U,, : n € w} C 7 at p such that whenever
YV ={V, :n € w} C 7 is strongly decreasing at p and 1y = Tuny, then either
TV =Ty OTTY =T.

Proof. Suppose that 7 is not lower and fix pe X;: f U = {U,, :n € w} C 7 is
strongly decreasing at p, then there is ¢ € X3 such that 7 € o & 7y. We may
then choose a strongly decreasing family (at p) V = {V,, : n € w} C o, such
that for each n € w, V, U {p} € o\ 7 and so 7 & 7y & 7y. However, since for
each n € w, V,, U {p} € my, we have that (U, N V,) U {p} € my which implies
that 7y = yny, giving a contradiction.

Conversely, suppose that 7 is lower in X3; by Lemma 4.5, there is p € X
and a strongly decreasing family U at p such that 7+ = 7y, Then, if V = {V}, :
n € w} C 7 is a strongly decreasing family at p such that 7y = 74y it follows
that for each n € w, V;, U{p} € ny and so v C 7yry = - O

Theorem 4.7. A compact LOTS is marimal R-closed.

Proof. Suppose that (X, 7, <) is a compact LOTS and ¢ 2 7. Then there is
some U € o\ 7 and p € U such that U is not a T-neighbourhood of p, and
hence L, \ U is cofinal in Ly \ {p} or R, \ U is cofinal in R, \ {p}, where
Ly={re X :z<p}land R, = {r € X : = > p}. It is easy to see that
(X, 7) is maximal R-closed if and only if both of the compact subspaces (Lp, 7)
and (IR, 7) are maximal R-closed. Thus, if p is a point of first countability of
(X, 7), then it is also of first countability in both (Lp,7) and (R,,7) and so
the result is an immediate consequence of Remark 3.10.

Suppose then that x(p, X) > w, say x(p, Lp) = £ > w (where & is a regular
uncountable cardinal); in the sequel we consider only the subspace L,. Let
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V € o be such that p € V C ¢l (V) C U, then clearly, either, V = {p} or
V\ {p} is a cofinal o-closed subset of L, \ {p}. If the former occurs, then
clearly L, \ {p} is open and closed in (L, o) which then cannot be R-closed.

If V'\ {p} is cofinal in L, \ {p} then, inductively we may construct interpo-
lating sequences {v, : n € w} C V \ {p} and {w, : n € w} C L, \ U such that
wy < vy < wpyq for all n € w. Since (X, <) is complete, ¢ = sup{v, : n €
w} = sup{wy, : n € w} exists. Now for each n € w, let O, = V N (wy, wp11).
The sets {O,, : n € w} are g-open and their only possible accumulation point
in (X, o) is g. There are now two possibilities:

1) If g € cl,({wn : n € w}), then ¢ € Ly, \ U and so ¢ is not an accumulation
point in (X, ) of the family {O,, : n € w}, showing that (X, ) is not feebly
compact and hence not R-closed.

2) If on the other hand, g € cly({wy : n € w}), then {wy : n € w}) is closed
and discrete in (X, o). Since ¢ is regular, we may construct a discrete family
of o-open sets {W,, : n € w} such that w,, € W,,, again showing that (X, 7) is
not feebly compact. (]

The same proof essentially shows that:

Theorem 4.8. If (X,7,<) is a LOTS and x(p, Ly) > w, then p is a mazximal
reqular point of Ly.

Corollary 4.9. A compact LOTS is lower in X3 if and only if it is not first
countable.

Proof. The sufliciency follows from Theorem 4.8 and Corollary 4.2. The neces-
sity was proved in Theorem 2.13 of [1]. O

Compactness is essential in the previous theorem. It is straightforward to
show that the one-point Lindelofication of a discrete space of cardinality w; is
a LOTS but is neither first countable nor lower in 5.

From Theorem 4.8 we see that if £ is an uncountable regular cardinal, then
k£ is a maximal regular point of k 4+ 1 (with the order topology).

Example 4.10. Let & denote the first ordinal of cardinality ¢ and let X
denote the set (k+ 1) x [0,1], 7 the product topology on X and o the topology
generated by TU{(k,1)}. We will show that o = 7. To this end, suppose that
i is a regular topology such that T & p C o; clearly p differs from T and o
only at the point (k,1) and hence there is some open p-neighbourhood V' which
is not a T-neighbourhood of (k,1) and some p-neighbourhood U of (k,1) such
that ¢l,(U) C V. Since k > ¢, there are a number of possibilities:
1) There is an infinite set J = {rp, :n € w} C [0,1) with 1 € cl(J) and for each
n € w a set S, C k such that either,

a) Sy is cofinal in Kk or

b) ke Sy,
and | {Sn x {rn} :neJ}nV =a. Or,
2) There is a cofinal set S, C K such that (S, x {1}) NV = &; furthermore,
since V \ {(k,1)} is T-open, we may assume that S, is T-closed in k.
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If 1a) occurs, then {k} x J C X \V C X \ cl,(U); and if 1b) occurs, then
since V' \ {(x,1)} is T-open, it follows that {x} x J C X\ V C X \ cl,(U).

Thus in either case la) or 1b), there is an infinite subset J C [0,1) with
1 € cl(J) such that {r} x J C X\ V C X\ cl,(U). It then follows that for
each rn € J there is ay, € k& such that | J{(an, k] x {rn} :ne J} C X\ cl, (U).
Letting o = sup{a, : n € J} € k we have that (o, k] x J C X \ cl,(U) and so
(a, ) x {1} € X\ U. Again using reqularity of (X, u), there is some p-open
neighbourhood W of (r,1) such that cl, (W) C U and hence cl, (W) N ((a, k) x
{1}) =o.

If on the other hand, 2) occurs, then since cl, (U) is also T-closed and it
follows that cl,,(U)N(r x {1}) is a T-closed subset of k x {1}). Thus, since & is
a regular cardinal with uncountable cofinality and cl, (U)N S, = @, it follows
that there is some « € K such that cl,(U) N ((a, k) x {1}) = @.

Thus in both cases 1) and 2) we have shown that there is a p-open neigh-
bourhood O of (k,1) and a € k such that cl,(0O) N ((a, k) x {1}) = @.

Now, since 1 € cl(J), it follows that {(r,,1] : n € J} is a local base at 1
and so for each o < 7 € K, there is r,, € J and O open in Kk such that
O x (rn,,1] € X \ clu(O). Now denoting by L,, the set {y:n, =n¢e J} and
by M,, the set |J{O, : v € Ln} we have that for each n € J, My x (ry,1] C
X\cl,(0O). However, | J{M,, : n € J} D (a, k) and hence there is a finite subset
{My,,..., My} which covers (a, k). Letting r = max{ry,,...,Tn,}, we have
that (o, &) x (r, 1] C€ S\ cl,(0) and hence ON ((c, £+ 1] x (r,1]) C {x} x [0,1].
Since ON(X\{(k,1)}) is T-open this shows that ON((a, k+1]x(r,1]) = {(x, 1)},
that is to say, (k,1) is an isolated point of (X, ).

Of course, for each r € [0,1], the same argument applies to the point (k,r) €
X. Thus each point of X is either a mazimal regular point or a point of first
countability; it follows that (k + 1) x [0,1] is mazimal R-closed and is lower in
3.

Now let L denote the ordered set (k+1) @w™? (that is to say, k+ 1 with its
usual ordering followed by w with its reverse ordering, with the order topology)
andY = Lx|0,1] with the product topology 7. The space Y is the product of two
LOTS, is not first countable and contains X as a closed subspace. Nonetheless,
we claim that Y is not lower in X3. To see this suppose that T & o and that
7 and o differ at precisely one point p € Y. By Theorem 2.13 of [1], p is
not a point of first countability, hence p = (k,1) € {k} x [0,1]. Clearly the
neighbourhood filter Vy of p in (Y, o) must differ from that in (Y, 7), V;, either
on the subset (k + 1) x [0,1] or on Y \ (k x [0,1]). Suppose then that the
traces of Vg and V; on (k + 1) x [0,1] are the same; then V) and Vy differ
on Z =Y \ (k x [0,1]), however, (Z,7) is first countable and hence again
by Theorem 2.13 of [1] there are Ts-topologies on it lying strictly between T
and o. Thus 7 and o differ on (k + 1) x [0,1] and so by what we showed
above, p must be an isolated point of ((k + 1) x [0,1],0) and hence also of
({r} x [0,1],0). However, the topology on Y \ (k x [0,1]) obtained by declaring
{x} x ([0,1]\ {r}) to be closed is not regular, and an argument similar to that
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employed in Theorem 2.13 of [1] shows that there is no topology, minimal in
the class of reqular topologies larger than it.

With a little more work, using the fact that [0, 1] is second countable, it is
possible to substitute wy instead of k in the previous example.
However the following questions remain open.

Question 4.11. If a regular topology is lower does some closed subspace have
a mazimal reqular point?

Question 4.12. Is there an internal concrete characterization of lower topolo-
gies in X3 ¥

5. FIRST COUNTABLE REGULAR TOPOLOGIES

Denote by ¥4(X) the partially ordered set of first countable T3-topologies
on a set X.

Theorem 5.1. There are no jumps in X45(X); between any two first count-
able Ts-topologies on X there are at least ¢ incomparable first countable T5-
topologies.

Proof. Suppose that £ and 7 are two first countable T5-topologies on X which
differ precisely at the point =z € X, Let {V,, : n € w} and {W,, : n € w} be
nested local bases at = in the topologies £ and 7 respectively. We may now
choose a sequence {Zm }mey, which converges to x in (X, ) but not in (X, 7)
and by passing to a subsequence if necessary, we may assume that =, € V;,
and {z;, : m € w} is a closed, discrete subset of (X, 7). For each m € w, let
{Un : n € w} be a local base of T-open sets at xy, such that = &cl(U%H) C
Ul <V, for each m,n € w; since (X, 7) is regular, we may assume that
{U}, : m € w} is a discrete family of T-open sets. Note that each set U
is £&-open and for each n € w, the family {U]}, : m € w} has r as its unique
accumulation point in (X, £). Now let A be an almost disjoint family of subsets
of w of size ¢ and for each A € A we define
Fa={U e r7:if £ €U then there is n € w and some
finite F' C w such that U D [J{UL :m e A\ F}}.

It is clear that this is a sub-base for a first countable topology 14 € 7 on X and
since {&y, }mea converges to x in (X, pa) it follows that s # 7. Furthermore,
since U]}, C V;, for each m, n € w, it follows that £ C p4 and since {Zm }mew\ a
does not converge to = in (X, pa) it follows that g4 # £ Finally, note that if
A, B € A are distinct, then pg and pp are incomparable topologies. Finally,
we need to show that each topology pa is regular. To this end, suppose that
x € U € pa; then there is some finite set F' C w such that U 2 |J{U : m €
A\ F}}. Tt follows that J{cl-(UZ*!) : m € A\ F} is a pa-closed neighbourhood
of « which is contained in U. If x # 2 € U € 7, then there is some 7-closed
neighbourhood W C U of z and some n € w such that Wn| J{U} :mew} =09
and hence W is a pa-closed neighbourhood of z contained in U. Thus (X, p14)
is regular. (]
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In Theorem 2.13 of [1] it was shown that a sequential T5-topology of count-
able pseudocharacter is not a lower topology in ¥3. However, we do not know
the answer to the following question:

Question 5.2. Is every first countable Ts-topology which is not R-minimal,
upper in X ¢

6. SOME MORE OPEN PROBLEMS

The supremum of a chain of regular topologies is regular. Thus a positive
answer to the first question would imply a positive answer to the second.

Question 6.1. Is the supremum of a chain of R-closed topologies R-closed?

Question 6.2. Is every R-closed topology contained in a mazrimal R-closed
topology ¢

Note: There are maximal R-closed topologies which are not compact. In [15],
Stephenson gave an example under CH of a first countable non-compact -
closed topology - by Corollary 3.9, this must be maximal R-closed. In [9] it was
shown that the same construction can be done in ZFC. This space is scattered
and has dispersion order 3. The topology contains a weaker compact Hausdorff
topology of dispersion order 3 (which is clearly not maximal R-closed).

Question 6.3. Is a marimal R-closed topology which is not R-minimal, upper
in Eg 2

Stephenson’s examples show that maximal R-closed topologies need not be
lower. Finally, the most general question of all:

Question 6.4. Is every regular topology which is not R-minimal an upper
topology in X3 ¢
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