





new proofs of classical existence theorems, as corollaries of already available,
sometimes deep, microlocal results. Such topics as holonomic systems, hypo-
analytic structures or analytic differential equations of principal type on R"
are touched on. Theorem 2.2 gives a very simple proof of the local solvability
of the last “compatibility equation” of a maximally overdetermined system.
Theorem 2.6 states the solvability of an analytic differential operator of prin-
cipal type on R”, satisfying the Nirenberg-Treves condition (P). Theorem 2.7
establishes a weak maximum principle for the hypo-analytic functions, when
the hypo-analytic complex is solvable in top degree. The converse assertion
is conjectured and discussed in some special cases.

In Section 3 we establish the solvability of an analytic differential oper-
ator of principal type satisfying the Nirenberg-Treves condition (P), in the
framework of hyperfunctions on a maximally real manifold in C" with little
regularity. The proof follows the strategy introduced in Hérmander {12] for
the C* solvability, that is we prove the non-confinement of analytic singu-
larities for the adjoint operator. However the needed microlocal results are
not available and we use the microlocal transformation theory of Kashiwara
and Schapira [16] to obtain them. It allows us to reduce the problem to the
analysis of the concrete operator 3/0z; acting at the boundary of a strictly
pseudoconvex domain in C". This is similar to what was done in Trépreau
[31] to prove the microlocal solvability of an operator satisfying the weaker
condition (¥). Unfortunately, it is not clear how to get local from microlocal
solvability, so we shall rely on the method but not on the main result in [31].

1 LOCAL SOLVABILITY AND NON-CONFINEMENT OF SIN-
GULARITIES
1.1 Notation

For any n € N, we denote by z = (21,...,2s) the variable in C*, |z| =
max?_, |z] its norm, and we define dz = dz; A.. Adz,. f K CC"and e > 0,
I, denotes the set of all z € C" which lie at a distance < ¢ from K;ifhisa
function k' — C?, we set

|hlx = up |h(2)|.

We shall use the terminology FS and DFS to refer to the class of Fréchet-
Schwartz spaces and to the class of all strong duals of Fréchet-Schwartz -
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spaces, see Grothendieck [6], Kothe [19). Let O be the sheaf of holomorphic
~ functions on C™. If  C C" is open, O(R), endowed with the semi-norms
| |k, K CC Q,isaFS space. An analytic functional ¢ on Q is an element
of the dual space O’(Q); it is carried by a compact set K C 9 if for every
€ > 0 there exists C such that |$(h)| < C|h|x, for all h € O(Q). Let K c C"
be a compact set; the space O(K) of germs of holomorphic functions at K,
endowed with the locally convex limit topology, is a DFS space with strong
dual the FS space O'(K): ¢ € O'(K) acts on every space O(K,) and the
topology of O’(K') is induced by the semi-norms

Héllk. = sup (lp(h)I/IRlk,).
heO(K.)

If Q1 is pseudoconvex and the compact set &' C § is O(Q)-convex, then O(f2)
is dense in O(K) and O’(K) can be identified with the space of analytic
functionals on 2 which are carried by K.

1.2 Hyperfunctions and analytic functionals

Let M be a maximally real manifold in C" (actually we might replace C®
by a Stein manifold), that is a totally real n-dimensional submanifold of
C", of class C. Sato’s theory of hyperfunctions extends to this situation (see
Harvey [8], Harvey-Wells [9]) and so does the microlocal theory of Sato-Kawai-
Kashiwara (25] (see Kashiwara-Schapira [16]). We denote by B the sheaf of
hyperfunctions on M. For the sake of simplicity, a section of A = O will
be called analytic even if M is not real analytic. Though this is not essential,
we shall assume that M is orientable, and in fact oriented, in order to avoid
difficulties in identifying A with a subsheaf of B.

We shall adopt the point of view of Martineau [20] about Sato’s theory
by identifying compactly supported hyperfunctions with analytic functionals
carried by M. Martineau assumed M real analytic but it was proved by
Harvey and Wells [9] that his results remain valid when M is of class C!. Let
us recall the content of Theorem 2.2 in [9), which is important in this respect:
There ezists a fundamental neighborhood system F of M with the following
properties: (i) each U € F is pseudoconvez, (ii) O(V) is dense in O(U) if
UV € F and U C V, (iii) each compact set K ¢ M is O(U)-convez for
each U € F.

To summarize, we shall use the following notation:
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Notation 1.1 M C C" is an oriented mazimally real manifold of class C',
with 0 € M. Q denotes a pseudoconvez neighborhood of M with the property
that every compact set K C M is O(Q)-convez.

With this notation @'(K) is identified with the space of analytic functionals

on Q carried by K, if K C M is compact. Let us recall that B is a flabby
sheaf on M and that, if U CC M is open in M (the notations U and OU
always refer to the closure and the boundary of U relative to M), the identity

B(U) = 0'(U)/0'(3V)

holds.

Some of our results are local near 0 € M; then we may shrink M and
take 0 = C™ in Notation 1.1. Some other results, like Theorem 1.4 and
Theorem 1.6, are global and concern an open subset U CC M. Let us already
emphasize the fact that these results do not apply to compact manifolds:
it will be assumed that U has no compact connected component, with the
consequence that the restriction map O(U) = O(8U) is injective by the
uniqueness of analytic continuation, and as a result that O'(9U) is dense in
o'(U).

For the sake of simplicity we embed L}.(M) as a subsheaf of Bin a
noncanonical way by identifying f with the analytic functional

j) = [ f(2)h(=)dz

when f has compact support. This is not invariantly defined, but using
another analytic non-vanishing density a(z)dz for the identification would
not change much to what follows, since u = au is a sheaf isomorphism of
B. In particular A is identified with a subsheaf of B. Also, if M is of class
C™, there is a canonical injective sheaf mapping from the sheaf D, _, of
distributions of order m — 1 on M to the sheaf B, which induces the obvious
restriction map on compactly supported sections (see [9] Theorem 3.5).

By a differential operator on M, we shall always mean an operator

aa
P= ao(2) 75—
|a|25:m 0z



with analytic coefficients a, € A(M). The adjoint operator ‘P of P is the
differential operator on M defined by

Ph= Y (-1) a—a(a"h)‘

lol<m

P acts on analytic functionals carried by M by the formula:
Po(h) = ¢(‘Ph) if h € O(Q),

and this action extends as a sheal homomorphism of B. On the other hand,
P acts on the sheaf O, hence on the sheaf A by restriction:

P(fire) = (Pf)ar-

This action can also be described as follows: if M is of class C™ and 1 <k<
n, 0/9z induces a vector field L, of class C™"! on M, determined by the
property that 8/9z; — Ly is antiholomorphic. Actually, dzy,...,dz, induce a
basis of 1-forms of class C™~'on M and L,,..., L, is the dual basis of vector
fields on M. Clearly 0f/0z; = Ly f if f is analytic, so 8f/3z is well-defined
if f is of class C! and the definition agrees with the hyperfunction definition,
since if f has compact support:

af oh . . ~
oo+ 15 = :l:/Md(fhdq A AdZR A Adz) =0,

due to Stoke’s formula (the notation (Tz: means that dz; is omitted in the
wedge product). Thus, if M is of class C™ and P is of order m, the action of
P on hyperfunctions is compatible with the natural action of P on functions
of class C™ and our identification of functions with hyperfunctions.

1.3 Local solvability and a priori inequalities

Let us consider d differential operators Py,...,P; on M and the following
associated “underdetermined” system P:

d
P(ul,...,ud)=Z:P,-u,-=f. (l)



The adjoint system is the “overdetermined system” ‘P defined by
PPf=(Pf,.....Paf) = (uy,...,ua) (2)

A main idea in Schapira [26], to circumvent the fact that the topology of
B(U) is not separated, was to notice that, if A:B — B is a sheaf morphism,
A: B(U) — B(U) is onto if and only if the map A O'(U)x0'(8U) - O'(U)
defined by (¢,v) = A¢ + v is onto. This remark is useful, since @'(U) and
0'(9U) are gentle FS spaces which tolerate the use of functional analysis.
We first recall the fact (this is Proposition 2 in [26]) that local and global
solvability are the same on small open sets, when hyperfunction solutions
are allowed, and as far as there are no compatibility conditions! Hence such
phenomena as P-convexity play no role in hyperfunction solvability. Let us

denote by Bo the space of germs of hyperfunctions at 0 € M.
Theorem 1.2 The following properties are equivalent:

1. P:B3& — By is onto.

2. There exists an open neighborhood U of 0 in M such that P : B(U) —
B(U) is onto, hence by the flabbiness of B, P : B(V)? = B(V) is onto
Jor every open subset V C U.

PROOF. 2 = 1 by the flabbiness of B. Let us assume that Property 1 holds.
Let Vi CC V CC M be open neighborhoods of 0 in M, with N, Vi = {0}.
The space

Ev = {(¢.9,v) € O(V) x O(Vi)! x O'(V\Vi), =Py +v}

is a closed subspace of a Fréchet space, hence a Fréchet space. If my :
Eix — O'(V) denotes the projection on the first factor, Urmi(Er) = o'V
by Property 1. By Baire’s category theorem and the open mapping theorem,
m(Ex) = @(V) for some k. Finally, Property 2 holds true with U = Vi,
thanks again to the flabbiness of B. |

In the preceding argument, let us replace Property 1 by the weaker hy-

pothesis that P : B3 — By has a range with finite codimension, so that for



some 0,,...,0n € O'(V), By is spanned by the range of I’ and the germs
defined by d,,...,0n. Considering the space

N
Ee = {(¢,%,v,0) € O'(V)xO'(Vi)! xO'(V\Vi)xC", ¢ = P4+ ail}}

t=1

and repeating the previous proof, we obtain that, for some V;, = U, the map
O'(U) x 0'(aU) x C¥ = O'(U), (¥,v,a) = Py + v+ N, a;0;, is onto,
hence a homomorphism. We deduce from this that the map (¢,v) = Py +v
has closed range, hence is surjective, since its range is dense. This shows
that local solvability in the space of hyperfunctions is insensitive to finite
dimensional obstructions (see §2.1 for a simple application of this fact to
holonomic systems):

Theorem 1.3 If P : B — By has a range with finite codimension, P is
onto.

We now show that the solvability of P in B(U) is equivalent to an a priori
inequality for *P. This improves a result of Schapira [26].

Theorem 1.4 Let M, Q be as in Notation 1.1 and U CC M an open subset
without compact connected component. The differential system (1) on M
induces a surjective map P : B(U)? — B(U) if and only if, for every small
€ > 0 there exist 1 > 0 and C such that the following inequality holds:

Vh € O(Q), Ih'U,, < C(I'Phlvg + ]h|(au)‘). (3)

PROOF. P : B(U)? — B(U) is onto if and only if the map of FS spaces
O'(U) x O'(OU) 5 (p,v) = Py +v e O'(U)

is onto. Since U has no compact component, this map has dense range,
hence it is onto if and only if its range is closed, if and only if the range of
the transpose map T

O(U) 3 h = Th = (‘Ph,hjay) € O(U)* x O(aU)

of DFS spaces is closed, or (see [19] page 18) sequentially closed. This is
the case if (3) holds: if Th; converges, it converges in O(U,)? x O((dUV),) for
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some ¢ > 0; since O(f) is dense in O(U), (3) implies that the sequence hi
is hounded in T, for some 5 > 0, hence admits a subsequence converging in
O(U). Conversely let us assume that the (injective) map T has closed range.
It induces an isomorphism from O(U) onto its image, so ky — 0 if Thx — 0.
If (3) did not hold for some small e > 0, we could select a sequence hy € O(Q2)
with 'hklﬁ.,k = 1 while Thy, — 0, contradiction. }

1.4 Solvability and non-confinement of singularities

We now come to the main result of this section, which is a hyperfunction
version of Theorem 1.2.4 of Hormander [11]. We shall deal with an open set
U cc M and a diflerential system (1) of order m. Let F be a subspace of
B(17) with the following property:

Hypothesis 1.5 I is a Fréchet space such that:
e O(U) C F with conlinuous injection.

e If A C C" is open and Q is a differential operator on M of order < m,
the space

{(f,9) € F xO(A), guna = QfIUnA}
is closed in F x O(A).

It is not clear whether there always exists a Fréchet space with these prop-
erties. However, if P is of order m and M is of class C™, we can take
F = C™(U). If M is smooth, a stronger statement is obtained by taking a
smaller F in the following theorem. For example, if M is real analytic, it may
be interesting to take a Gevrey-Beurling space of functions as a space F.

Theorem 1.6 Let M be as in Notalion 1.1 and U CC M an open set without
compact connected component. If the differential system (1) on M is of order
m and ' C B(U) is a Fréchet space as in Hypothesis 1.5, the following
condition is sufficient for the induced map P : B(U)? — B(U) to be onto:
for every hyperfunction f in a neighborhood of U with fiy € F, if f is analytic
in a neighborhood of OU and 'Pf is analytic in U, then f is analytic in U.



PROOF. Given € > 0 small, we shall show that the estimate
h e O(Q), ]hqu < C(”h‘u”[r -+ |‘P/I|U‘ + ]/l|(UU).) (4)

holds for some # > 0, some C, and some continuous semi-norm | |F on
F. The a priori inequality (3) must then hold for 7' < 7, since, if it did
not, we could select a sequence k;, € O(Q) with ]thUq, = | while |'Ph[, +
|h}au), —+ 0; since the inclusion O(U) — F is continuous, lhwullF would
be bounded, hence also 'hle_l,, by (4), and we would reach a contradiction:
some subsequence would converge uniformly in Uy, to 0 close to 9U, hence
everywhere by the uniqueness of analytic continuation.

If A C C" is open, we denote by O®(A) the Banach space of bounded
holomorphic functions on A, with the norm | la. Let us consider the subspace

E={(f,9,h), qu ="Pfu, huneu). = Jwneuy}

of the Fréchet space F' x O°(T,)¢ x O=((9U).). Due to Hypothesis 1.5, £
is closed, hence a Fréchet space. By the assumption in the theorem, E is the
union of the closed balanced convex sets E(k) consisting of all (f,g,h) € E
such that f is the restriction of a function f e 02U, ) with |j|g”k <k. By
Baire’s theorem, one of these sets is a neighborhood of 0 in E, which implies
the estimate (4) and finishes the proof of the theorem. h

In general, there is no reason why the sufficient condition for solvabilily in
Theorem 1.6 should be necessary. It is however locally the case when P has
constant coefficients; recall that we do not assume M —= R", so this covers
the case of a differential operator on R™ biholomorphicaly equivalent to a
differential operator with constant coefficients:

Theorem 1.7 If the open set U CC M is small enough and P has constant
coefficients, P : B(U)* — B(U) is onto if and only if every hyperfunction f
in a neighborhood of U, verifying that f is analytic in a neighborhood of QU
and that 'Pf is analytic in a neighborhood of U, is actually analytic in U.

PROOF. Let us recall how local approximation by entire functions is obtained
in Baouendi-Treves (1], using the Gaussian kernel. Performing a complex
linear transformation, we may assume that the tangent space to M at 0 is
R™. For ¢ > 0, let us define

1
2€C"  K.(2)= We"’z’ E



If ¢ € O(U), U CC M, ¢(z) = $(K(z —.)) is an entire function and:
0de _ (gfé

2 Oz

e, k=1,...,n

The following property follows from the proof in (1], provided U 5 0 is small
enough (this condition can be dropped in case M = R"):

¢ is analylic close to z € U if and only if ¢, converges uniformly in a complex
neighborhood of z as € =+ 0%. Moreover, ¢, converges then to the holomorphic
ertension of .

Let us now assume that P : B(U)! = B(U) is onto, so that (3) holds, and
let us assume that U is so small that the previous property holds for a neigh-
borhood V of T in M. Let f be as in the statement of the theorem and
$ e O(K), U c K CV,suchthat ¢ = [ina neighborhood of U. By
the previous property, ¢, converges in a complex neighborhood of AU while
'Pg, = ("P¢). converges in a complex neighborhood of U. We deduce from
(1.3) that ¢, converges in a complex neighborhood of U, hence f is analytic,
thanks again to the previous property. h

2 EXAMPLES, APPLICATIONS AND REMARKS

In this section we give several examples of how the results of Section 1 apply
to hyperfunction solvability.

2.1 Ordinary differential equations and holonomic systems

Let us first consider the case of an analytic operator

P= éa,{z)%

on an open interval I C R, with m > 0 and a,, # 0. It is a theorem
of Sato, and in fact a simple (striking) application of Sato’s theory, that
P : B(I) — B(I) is onto. We note that hyperfunction solutions of ‘Pf = 0
may have confined analytic singularities: the Dirac measure § satisfies 26 =
0, the smooth function f which is 0 on ] — 00,0] and €5 on ]0,+oo] is
analytic outside 0 and satisfies (z24- — 1)f = 0. However the condition in
Theorem 1.6 is locally satisfied, using as a Fréchet space F' an ad hoc space
of ultradifferentiable functions:
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Lemma 2.1 If J CC I is an open interval, there exists s > 1 such that, ifu
belongs to the Gevrey-Beurling space G (J) and 'Pu € A(J), thenu € A(J).

PROOF. Ramis [24] has computed the index of P acting on any space of
formal power series with coeflicients satis{ying a growth condition of Gevrey
type. Similar results certainly hold for the usual spaces of Gevrey functions.
The partial result of Komatsu [18] is however more than sufficient for our
purpose. We sketch a proof using both references. The claim is of a local
nature, so we may assume that 0 € J and 0 is the only point of J at which
an vanishes. Let o > 1 be the irregularity of the operator ‘P at 0 (see [24]
or [18] for a definition) and @ the Taylor series of u € GU)(J) at 0. As
'Pi = Pu € Oy, it follows from [24] or [18] that @t € Op provided s < g
Taking 1 < s < ;Z;, we find that u is locally the sum of an analytic function
and a G function v with % = 0, hence Pv = 0. It follows from Lemma 4 in
Komatsu [18] that v = 0. |

Using the finiteness theorem of Kashiwara [15], we shall obtain a local
analogue of the just mentioned theorem of Sato, for holonomic systems, as
an obvious consequence of the functional analysis Theorem 1.3. Though the
following results extend to the general case, we shall assume that M = R"
for the sake of simplicity. Let D denote the sheaf of (analytic) differential
operators on C", and let us consider a general system of differential equations,
that is a coherent left D-module M near 0 € C*. M admits a free resolution

0eMeDo EDh  Eph

where P!,...,P", ... are matrices of differential operators, acting on the
right. Applying the functor Hom( -, Bq) to it, we obtain the complex:

0B8R B ... BBk ..
where P* acts on the left. The &*" cohomology space Ext*(M, By) of this
complex does not depend, up to an isomorphism, on the choice of the above

resolution of M. Kashiwara proved in [14] vanishing theorems that imply the
existence of a resolution of length < n

0e-MeDo Eph .. T pin g,
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so Ext*(M, Bo) = 0 for k > n. We refer to Kashiwara [15] for the notion of
a holonomic system and the fundamental result that the spaces Ext*(M, Bo)
are finite dimensional if M is holonomic. In particular P" : 33"“' - B&
has a range of finite codimension and an obvious generalization of Theorem
1.3 gives the lollowing vanishing theorem, which was obtained by Schapira in
28], using a very different method:

Theorem 2.2 Lel M be a holonomic D-module defined near 0 € C" and Bo
the space of germs of hyperfunctions at 0 € R™. Then Ext™(M, Bo) = 0.

Let us consider again the more concrete equations (1) and (2). It is quite
clear that the surjectivity of P : B — Bo only depends on the right ideal 7
of D generated by Py,..., Py near 0 € C". Let us consider the germ

V(P) = {(2,) € T°C", o(Q)(2,{) =0 for all Q€ I}

of a complex variety in T=C™ over 0, where (@) denotes the principal symbol
of Q. It is a well-known theorem of Sato-Kawai-Kashiwara [25] that V(P) is

involutive.
Theorem 2.3 If V(P) is Lagrangian, P : Bg — By is onlo.

PROOF. Let J be the left ideal generated by 'Pi,. .. ,' Ps. The left D-module
M = D/J has V(P) as its characteristic variety, hence it is holonomic.
We could conclude invoking Theorem 1.6 and the results of Honda [10] which
imply that an analogue of Lemma 2.1 holds in the general case of a holonomic
system.

We shall instead present a different approach, identifying P with the last
compatibility condition of a holonomic system; we owe the following proof to
P. Schapira. We start with a free resolution of length n of the right D-module
N =D/T

0NDDEDH . D& 0, (5)

wheredy = 1, d; = d and P(A., e Ag) = }::L, P; A;. We recall the following
results of Kashiwara, see [14] Theorem 3.1.2 and Proposition 3.1.7, which hold
for any left (respectively right) holonomic module: Exth(N,D)=0ifj#n
while N'* := Ext}(N, D) is a right (respectively left) holonomic D-module.
"Thus, applying the functor Homp(-,D) to the resolution (5), we obtain the

resolution
0Dl SDh ... 5D 5 N0,
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of the holonomic left D-module A/*. Here we have used the canonical iden-
tification of Homp(D¥, D) (morphisms of right D-modules!) with D%, It
remains to identify the morphism @; by the definitions, we have, using obvious
notations:

Q(A)=Q(Bw AB) = ((Bi,...,Bs)~ AP(B,,..., By))
= (AP,,...,AP)).

This means precisely that Equation (1) is the n** “compatibility system” of

the holonomic module A*. Theorem 2.2 applies. |

2.2 Differential equations with constant coefficients

We now consider the case of an operator P # 0 with constant coefficients.
If M = R™, it is well-known that the analogue of the Malgrange-Ehrenpreis
Theorem for systems holds true in the context of hyperfunctions, see Komatsu
[17] or Schapira [27]. The proofs in [17] [27] make use of the Malgrange-
Ehrenpreis Theorem. In the case of a single operator, a simpler proof of the
surjectivity of P : B(U) — B(U) is well-known when U C R" is bounded,
using the existence of a fundamental solution E of P: if f € B(U), f = ¢
for some ¢ € O'(U) and u = (E + ¢)jy solves Pu = f. We note that
another proof of this fact is possible, which does not use the existence of a
fundamental solution but the classical and easier fact that, if U CC R", there

is an estimate
Vu € CP(U), |lullze £ CJi'Pu|2-

In fact we can state, more generally:

Theorem 2.4 Let M,Q be as in Notation 1.1 and assume that M is smooth
and that Py,..., Py have constant coefficients. If the inequality:

Vu € C*(M), |lullz < C|Pullnn (6)

holds for some C and some Sobolev norm || ||y~, P : B(U)? = B(U) is onto
for every open set U CC M without compact connected component.

PROOF. Let € > 0 and ¢ € CP(U,) a function which is 1 in a neighborhood
of U. If h € O(R), applying (6) to the (holomorphic) partial derivatives of
sufficiently high order of ¢h, Sobolev’s inequality on the left-hand side and
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Cauchy’s inequalities on the right-hand side, we obtain |hly < C(|'Phly, +
|hlov).). Replacing h by h(. + ¢), |¢| small, and taking into account the fact
that P commutes with translations, we obtain the a priori inequality (3).
Theorem 1.4 applies. §

2.3 Differential operators of principal type

The result in this section will be generalized in Section 3, so we shall be brief,
referring the reader to Section 3 for any notation which might be used here
without having been introduced. We first note that if U CC R" is open and
P is an elliptic differential operator in a neighborhood of U, 'Pf € A(U) =
f € A(U) by a theorem of Sato. Theorem 1.6 applies: P : B(U) = B(U) is
onto, hence P : A(U) = A(U) is onto, again by Sato’s Theorem. However
this is a weaker result than the classical existence theorem of Malgrange,
since in Malgrange’s Theorem, P is defined merely in U, not necessarily in a
neighborhood of U.

We now consider a differential operator P of principal type satisfying
the condition (P) of Nirenberg-Treves. It would be tempting to obtain the
hyperfunction solvability of P directly from a known L? estimate, that of
Nirenberg-Treves [23] if M is real analytic, that of Beals-Feflerman [2] if M
is merely smooth, using a substitute of Theorem 2.4. We have not been able
to find this substitute. Of course, this can be done when P has order one:

Theorem 2.5 If M is smooth and P is a differential operator of order one
whose principal part is a non-vanishing vector field, P : By — By is onto if
and only if P satisfies condition (P) in a neighborhood of 0 in M.

Proor. We only discuss the sufficiency of the condition. By performing
standard reductions, we may assume that P = d/0z,, so P induces a complex
vector field on M. In this simpler situation, it is an earlier result of Nirenberg
and Treves that condition (P) implies an estimate (6) with N = 1; later on
Treves improved it to N = 0, see Treves [33]. |

The case when M = R" can also be settled without much effort. The
proof follows the strategy introduced by Hormander in [12], but the needed
microlocal results are already available. The case of a maximally real manifold
with little regularity will be treated in Section 3.
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Theorem 2.6 Let U CC R" be open and let P be an (analytic !) differential
operator on a neighborhood of U, of principal type on U and satisfying there
condition (P). If no complete bicharacteristic of P over U lies over a compact
subset of U, P : B(U) = B(U) is onto.

SKETCH OF A PROOF. By a complete bicharacleristic of P, we mean a
Nagano leaf B in Tj;C" of the vector distribution spanned by the radial vec-
tor field and the real and imaginary parts of the Hamilton field of P, with the
property that B is contained in the characteristic variety of P. Let f € B(U)
be analytic close to U, with 'Pf € A(U). If 8 € T;;C", either 0 is a non-
characteristic point of ‘P, or § is a characteristic point of “finite type”, or 8 is
a characteristic point of “infinite type” and belongs to a complete bicharacter-
istic of !P; 6 cannot belong to the microsupport (or analytic wave front set) in
the first case by Sato’s Theorem, in the second case by a theorem of Trépreau
[30], in the third case, since we assume that the complete bicharacteristics
of P escape every compact subset of U, by a theorem of Hanges-5jostrand
[7): if B is a complete bicharacteristic of ‘P over U, either B is contained
in the microsupport of f, or B does not mect it. Note that [7] is concerned
with classical solutions of *P, which is sufficient for our purpose, due to the
formulation of Theorem 1.6, but the result is actually true for hyperfunction
solutions as shown in an unpublished manuscript of the second author.

2.4 Hypo-analytic structures

The notion of an hypo-analytic structure is defined in Treves [33]. It is locally
equivalent to the data of a maximally real manifold M C C" and a partial
de Rham system 3/08z,,...,0/0z4. For the sake of briefness, we shall only
consider this local model, keeping in mind that the next results can be given
an invariant meaning in terms of the underlying hypo-analytic structure; we
refer to Cordaro-Treves [4] for details. So, we consider a maximally real
manifold M C C" and the equations

du;

P(uy,...,uq) = Zaz, £ (7)
‘sz—(%1“'13—2)=(uh-“1ud)' (S)
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From Theorem 1.4, we deduce that, if P is solvable, the solutions of ‘Pu = 0
satisfly a weak maximum principle:

Theorem 2.7 Let U CC M be open and assume that P : B(U)* — B(U) is
onto. Then, if u € CO(U) satisfies 'Pu = 0, |u| has no strict local mazimum.

PROOF. We may assume U as small as we wish and take {2 = C” in Notation
1.1. By the flabbiness of B, P : B(V)? — B(V) is onto for every open set
V Cc U. By Theorem 1.4, we have

|kl £ Clhlov).

for all b € O(C™) satisfying the equation ‘Ph = 0. Applying this inequality
to h*, taking A*" roots and letting k ~» 400, we obtain that the incquality
holds with C = 1. Letting then ¢ — 0%, we get:

l’llv S 'hlav.

To finish the proof, we note that if u is a continuous solution and z € U, by the
Baouendi-Treves approximation theorem, there exists a sequence ux € O(C")
such that u;, — « uniformly in a neighborhood of z in M, and *Pu; —» 0 in a
complex neighborhood of z. We can solve ‘Pv; = ‘Pu; with vy € O(C") and
vx — 0 in a complex neighborhood of z. Defining hy = uy — vi, we have, if W
is a small open neighborhood of z in M, |Axlw < |hklaw, hence |ul < |ulow.

b

It is tempting to make the conjecture that the strong maximum prin-
ciple (that is, |u]x < |u|sx for every continuous solution of ‘Pu = 0 and
every compact set X' C U) is a necessary and sufficient condition for P :
B(U) -~ B(U) to be onto, if U is small enough. We hope to return to
this question in the future. Here we shall only illustrate this conjecture by
evoking a few known results. First, in the casc of a CR structure (in our
local model this corresponds to the case when the system ‘P and the Cauchy-
Riemann system induce on M a system of d vector fields Z, ..., Z; such that
(ReZ,,...,ReZy4,Im Z,,...,Im Z;) has rank 2d), the strong and the weak
maximum principles are equivalent and are equivalent to the fact that the
Levi form of the structure is definite at no point, by a result of Berhanu
[3]. In the special but important case of a CR structure associated to the
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induced Cauchy-Riemann system Oy on a real hypersurface N C C™, this
is equivalent to the hyperfunction solvability of P: this is a consequence of
more general results of Michel [21]. It is an interesting situation, since the
solvability in the smooth category is not known in that case (see however
Michel [22] where solvability is obtained in some spaces of Gevrey functions,
including the space of analytic functions). Another important case where the
result is known to be true is the case, in some sense opposite to the CR case,
when d = n — 1: it is then a special case of the result of Cordaro-Treves [5)].
We shall not pursue this question further here.

Let us set z = (2/,2"), with 2’ = (zy,...,24), 2" = (Zd41,---, 2a) and let
7 : z — 2" denote the projection. An analytic solution of ‘Pu = 0 on M
extends as a holomorphic function which does not depend on z’. The maxi-
mum property in Theorem 2.7 depends, roughly speaking, on the topological
geometry of the fibers of m|p on the one side, on the holomorphic geometry of
the space of the fibers on the other. In the case of a CR structure, the fibers
are points and the structure coincide with its space of fibers; the opposile case
is when d = n — 1, see Cordaro-Treves [5]; in that case the projection takes
its values in C so the holomorphic geometry is trivial, and everything de-
pends on the topology of the fibers. We shall end this section with a sufficient
condition for solvability in terms of the topology of the fibers only:

Theorem 2.8 Suppose that the open set U C M is small enough and that,
for all zg € U, the fiber {z € U, z" = 2§} has no compact connected
component. Then P : B(U)? — B(U) is onto.

PROOF. We first recall the content of Lemma 2.2 in Treves [34]. If U is small
enough and the assumption in Theorem 2.8 is verified, for every ¢ > 0, there
exists C, such that, for every z € U, there exists a piecewise smooth curve
v : [0,1) — U, with the following properties: v(0) = z, v takes its values
in the complex fiber C* x {z"} of z, y(1) € AU and « has length < C. If
h € O(C") we may write

h(z) = h(+(1)) - L Ok = h(~(1)) - /1 &'h,

where @ stands for the partial holomorphic differential with respect to 2.

Thus
lhlg < Cl3'hlg, + |hlsv-

17



Arguing as at the end of the proof of Theorem 2.4, we obtain the a prior:
inequality (3). I

3 CONDITION (P) ON A MAXIMALLY REAL MANIFOLD

3.1 Statement of the main result

Let M C C™ be an oriented maximally real manifold of class C* and

P=Y an(z)g:—u (9)

lal<m

a differential operator of order m, defined and holomorphic in a complex
neighborhood 2 of M. The main result of this section is the following:

Theorem 3.1 Assume that M is of class C***®™) and let U CC M be an
open subsel without compact connected component. If P is of principal type
on U, satisfies condition (P) on U, and if no complete bicharacteristic of P
over U lics over a compact set in U, then P : B(U) — B(U) is onto.

The meaning of the hypothesis in this statement will be made precise in §3.2.
Theorem 3.1 is a hyperfunction version of Theorem 7.3 in Hormander [12].
Actually we follow the strategy introduced in [12] to obtain it, that is we
prove the non-confinement of analytic singularities for the adjoint equation.
M being of class C™, we may then apply Theorem 1.6. However we only need
that M be C? in the following statement, from which Theorem 3.1 follows:

Theorem 3.2 Let M be of class C® and P a differential operator of princi-
pal type on M, satisfying condition (P), with the property that no complete
bicharacteristic of P lies over a compact subset of M. If u € B(M) is ana-
lytic outside a compact subset of M and Pu is analytic, then u is analytic.

Proor OF THEOREM 3.1. If the hypothesis in Theorem 3.1 is satisfied,
Theorem 3.2, applied to the operator ‘P on U, shows that the condition in
Theorem 1.6 is verified, taking F' = C™(U) as a Fréchet space. |

We saw in the proof of Theorem 2.6 how the property of non-confinement
of singularities in Theorem 3.2 follows from known results when M is real
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analytic. In the general case the non-confinement property depends on mi-
crolocal results on the singularities of « when Pu is analytic, which may be
of independent interest. They are announced in §3.3. The proof of these
statements is reduced in §3.4, using the microlocal transformation theory, to
the proof of similar statements for the operator d/0z, acting at the boundary
of a strictly pseudoconvex domain in C™. This simpler situation is dealt with
in §3.5.

3.2 Geometry of condition (P)

Let T*C" be the holomorphic vector bundle of (1,0) forms A = Y1, (idz;,
with coordinates (z,{) = (z1,...,2n,C1,...,(a). It is endowed with the
canonical one form iy = 37, (;idz;. The holomorphic symplectic form ig =
idu gives rise to the two real symplectic forms Reio and Imio. The conormal
bundle of M is the real vector bundle Ty C" over M with fiber

z€M, (T;C"),={\€TC", Relrn =0}. (10)

It is a submanifold of T*C", actually a maximally real manifold in T*C",
with the important properties that it is R-Lagrangian (i.e. Reio vanishes
on it, this is obvious) and I-symplectic (i.e. Imio is non-degenerate on it,
this is easy). Hence u induces a real one form g™ and o a real symplectic
form o™ on T}, C". We shall denote by {-,-} and H the Poisson bracket and
the Hamilton map on T*C", by {-,-} and HM the Poisson bracket and the
Hamilton map on Tj,C" associated with the symplectic form oM. We note
that the radial field ip = 37, C-'a% is related to the canonical one form by the
formula ip = —H(ip) and we define the radial vector field p* = — TM(uM)
on TyC" by analogy. A basic fact to compute brackets on Tj,C" is the
following formula which holds when a and b are holomorphic:

{a,b}™ = i{a,b} on TyC™ (11)

Finally, we shall denote by T,‘{,C" the manifold obtained from T3;C" by re-
moving the zero section and by S3,C" its quotient space under the natural
action of R**. We have the natural maps

,Cc* 5 5;,C" 3 M.
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The principal symbol p of the operator P is the homogeneous holomorphic
function on T*(Q defined by

p(z,0) = 3 aa(2)(™.

lal=m

Its zero set is the complex characteristic variety of P, the points of which
are the characteristic points of P. We shall also denote by p the restriction
of this function to T3 C". A characteristic point 0 € Ty,C", or its image
w(0) = 9 € S3,C" will be called a characteristic point of P over M, or
simply a characteristic point. M being of class C?, Ty C" is of class c?
and, if g € C’(T;,C") is a real function, H:” is a C! vector field with well
defined integral curves. An integral curve of H;" on which ¢ = 0 is called
a bicharacteristic of q; since H;"q =0, ¢ = 0 on an integral curve of H:” if
g = 0 at some of its points. Here an integral curveisa C' mapy: I — .’I",(‘,,C"
defined on a non-empty interval I C R, such that v/(t) = HM(4(t)) for all
tel.
We shall always assume that P is of principal type:

Definition 3.3 P is of principal type if dp A 1 # O at any characteristic
point 0 € T}, C".

Using the Hamilton isomorphism, an equivalent condition is that H,Ap # 0 at
0. Since Tj;C" is maximally real, other equivalent conditions are dpApM #£0
or H¥ A p™M 3 0 on Tj;C" at 6. We recall the formulation of condition (P):

Definition 3.4 The operator of principal type P satisfies condition (P) if
there is no C? compler valued non-vanishing homogeneous function q in
T C™ such that Imqp takes both positive and negative values on a bicharac-
teristic of Reqp.

Condition (P) is necessary for the hyperfunction solvability of P, if P is of
principal type; this is a consequence of the stronger result that a weaker con-
dition, the so called condition (W), is necessary for the microlocal solvability
of P. Actually condition (¥) is also sufficient for the microlocal solvability
of P (see Trépreau [31] or the updated and more easily available version in
Hérmander [13], Chapter VII), which in some sense is a much stronger result
than the one obtained below, but unfortunately it is not clear how to get local
from microlocal solvability.
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Let 8, € T3, C™ be a characteristic point and let O(fo) be the Sussmann
orbit of 0y (see [29]) for the vector distribution F on T}, C™ with fiber

0 € TyC", Fy=RHM (0)+RHM (0) + Rp™(0) (12)

(the rank of Fy may depend on ). More precisely, a point @ belongs to
O(6o) if there exists a continuous curve 7 : [0,1] — TMC'l and real numbers
0=t <t <...<ty=1,such that y(to) = o, Y1, is an integral curve
of a vector ﬁeld
Xi= a.'Hﬂ'i,, + b HL + cip
with C! coefficients a;,b;,¢;, i = 0,...,N — 1, and y(1) = 0. The orbit
O(8o) has a natural structure of a C ) mamfold (its topology may be finer
than the one induced by TjC"), such that the injection O(0y) = T;,C" is
an immersion. Note thal the notion is global, even the dimension of t.hf' orbit
may shrink as M is shrunk.
The vector space (12) and the definition of the orbit O(6y) are not invari-
ant under multiplication by an elliptic operator, since HM = aHM +plM,
However this formula shows that the fact that the orbit is contamed in the
characteristic variety of P is invariant and that the orbit is also invariant in
that case, since H,, is proportional to H, when p = 0. Using the fact that
the orbit of 8 is homogeneous by the definition of the vector distribution F,
we define the orbit o(J) of a point ¢ € S;,C" to be the projection in S3,C"
of the orbit of any point 8 € T;,C™ with n(0) =

Definition 3.5 A non-empty set B C S3,C" is called a complete bicharac-
teristic of P (over M) if B is contained in the characteristic variety of P
and is the orbit of one, hence of any of its poinis.

If 9 € S3C" and 6 € n~'(¥9), . HYY ,(0) and =, H} () depend on 0, but
Rr, H}¥ (0) and Rw.H,mP(B) do not depend on 8, due to the homogeneity of
p: Fp has a well-defined image n.(Fy) C TyS}3,C", which depends only on ¢.
We denote it by Fy:

Ey=Rr.HY (0) + Rr H{ (0), 0€n'(V).
Since P is of principal type, Ey is a one or two dimensional vector space.

Definition 3.6 A bicharacteristic interval of P is a C! curve v : I — S3,C",
I C R a non-empty interval, such that E.;) = Ry'(t) for every t € I, and
p(y(t)) = 0 for some, hence for allt € I.
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If we identify two bicharacteristic intervals which coincide up to reparametri-
zation, there is an obvious notion of a mazimal bicharacteristic interval. For
the classification, it is convenient to endow S}/C" with a complete Rieman-
nian metric (by the completeness assumption, a curve of finite length is rel-
atively compact in S;,C"), so that we may assume that a maximal bichar-
acteristic interval is parametrized by arc length; then the parametrization is
unique up to the orientation and a translation in R. Let y: I = Sy C" be
a maximal bicharacteristic interval parametrized by arc length. If to € R is
an endpoint of I, clearly (¢) has a limit as ¢ — o, ¢t € I. Looking at a
bicharacteristic of Rep or Im p through the limit point, it is clear that t € .
So, either / = R and v is a complete bicharacteristic over M, or I =] — 0, a
(or I = [a,+00[ according to the orientation), or I = [a,d]. In the last two
cases we shall refer to y(a), y(b) as the endpoint(s) of 7.

Condition (P) has strong consequences on the geometry of the complete
bicharacteristics of P. Let us recall the following theorem of Hérmander [12]:

Theorem 3.7 We assume that condition (P) is satisfied. If the orbit o(J) of
J = n(0) € S;;C" conlains a characteristic point ¥’ with dim Ey = 2, o()
is a complete two dimensional bicharacteristic. Moreover, if one identifies
any two points of the orbil which belong to the same bicharacteristic interval,
the resulting C°-manifold has a natural structure of a Riemann surface. A
function u in o(3) is “holomorphic” if HY (uow) = 0 on O(0) (then u induces
a well-defined function on the reduced orbit).

The first part of this statement is contained in [12] Proposition 2.1 and Propo-
sition 2.4, the second part in [12] Section 4. Presumably, the description of
the complex structure of the reduced bicharacteristics should be simpler in
our set up than in [12], because P is analytic, if M is not.

Let V C S3,C" be (the projection of) the characteristic variety of P over
M and 9 € V. If dim Ey = 2, o(9) C V by Theorem 3.7: starting from 9 and
following successively (the projection of ) integral curves of Hgt , or HM , one
stays in V and travels through a two dimensional complete bicharacteristic
of P. If dim Ey = 1 but 9 is the limit of a sequence of points 9’ € V with
dim Ey = 2, clearly o(9) C V by continuity, hence 9 belongs to a one or to a
two dimensional complete bicharacteristic of P. Thus we have:

Lemma 3.8 If condition (P) is satisfied, the characteristic variety V C
S3,C™ of P over M is the (not necessarily disjoint) union of V®, the union
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of all one or two dimensional complete bicharacteristics of P over M, and

the set V° C V defined by
V={JdeV, dmEy=1 for all ¥ '€V close to 9}. (13)

Roughly speaking, Theorem 3.2 will follow in §3.3 from the propagation
of singularities along the bicharacteristic intervals and the complete two di-
mensional bicharacteristics of P and the hypoellipticity of P at certain points
in V°. For these points, the following lemma will be used:

Lemma 3.9 We assume that condition (P) is satisfied. Let 9 = n(8) € V°,
and let a be a complex positively homogeneous function of class C* near 0,
with H,Qfmp ApM # 0. Let v, be the germ of the bicharacteristic of Reap
through 0 with v,(0) = 8. The property
o Imap takes a negative value on v,(] — €,0[) or a positive value on
Ya(]0, +¢[), for every small € > 0,

does not depend on a. If it is satisfied, 9 is called a point of positive type.
PROOF. We may assume that
Hﬁ’i,,/\p" #0, Hﬁ,’,,/\p” =0 até.

As Hlﬁ” = (Rea)H,‘:'ip - (Ima)Hll‘,;’”D at 8, Rea(8) # 0 if the condition in
Lemma 3.9 is satisfied, so we may write a = (1 + if)Rea. If 3 =0, that is p
is multiplied by a non-vanishing real function, the bicharacteristic of Rep is
preserved, with the preserved or reversed orientation depending on the sign
of a, and the same happens to the sign of Im p; the invariance is clear in that
case. It remains to consider the case of a = 1+:3. We have to look at the sign
of SRep + Imp along the bicharacteristic of Rep — fImp. As Rep = Blmp
along this bicharacteristic, this is the same as the sign of (1+4?)Im p, hence as
the sign of Imp. We use a homotopy argument. Let v, be the bicharacteristic
of Rep — tBImp through 8, 0 < t < 1. If (for example) Imp takes a positive
value on ()0, +¢[) for all € > 0 and is < 0 on ¥,(]0, +¢[), by the condition
(P) and continuity, Im p must be zero on 7(]0, +¢[) for some ¢ € [0,1]. Then
7(]0, +¢[) is contained in the characteristic set of P, hence its image in S3,C"
is a bicharacteristic interval, since it is contained in V°. This implies that
70(]0, +¢[) and 7,(J0, +¢€[) have the same germ of image near ¥, which is a
contradiction. |
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3.3 Propagation, and non-confinement of singularities

In this section, we reduce the proof of Theorem 3.2 to microlocal results
concerning the singularities of u, when Pu is analytic, and their propagation.
We first recall a little of Sato’s theory for maximally real manifolds with small
regularity. Let £ denote the sheaf on T*C" of microdifferential operators; we
shall also consider £ as a sheaf on Sj,C", using the homogeneity. The sheaf
Cp of microfunctions is a flabby sheaf of &-modules on S},C" with the other
main property: there is a sheaf morphism By — w.Cn, compatible with the
natural action of differential operators such that the support of the image of
a section u of By is the microsupport of u. Concerning the notion of the
microsupport, for the time being, we need only mention that a hyperfunction
is analytic near a point z € M if and only if its microsupport does not meet
the fiber of z in §3;C". The proof of Theorem 3.2 depends on the next three
microlocal results:

Theorem 3.10 Let P be an operator of principal type and let b be a bichar-
acteristic interval of P. If it is a microfunction defined in a neighborhood of
b and Pt = 0, either the support of & contains b, or it does not meet b.

As a special case, complete one dimensional bicharacteristics propagate singu-
larities. This is also the case for complete two dimensional bicharacteristics,
at least when condition (P) is satisfied:

Theorem 3.11 Let P satisfy condition (P) and let B be a complete one or
two dimensional bicharacteristic of P. If @t is a microfunction defined in a
neighborhood of B and Pii = 0, either the support of @t contains B, or it does
not meet B.

Finally, for points in V° (see (13) and Lemma 3.9), we have:

Theorem 3.12 Let P satisfy condition (P) and let 9 € V° be a point of
positive type. If it is a microfunction defined in a neighborhood of ¥ and
Pt =0, 9 does not belong to the support of u.

PROOF OF THEOREM 3.2. Let u € B(M) be analytic outside a compact
set K C M and such that Pu is analytic. We must prove that u is analytic.
Assuming it is not and 9 belongs to the support of the microfunction @ €
Cr(S3,C") associated to u, we shall reach a contradiction.
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¥ must be a characteristic point of P since by Sato’s Theorem, P is in-
vertible at every non-characteristic point. ¥ does not belong to a complete
bicharacteristic of P, since by Theorem 3.11, this bicharacteristic would be
contained in the support of @, hence lie over K, which is forbidden by the
assumption in Theorem 3.2. As a consequence, ¥ € V°\V®. By Theorem
3.12, 9 € V° cannot be a point of positive type, hence with the notation in
Lemma 3.9, Imap must be = 0 on ¥(] — ¢,0}) or on v([0, +¢[), which by the
definition of V° implies that ¥ belongs to a maximal bicharacteristic interval
v : 1 - S3C™. Since 9 ¢ V* either I = [t~,¢]) or ] = [0, +00. In the first
case, we may select a non-vanishing homogeneous complex valued function
a such that Hﬁz,‘p A pM # 0 along 7=1(7), hence v is the projection of a
bicharacteristic of Reap. Now as v is maximal and contained in V°, Imap
must be # 0 somewhere on the left (respectively on the right) of v(¢~) (re-
spectively y(t*)) on the bicharacteristic of Reap. Using condition (P), it is
then clear that at least one of the endpoints of v is of positive type, which
is forbidden by Theorem 3.12 and the propagation along v. So I = [0, +ool.
Since the support of  lies over K, so does v by Theorem 3.10, hence it has
a cluster point 9y as t = +00. Then ¥4 belongs to complete one dimensional
bicharacteristic lying over K (see the proof of Theorem 7.1 in [12]), which is
not allowed by the hypothesis in Theorem 3.2. |

It may be worth mentioning that we have obtained the non-confinement of
analytic singularities as a by-product of simple statements about the existence
of analytic singularities and their propagation. The case of C* singularities
is much more complicated, see the analysis of Hormander in [12].

3.4 Complex canonical reduction

We shall now reduce the problem to a model problem. This is similar to
what was done in [31] but for the fact that we shall use the transformation
theory of Kashiwara and Schapira [16] in place of the earlier but less general
transformation theory of Kashiwara and Kawai.

Let  C C" be a strictly pseudoconvex domain of class C?, near its
boundary point 0 € N := 99, and f a defining function of Q:

Q:= f(z)<0. (14)

We still define the conormal bundle T{C™ by (10) and it is still the case, due
to the assumption that the Levi form is non-degenerate, that TyC" C T*C"
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is maximally real, R-Lagrangian and I-symplectic. We shall use the same
notation as in §3.2, with superscript N, for the objects associated with the
induced symplectic structure. T3 C" is defined by the equation

of

ToC™ = {(2,0), f(z)=0, ¢ = ka(2)if 1S5 <n, keR}. (15)

We shall work on the outer component Tx"C" of T,;,C", defined by taking
k > 0 in (15), and the outer component

SiCr = TG /R (16)

of S} C". Since its fiber at z € N consists of just one point, we shall often
identify Sy C™ with N, using w : S;*C™ — N. What will play the role of
the sheaf of microfunctions is the sheaf on N of “holomorphic functions on
the  side of N modulo holomorphic functions on N.” More precisely, we
introduce the sheaf Cy on N or S3tC™ with stalk at z € N:

Cn: = limO(ANQ)/O(A), (17)
Ads

A running through the set of all open complex neighborhoods of z. Cy is a
sheaf of £-modules.

Let us return to the situation considered in §3.3. Let P be of principal
type and w(0) = 9 € S;;C" be a characteristic point of P. We can find a
homogencous holomorphic canonical transformation x of T*C", defined in a
complex conic neighborhood of #, such that the complex characteristic variety
of P is transformed into the complex hypersurface {{; = 0}, while T},C" is
locally transformed into the outer conormal bundle to the boundary N 3 0
of a strictly pseudoconvex domain of class C® in C" (we refer to §5 in [31]
or §7.4 in [13], where this statement is proved when M = R", but the proof
does not use this fact). By the theory of Sato-Kawai-Kashiwara [25], x can
be quantized as an isomorphism X : x.& — &), in such a way that the
principal symbol ¢(Q) of a microdifferential operator @ is transformed ac-
cording to the formula o(X(Q)) = o(Q)ox™!. In particular, o(x(P)) vanishes
at order one on {¢; = 0} and by another classical result of [25], there exists
an elliptic, hence invertible, microdifferential operator A defined in a conic
complex neighborhood of ¢ such that x(AP) = 3/9z,.
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Finally, by the transformation theory of Kashiwara and Schapira (see [16],
Theorem 11.4.9), x can be locally quantized as a sheal isomorphism Y :
X+Cm — Cn, which is compatible with the transformation of microdifferential
operators, that is: x(Qu) = x(@)x(u).

So any microlocal statement about a differential operator of principal type
on a maximally real manifold M of class C3, whose formulation is invariant
under canonical transformations and multiplication by an elliptic operator,
has only to be tested in the case of the simple operator 3/dz, acting at the
boundary of a strictly pseudoconvex domain of class C3. This is, almost, the
case for the statements in the previous section. So, from now on, we shall
consider the operator:

d
'071 : CN.o — CN'o. (18)

3.5 Study of the model
We consider now the operator (18). We use the notation:
2'=(z2,...,2a), 2" =(22,-.-12n1), Zk =21 +iy, for k=1,...,n.

Since the non-characteristic case is trivial and our problem is invariant under
a local biholomorphism that preserves the equation du/dz; = 0, we may
perform an elementary reduction (we refer to §2 in [31] or §7.1 in [13] for the
details of this reduction), so that § has a local equation

Q = f(z2)= -z, +h(21,2",9.)2 + 9(v1,2",ya) <0, (19)
with h € C?, g € C3,
h(0) = g(0) =0, dg(0) =0, 8h(0)/dz: # 0. (20)

Let ¢ € Cnp, d0/0z, = 0, and let u be a holomorphic representative of
t. As Quf/dz, € Oy, solving dv/dz; = Ou/dz with v € Oy, replacing u by
u — v, we see that we may assume that du/dz; = 0. In this situation, it is
easy to show, see [31], [13], that u = v 0 § for some holomorphic function v
in a “local projection” of {2 under the map

§:C" 2 C™, §((z1,7)) =7 (21)
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Localizing everything near 0 € C", we define:
Q:= Izl] < €, |yl| <e |In| <g, 'z”l + |yn| <" f(xl + iyhzl) < 01

N:= || <6 [nl <€ |zl <& |2+ gl <m0 flz1+i91,2) = 0.
In the sequel, we shall assume that 0 < 7 < € <« 1 are chosen small enough
Then i is represented by a function u = vod where v € O(A) and A C @
is the open set defined by

= |Inl <¢, |Z”l + Iyn] <n —zT,+ G(Zna yn) <0,

where G(z”,yn) = miny, |<c 9(¥1, 2", Yn). We note that A is a supergraph of a
Lipschitz function since, with £ = (z”,y») and an obvious notation, we may
write:

911 (€),€) — 9(11(£),€)

G()Y-G(&) =
< g(€),€) — g(wi(€),€) < CIE' —¢&|.

Whether 0 belongs to the support of i or not depends, on one hand, on
the position of the fiber §=!(8(0)) of 0 with respect to 2, on the other, on the
holomorphic convexity of A at §(0) = 0 € C™~'. We have the following:

Lemma 3.13 The following properties hold for 0 < n € e K 1.

1. If 8(0) € A or if §(0) € A but belongs to the envelope of holomorphy
of A, 0 does not belong to the support of 4.

2. If§(0) € QA, either the support of i contains the set NN§='(6(0)), or

it does nol meet il.

3. If6(0) € 8A and A: D —» A (D C C denotes the open unit disc) is an
analytic disc with A(0) = 0, the following property holds: 0 does not
belong to the support of i if A(D) intersects A while, if A(D) C 0A, the
projection of the support of 1 either contains or does not meet A(D).

PROOF. Properties 1 and 2 are self-evident. To prove Property 3, we argue
as in [32] Lemma 3.2. Let us assume that v is holomorphic in the union
of A and a small ball around A(7o) (1o € D\0, A(7o) may belong to A or
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not) but cannot be holomorphically extended near 0 € C*~'. Introducing
(as in [32] Lemma 1.2) the envelope of holomorphy A of the union of A
and this small ball, this means that 0 ¢ A. We shall reach a contradiction.
Set e = (0,...,0, 1) € C"' and let d(z) denote the euclidean distance of
z € A to the boundary of A. Since AD)cAand Aisa supergraph of a
Lipschitz function, A(T) + ite € A, for small { > 0 and every 7 € D, and

d(A(T)+1e) > t/C. On the other hand, d(te) < t since 0 € DA. The function
uy(r) = —log d(A(r) + te), t > 0, is subharmonic in D, uniformly bounded
in some disc of center 79, radius p > 0. Using the mean value property we

obtain:
—logt < uy(0) < // d‘/.\d-r

2

IA

1r((7r —mp?)(—log1/C) + mp*M).
Letting t — 0%, we reach a contradiction. }

0/0z, is a differential operator of principal type, with principal symbol
(1. To emphasize the link with §3.3, we shall use the notation:

P = Quryen
Taking (15), (19), (20) into account, we have:
o0 ek (o o, o
p—-LBZl, Rep 2(2h3 1) Imp= (2hayl ayl).

The characteristic points over N are thus defined by h = 0, dg/dy; = 0. Our
task is now to establish a link between the properties of the symbol p and
its Hamiltonian field, which occur in the statements of Theorems 3.10-3.12,
and the properties in Lemma 3.13, which are stated in terms of the fibers
and the image of the map ¢ : (z;,2') — z'. For example we would like to
recognize a bicharacteristic interval, or a characteristic point of positive type,
by looking at the behaviour of the function y, — 9g(y1, 2", yn)/dy1. This will
be possible, thanks to the following lemma:

Lemma 3.14 Let 8 € T,:,C" be a characteristic point with dp AdpApN =0
at 0. In the coordinate system (zy,y1,z",y, k), we have:

/] d a
Npst gl Z 00 fpen 0 Dl
Hy _tazl m521+'33k at &
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with a = (0h/07,)(@h)0z,)7", B € C. '
Hence, W.H;V is tangent to the zero set £ = {h = 0} of Rep at n(6), and if
we use (y1,2",y') as a coordinate system on X, we have:

9 1(an\*|on["
N = a— i === |z 0.
T Hpe aayl at m(0), with a - (83:1) a7, >
PROOF. By our assumption we have the relation:
d¢, = ad(, +ib ) (adza at b, (22)

a=1
on T3 C", for some a, b € C. Using only formula (11) we get:
(HY, dz) = {G1, 5} =i{G, 25} =idj, j=1,...,n.
Using (22) and formula (11) we compute:
(H,dz) = {G,zY = {Ch %)Y
= G - B3 Ll

= —iab; at 0, j=1,...,n.

To compute a, we rewrite (22):
af\ _ af -
d( 3?1) = ad( 3__21) + 1bkaf,

and chase the coefficients of dz; and d%,; in this equality, in our coordinate
system. For the sake of simplicity, we shall write f,, for f/0z,, ... We note
that the term ibk0f gives no contribution, since at 0, f,;, = 0 and dz, = dg
with g;, =0, g5, = 0. As f;,, fz, do not depend on z,, we obtain:

fil'l = afll LIR) f?;fl = af?,z.-

By addition we get f;, ;, = af;, ;,. As g does not depend on z; and A =0 at
6, we obtain a = hz, [h,, and the first part of the lemma.
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The second part follows, since the formula for H)Y gives HYh = 0 at 6 and
HYy, = 42 with real part o = k2 [4]h,,|*. }

We are now in a position to prove the statements of §3.3.
PRrooOF OF THEOREM 3.10. If b 3 0 is a bicharacteristic interval of 3/dz,,
then b is the projection of an integral curve of HY, » along which p = 0 and the
condition in Lemma 3.14 is satisfied. Hence h = 0, dg/0y, = 0 along b, and
by Lemma 3.14, z”, y, are constant = 0 along b; hence also g(y1,2",yx) =
g(v1,0,0) is constant = 0 along b. So 2’ =0 on band b= NNé~'(0): Lemma

3.13, Property 2 applies. |

From now on we assume that 8/0z satifies condition (P) on Sy'C",
though this is perhaps not necessary for the next result (we shall avoid proving
an analogue of the Hanges-Sjéstrand Theorem {7] in our context, condition
(P) simplifies things).

PROOF OF THEOREM 3.11. Theorem 3.10 applies to one dimensional bichar-
acteristics, so we consider the case of a complete two dimensional bicharac-
teristic. We must be careful since its definition is global while our reduction
is local. However this is not important for the following reason: if J belongs
to a two dimensional bicharacteristic, and also to a bicharacteristic interval,
as propagation along a bicharacteristic interval has already been established,
we may localize our study close to an endpoint of it. Hence we may assume
without loss in generality that J does not belong to, or is an endpoint of a
bicharacteristic interval. Then it is easily seen that the complex structure of
the reduced two dimensional bicharacteristic through 9 is locally determined
and the following argument is meaningful. By Theorem 3.7, we may assume
that there exists a germ of a two dimensional manifold 0 € B C N such that
the space obtained by shrinking any bicharacteristic interval in B to a point
has a complex structure, the holomorphic functions of which are induced by
solutions of H,’,v u = 0. We note that the map § is well-defined on the reduced
space, since a bicharacteristic interval projects in a fiber of § by the proof of
Theorem 3.10. It is holomorphic since Hz; = i{(y,2;} = 0if j > 1. Hence
§ : B =+ C™ ! may be locally considered as an analytic disc as in Lemma
3.13, Property 3. The lemma applies (actually A is pseudoconvex [31] and
§(B) C 8A but we do not need this fact.) }

PROOF OF THEOREM 3.12. It is an immediate consequence of Lemma 3.13
and the following result:
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Lemma 3.15 With the notation in Lemma 3.13, 5(0) € A if 0 € V* is a
point of positive type.

It was proved in [31] that, if Imp = —kdg/0y does not change sign from —
to + along any bicharacteristic of Rep, it does not change sign from — to
+ along any integral curve of 8/8y;. No such result holds for sign changes
from + to —. The main ingredient in the proof of Lemma 3.15 is that this is
however the case on the part V° of the characteristic variety, when condition
(P) is satisfied. :
PROOF OF LEMMA 3.15. We identify Syt C™ with N and we parametrize the
zero set & = {z € N, h(z) =0} of Rep by y;, 2", ¥'. H,QLP induces a vector
field ﬂ.f[ﬁ’ep on £ (because p is homogeneous of degree 1) and by condition
(P), dg/dy, does not change sign along its integral curves. We shall use the
homotopy 2
=l = N e

Xe= (-t H, +t5m, 0St<1
between the vector fields m. HY., and 8/dy; on E. By the definition (13) of
V? and Lemma 3.14, we have near 0:
dg _

with a; >0, if == =0.

7]
O ayl -

o

It is then a consequence of the Bony-Brézis Lemma, see [13] Lemma 7.3.4,
applied to +8g/dy;, that dg/dy, does not change sign along the integral
curves of X;, 0 <t < 1. We may assign a sign s(t) to ¢: s(t) = —1,0,+1,
according as dg/dy, takes a negative value in every neighborhood of 0, or is
= 0, or takes a positive value in every neighborhood of 0, on the half integral
curve of X, ending at 0. If s(0) > 0, s(t) > 0 for all ¢, since otherwise,
by continuity, s(t) would vanish for some ¢, which would mean that the half
integral curve of X, ending at 0 is a bicharacteristic interval. This is a
contradiction. So s(1) > 0: g(y,,0) is a nonconstant nondecreasing function
on [—¢, 0], hence takes negative values, which implies that, with the notation
in Lemma 3.13, §(0) € A. The other case in the definition of a point of
positive type can be treated similarly. §
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