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It is well-known from the theory of linear partial differential equations in 
spaces of smooth functions and distributions, see Hormander [11] [12], that the 
solvability of a differential equation is related to the non-existence of a solution 
of the homogeneous adjoint equation with compact singular support, and that 
this may be used to obtain semi-global existence results from the microlocal 
study of the adjoint operator. In this paper we show that a similar strategy 
is possible in the framework of hyperfunctions. Actually, we shall consider in 
this paper the more general case of a system of differential equations without 
compatibility conditions in the framework of hyperfunctions on a maximally 
real manifold in C" with little regularity. 

The first section of the paper may be considered as a continuation of 
Schapira [26],[27], in which it was shown how functional analysis can be used 
in the hyperfunction theory of differential operators. We first recall the fact 
that hyperfunction solvability is insensitive to the geometry of the boundary 
of the domain {Theorem 1.2) and show that finite dimensional obstruction 
to solvability never occurs (Theorem 1.3). Then we characterize the hyper­
function solvability of a differential operator in terms of the validity of an a 
priori inequality for the adjoint operator (Theorem 1.4). The main result of 
this section is perhaps Theorem 1.6 which states that the non-confinement 
of analytic singularities for the adjoint operator is a sufficient condition for 
the hyperfunction solvability. This is similar to Theorem 1.2.4 of Hormander 
[11]. 

In Section 2 we give several examples of how the functional analysis state­
ments of Section I apply to obtain seemingly new existence theorems or 
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new proofs of classical existence theorems, as corollaries of already available, 

sometimes deep, microlocal results. Such topics as holonomic systems, hypo­

analytic structures or analytic differential equations of principal type on R" 

are touched on. Theorem 2.2 gives a very simple proof of the local solvability 

of the last "compatibility equation" of a maximally overdetermined system. 

Theorem 2.6 states the solvability of an analytic differential operator of prin­

cipal type on Rn, satisfying the Nirenberg-Treves condition (P). Theorem 2.7 

establishes a weak maximum principle for the hypo-analytic functions, when 

the hypo-analytic complex is solvable in top degree. The converse assertion 

is conjectured and discussed in some special cases. 

In Section 3 we establish the solvability of an analytic differential oper­

ator of principal type satisfying the Nirenberg-Treves condition (P), in the 

framework of hyperfunctions on a maximally real manifold in C" with little 

regularity. The proof follows the strategy introduced in Hormander [12] for 

the C00 solvability, that is we prove the non-confinement of analytic singu­

larities for the adjoint operator. However the needed microlocal results are 

~. • not available and we use the microlocal transformation theory of Kashiwara 

and Schapira [16] to obtain them. It allows us to reduce the problem to the 

analysis of the concrete operator 8 / 8z1 acting at the boundary of a strictly 

pseu<loconvex domain in C". This is similar to what was done in Trepreau 

131) to prove the microlocal solvability of an operator satisfying the weaker 

condition (Ill). Unfortunately, it is not clear how to get local from microlocal 

solvability, so we shall rely on the method but not on the main result in (31). 

1 LOCAL SOLVABILITY AND NON-CONFINEMENT OF SIN-

GULARITIES 

1.1 Notation 

For any n E N, we denote by z = (z1, ... , Zn) the variable in C", lzl = 
max~ 1 jz;I its norm, and we define dz = dz1 A ... A dzn. If [( C C" and t: > 0, 

I{, denotes the set of all z E C" which lie at a distance< t: from I{; if his a 

function /{ -t Cd, we set 

lhlK = sup lh(z)j. 
zEK 

We shall use the terminology FS and DFS to refer to the class of Frechet­

Schwartz spaces and to the class of all strong duals of Frechet-Schwartz 
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spaces, see Grothendieck [6], Kothe [19). Let O be the sheaf of holomorphic 
functions on C". If .0 C C" is open, 0(.0), endowed with the semi-norms 
I IK, K CC n, is a FS space. An analytic functional ¢, on n is an element 
of the dual space 0'(.0); it is carried by a compact set I< C n if for every 
f > 0 there exists C such that l</>(h)I ::; Clhl,-.-, for all h E 0(.0). Let !( C C" 
be a compact set; the space 0(1() of germs of holomorphic fonctions at /{, 
endowed with the locally convex limit topology, is a DFS space with strong 
dual the FS space O'(l{): ¢, E O'(l{) acts on every space O(K<) and the 
topology of O'(I() is induced by the semi-norms 

ll<!>IIK, = sup (1¢,(h)l/lh[K.). 
hEO(K,) 

If n is pseudoconvex and the compact set KC n is O(fl)-convcx, then 0(.0) 
is dense in 0(1() and 0'(/() can be identified with the space of analytic 
functionals on n which are carried by I(. 

1.2 Hyperfunctions and analytic functionals 

Let M be a maximally real manifold in C" (actually we might replace C" 
by a Stein manifold), that is a totally real n-dimensional submanifold of 
C", of class C 1• Sato's theory of hyperfunctions extends to this situation (see 
Harvey (8], Harvey-Wells (91) and so does the microlocal theory of Sato-Kawai­
I<ashiwara (25) (see Kashiwara-Schapira (16]). We denote by 8 the sheaf of 
hyperfunctions on M. For the sake of simplicity, a section of A = 01M will 
be called analytic even if M is not real analytic. Though this is not essential, 
we shall assume that M is orientable, and in fact oriented, in order to avoid 
difficulties in identifying A with a subsheaf of 8. 

We shall adopt the point of view of Martineau (20] about Sato's theory 
by identifying compactly supported hyperfunctions with analytic functionals 
carried by M. Martineau assumed M real analytic but it was proved by 
Harvey and Wells (9} that his results remain valid when M is of class C1

• Let 
us recall the content of Theorem 2.2 in (9), which is important in this respect: 
There exists a fundamental neighborhood system F of M with the following 
properties: (i) each U E :F is pseudoconvex, (ii} O(V) is ·dense in 0( U) if 
U, V E :F and U C V, (iii) each compact set /{ C M is O(U)-convez for 
each U E :F. 
To summarize, we shall use the following notation: 
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Notation 1.1 MC en is an oriented maximally real manifold of class C1
, 

with O E M. n denotes a pseudoconvex neighborhood of M with the property 

that every compact set I{ C M is 0(0)-convex. 

With this notation 0'(/{) is identified with the space of analytic functionals 

on n carried by I(, if K C M is compact. Let us recall that 8 is a flabby 

sheaf on M and that, if U CC M is open in M (the notations U and {JU 

always refer to the closure and the boundary of U relative to M), the identity 

B(U) = O'(U)/O'(fJU) 

holds. 

Some of our results are local near O E M; then we may shrink M and 

take n = en in Notation 1.1. Some other results, like Theorem 1.4 and 

Theorem 1.6, are global and concern an open subset U CC M. Let us already 

emphasize the fact that these results do not apply to compact manifolds: 

it will be assumed that U has no compact connected component, with the 

consequence that the restriction map O(U) -+ 0(8U) is injective by the 

uniqueness of analytic continuation, and as a result that O'(oU) is dense in 

O'(U). 

For the sake of simplicity we embed £l0 c(M) as a subsheaf of 8 in a 

non canonical way by identifying f with the analytic functional 

f(h) = JM f(z)h(z)dz 

when / has compact support. This is not invariantly defined, but using 

another analytic non-vanishing density a( z) dz for the identification would 

not change much to what follows, since u t-+ au is a sheaf isomorphism of 

8. In particular A is identified with a subsheaf of 8. Also, if M is of class 

cm, there is a canonical injective sheaf mapping from the sheaf !Ym-t of 

distributions of order m - 1 on M to the sheaf 8, which induces the obvious 

" restriction map on compactly supported sections (see [9) Theorem 3.5). 

By a differential operator on M, we shall always mean an operator 
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with analytic coefficients a0 E A( M). The adjoint operator 1P of P is the 
differential operator on M defined by 

P acts on analytic functionals carried by M by the formula: 

P<J,(h) = <J,('Ph) if h E 0(0), 

and this action extends as a sheaf homomorphism of 8. On the other hand, 
Pacts on the sheaf 0, hence on the sheaf A by restriction: 

This action can also be described as follows: if Mis of class cm and 1 ~ k $ 
n, a;azk induces a vector field Lk of class cm-I Oil lvl, determined by the 
property that o / azk - L1; is antiholomorphic. Actually, d::1, •. • , dzn induce a 
basis of I-forms of class cm-t on M and Li, ... , ln is the dual basis of vector 
fields on M. Clearly {)J /fJzk = L,.:f if f is analytic! so aJ /azk is well-defined 
if f is of class C1 and the definition agrees with the hyperfunction definition, 
since if/ has compact support: 

a1 ah h --a (Ji)+/(~)=± d(fhdz1 I\·· · I\ dzk I\··· I\ dzn) = 0, 
Zk VZk M 

due to Stoke's formula (the notation J;,. means that d::k is omitted in the 
wedge product). Thus, if Mis of class cm and Pis of order m, the action of 
P on hyperfunctions is compatible with the natural action of P on functions 
of class cm and our identification of functions with hyperfunctions. 

1.3 Local solvability and a priori inequalities 

Let us consider d differential operators Pi, ... , Pd on M and the following 
associated "underdetermined" system P: 

d 

P(u1, ... ,ud) = L P;u; = /. 
i=l 
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The adjoint system is the "overdetermined system" 1P defined by 

(2) 

A main idea in Schapira [26], to circumvent the fact that the topology of 

8( U) is not separated, was to notice that, if A : B ➔ B is a sheaf morphism, 

A : 8( U) ➔ 8( U) is onto if and only if the map A' : O'( U) x O'( BU) ➔ O'( U) 

defined by (¢, v) 14 A</>+ vis onto. This remark is useful, since O'(U) and 

O'(DU) are gentle FS spaces which tolerate the use of functional analysis. 

We first recall the fact (this is Proposition 2 in [26]) that local and global 

solvability ar<' the same on small open sets, when hyperfunction solutions 

are allowed, and as far as there arc no compatibility conditions! Hence such 

phenomena as P-convexity play no role in hyperfunction solvability. Let us 

dP11olc by 80 the space of g<'rms of hypcrfunctions at O E M. 

Theorem 1.2 The following properties are equivalent: 

I. P: Bg -t 8 0 is onto. 

2. There exists an open neighborhood U of O in M such that P: B(U)d -t 

B(U) is onto, hence by the flabbiness of B, P: B(Vl ➔ B(V) is onto 

for Fve1y open subset V C U. 

Pnoor. 2 => l by the flabbiness of 8. Let us assume that Property I holds. 

Let Vk CC V CC M be open neighborhoods of O in M, with nk Vi = {O}. 

The space 

is a dos<'d subspace of a Frechet space, hence a Frechet space. If 7rk : 

Ek ➔ O'(V) denotes the projection on the first factor, Ukrrk(Ek) = O'(V) 

hy Property 1. By Baire's category theorem and the open mapping theorem, 

1rk( Ek) = O'( V) for some k. Finally, Property 2 holds true with U = Vi, 
thanks again to the flabbiness of 8. ~ 

111 I.Ill' (>l'l'n•ding arg1111w11t, let us rl"placl" Propl"rty 1 by the weaker hy­

pothesis that P : Bg ➔ 80 has a range with finite codimension, so that for 
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I 

some 01 , ..• , ON E O'(V), 80 is spanned by the rnngc of /> and the gcrnrn 
defined by 01, ••• , ()N, Considering the space 

N 
E1c = {(¢,,tt,,v,a) E O'(V)xO'(Vk/xO'(V\½,)xCN, ¢,= Pt,b+v+Ea;O;} 

i=I 

and repeating the previous proof, we obtain that, for some V,, = U, the map 
O'(V)d X O'(fJU) X cN ----t O'(U), (tJ,,v,a) H Ptp + ll + I:f:1 a;O;, is onto, 
hence a homomorphism. We deduce from this that the map ( tp, v) H Ptp + v 
has closed range, hence is surjective, since its range is dense. This shows 
that local solvability in the space of hyperfunctions is insensitive to finite 
dimensional obstructions {see §2.1 for a simple application of this fact to 
holonomic systems): 

Theorem 1.3 If P : Bg ➔ Bo has a range with finite co<iimension, P is 
onto. 

We now show that the solvability of Pin B(U) is equivalent to an a vrio1--i 
inequality for 1P. This improves a result of Schapira (26]. 

Theorem 1.4 Let M, n be as in Notation 1.1 and U CC M an open subset 
witho11t compact connected component. The differential system (1) on M 
induces a surjective map P : 8( U)" -t B( U) if and only if, for every small 
f > 0 there exist 17 > 0 and C such that the following inequality holds: 

Vh E 0(0), lhlu,, ~ C(l'Phlu, + lhllauiJ-

PROOF. P: B(U)" -t B(U) is onto if and only if the map of FS spaces 

O'(U)" x 0'(8U) 3 (tJ,,v) .-+Pt/•+ v E O'(U) 

(3) 

is onto. Since U has no compact component, this map has dense range, 
hence it is onto if and only if its range is closed, if and only if the range of 
the transpose map T 

O(U) 3 h .-+Th= (1Ph,h1au) E O(U)" x O(fJU) 

of DFS spaces is closed, or (see (19] page 18) sequentially closed. This is 
the case if (3) holds: if Thk converges, it converges in O(Ut)d x 0((8U)t) for 

7 



some t: > 0; since 0(0) is dense in O(U), (3) implies that the sequence h1c 

is bo1111cl<'<l in U '1 for some 17 > 0, hence admits a subsequence converging in 

0( U). Convf'rscly let us assume that the (injective) map T has closed range. 

It induces an isomorphism from O(U) onto its image, so h1c ➔ 0 if Th1: ➔ 0. 

If (3) did not hold for some small f > 0, we could select a sequence h1c E 0(0) 

with lhkl-u = I while Th1c ➔ 0, contradiction. b 
1/k 

1.4 Solvability and non-confinement of singularities 

We now come to the main result of this section, which is a hyperfunction 

v<•rsion of Theorem 1.2A of Hormander [ll]. We shall deal with an open set 

U CC Mand a differential system (1) of order m. Let F be a subspace of 

l3(ll) with tllC' following property: 

Hypothesis 1.5 F is a Frec/1.Ct .~pace such that: 

• 0( U) C F with conlintto11s injection. 

• If~ C en is open and Q is a differential operator on M of order~ m, 
Ifie s7,are 

{(f,g) E F XO(~), 9iun.o. = Q/1un.o.} 

is closed in F x O(~)-

It is not clear whether there always exists a Frechet space with these prop­

erties. However, if P is of order m and M is of class c•ri, we can take 

F = C"'( U). If M is smooth, a stronger statement is obtained by taking a 

smaller Fin the following theorem. For example, if M is real analytic, it may 

be interesting to take a Gevrey-Beurling space of functions as a space F. 

Theorem 1.6 Let M be as in Notation 1.1 and U CC Man open set without 

compact connected component. If the differential system ( 1} on M is of order 

m and F C B( U) is a Frechet spa-ce as in Hypothesis 1.5, the following 

condition is sufficient for the induced map P: B(U)" ➔ B(U) to be onto: 

for every hyper/unction J in a neighborhood of U with Jiu E F, if f is analytic 

in a neighborhood of oU and 'Pf is analytic in U, then f is analytic in U. 
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PROOF. Given t > 0 small, we shall show that the estimate 

Ii E 0(0), 

holds for some f'/ > 0, some C, and some continuous semi-norm II !IF on 
F. The a priori inequality (3) must then hold for 11' < 17, since, if it did 
not, we could select a sequence h,. E 0(0) with jh,.lu = l while l1Phdv + .,, . 
jhkl(au), ➔ O; since the inclusion O(U) ➔ F is continuous, llh1,iullF would 
be bounded, hence also lhklU., by ( 4 ), and we would reach a contradiction: 
some subsequence would converge uniformly in U ,,,, to O close to au, hence 
everywhere by the uniqueness of analytic continuation. 
If ~ C en is open, we denote by 0 00

(~) the Banach space of bounded 
holomorphic functions on~. with the norm I IA- Let us consider the subspace 

E = { (/, 9, h ), 9iu = 'P Jiu, lqun(8U), = fiun(aui.l 
of the Frechet space F x 0 00 (Uf)d x 0 00 ((8U)t)- Due to Hypothesis 1.5, E 
is closed, hence a Frechet space. By the assumption in the theorem, E is the 
union of the closed balanced convex sets E(k) consisting of all (J,g, h) E E 
such that/ is the restriction of a function j E 0 00 (U,1k) with lilu

1
,k ~ k. By 

Ba.ire's theorem, one of these sets is a neighborhood of O in E, which implies 
the estimate ( 4) and finishes the proof of the theorem. b 

In general, there is no reason why the sufficient condition for solvability in 
Theorem 1.6 should be necessary. It is however locally the case when P has 
constant coefficients; recall that we do not assume M = Rn, so this covers 
the case of a differential operator on Rn biholomorphicaly equivalent to a 
differential operator with constant coefficients: 

Theorem I. 7 If the open set U CC M is small enough and P has constant 
coefficients, P: B(U)d ➔ B(U) is onto if and only if eve1-y hyper/unction f 
in a neighborhood of U, verifying that f is analytic in a neighborhood of BU 
and that 1P f is analytic in a neighborhood of U, is actually analytic in U. 
PROOF. Let us recall how local approximation by entire functions is obtained 
in Baouendi-Treves [1], using the Gaussian kernel. Performing a complex 
linear transformation, we may assume that the tangent space to M at O is 
Rn. For f > 0, let us define 
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If t/> E O'(U), U CC M, t/>,(z) = t/>(K,(z - .)) is an entire function and: 

fJ¢, = ( fJ¢ ),, k = 1, ... , n. 
8zk 8zk 

The following property follows from the proof in [1], provided U 3 0 is small 

enough (this condition can be dropped in case M = R"): 

</> is analytic close to z E U if and only if</>, converges uniformly in a complex 

nFighborhood of z as f. ➔ o+. Moreove1', </>, converges then to the holomoryhic 

ntension of¢. 

Let us now assume that P : B(U)" ➔ B(U) is onto, so that (3) holds, and 

let us assume that U is so small that the previous property holds for a neigh­

borhood V of U in M. Let f be as in the statement of the theorem and 

</J E 0'( /\"), U C A' C V, such that </J = f in a neighborhood of TJ. By 

tltc previous property, t/>, converges in a complex neighborhood of fJU while 
1P¢, = ('P</>), converges in a complex neighborhood of U. We deduce from 

(1.3) that</>, converges in a complex neighborhood of U, hence/ is analytic, 

thanks again to the previous property. b 

2 EXAMPLES, APPLICATIONS AND REMARKS 

In this section we give several examples of how the results of Section l apply 

to hyperfunction solvability. 

2.1 Ordinary differential equations and holonomic systems 

Let us first consider the case of an analytic operator 

m d; 
P = Ea;(z)-. 

i=O dz• 

on an oprn interval / C R, with m ~ 0 and am ¢ 0. It is a theorem 

of Sato, and in fact a simple (striking) application of Sato's theory, that 

P : 8( I) ➔ B( /) is onto. We note that hyperfunction solutions of tp f = 0 

may have confined analytic singularities: the Dirac measure a satisfies za = 
0, the smooth function f which is O on J - oo, OJ and e-¼ on JO, +ool is 

analytic outside O and satisfies (z2 -f; - 1)/ = 0. However the condition in 

Theorem 1.6 is locally satisfied, using as a Frechet space F an ad hoc space 

of ultradifferf'ntiable functions: 



Lemma 2.1 If J CC I is an open interval, there exists .s > l st1ch that, if tt 
belongs to the Gevrey-Beurling space Q(5l(J) and 1Pu E A(J), then tt E A(J). 

PROOF. Ramis (24} has computed the index of P acting on any space of 
formal power series with coefficients satisfying a growth condition of Gevrey 
type. Similar results certainly hold for the usual spaces of Gevrey functions. 
The partial result of Komatsu [18} is however more than sufficient for our 
purpose. We sketch a proof using both references. The claim is of a local 
nature, so we may assume that O E J and O is the only point of J at which 
am vanishes. Let u ~ l be the irregularity of the opera.tor 'P at O (see [24] 
or [18J for a definition) and u the Taylor series of u E Q(5)(J) at 0. As 
1Pu = 1~ E 0 0 , it follows from [24] or [18] that ii E 0 0 provided s < (1~ 1 . 

Taking 1 < s < 
11

: 1 , we find that u is locally the sum of an analytic function 
and a c(s) function v with v = 0, hence 1Pv = 0. It follows from Lemma 4 in 
Komatsu [18} that v = D. ~ 

Using the finiteness theorem of Kashiwara [15}, we shall obtain a local 
analogue of the just mentioned theorem of Sato, for holonomic systems, as 
an obvious consequence of the functional analysis Theorem 1.3. Though the 
following results extend to the general case, we shall assume that M = R" 
for the sake of simplicity. Let 'D denote the sheaf of (analytic) <lifferentia.l 
operators on C", and let us consider a general system of differential equations, 
that is a coherent left 'D-module M near O E C". M admits a free resolution 

where P1, ••• , P", ... are ma.trices of differential operators, acting 011 the 
right. Applying the functor Hom(•, 80 ) to it, we obtain the complex: 

do pl d pn d 
0-+8 -+8 1 -+•••-+Bn-+••• 0 0 0 , 

where P" acts on the left. The ph cohomology space Extk(M, 80) of this 
complex does not depend, up to an isomorphism, on the choice of the above 
resolution of M. Kashiwara proved in [14] vanishing theorems that imply the 
existence of a resolution of length $ n 
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so Extk(M, Bo) = 0 for k > n. We refer to Kashiwara [15] for the notion of 

a holonomic system and the fundamental result that the spaces Extk(M, Bo) 

fi . d' . l ·r M . h I . I t· 1 P" B"n-• B"" are mtc 1mens1ona 1 1s o onomtc. n par 1cu ar : 0 ➔ o 

has a range of finite codimension and an obvious generalization of Theorem 

1.3 gives the following vanishing theorem, which was obtained by Schapira in 

[28], using a very different method: 

Theorem 2.2 Let M be a holonomic 'D-module defined near O E en and Bo 

the ,qpace of germs of hyper/unctions at OE R". Then Ext"(M,Bo) = 0. 

Let us consider again the more concrete equations (1) and (2). It is quite 

drar that the surjectivity of P : Bg ➔ Bo only depends on the right ideal I 

of 'D generated by P1, ..• , Pd nrar O E C". Let us consider the germ 

V(P) = {(z,() E rcn, u(Q)(z,() = 0 for all Q EI} 

of a complex variety in T*Cn over 0, where u( Q) denotes the principal symbol 

of Q. It is a well-known theorem of Sato-Kawai-Kashiwara [25] that V(P) is 

involutive. 

Theorem 2.3 If V( P) is Lagrangian, P ; Bg ➔ 80 is onto. 

PROOF. Let .J be the left ideal generated by 'Pi, . .. , 'Pd, The left 'D-module 

M = V / .J has V ( P) as its characteristic variety, hence it is holonomic. 

We could ronclude invoking Theorem 1.6 and the results of Honda [10] which 

imply that an analogue of Lemma 2.1 holds in the general case of a holonomic 

system. 
We shall instead present a different approach, identifying P with the last 

compatibility condition of a holonomic systemj we owe the following proof to 

P. Schapira. We start with a free resolution of length n of the 1-ight 'D-module 

N=V/I 
o t- N t-- v"0 

/:.. v"• t- ... t- V" t- o 
' 

(5) 
• d . 

where do= 1, d, = d and P(Ai, ... , Ad) = Li=l P;A;. We recall the followmg 

results of Kashiwara, see [14] Theorem 3.1.2 and Proposition 3.1.7, which hold 

for any left (respectively right) holonomic module: £xtt(N, V) = 0 if j f: n 

while N• := £xtv(N, V) is a right (respectively left) holonomic 'D-module. 

Thus, applying the functor 1lomv( •, V) to the resolution (5), we obtain the 

resolution 
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of the holonomic left V-module .N·. Here we have used the canonical iden­
tification of 1-l.omv(V"•, V) (morphisms of right V-modules!) with JYfk. It 
remains to identify the morphism Q; by the definitions, we have, using obvious 
notations: 

Q(A)=Q(Bi--+AB) = ((B1,••·,Bd)1--tAP(B1,••·,Bd)) 
= (AP1, ... , APJ). 

This means precisely that Equation (1) is the n th "'compatibility system" of 
the holonomic module .N•. Theorem 2.2 applies. ~ 

2.2 Differential equations with constant coefficients 

We now consider the case of an operator P =/ 0 with constant coefficients. 
If M = R", it is well-known that the analogue of the Malgrange-Ehrenpreis 
Theorem for systems holds true in the context of hyperfunctions, see Komatsu 
[17] or Schapira [27]. The proofs in [17] [27] make use of the Malgrange­
Ehrenpreis Theorem. In the case of a single operator, a simpler proof of the 
surjectivity of P : B(U) ➔ B(U) is well-known when U C Rn is bo'!lnclccl, 
using the existence of a fundamental solution E of P: if/ E B(U), J = </>1u 
for some c/> E O'(tl) and u = (E * <l>)iu solves Pu = f. We note that 
another proof of this fact is possible, which does not use the existence of a 
fundamental solution but the classical and easier fact that, if U CC R", there 
is an estimate 

Vu E cr(U), l1ul1L2 ~ CWPttllL2· 

In fact we can state, more generally: 

Theorem 2.4 Let M, n be as in Notation 1.1 and assume that M is smooth 
and that Pi, . .. , Pd have constant coefficients. If the inequality: 

(6) 

holds for some C and some Sobolev norm II IIHN, P : B( U)d ➔ B( U) is onto 
for every open set U CC M without compact connected component. 

PROOF. Let t. > 0 and q, E C0 ( U <) a function which is I in a neighborhood 
of U. If h E O(n), applying (6) to the (holomorphic) partial derivatives of 
sufficiently high order of q,h, Sobolev's inequality on the left-hand side and 
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Cauchy's inequalities on the right-hand side, we obtain lhlu ~ C(l'Phlu, + 
lhl(aU),)- Replacing h by h(. + (), 1(1 small, and taking into account the fa.ct 
that P commutes with translations, we obtain the a priori inequality (3). 
Th<'or<'m l .4 applies. ~ 

2.3 Differential operators of principal type 

The result in this section will be generalized in Section 3, so we shall be brief, 
r<'forring the reader to Section 3 for any notation which might be used here 
without having been introduced. We first note that if U CC R" is open and 
Pis an elliptic differential operator in a neighborhood of U, 'Pf E A(U) => 
f E A(U) by a theorem of Sato. Theorem 1.6 applies: P: B(U) ➔ B(U) is 
onto, henc<' P : A(U) ➔ A(U) is onto, again by Sato's Theorem. However 
this is a weaker result than the classical existence theorem of Malgrangc, 
since in Malgrange's Theorem, Pis defined merely in U, not necessarily in a 
neighborhood of U. 

We now consider a differential operator P of principal type satisfying 
the condition (P) of Nirenberg-Treves. It would be tempting to obtain the 
hypcrfunction solvability of P directly from a known £2 estimate, that of 
Nirenberg-Treves [23] if M is real analytic, that of Beals-Fefferman [2} if M 
is merely smooth, using a substitute of Theorem 2.4. We have not been able 
to find this substitute. Of course, this can be done when P has order one: 

Theorem 2.5 If M is smooth and P is a differential operator of order one 
whose principal pad is a non-vanishing vect01· field, P : 8 0 ➔ 8 0 is onto if 
and only if P satisfies condition (P) in a neighb01·hood of O in M. 

PROOF. We only discuss the sufficiency of the condition. By performing 
standard reductions, WC may assume that p = o/oz1, sop induces a complex 
vector field on M. In this simpler situation, it is an earlier result of Nirenberg 
and Treves that condition (P) implies an estimate (6) with N = I; later on 
Treves improved it to N = 0, see Treves [33]. ~ 

The case when M = Rn can also be settled without much effort. The 
proof follows the strategy introduced by Hormander in (12), but the needed 
microlocal results are already available. The case of a maximally real manifold 
with little regularity will be treated in Section 3. 
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Theorem 2.6 Let U CC Rn be open and let P be an (analytic!) differential 
operator on a neighborhood of U, of p1-incipal type on U and satisfying there 
condition (P). If no complete bieharacteristic of P over U lies over a compact 
subset of U, P: B(U) ➔ B(U) is onto. 

SKETCH OF A PROOF. By a complete bicharacleristic of P, we mean a 
Nagano leaf Bin TuCn of the vector distribution spanned by the radial vec­
tor field and the real and imaginary parts of the Hamilton field of P, with the 
property that Bis contained in the characteristic variety of P. Let f E B(U) 
be analytic close to au, with tp f E A(U). If O E TuC", either O is a non­
characteristic point of 'P, or O is a characteristic point of "finite type", or O is 
a characteristic point of "infinite type" and belongs to a complete bicharacter­
istic of 1P; 0 cannot belong to the microsupport ( or analytic wave front set) in 
the first case by Sato's Theorem, in the second case by a theorem of Trepreau 
(30], in the third case, since we assume that the complete bicharacterislics 
of P escape every compact subset of U, by a theorem of Hanges-Sjostrand 
[7]: if B is a complete bicharacteristic of 1P over U, either B is contained 
in the microsupport of/, or B does not nwct il. Note that [7] is conccnH'd 
with classical solutions of 1P, which is sufficient for our purpose, due to the 
formulation of Theorem 1.6, but the result is actually true for hyperfunction 
solutions as shown in an unpublished manuscript of the second author. Q 

2.4 Hypo-analytic structures 

The notion of an hypo-analytic structure is defined in Treves [33J. It is locally 
equivalent to the data of a maximally real manifold M C en and a partial 
de Rham system 8/8z1, ••• , {)/l)zd. For the sake of briefness, we shall only 
consider this local model, keeping in mind that the next results can be given 
an invariant meaning in terms of the underlying hypo-analytic structure; we 
refer to Cordaro-Treves [4) for details. So, we consider a maximally real 
manifold M C en and the equations 

d Ott; 
P(tt1,- .. ,ud) = E -a = /, 

i=l Z; 

, 8/ 8f 
Pf= -( -a , ... , -a)= (u1, ... ,ud)-

Z1 Zd 
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From Theorem 1.4, we deduce that, if P is solvable, the solutions of tpu = 0 
satisfy a weak maximum principle: 

Theorem 2.7 Let U CC M be open and assume that P: B(U)d ➔ B(U) is 
onto. Then, if u E C 0 (U) satisfies 1Pu = 0, lttl has no strict local maximum. 

PROOF. We may assume U as small as we wish and take n = en in Notation 
1.1. By the flabbiness of 8, P : B(V)d ➔ B(V) is onto for every open set 
V CU. By Theorem 1.4, we have 

for all It E O(C") satisfying the equation 'Ph = 0. Applying this inequality 
to Jik, taking /,; th roots and letting k ➔ +oo, we obtain that the inequality 
holds with C = 1. Letting then f ➔ o+, we get: 

lhlv S lhlav-

To finish the proof, we note that if u is a continuous solution and z E U, by the 
Baouendi-Treves approximation theorem, there exists a sequence Uk E O(C") 
such that Uk-+ u uniformly in a neighborhood of z in M, and 1Puk ➔ 0 in a 
complex neighborhood of z. We can solve 'Pvk = 1Puk with Vk E O(Cn) and 
Vk -+ 0 in a complex neighborhood of z. Defining hk = tlk - VA:, we have, if W 
is a small open neighborhood of z in M, !hklw $ lhklaw, hence !ulw S /ulaw-
~ 

It is tempting to make the conjecture that the strong maximum prin­
ciple (that is, lulK S lular, for every continuous solution of tpu = 0 and 
every compact set /{ C U) is a necessary and sufficient condition for P : 
B(U)d -+ B(U) to be onto, if U is small enough. We hope to return to 
this qn<'s1 ion in tlw future'. Ifrre we shall only illustrate this conjecture by 
<'voking a f1•w known results. First, in the case of a CR structure (iu our 
local model this corresponds Lo the case when the system 1P and the Cauchy­
Riemann system induce on Ma system of d vector fields Z1 , ••• , Zd such that 
(ReZ1, ... ,ReZd,ImZ1, ... ,ImZd) has rank 2d), the strong and the weak 
maximum principles are equivalent and are equivalent to the fact that the 
Levi form of the structure is definite at no point, by a result of Berhanu 
[3]. In the special but important case of a CR structure associated to the 
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induced Cauchy-Riemann system ON on a real hypersurface N C cm, this 
is equivalent to the hyperfunction solvability of P: this is a conscqncnce of 
more general results of Michel [21 ]. It is an interesting situation, since the 
solvability in the smooth category is not known in that case {see however 
Michel [22) where solvability is obtained in some spaces of Gevrey functions, 
including the space of analytic functions). Another important case where the 
result is known to be true is the case, in some sense opposite to the CR case, 
when d = n -1: it is then a special case of the result of Cordaro-Treves [5]. 
We shall not pursue this question further here. 

Let us set z = (z',z"), with z' = (z1, ... ,zJ), z" = (=d+h···,=n) and let 
71" : z t-+ z" denote the projection. An analytic solution of 1Pu = 0 on M 
extends as a holomorphic function which does not depend on z'. The maxi­
mum property in Theorem 2. 7 depends, roughly speaking, on the topological 
geometry of the fibers of 'll"IM on the one side, on the holomorphic geometry of 
the space of the fibers on the other. In the case of a CR structure, the fibers 
are points and the structure coincide with its space of fibers; the opposite case 
is when d = n - 1, see Cordaro-Treves [5]; in that case the projection takes 
its values in C so the holomorphic geometry is trivial, and everything de­
pends on the topology of the fibers. We shall en<l this section with a sufficient 
condition for solvability in terms of the topology of the fibers only: 

Theorem 2.8 Suppose that the open set U C M is small enough and llwt, 
for all zo E U, the fiber {z E U, z" = zg} has no compact connected 
component. Then P: B(U)d ➔ B(U) is onto. 

PROOF. We first recall the content of Lemma 2.2 in Treves [34]. If U is small 
enough and the assumption in Theorem 2.8 is verified, for every f > 0, there 
exists C, such that, for every z E U, there exists a piecewise smooth curve 
-y : (0, l] ➔ U< with the following properties: -y(O) = z, -y takes its values 
in the complex fiber Cd x {z"} of z, -y(l) E au and '1 has length $ C. If 
h E O(C") we may write 

h(z) = h(-y(I)) - i oh= h(-y(l)) - i o'h, 

where /)' stands for the partial holomorphic differential with r<'spccl to z'. 
Thus 

lhlu 5 Cla'hlv. + lhlau-
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. 
Arguing as at the end of the proof of Theorem 2.4, we obtain the a p1-iori 

inc>quality (3). ~ tt 

3 CONDITION (P) ON A MAXIMALLY REAL MANIFOLD 

3.1 Statement of the main resu]t 

Let M C C" be an oriented maximally real manifold of class C3 and 

(9) 

a differential operator of order m, defined and holomorphic in a complex 

1wighhorliood n of M. The main result of this section is the following: • 

Theorem 3.1 Ass11me that M is of class c•up(J,m) and let U CC M be an 

oprn subset without compact conncclc,l comvonent. If P is of vrincizml tyve 

on U, .c:afisfies condition ( P) on U, and if no complete bicharacteristic of P 

over U lies ovrr a compact set in U, then P: B(U) ➔ B(U) is onto. 

The meaning of the hypothesis in this statement will be made precise in §3.2. 

Theorem 3.1 is a hyperfunction version of Theorem 7.3 in Hormander [12). 

Actually we follow the strategy introduced in [12j to obtain it, that is we 

prove the non-confinement of analytic singularities for the adjoint equation. 

M being of class cm, we may then apply Theorem 1.6. However we only need 

that M be CJ in the following statement, from which Theorem 3.1 follows: 

Theorem 3.2 Let M be of class CJ and P a differential operator of princi­

pal ty['e on M, satisfying condition (P), with the property that no complete 

bicharacterislic of P lies over a compact subset of M. If u E B( M) is ana­

lytic 011lside a comz,acl subset of M and Pu is analytic, then u is analytic. 

PROOF OF THEOREM 3.1. If the hypothesis in Theorem 3.1 is satisfied, 

Theorem 3.2, applied to the operator 1P on U, shows that the condition in 

Theorem 1.6 is verified, taking F = cm(U) as a Frechet space. ~ 

We saw in the proof of Theorem 2.6 how the property of non-confinement 

of singularities in Theorem 3.2 follows from known results when M is real 
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analytic. In the general case the non-confinement property depends on mi-
• crolocal results on the singularities of u when Pu is analytic, which may be 

"' of independent interest. They are announced in §3.3. The proof of these 
statements is reduced in §3.4, using the microlocal transformation theory, to 
the proof of similar statements for the operator 8/8z1 acting at the boundary 

• of a strictly pseudoconvex domain in C". This simpler situation is dealt with 
in §3.5. 

3.2 Geometry of condition (P) 

• Let T•C" be the holomorphic vector bundle of (1,0) forms,\ = L:':i (idz;, 
with coordinates (z,() = (z1, .. ,,zn,(1, ... ,(n), It is endowed with the 
canonical one form iµ = Li=l (;dz; . The holomorphic symplectic form iC1 = 
idµ gives rise to the two real symplectic forms Re iu and Im iu . The conormal 
bundle of M is the real vector bundle Ti,Cn over M with fiber 

It is a submanifold of T*Cn, actually a maximally real manifold in r•cn, 
with the important properties that it is R-Lagrangian (i .e. Reiu vanishes 
on it, this is obvious) and 1-symplectic (i.e. Im io- is non-degenerate on it, 
this is easy). Henceµ induces a real one form µM and u a real symplectic 
form uM on T;,cn. We shall denote by { •, •} and H the Poisson bracket and 
the Hamilton map on T*C", by {·,•}Mand HM the Poisson bracket and the 
Hamilton map on Ti,C" associated with the symplectic form uM. We note 
that the radial field ip = Li=l (; 8~; is related to the canonical one form by the 

.,. formula ip = -H(iµ) and we define the radial vector field p,., = -ll,.,(1,M) 
on Ti,C" by analogy. A basic fact to compute brackets on Ti,Cn is the 
following formula which holds when a and b are holomorphic: 

(11) 

Finally, we shall denote by TMC" the manifold obtained from TMCn by re­
moving the zero section and by SMcn its quotient space under the natural 
action of R +•. We have the natural maps 

Ti.,C" ~ s;_,cn ➔ M. 
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The principal symbol p of the operator P is the homogeneous holomorphic 

function on T•O defined by 

p(z,() = E aa(z)(0
• 

lol=m 

Its zero set is the complex characteristic variety of P, the points of which 
are the characteristic points of P. We shall also denote by p the restriction 

of this function to t;,cn. A characteristic point O E t;_,cn, or its image 

rr{O) = i'J E SA1Cn will be called a characteristic poi?t of P over M, or 

simply a characteristic point. M being of class C3
, r;,cn is of class C2 

and, if q E C 2(T;,cn) is a real function, H:,1 is a C 1 vector field with well 
defined integral curves. An integral curve of H:,' on which q = 0 is called 

a bicharacteristic of q; since H:' q = 0, q = 0 on an integral curve of H:1 if 

q = 0 at some of its points. Here an integral curve is a C 1 map -y : / -+ t;,cn 
defined on a non-empty interval / C R, such that -y'(t) = H:1(-y{t)) for all 
t E [. 

We shall always assume that P is of principal type: 

Definition 3.3 P is of principal type if dp /1. 11 ::f O at any characteristic 

point O E T;,,cn. 
Using the Hamilton isomorphism, an equivalent condition is that Hp/1.p # 0 at 
0. Since T;..,C" is maximally real, other equivalent conditions are dp/1.µM # 0 
or H:1 /1. pM =JO on Tj.,1C" at 0. We recall the formulation of condition (P): 

Definition 3.4 The operator of principal type P satisfies condition (P) if 

lhere is no C 2 complex valued non-vanishing homogeneous function q in 
f;,c" such that Im qp takes both positive and negative values on a bicharac-
teristic of Reqp. • 

Condition (P) is necessary for the hyperfunction solvability of P, if Pis of 
principal type; this is a consequence of the stronger result that a weaker con­
dition, the so called condition (\JI), is necessary for the microlocal solvability 
of P. Actually condition (\JI) is also sufficient for the microlocal solvability 

of P (see Trepreau [31) or the updated and more easily available version in 
Hormander [13], Chapter VII), which in some sense is a much stronger result 
than the one obtained below, but unfortunately it is not clear how to get local 
from microlocal solvability. 
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Let 00 E i';,cn be a characteristic point and let 0(00 ) be the Sussmann 
orbit of 00 (see 129]) for the vector distribution Fon i';1cn with fiber 

() E Ti.,,C\ Fs = RHifep(O) + RHf.;,P(O) + RpM (0) (12) 

(the rank of Fs may depend on 0). More precisely, a point O belongs to 
O(Oo) if there exists a continuous curve "Y : [O, 1) ➔ i';,cn and real numbers 
0 = to < t, < ... < tN = 1, such that -y(to) = Oo, 'Yl(t;,l;+iJ is an integral curve 
of a vector field 

X; = a;Hife,, + b;H1~,, + <;pM 

with C 1 coefficients a;,b;,C., i = O, ... ,N-1, and 1(1) = 0. The orbit 
0(00 ) has a natural structure of a C 1 manifold (its topology may be finer 
than the one induced by t;,cn), such that the injection 0(00) ➔ 1;.,,cn is 
an immersion. Note that the notion is global, even the climc11sio11 of t.h<' orbit 
may shrink as M is shrunk. 
The vector space (12) and the definition of the orbit 0(00 ) arc not invari­
ant under multiplication by an elliptic operator, since I/~ = alf :;' + p/1~1

• 

However this formula shows that the fact that the orbit is contained in the 
characteristic variety of P is invariant and that the orbit is also invariant in 
that case, since H,.,, is proportional to H,, when p = 0. Using the fact that 
the orbit of() is homogeneous by the definition of the vector distribution F, 
we define the orbit o(t1) of a point {J E s;.,,cn to be the projection in s;.,,cn 
of the orbit of any point 8 E t;,C" with 7!'(0) = t1. 

Definition 3.5 A non-empty set B C Si.,C" is called a complete bicharac­
teristic of P (over M) if B is contained in the characteristic variety of P 
and is the orbit of one, hence of any of its points. 

If{) E s;.,,cn and 0 E 7f-1(t1), 71'.HA!,,(O) and 71'.Hf.;.,,(O) depend on 0, but 
R7f.HA!,,(O) and R1r.Hl':,P(8) do not depend on 0, due to the homogeneity of 
p: F, has a well-defined image 71'.(F,) C T.,S;.,,C", which depends only on{). 
We denote it by E.,: 

E., = R7f.HA!,,(O) + R1r.Ht:,p(O), 0 E 1r-
1(1?). 

Since P is of principal type, E., is a one or two dimensional vector space. 

Definition 3.6 A bicharacteristic interval of Pis a C 1 curve 1 : I ➔ s;,,cn, 
I C R a non-empty interval, such that E-,(t) = R-y'(t) for every t E /, and 
p(1(t)) = 0 for some, hence for all t E /. 
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If we identify two bicharacteristic intervals which coincide up to reparametri­

zation, there is an obvious notion of a maximal bicharacteristic interval. For 

the classification, it is convenient to endow SMC" with a complete Rieman­

nian metric (by the completeness assumption, a curve of finite length is rel­

atively compact in Si,C"), so that we may assume that a maximal bichar­

acteristic interval is parametrized by arc length; then the parametrization is 

unique up to the orientation and a translation in R. Let 'Y: I ➔ SMC" be 

a maximal bicharacteristic interval parametrized by arc length. If to E R is 
an endpoint of /, clearly -y(t) has a limit as t ➔ to, t E /. Looking at a 
bicharacteristic of Rep or Imp through the limit point, it is clear that to E /. 

So, either I = Rand 'Y is a complete bicharacteristic over M, or I =] - oo, aJ 
(or I= [a,+oo[ according to the orientation), or I= [a,bJ. In the last two 

cases we shall refer to -r( a), -y( b) as the endpoint( s) of 'Y. 

Condition (P) has strong consequences on the geometry of the complete 

bicharacteristics of P. Let us recall the following theorem of Hormander (12}: 

Theorem 3. 7 We assume that condition (P) is satisfied. If the orbit o( {)) of 

{) = 1r(0) E S;,C" contains a characteristic point {)' with dim E.,, = 2, o({)) 
is a complete two dimensional bicharacteristic. Moreover, if one identifies 

any two points of the orbit which belong to the same bicharacteristic interval, 

the resulting C0 -manifold has a natural strncture of a Riemann surface. A 

function u in o( {)) is "lwlomorphic" if H:' ( uorr) = 0 on 0( IJ) (then u induces 

a well-defined function on the reduced orbit). 

The first part of this statement is contained in [12} Proposition 2.1 and Prop<r 

sition 2.4, the second part in [12} Section 4. Presumably, the description of 

the complex structure of the reduced bicharacteristics should be simpler in 

our set up than in [121, because P is analytic, if M is not. 

Let V C Si.tC" be (the projection of) the characteristic variety of P over 

Mand {J EV. If dim E., = 2, o(t?) CV by Theorem 3.7: starting from iJ and 

following successively (the projection of) integral curves of Hfte'P or Hlt.'P, one 

stays in V and travels through a two dimensional complete bicharacteristic 

of P. If dim E., = 1 but {) is the limit of a sequence of points ,9' E V with 

dim E.,, = 2, clearly o(iJ) C V by continuity, hence t9 belongs to a one or to a 

two dimensional complete bicharacteristic of P. Thus we have: 

Lemma 3.8 If condition (P) is satisfied, the characteristic variety V C 
Si.tC" of P over M is the {not necessarily disjoint) union of Vb, the union 
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of all one or two dimensional complete bicharacteristics of P over M, and 
the set V° C V defined by 

V0 = {17 EV, dimEi,, = 1 for all 17' EV close to 17}. (13) 

Roughly speaking, Theorem 3.2 will follow in §3.3 from the propagation 
of singularities along the bicharacteristic intervals and the complete two di­
mensional bicharacteristics of P and the hypoellipticity of P at certain points 
in V0

• For these points, the following lemma will be used: 

Lemma 3.9 We assume that condition (P) is satisfied. Let{) = 1r(O) E V0 , 

and let a be a complex positively homogeneous function of class C2 ,1ear 0, 
with Hf!ea,, /1. pM i= 0. Let ,a be the germ of the bicharncteristic of Reap 
th1·ough O with 1'a(0) = 0. The p1'0perty 

• Im ap takes a negative value on ,a(] - f, 01) or a positive value on 
"Ya(]O, +t:[), for every small t: > 0, 

does not depend on a. If it is satisfied, 11 is called a point of positive type. 

PROOF. We may assume that 

Hf'!eP A PM -::fi 0, Hf!,, A /"1 = 0 at 9. 

As Ht/ea,, = (Rea)Ht/e
11 

- (Ima)Hf:i,, at 0, Rea(O) i= 0 if the condition in 
Lemma 3.9 is satisfied, so we may write a= (1 + i,0)Rea. If /3 = 0, that is p 
is multiplied by a non-vanishing real function, the bicharacteristic of Rep is 
preserved, with the preserved or reversed orientation depending on the sign 
of a, and the same happens to the sign of Imp; the invariance is clear in that 
case. It remains to consider the case of a = l +i/3. We have to look at the sign 
of /3Rep + Imp along the bicharacteristic of Rep - /3lmp. As Rep= /3lmp 
along this bicharacteristic, this is the same as the sign of ( 1 + /32)Im p, hence as 
the sign of Imp. We use a homotopy argument. Let 1, be the bi characteristic 
of Rep- t/31mp through 0, 0 $ t $ l. If (for example) Imp takes a positive 
value on 10(]0, +t:[) for all t: > 0 and is $ 0 on 11(]0, +t:[), by the condition 
(P) and continuity, Imp must be zero on 11(]0, +t:[) for some t E [O, 1]. Then 
1,(]0, +t:[) is contained in the characteristic set of P, hence its image in SM en 
is a bicharacteristic interval, since it is contained in V0

• This implies that 
1o(]O, +t:[) and 11 (]O, +t:[) have the same germ of image near 17, which is a 
contradiction. b 
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3.3 Propagation, and non-confinement of singularities 

In this section, we reduce the proof of Theorem 3.2 to microlocal results 

concerning the singularities of u, when Pu is analytic, and their propagation. 

We first recall a little of Sato's theory for maximally real manifolds with small 

regularity. Let E denote the sheaf on T•C" of microdifferential operators; we 

shall also consider E as a sheaf on Si.,C", using the homogeneity. The sheaf 

CM of microfunctions is a flabby sheaf of £-modules on SMC" with the other 

main property: there is a sheaf morphism BM -+ w.CM, compatible with the 

natural action of differential operators such that the support of the image of 

a section u of BM is the microsupport of u. Concerning the notion of the 

microsupport, for the time being, we need only mention that a hyperfunction 

is analytic near a point z E M if and only if its microsupport does not meet 

the fiber of z in SMC". The proof of Theorem 3.2 depends on the next three 

microlocal results: 

Theorem 3. 10 Let P be an operator of principal type and let b be a bichar­

acteristic interval of P. If u is a micro/unction defined in a neighborhood of 

b and Pu = 0, either the support of u contains b, or it does not meet b. 

As a special case, complete one dimensional bicharacteristics propagate singu­

larities. This is also the case for complete two dimensional bicharacteristics, 

at least when condition (P) is satisfied: 

Theorem 3.11 Let P satisfy condition (P) and let B be a complete one or 

two dimensional bicharacteristic of P. If u is a micro/unction defined in a 

neighbo1·hood of B and Pu = 0, either the sHpport of i,, contains B, or it does 

not meet B. 

Finally, for points in V0 (see (13) and Lemma 3.9), we have: 

Theorem 3.12 Let P satisfy condition (P) and let ,'J E V0 be a point of 

positive type. If u is a micro/unction defined in a neighborhood of ,') and 

Pu = 0, ,'J does not belong to the sHpport of ti. 

PROOF OF THEOREM 3.2. Let u E B(M) be analytic outside a compact 

set K C M and such that Pu is analytic. We must prove that u is analytic. 

Assuming it is not and ,'J belongs to the support of the microfunction u E 

CM(SMC") associated to u, we shall reach a contradiction. 
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{) must be a characteristic point of P since by Sato's Theorem, P is in­
vertible at every non-characteristic point. {) does not belong to a complete 
bicharacteristic of P, since by Theorem 3.11, this bicharacteristic would be 
contained in the support of u, hence lie over I(, which is forbidden by the 
assumption in Theorem 3.2. As a consequence, {) E V0\ V6• By Theorem 
3.12, {) E V0 cannot be a point of positive type, hence with the notation in 
Lemma 3.9, Im ap must be = 0 on 1() - £, O}) or on 1([0, +cl), which by the 
definition of V0 implies that {) belongs to a maximal bicharacteristic interval 
1: l 4 SMcn. Since{) ,t. V6 either l = [t-,t+] or I= (0,+oo[. In the first 
case, we may select a non-vanishing homogeneous complex valued function 
a such that H~ap A pM f O along 1r-

1(-y), hence -y is the projection of a 
bicharacteristic of Reap. Now as I is maximal and contained in V0

, Irnap 
must be f O somewhere on the left (respectively on the right) of 1 (t-) (re­
spectively 1(t+)) on the bicharacteristic of Reap. Using condition (P), it is 
then clear that at least one of the endpoints of I is of positive type, which 
is forbidden by Theorem 3.12 and the propagation along 1 . So / = (0, +oo(. 
Since the support of ft lies over!(, so does I by Theorem 3.10, hence it has 
a cluster point iJo as t 4 +oo. Then t?o belongs to complete one dimensional 
bicharacteristic lying over/( (see the proof of Theorem 7.1 in (12)), which is 
not allowed by the hypothesis in Theorem 3.2. b 

It may be worth mentioning that we have obtained the non-confinement of 
analytic singularities as a by-product of simple statements about the existence 
of analytic singularities and their propagation. The case of C00 singularities 
is much more complicated, see the analysis of Hormander in (12]. 

3.4 Complex canonical reduction 

We shall now reduce the problem to a model problem. This is similar to 
what was done in (31) but for the fact that we shall use the transformation 
theory of Kashiwara and Schapira [16] in place of the earlier but less general 
transformation theory of Kashiwara and Kawai. 

Let n C en be a strictly pseudoconvex domain of class C2
, near its 

boundary point O E N := an, and / a defining function of fl: 

0 := /(z) < 0. (14) 

We still define the conormal bundle T;.,cn by (10) and it is still the case, due 
to the assumption that the Levi form is non-degenerate, that TNCn C T•cn 
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is maximally real, R-Lagrangian and /-symplectic. We shall use the same 
notation as in §3.2, with superscript N, for the objects associated with the 
induced symplcctic structure. TNCn is defined by the equation 

t;_c" = {(z, (), /(z) = 0, (; = k
8
8f (z) if 1 45: j $ n, k E R*}. {15) 

Zj 

We shall work on the outer component T;/cn of t;,cn, defined by taking 
k > 0 in (15), and the outer component 

(16) 

of s;.,cn. Since its fiber at z E N consists of just one point, we shall often 
identiry S'j.f Cn with N, using w : s;..,+cn -t N. What will play the role of 
the sheaf or microfunctions is the sheaf on N of "holomorphic functions on 
the n side of N modulo holomorphic functions on N." More precisely, we 
introduce the sheaf CN on N or S'i/Cn with stalk at z E N: 

CN,1: = Ii~ 0(6 n !l)/0(.6), (17} 
113.r 

~ running through the set of all open complex neighborhoods of z. CN is a 
sheaf of £-modules. 

Let us return to the situation considered in §3.3. Let P be of principal 
type and 1r(O) = iJ E SMcn be a characteristic point of P. We can find a 
homogeneous holomorphic canonical transformation x of T*Cn, defined in a 
complex conic neighborhood of 0, such that the complex characteristic variety 
of Pis transformed into the complex hypersurface {(1 = O}, while 'i';.,cn is 
locally transformed into the outer conormal bundle to the boundary N 3 0 
of a strictly pseudoconvex domain of class C3 in en ( we refer to §5 in (31] 
or §7.4 in (13], where this statement is proved when M = Rn, but the proof 
does not use this fact). By the theory of Sato-Kawai-Kashiwara (25], x can 
be quantized as an isomorphism x : x.Es -t £,dB), in such a way that the 
principal symbol u(Q) of a microdifferential operator Q is transformed ac­
cording to the formula u(x(Q)) = u(Q)ox- 1

• In particular, u(x(P)) vanishes 
at order one on {(1 = O} and by another classical result of (25], there exists 
an elliptic, hence invertible, microdifferential operator A defined in a conic 
complex neighborhood of Osuch that x(AP) = o/o::1• 
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Finally, by the transformation theory of Kashiwara and Schapira (see (16), 
Theorem 11.4.9), x can be locally quantized as a sheaf isomorphism x : 
x.CM ➔ CN, which is compatible with the transformation of microdifferential 
operators, that is: x(Qu) = x(Q)x(u). 

So any microlocal statement about a differential operator of principal type 
on a maximally real manifold M of class C3

, whose formulation is invariant 
under canonical transformations and multiplication by an elliptic operator, 
has only to be tested in the case of the simple operator 8/8z1 acting at the 
boundary of a strictly pseudoconvex domain of class C3• This is, almost, the 
case for the statements in the previous section. So, from now on, we shall 
consider the operator: 

3.5 Study of the model 

We consider now the operator (18). We use the notation: 

Since the non-characteristic case is trivial and our problem is invariant under 
a local biholomorphism that preserves the equation 8u/8z, = 0, we may 
perform an elementary reduction (we refer to §2 in (31} or §7.1 in (13J for the 
details of this reduction), so that O has a local equation 

h(0) = g(0) = 0, dg(0) = 0, 8h(0)/8x1 ::/- 0. (20) 

Let u E CN,o, 8u/8z1 = 0, and let u be a holomorphic representative of 
u. As 8u/8z1 E Oo, solving 8v/8z1 = fJu/8z1 with v E Oo, replacing u by 
u - v, we see that we may assume that fJu/8z1 = 0. In this situation, it is 
easy to show, see [31J, (13), that u = v o a for some holomorphic function v 
in a "local projection" of O under the map 

(21) 
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Localizing everything near 0 E C", we define: 

n := lxil $ f, IY1l $ f, lxnl < f, lz"I + IYnl < 11, f(x, + iyi,z'} < 0, 

N := lx1 I < f, IY1l < t:, lxn l < t:, lz"I + IYnl < 11, f(x, + iy1, z') = 0. 

In the sequel, we shall assume that 0 < rJ « t: « 1 are chosen small enough. 
Then u is represented by a function u = voo where v E 0(6) and 6 C cn-t 
is the open set defined by 

where G(z", Yn) = minllld:St g(yi, z", Yn)• We note that 6 is a supergraph of a 
Lipschitz function since, with { = (z", Yn) and an obvious notation, we may 
write: 

a(n - a(e) = g(yi(n,e) - g(y1(e),e) 
< g(v,(e), {') - g(v,(O, e) $ c1{' - e1. 

Whether 0 belongs to the support of u or not depends, on one hand, on 
the position of the fiber 0-1(0(0)) of 0 with respect ton, on the other, on the 
holomorphic convexity of 6 at o(O} = 0 E c"-1

• We have the following: 

Lemma 3.13 The following properties hold for O < 11 « t: « 1. 

1. If t5(0) E 6 or if t5(0} E 86 but belongs to the envelope of holomorphy 
of 6, 0 does not belong to the support of u. 

f. /f '5(0) E 86, either the support ofu contains the set Nno- 1(0(0)), or 
it does not meet it. 

3. If t5(0) E 86 and A : 7J ➔ 6 (D C C denotes the open unit disc} is an 
analytic disc with A(O) = 0, the following property holds: 0 does not 
belong to the support of u if A(D) intersects 6 while, if A(D) C 06, the 
projection of the support of u either contains or does not meet A(D). 

PROOF. Properties 1 and 2 are self-evident. To prove Property 3, we argue 
as in [32] Lemma 3.2. Let us assume that v is holomorphic in the union 
of 6 and a small ball around A(ro) {r0 E D\0, A(r0 } may belong to 6 or 
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not) but cannot be holomorphically extended near O E en-I. Introducing 

( as in [32] Lemma 1.2) the envelope of holomorphy Ci of the union of ~ 
and this small ball, this means that O i A. We shall reach a contradiction. 
Set e = (0, ... , 0, 1) E en-I and let d( z) denote the euclidean distance of 
z E A to the boundary of A. Since A(D) C ~and~ is a supergraph of a 
Lipschitz function, A(r) + ite E ~. for small t > 0 and every T E D, and 
d(A(r) + te) ~ t/C. On the other hand, d(te) $ t since O E 8A. The function 

u1(r) = -logd(A(T) + te), t > 0, is subharmonic in D, uniformly bounded 
in some disc of center To, radius p > 0. Using the mean value property we 
obtain: 

- log t $ tt1(0) < JJ, ( )af /\ dr 
U1 T 

2
. 

D t11' 

< !((rr- rrp2)(-logt/C) + rr/M). 
11' 

Letting t -+ o+, we reach a contradiction. b 

8/8z1 is a differential operator of principal type, with principal symbol 
( 1 • To emphasize the link with §3.3, we shall use the notation: 

p = '"THC"· 

Taking (15), (19), (20) into account, we have: 

p = k a f , Rep = ~ (2h oh ) , Imp = - ~ (2h oh + 09 ) . 
8z1 2 8x1 2 8y1 8y1 

The characteristic points over N are thus defined by h = 0, 8g/oy1 = 0. Our 
task is now to establish a link between the properties of the symbol p and 
its Hamiltonian field, which occur in the statements of Theorems 3.10-3.12, 
and the properties in Lemma 3.13, which are stated in terms of the fibers 
and the image of the map /, : (z1 , z') t-t z'. For example we would like to 
recognize a bicharacteristic interval, or a characteristic point of positive type, 
by looking at the behaviour of the function Y1 t-t 8g(y1, z", y,.)/Dy,. This will 
be possible, thanks to the following lemma: 

Lemma 3.14 Let() E TNC" be a characteristic point.with dp I\ ap A µN = 0 
at 0. In the coordinate system (x1,y1,x",y',k), we have: 

N .a . a fJa 0 H =1--aa- + -
0 

at , 
P 8z1 8z1 k 
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with a= (8h/Dz1 )(8h/8zit1
, {J E ·c. 

Hence, 1r.H;! is tangent to the zero set I:= {h = O} of Rep at 1r(O), and if 
we use (yi, x", y') as a coordinate system on I:, we have: 

1r.11iP = o £.la at 1r(O), with 
uy1 

PROOF. By our assumption we have the relation: 

n 

d(1 = ad(1 + ib L (or dza at 0, 
o=I 

on TNC", for some a, b EC. Using only formula (11) we get: 

(fli,dz;) = {(1,z;}N = i{(i,z;} = io1;, j = l, ... ,n. 

Using (22) and formula (11) we compute: 

n 

= a{(1,z;}N -ib1:(0 {zo,z;}N 
o=l 

= -ia01; at 8, j = 1, ... 'n. 

To compute a, we rewrite {22): 

( of) ( of) . d k &zi = ad k ozi + ibk{)f, 

(22) 

and chase the coefficients of dz1 and az1 in this equality, in our coordinate 
system. For the sake of simplicity, we shall write fz, for of /oz 1 , ••• We note 
that the term ibl.:{)J gives no contribution, since at 0, fz, = 0 and dxn = dg 
with 9z1 = 0, 9z1 = 0. As fz,, h, do not depend on Xn, we obtain: 

By addition we get f;1 z, = afz, z,. As g does not depend on x1 and h = 0 at 
0, we obtain a = hi.f h,,1 and the first part of the lemma. 
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The second_part follows, since the formula for n: gives n: h = 0 at O and 

H:'Y1 = 1¥ with real part a= h!J4lh:1 1
2

, b 

We are now in a position to prove the statements of §3.3. 

PROOF OF THEOREM 3.10. If b 3 0 is a bicharacteristic interval of 8/8z1, 

then bis the projection of an integral curve of H(/e,. along which p = 0 and the 

condition in Lemma 3.14 is satisfied. Hence h = 0, 8g/8y1 = 0 along b, and 

by Lemma 3.14, z", Yn are constant = 0 along b; hence also g(y1, z", y11 ) = 

g(y1, 0, 0) is constant= 0 along b. So z' = 0 on band b = Nn6-1(0): Lemma 

3.13, Property 2 applies. b 
From now on we assume that 8/8z1 satifies condition (P) on s•/cn, 

though this is perhaps not necessary for the next result ( we shall avoid proving 

an analogue of the Hangcs-Sjostrand Theorem {7] in our context, condition 

(P) simplifies things). 
PROOF OF THEOREM 3.11. Theorem 3.10 applies to one dimensional bichar­

acteristics, so we consider the case of a complete two dimensional bichara.c­

teristic. We must be careful since its definition is global while our reduction 

is local. However this is not important for the following reason: if {) belongs 

to a two dimensional bicharacteristic, and also to a bicharacteristic interval, 

as propagation along a bicharacteristic interval has already been established, 
we may localize our study close to an endpoint of it. Hence we may assume 

without loss in generality that {) does not belong to, or is an endpoint of a 

bicharacteristic interval. Then it is easily seen that the complex structure of 
the reduced two dimensional bicharacteristic through .,'J is locally determined 

and the following argument is meaningful. By Theorem 3. 7, we may assume 

that there exists a germ of a two dimensional manifold O E B C N such that 

the space obtained by shrinking any bicharacteristic interval in B to a point 

has a complex structure, the holomorphic functions of which are induced by 

solutions of H:' u = 0. We note that the map a is well-dcfint>d on the reduced 

space, since a bicharacterisLic interval projects in a fiber of a by the proof of 

Theorem 3.10. It is holomorphic since II:' z1 = i{(1, z;} = 0 if j > 1. Hence 

(5 : B ➔ cn-l may be locally considered as an analytic disc as in Lemma 

3.13, Property 3. The lemma applies (actually ti is pseudoconvex j31J and 
J( B) C Ot!. hut we do not need this fact.) ~ 

PROOF OF THEOREM 3.12. It is an immediate consequence of Lemma 3.13 

and the following result: 
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Lemma 3.15 With the notation in Lemma 3.13, 6(0) E A if 0 E V0 is a 

point of positive type. 

H was proved in [31] that, if Imp= -k8g/8y1 does not change sign from -

to + along any bicharacteristic of Rep, it does not change sign from - to 

+ along any integral curve of 8/8y1• No such result holds for sign changes 

from+ to -. The main ingredient in the proof of Lemma 3.15 is that this is 

however the case on the part V0 of the characteristic variety, when condition 

(P) is satisfied. 
PROOF OF LEMMA 3.15. We identify s;/cn with N and we parametrize the 

zero set E = {z EN, h(z) = O} of Rep by y1, x", y'. Hf:.eP induces a vector 

field 1r.H:,,P on E (because pis homogeneous of degree 1) and by condition 

(P), fJg/fJy1 does not change sign along its integral curves. We shall use the 

homotopy 

between the vector fields rr.Hf:.eP and fJ/8y1 on E. By the definition (13) of 
v0 and Lemma 3.14, we have near 0: 

X, = a, 
0
8 

with a 1 > 0, if 
8
°9 = 0. 

Yi Yi 

It is then a consequence of the Bony-Brezis Lemma, see jl3) Lemma 7.3.4, 

applied to ±fJg/fJyi, that og/oyi does not change sign along the integral 

curves of X,, 0::; t::; 1. We may assign a sign s(t) tot: s(t) = -1,0,+1, 

according as fJg/{)yi takes a negative value in every neighborhood of 0, or is 

= 0, or takes a positive value in every neighborhood of 0, on the half integral 

curve of X, ending at 0. If s(0) > 0, s(t) > 0 for all t, since otherwise, 

by continuity, s(t) would vanish for some t, which would mean that the half 

integral curve of X 0 ending at O is a bicharacteristic interval. This is a 

contradiction. So s( l) > 0: g(y1 , 0) is a nonconstant nondecreasing function 

on [-t:, OJ, hence takes negative values, which implies that, with the notation 

in Lemma 3.13, 6(0) E A. The other case in the definition of a point of 

positive type can be treated similarly. ~ 
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