Memory Aware Design Optimisation for High-Level Synthesis

André Bannwart Perina!”, Jiirgen Becker? and Vanderlei Bonato'

PInstitute of Mathematics and Computer Science, University of Sdo Paulo, Sdo Carlos,
Brazil.
2Institute for Information Processing Technologies, Karlsruhe Institute of Technology,
Karlsruhe, Germany.

*Corresponding author(s). E-mail(s): abperina@alumni.usp.br;
Contributing authors: becker@kit.edu; vbonatoQusp.br;

Abstract

The FPGA environment is traditionally exotic to high-level software developers, mainly due to the
large difference in the development methodologies. This can be mitigated through High-Level Synthesis
(HLS) tools. By incorporating complex models and code analyses, these tools allow the use of software
languages as input for FPGA designs. This paper presents a Design Space Exploration (DSE) approach
that uses an estimator named Lina. This approach iterates over hundreds/thousands of combinations
of HLS compiler directives in search for the best one, while avoiding HLS runs. Lina approximates the
performance and resource usage that the HLS compiler would reach for each combination of directives.
It uses simpler models, and as such it runs generally faster than HLLS compilation. This version of Lina
has an off-chip memory model, allowing the estimation of off-chip memory accesses considering several
aspects such as burst detection, data packing, and effect of other compiler directives. For a simple
convolution kernel with off-chip accesses, explorations using Lina correctly inferred all but one of the
compiler directives when searching the solution with best performance. The best points given by the
approach were always in the top-10, reaching at least 720X speed-up without considering start/end
data transfers. Explorations of 4 kernels from Parboil benchmark are also presented. Although there
is still significant non-optimised data transfer overheads, speed-ups were reached in all kernels.

Keywords: Reconfigurable Computing, High-Level Synthesis, Design Space Optimisation, Model-based

Estimation

1 Introduction

Since its debut nearly four decades ago, Field-
Programmable Gate Arrays have been used for
a multitude of applications, such as glue logic,
custom hardware acceleration and hardware pro-
totyping. Considering the current challenges on
the semiconductor level (e.g. dark silicon), archi-
tectures that are tailored for specific compute pat-
terns are increasingly more desirable, rather than

having a fully general-purpose one. These archi-
tectures are able to provide better performance
and/or energy efficiency to certain applications
than the general-purpose counterpart, making
better use of the resources provided [1].

For example, Graphics Processing Units
(GPUs) excel at matrix calculations due to their
inherent Single-Instruction Multiple-Data (SIMD)
design. Specialised languages such as CUDA and
OpenCL are normally used in the GPU develop-
ment flow. For FPGAs, Register-Transfer Level

This version of the article has been accepted for publication, after peer review (when applicable) but is not the
Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record
is available online at: http://dx.doi.org/10.1007/s11265-024-01938-3. Use of this Accepted Version is subject to
the publisher’s Accepted Manuscript terms of use https://www.springernature.com/gp/open-research/policies/

accepted-manuscript-terms.


http://dx.doi.org/10.1007/s11265-024-01938-3
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

(RTL) languages are used to define the computa-
tion circuits. Using RTL on FPGAs has a steeper
learning and effort curve as compared to GPU
design with CUDA/OpenCL, since several con-
cepts exotic to software development are often
faced. In addition, FPGA compilation (synthesis)
can take from several minutes to hours. All these
aspects hinder FPGA programmability as com-
pared to usual high-level languages. In general,
FPGA development requires more man-hours and
specialised workforce [1].

High-Level Synthesis (HLS) tools offer an
alternative development flow for FPGAs using
high-level software codes as input, typically
C/C++. These tools contribute on reducing the
programmability gap to software development,
which in turn allows a broader usage of FPGAs
with less specialised workforce and less man-hours.
However, multiple studies 2, 3] have shown that
optimisation effort on the code is essential to
achieve reasonable results when using HLS. It
mostly comprises of compiler pragmas/directives
and code manipulation, often quite related to the
FPGA world. This goes against the primary goal
that HLS seeks to achieve: the abstraction of the
FPGA world for the high-level developer.

Most HLS frameworks provide off-the-shelf
optimisation features (e.g. loop unroll, pipeline,
array partition) that can provide significant speed-
up and increased energy efficiency when properly
applied. Considering that the synthesis (compi-
lation) of a single hardware design takes a non-
negligible time to complete, evaluating all possible
combinations of options may be unfeasible due
to large combinatorial spaces. A Design Space
Exploration (DSE) methodology is suitable in this
scenario.

This paper presents a fast estimation-based
DSE approach that optimises the execution time
of a high-level C/C++ kernel. The estimator at
the core of this approach is named Lina, first
being presented here [4, 5] and in more details
here [6]. Lina allows the estimation of high-level
kernels while also considering common HLS opti-
misations such as compiler pragmas. Lina runs
orders of magnitude faster than FPGA synthesis,
allowing a fast and parallel traversal across large
design spaces composed of combination of prag-
mas. This allows a more automated and faster
approach towards finding the best optimisation
directives for a given high-level code.

Our approach is able to estimate resource
usage of the design points, which in turn allows an
exploration that optimises not only performance
but also resource footprint. In this paper however,
focus is given on performance optimisation. The
resources estimations are only used as tiebreaker
criteria. For a more comprehensive analysis on
Lina’s resource-aware explorations, refer to the
previous paper [5].

Lina’s timing model allows the exploration of
different clock frequencies, and the resource model
supports both floating-point and integer datap-
aths. Lina is based on Lin-analyzer [7]: it inherits
the trace-based scheduling while adding features
such as support to non-perfect loop nests, differ-
ent operating frequencies and a lightweight model
for resource estimation.

The version of Lina here presented includes a
memory model that is able to estimate the latency
of off-chip transactions, including common mem-
ory patterns or features such as coalescing, data
packing and memory banking. This is essential for
real-case use, since input/output data of compute
kernels is often located on off-chip memories.

In addition, Lina has been updated to include
a new caching logic that reduces the amount of
I/O accesses during parallel exploration. That
allows multiple parallel exploration threads to be
executed with significantly less I/O bottlenecking.

We validate our memory optimisation model
by two test cases. First, a simple convolution ker-
nel is passed through our framework, on which
loop unroll, pipeline and array partitioning are
explored. The input arrays are marked as off-chip,
and thus Lina estimates their accesses considering
the off-chip memory model. Speed-ups of at least
720x were reached, as compared to the baseline
code used for HLS.

Our second experiment considers 4 kernels
from the Parboil benchmark [8], also with off-
chip access. The selected optimisations resulted in
speed-ups up to 3.2x when compared to the base-
line applications on the same platform and using
the same HLS compiler. If only the computation
loop is considered while disregarding the initial
and final data transfers between host and device
memory spaces, speed-ups are up to 24.2x.

This paper is structured as follows: in Section 2
we present a summarised background on perti-
nent subjects, Section 3 presents relevant related
work, Section 4 describes the proposed off-chip

This version of the article has been accepted for publication, after peer review (when applicable) but is not the
Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record
is available online at: http://dx.doi.org/10.1007/s11265-024-01938-3. Use of this Accepted Version is subject to
the publisher’s Accepted Manuscript terms of use https://www.springernature.com/gp/open-research/policies/

accepted-manuscript-terms.


http://dx.doi.org/10.1007/s11265-024-01938-3
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

memory model, Section 5 the model’s caching
mechanism, Section 6 presents the experimen-
tal setup, followed by the validation results in
Section 7. Section 8 discusses the results. Finally,
Section 9 presents our final considerations and
concludes the paper.

2 Background

Given a high-level sequential code, the HLS com-
piler analyses it and extracts a dependency graph
of the operations that compose the code. This
graph is used to identify which operations may
execute in parallel while respecting the dependen-
cies between them. At the end, the HLS compiler
generates an RTL source composed of a finite state
machine that orchestrates multiple instances of
Functional Units (FUs). These FUs perform sim-
ple operations (add, multiply), and are used to
execute the operations identified from the high-
level code.

Figure 1 presents an example of m-to-n reduc-
tion, on which an array of m elements is reduced
(i.e. elements are summed) into an array of n
elements. If the code is supplied without any
directives (i.e. without the pragma directives), the
resultant design has a latency of 7021 clock cycles.
By using the pragmas as presented on the figure,
the latency drops to 70 clock cycles, a speed-up
of 100x. This shows the importance of using com-
piler directives to assist the compiler on the right
direction.

#define M 1000
#define N 100
#define R (M / N)

void example(float A[M], float C[N]) {
#pragma HLS array_partition variable=A block factor=(2*R)
#pragma HLS array_partition variable=C complete
for(int j = 0; j < R; 3+ {

#pragma HLS pipeline

for(int i = 0; 1 < N; i++) {

CLil += A[J + (R x 1)T;
}

Fig. 1 Code example for m-to-n reduction: m elements
from an array are accumulated into n output elements. The
code is annotated with compiler pragmas that significantly
improves performance of the HLS output.

The amount of possible combinations of prag-
mas can easily explode in size, and evaluating each

with the HLS compiler itself may be unfeasible. In
some cases, the HLS compilation per se (without
full FPGA synthesis) can take hours [7]. More-
over, even with hardware expertise it might not
be straightforward to decide the best combination
of pragmas. When pipeline is enabled, for exam-
ple, it is not trivial to infer proper unroll and
partition pragmas that adequately provide enough
read/write ports to avoid memory contention. A
tool that automatically performs such exploration
and suggests the best combination of pragmas is
of great interest.

2.1 Design Space Exploration

The approach adopted in this paper for infer-
ring the best combination of compiler directives
is through design space exploration. Figure 2
presents the approach. A coordinating script iter-
ates through a selection of possible directives,
dispatching parallel executions of the Lina esti-
mator for each combination. At last, the best
identified combinations are provided to the user.
Multiple solutions are possible, since this explo-
ration can be multi-objective (e.g. to minimise
design latency and FPGA resources).

C/C++

sources
Cycle and
resource
counts,
memory
reports

Design

Setup pragma Collect

space configuration results

setting

Change
pragmas

ore designs
to test?

Fig. 2 Typical flow of our approach. Combination of prag-
mas are selected by a dispatcher script, which configures
and spawns parallel instances of Lina for each. At the end,
the approach selects the best solutions according to the
objectives to be minimised.

Each Lina execution is independent, and thus
multiple instances can run in parallel. In addition,
our approach implements a caching mechanism
that speeds up Lina across different iterations.

This version of the article has been accepted for publication, after peer review (when applicable) but is not the
Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record
is available online at: http://dx.doi.org/10.1007/s11265-024-01938-3. Use of this Accepted Version is subject to
the publisher’s Accepted Manuscript terms of use https://www.springernature.com/gp/open-research/policies/

accepted-manuscript-terms.


http://dx.doi.org/10.1007/s11265-024-01938-3
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

2.2 Timing and Resource Awareness

From the flow in Figure 2, the design points are
estimated for cycle and resource counts, and are
used to decide the best outcomes. Our approach is
considered timing-aware because it allows multiple
input clock frequencies to be tested, supporting
values from a continuous frequency range. Our
approach is resource-aware because it contains
several models that allow the estimation of FPGA
resource counts such as LUTs, FFs, DSPs and
BRAMSs. The resource estimations can be used
in conjunction with estimated latencies to pro-
vide a set of solutions to the user. These may
be performance-optimised, resource-optimised, or
a balance in between.

The timing awareness is achieved mainly by
adjusting the estimation according to a selected
input frequency. In fact, Lina supports the input
frequency in a similar fashion as any other com-
piler directive.

In general, HLS compilers provide a set of
configurations for each supported FU. These con-
figurations vary in: number of clock cycles needed
to perform a full operation (i.e. latency, or {); and
in amount of time needed within a clock period
to perform the intermediate steps (critical path
delay, or t.,). Lina replicates this behaviour by
including a hardware profile library that contains
all these configurations. Frequencies supported
range from 16.66MHz to 500MHz. For each FU
used within an analysed code, Lina selects the
best configuration according to the provided clock
frequency. The hardware profile library was con-
structed beforehand and once for each supported
FPGA platform through a binary-traversal-guided
microbenchmarking.

It is important to note that not always the best
performance is located at the highest frequency,
which motivates Lina’s timing awareness. The
higher the frequency, the tighter the timing bud-
get is. If an intermediate step of a multi-cycle FU
takes longer than a clock cycle in such scenario,
this step must be split into further clock cycles.
Thus, increasing the frequency may increase the
FU’s latency. Furthermore, high frequencies tend
to put more pressure on the FPGA’s routing
mechanism, since long paths become more critical
under tight timing budgets.

Reducing resource footprint of an FPGA
design is also advantageous: it eases routing due to

less resources competing for routes, and it opens
more space for other parts of a project to share
the same FPGA.

Using more resources does not always imply in
direct gain of performance. In some cases, apply-
ing unroll or pipeline to an HLS design incurs
in equivalent performance but with the latter
being more resource-efficient. Consider the code
in Figure 1 but using only a single pipeline OR
full unroll directive at the inner loop. Table 1
presents the outcomes considering each optimisa-
tion. While performance is roughly equivalent, the
pipeline version is more resource-efficient.

Table 1 HLS outcomes for code in
Figure 1 with pragma only at innermost
loop (resources estimated by Vivado HLS).

Pragma Full Unroll  Pipeline
Design latency 1001 1007
LUTs 3661 468
FFs 3984 494
DSPs 4 2

Lina implements multiple resource mod-
els. Thus, it allows identifying and discarding
resource-hungry points that do not contribute in
better performance, as exemplified in previous
paragraph. Lina’s resource awareness include:

® Estimation of resources used by FUs, sensi-
tive to compiler directives and input clock
frequencys;

® Estimation of resources used by on-chip arrays,
sensitive to array partitioning directives;

e A complete resource estimation considering
both calculations above, and also the resources
used by other parts of the design, like auxiliary
logic (with equations adapted from [9]).

The timing and resource awareness can be
found in detail in [5] and [6].

2.3 Memory Awareness

Modern FPGAs include interfaces to commu-
nicate with off-chip memories such as DDR
SDRAM, HBM, etc. These are essential for com-
munication with the outer world, for example to
integrate on a heterogeneous system.

This version of the article has been accepted for publication, after peer review (when applicable) but is not the
Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record
is available online at: http://dx.doi.org/10.1007/s11265-024-01938-3. Use of this Accepted Version is subject to
the publisher’s Accepted Manuscript terms of use https://www.springernature.com/gp/open-research/policies/

accepted-manuscript-terms.


http://dx.doi.org/10.1007/s11265-024-01938-3
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

Differently from on-chip memories, off-chip
latencies are affected by peculiarities of each mem-
ory technology, and may be severely affected
by access patterns. Therefore, optimisation
approaches considering on-chip accesses may not
reflect in similar gains when considering off-chip
transactions [10].

A simplified and agnostic model to consider
off-chip memory read/write is composed of three
steps: setup, action and commit. An off-chip
memory transaction starts with the setup phase,
that prepares the terrain for the memory access
(e.g. row fetch from DDR memory). Then, succes-
sive action phases can be triggered, each perform-
ing a single read/write on incremental memory
positions. To finish the transaction, a commit step
may be required. Usually, the setup or commit
phases are longer than the action phase. The long
steps for example can be related to buffer flushes
on the off-chip memory. Depending on how the
memory architecture is constructed, not all steps
may be required for read or write. Considering
this model, the total latency to perform a single
off-chip transaction is given by cj¢":

mem __ _mem mem mem
Ctotal = Csetup + (n X Caction) + Cecommit (1>

where ci, Covgion, and ceonh ., are the num-
ber of clock cycles required to perform the setup,
action and commit phases, respectively, and n is
the number of contiguous action phases to be
performed in a coalesced manner.

Lina considers the model above as a base for
its off-chip estimation logic. Thus, it is able to
reflect its estimation considering not only the com-
bination of directives, but also considering off-chip
access. Lina looks for coalescing opportunities,
attempts to perform data packing, and reports
missed optimisation attempts.

2.4 Trace-based Estimation

In order to identify the parallelism potential of
a high-level code, the HLS compiler uses depen-
dency information generated statically, such as
the Program Dependency Graph (PDG) [11].
Depending on the code’s complexity, performing
HLS compilation can take a non-negligible time.
For exploration purposes, the design metrics of
HLS compilations are of more interest than the

complete generated design themselves. And these
design metrics can be reasonably approximated by
simpler models, instead of running the whole HLS
compilation process.

Approximation models that use dependency
graphs can be divided in static or dynamic
approaches. Lina is a dynamic-based approach.
That is, a profiled execution from the input
high-level code is used to: identify dependencies;
construct dependency graphs; and perform esti-
mation. These dependency graphs will be hence-
forth called Dynamic Data Dependency Graph, or
DDDG [12].

The advantage of using dynamically-generated
structures like DDDGs is that global code motion
optimisation is inherently enabled. All control and
false data dependencies are implicitly resolved by
the execution that generates the software trace.
This provides an optimistic notion of the paral-
lelism capabilities of the code, which can then be
constrained to reflect realistic parallel architec-
tures [12].

While Lina has additional features as com-
pared to its base implementation Lin-Analyzer,
both share the same estimation concept: the
trace generated from profiled execution is used to
construct DDDGs. Then, a model that approx-
imates the HLS behaviour performs scheduling
of the DDDG. At last, an estimation of the
design latency can be derived. On Lina’s case,
the scheduling is also used to estimate FPGA
resources.

Figure 3 presents an example of a DDDG,
its scheduling and the latency derived from it.
The DDDG represents a single iteration of a
floating-point vector add, and the numbers located
near each node represent the latency required to
execute each node. Nodes with latency zero are
not synthesised and are optimised away during
schedule.

Lina’s estimation model is separate from the
HLS compiler scheduling models. Inaccuracies in
the estimation will not cause the HLS compiler to
generate functionally incorrect designs.

3 Related Work

There are several contributions to the HLS esti-
mation field, and most can be divided in static
[13-15] and dynamic [11, 16] approaches. The

This version of the article has been accepted for publication, after peer review (when applicable) but is not the
Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record
is available online at: http://dx.doi.org/10.1007/s11265-024-01938-3. Use of this Accepted Version is subject to
the publisher’s Accepted Manuscript terms of use https://www.springernature.com/gp/open-research/policies/

accepted-manuscript-terms.


http://dx.doi.org/10.1007/s11265-024-01938-3
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

Scheduling

DDDG Generation

woE
Latency estimation: (2! +:4. + !1. = 7 cycles

Fig. 3 Example of DDDG for a vector add (single iter-
ation), a schedule solution for it, and the latency derived
from the resultant schedule. Adapted from [6].

difference between them is the source of informa-
tion used to perform estimation. Static approaches
rely on information acquired solely through the
high-level code, whereas dynamic approaches use
traced executions to extract information useful for
estimation.

Similar interest exist on the DSE field, with
several contributions over the last years [17-20].
Relevant aspects to consider are: whether syn-
thesis is required to evaluate each design point
of the exploration or not; whether design fre-
quency is supported as an exploration knob; and
if the resource estimation is used not only to guide
the exploration, but also as exploration objective.
In addition, there are multiple HLS researches
acknowledging that off-chip memory access must
also be considered in the models for real world use
cases [10, 21-23].

FlexCL [21] is an analytical performance esti-
mation for HLS using OpenCL with average
absolute error below 10%. It is composed of a com-
putation and a memory model, that together are
used to approximate latency. Its memory model
is able to identify eight off-chip memory patterns.
FlexCL focuses on a different language and exe-
cution model than the one focused on this paper,
and it assumes a fixed operating frequency. The
hardware profile library from FlexCL assumes
an average latency for each operation consider-
ing different frequencies. This adds up inaccuracy,
and its estimation is still nonetheless invariant to
frequency.

Rajagopala et al. [10] presents Volcan,
a methodology that performs source-to-source
transformation on high-level code for HLS. Volcan
analyses the code in search for potential coa-
lesced and packed off-chip memory access, towards
reducing the design latency. This approach also
performs DSE by varying compiler directives.
Results indicate performance gains on 24 out of
27 test cases, with speed-ups ranging from 1.5x to
11x. Although a design space pruning technique is
performed, each design point must be synthesised
and tested on board for acquiring runtime values.

Dévila-Guzmén et al. [22] presents an analyt-
ical model to estimate performance of memory-
bound application on Intel FPGA OpenCL plat-
forms. For 9 memory-bound applications, the esti-
mation error remained below 9%. This approach
uses the RTL code generated from HLS to assist
on its estimations. Since in some cases HLS compi-
lation may also take considerable time [7], it may
not be viable for large design spaces.

Sherlock [23] is a multi-objective design explo-
ration approach. It implements active learning,
on which multiple regression models are continu-
ously tested, and Sherlock uses the most promising
results on the way to guide its exploration. Each
design point is evaluated using design synthe-
sis, and thus exploration reaches dozens of hours.
The authors affirm that Sherlock is well-suited for
applications on which the design space’s charac-
teristics are not known.

AutoScaleDSE is a design space exploration
engine proposed by Jun et al. [24] that explores
multiple interacting loop nests, and then it finds
the best solution that satisfies the whole code.
AutoScaleDSE performs an initial exploration for
each loop nest, then it uses a random forest clas-
sifier and a genetic algorithm to merge the results
and create a global optimised solution. During the
process, one or more HLS compilations may be
needed in order to fine tune the result, and the
whole process might take few hours. In exploration
of large-scale applications, a maximum speed-up
of 12x is reported. AutoScaleDSE tackles a much
broader problem by solving the DSE for more than
one loop, while our approach is more focused on
solving a single loop. In its core, AutoScaleDSE
uses the ScaleHLS [25] framework to both apply
code transformations on the code, and to perform
the initial DSE of each loop nest. ScaleHLS’ design

This version of the article has been accepted for publication, after peer review (when applicable) but is not the
Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record
is available online at: http://dx.doi.org/10.1007/s11265-024-01938-3. Use of this Accepted Version is subject to
the publisher’s Accepted Manuscript terms of use https://www.springernature.com/gp/open-research/policies/

accepted-manuscript-terms.


http://dx.doi.org/10.1007/s11265-024-01938-3
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

exploration uses a latency/area estimator named
“QoR estimator”, which shares many aspects from
our approach. For example, it is also synthesis-
less and uses similar calculations as Lin-analyzer
and Lina (such as ALAP scheduling), although it
is an analytical model-based approach. In addi-
tion, it lacks a comprehensive off-chip memory
model as presented in this paper, focusing the
estimations on the on-chip accesses. In fact, our
approach could be complementary to ScaleHLS
by adding a finer-grain approach to the off-chip
memory scheduling. The QoR estimation supports
different clock frequencies, although only 100MHz
is currently implemented, and it is not part of the
DSE itself as in our approach.

In summary, most contributions presented
above make use of design synthesis or HLS compi-
lation to guide their explorations. Although design
space pruning is used, the exploration may still
reach multiple hours for just a single case. If com-
pared to other synthesis-less approaches - such as
ScaleHLS” “QoR. estimator” - our solution pro-
vides a more comprehensive model for off-chip
memory analysis and scheduling. Lina leverages
dynamically-acquired information to analyse and
find potential off-chip optimisations, not requir-
ing any lengthy compilation step to guide its
exploration.

4 Off-Chip Memory Model

This section details the off-chip memory model
added to Lina. This model is used in three steps:

¢ First stage DDDG transform: load/store
nodes in a DDDG that access off-chip region
are substituted by one or more nodes related to
off-chip transactions (e.g. setup, commit);

® Second stage DDDG transform: a mem-
ory trace is used to identify optimisations such
as coalescing, data packing. Then the nodes
added at the first stage are modified according
to identified optimisations;

® Scheduling: if Lina reaches an off-chip read-
/write candidate node during scheduling, it
consults the memory model to know if this cur-
rent candidate can be scheduled or not. The
memory model considers multiple aspects to
take such decision, for example: the number of
ports available, ongoing coalesced transactions
and memory policy.

Figure 4 presents an example of DDDG trans-
formation being applied to some nodes. First, the
user indicates to Lina which arrays should be con-
sidered off-chip. Then, all load/store nodes related
to these arrays are transformed similar to the
example presented.

First stage Second stage
Original DDDG 'DDDG transform!DDDG transform

Fig. 4 Example of DDDG transformations for inserting
off-chip transactions. First, loads and stores are substituted
by off-chip equivalents. Then the memory model identifies
a coalescing potential and merges both identified off-chip
transactions (coalesced transaction indicated by thicker
dashed-edges).

The traced execution of the input kernel is
also used to generate a memory trace, containing
all accessed data addresses. This is used in con-
junction with the memory model to decide the
scheduling of the off-chip accesses.

The next subsections present the memory
model features and behaviour, such as potential
memory optimisations, how they transform the
DDDGs, scheduling policies, and interaction with
pragmas. When Lina finishes, it presents a mem-
ory report to the user indicating the optimisations
that were detected, and the ones that were blocked
along potential reason. Appendix A.l presents a
report snippet.

4.1 Memory Optimisations and
Second Stage DDDG Transform

After first stage, Lina performs multiple analyses
in order to identify potential memory optimisa-
tions and then transforms the DDDGs during

This version of the article has been accepted for publication, after peer review (when applicable) but is not the
Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record
is available online at: http://dx.doi.org/10.1007/s11265-024-01938-3. Use of this Accepted Version is subject to
the publisher’s Accepted Manuscript terms of use https://www.springernature.com/gp/open-research/policies/

accepted-manuscript-terms.


http://dx.doi.org/10.1007/s11265-024-01938-3
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

second stage accordingly. Three optimisations are
evaluated by Lina: burst, data packing, and mem-
ory banking. Figure 5 presents examples of these
optimisations, which are detailed in the following
sub-sections.

4.1.1 Burst

Two types of bursts are analysed: intra- and
inter-iteration. In the first case, Lina searches
for contiguous off-chip transactions within a loop
iteration. If any is found, the generated memory
trace is used to verify whether the coalescing pat-
tern applies to other loop iterations. If positive,
Lina performs intra-iteration burst by grouping
the off-chip transction into a single transaction.
An example of this DDDG transform is presented
in Figure 5.

Intra-iteration burst reduces latency by
grouping coalesced transactions, but the time-
consuming steps (e.g. setup and/or commit) are
still executed at every iteration. On the other
hand, inter-iteration bursts reduce latency even
further by running the time-consuming steps of an
off-chip transaction just once before and/or after
the loop body. The second column in Figure 5
presents a code snippet on which off-chip trans-
actions are coalesced across successive loop iter-
ations. In this case, a single setup can be exe-
cuted prior to loop execution (“pre-loop” region
on figure), then successive read or write calls
are performed. Finally, the commit step is per-
formed after loop is executed (“post-loop” region
on figure). Lina uses the memory trace to identify
if such pattern is possible within the code being
analysed.

4.1.2 Data Packing

Modern off-chip memories usually provide wide
interfaces, for example GDDR5 that is 256-bit
wide. Common scalar data types have in gen-
eral no more than 64 bits. In order to make
full use of wide data buses, the developer must
adapt the code to use vector types (e.g. floatd
type on OpenCL). This can also be performed
as an optimisation in some HLS compilers. Intel
FPGA’s OpenCL, for example, provides the
num_simd_work_items attribute that attempts to
pack scalar computations within a kernel auto-
matically.

If data packing is possible for a certain array
in a certain region of a code, it must also be appli-
cable to every other place where the same array
is used. Consider for example the code snippet at
the “Data packing” column of Figure 5. Its com-
putation pattern allows the array to be always
accessed as a vector element with four packed ele-
ments. Data packing is possible in this case. Now
consider that this snippet is wrapped by an outer
loop that accesses array A as a single element per
iteration (e.g. A[k] = ...;). If the HLS compiler
or platform being utilised does not allow masking
packed writes (that is, writing only certain ele-
ments of a vector element back to memory), then
packing is not possible. The innermost loop would
allow a vector type with 4 elements, but the outer
loop requires access as single elements.

Lina evaluates all generated DDDGs for a
single loop nest in search for potential packed
off-chip accesses. For each evaluated array within
a DDDG, Lina stores the potential packing val-
ues. Then, it selects the largest common value
among all DDDGs. This ensures that if data
packing occurs, it is consistent throughout all eval-
uated code regions. The selected value is used to
transform the DDDGs as exemplified in Figure 5.
In this example, the array is being accessed as
four contiguous (and bus aligned) transactions at
every iteration. After data packing, the first three
action steps are silenced (i.e. they have their
latency reduced to zero). Only the last action
step is left unchanged. During scheduling, all four
action steps will be scheduled at once, which is
latency-wise equivalent to a data-packed off-chip
transaction.

The report snippet in Appendix A.l presents
an example of messages reported during data
packing analysis.

4.1.3 Memory Banking

On-chip arrays are implemented on FPGA with
separate read/write interfaces, allowing parallel
access to them. Off-chip arrays, however, are
dependent on how the memory access is config-
ured and physically implemented. If just a single
memory chip is connected, memory access for any
off-chip array will compete for the same interface.
Some architectures are able to implement memory

This version of the article has been accepted for publication, after peer review (when applicable) but is not the
Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record
is available online at: http://dx.doi.org/10.1007/s11265-024-01938-3. Use of this Accepted Version is subject to
the publisher’s Accepted Manuscript terms of use https://www.springernature.com/gp/open-research/policies/

accepted-manuscript-terms.


http://dx.doi.org/10.1007/s11265-024-01938-3
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

Legend

Add op. @sWr. (setup) @aWr. (action) @cWr. (commit)

s for(...) { for(...; i+=4) {

4

2 Alll = ... + ... FOr(i = vuuj wunj i4+4) { Alil = ... + ...

I Ali+1] = ... + ... Ali+1] = ... + ...
] Ali+2] = ... + ... Alil = ... + ... Ali+2] = ... + ...
3 - . ALi+3] = ... + ...
o

W. optimisation ' W/o optimisation

Intra-iter. burst

Inter-iter. burst

Data packing

Fig. 5 Examples of code snippets, their DDDG equivalents without and with the optimisations indicated underneath. The
thicker dashed lines indicate the optimisation paths created. Nodes with dashed borders are silenced (i.e. latency is zero).

banking. That is, off-chip arrays are placed on sep-
arate memory banks, which in turn allows parallel
access similar to on-chip arrays.

Lina replicates memory banking by analysing
each array as a separate memory space with sep-
arate interfaces if enabled. When disabled, all
off-chip arrays are treated to be in the same
memory space, sharing the same interface.

4.2 Interaction Between Multiple
Transactions and Pragmas

Off-chip transactions occupy multiple cycles, and
they may or may not overlap depending on several
conditions. Every time an off-chip node enters the
scheduler, the off-chip memory model is consulted
on whether it is possible to schedule that node in
current cycle or not. The decision making is based
on a memory policy, that may vary between HLS
compilers and platforms.

Since we use Vivado HLS as base for Lina, we
include two memory policies that are based on
off-chip memory behaviour of Xilinx Zynq Ultra-
Scale+ system (our test platform). The first policy

(permissive) allows multiple off-chip transac-
tions to occur in many scenarios, whereas the
other policy (conservative) is more restrictive
on allowing overlaps. Details for each policy are
available in Appendix A.2.

We could not draw a perfect conclusion on
what triggers each policy on Vivado HLS, but
we noticed however that when a read is per-
formed after a write to a same off-chip array,
the conservative policy is automatically applied
by Vivado HLS. If banking is disabled, a sin-
gle off-chip read after any off-chip write suffices.
We name this pattern as read-after-write for
further reference. Lina is able to identify such
pattern, and emits a warning for the user that
performance degradation is expected due to con-
servative scheduling policy. These warnings are
presented on the generated memory report, along
with potential solutions.

Not only multiple off-chip transactions affect
themselves, but optimisation pragmas do as well.
The following sub-sections present how loop unroll
and loop pipeline affect off-chip scheduling.

This version of the article has been accepted for publication, after peer review (when applicable) but is not the
Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record
is available online at: http://dx.doi.org/10.1007/s11265-024-01938-3. Use of this Accepted Version is subject to
the publisher’s Accepted Manuscript terms of use https://www.springernature.com/gp/open-research/policies/

accepted-manuscript-terms.


http://dx.doi.org/10.1007/s11265-024-01938-3
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

4.2.1 Loop Unroll

Unrolling a loop virtually replicates its body.
Thus, off-chip transactions within the loop are also
replicated. How this may impact in performance
is dependent on the HLS compiler.

To test the off-chip transactions in our Xil-
inx Zynq UltraScale+ platform, we used Xilinx
SDSoC toolchain, that uses Vivado HLS as its
core. Enabling loop unroll generally incurred in
performance degradation. Off-chip optimisations
that were being previously detected were dis-
abled due to unroll. This happens for example if
both read and writes are included within the loop
body. When it is unrolled, the virtual code repli-
cation causes a read-after-write pattern, that
switches the memory policy to conservative, in
turn disabling coalescing.

As an example, consider a very simple loop
with one input array and one output array being
accessed in a monotonic manner (e.g. B[i] =
Alil; i += 1). Without any unroll directive,
inter-iteration burst is detected. With unroll
enabled, the read-after-write pattern occurs
and severely degrades performance. As an addi-
tional test, we attempted to manually unroll the
code (i.e. copy and pasting the loop body) while
positioning all read operations before the write
operations. In this case, we were able to cir-
cumvent the read-after-write pattern, but it
nonetheless did not detect inter-iteration burst as
in the code with no unroll. From all three cases,
the code without unroll provided the best perfor-
mance. There seems to be some missing exchange
of information between the SDSoC and Vivado
HLS optimisers.

Lina is able to detect such patterns and issue
warnings if a loop unroll may cause a negative
impact. In this case, loop unroll is only indicated
when it facilitates other optimisations, such as
coalescing with data packing.

4.2.2 Loop Pipeline

In order to calculate the latency of a loop when
pipeline is enabled, Lina uses the calculations from
[7, 26, 27], on which the initiation interval IT is
approximated by a “minimum initiation interval”
MII. The value MII is calculated based on two
factors that often limit the reachable minimum
value of II: recurrence and resource constraints.

10

The ResMII,,.., is the resource constraint
MII related to memory constraint. For on-chip
arrays, Lina/Lin-analyzer calculate as follows:

Nrp, Nwm
ResMIlpem = max { [Prm—‘ ’ [Pwm—‘ } ?

where: Nr,, and Pr,, are the number of reads
within a DDDG and number of read ports for
array m; Nw,, and Pw,, are the respective coun-
terparts for write transactions.

This value builds upon the following rationale:
in general, load and store nodes are either start
or endpoints of a DDDG. Load nodes without
dependency can be all moved and compacted to
the beginning of the DDDG schedule, while store
nodes that are terminal can all be moved to the
end of the schedule. A limited number of val-
ues can be read/written at each clock cycle, as
defined by the Pr,, and Pw,, values. Thus, if all
load/store nodes are compacted to the edges of a

Nr,
Pr,,

schedule, they can be processed in [ —‘ cycles

for read, and D){wﬂ—‘ cycles for write. The largest

between both values — and the largest among all
arrays — is considered the MII related to memory
resource constraint.

This, however, does not apply for load and
store nodes that are dependent on other load/s-
tore nodes. This can happen for example if the
HLS compiler is not able to statically infer an
array read’s index after a store has happened
for the same array. In this case, the compiler
takes the conservative approach of considering a
dependency between the last store and the load.
This indeed reduces the movement of both oper-
ations within the schedule. That is, they cannot
be moved to the starting or ending of a schedule
window in order to reduce II if pipelined. Lin-
analyzer takes this into account for on-chip arrays
by using an adjustment factor when calculating
ResMI1I,,¢.,. In our case, such calculation was not
enough when considering off-chip arrays. Figure 6
presents two examples of pipeline allocations, one
without any dependent load/stores, and one with
a load/store dependency path.

Lina implements an improved calculation for
ResMI1,,e,, that considers both on and off-chip
transactions. We tested several different access

This version of the article has been accepted for publication, after peer review (when applicable) but is not the
Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record
is available online at: http://dx.doi.org/10.1007/s11265-024-01938-3. Use of this Accepted Version is subject to
the publisher’s Accepted Manuscript terms of use https://www.springernature.com/gp/open-research/policies/

accepted-manuscript-terms.


http://dx.doi.org/10.1007/s11265-024-01938-3
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

mmcmmmmmmmmmaan iter. i
E ' * E Execution timeline
LI HSE o i
I s
s
Pl=2
h

Independent load/stores
w/ dependent load/store path

iter. i+1

Fig. 6 Two examples of pipeline allocations. Each dashed
box represents a single iteration of the pipelined loop. On
the first example (above), no dependency exists between
loads and stores, and the II is constrained by the memory
resource (i.e. IT of 1 would overlap too many loads to the
same array, exceeding port budget). In the second exam-
ple (below), there is a dependency path between loads and
stores, and thus a larger II is allocated in order to respect
the dependency. Adapted from [6].

patterns on Vivado HLS (via SDSoC), that led to
a more generalistic equation as follows:

ResMI1em = max{ResMII*"  ResMII" }
(3a)
N N
ResMIIPOTt = mygx{ {P:::—‘ ; LDZ:—‘ } (3b)
ResMIIS = max{A'r,,, Aw,} (3¢)
A'rp = (Arp + Crm) * Am (3d)
AN w,, = Aw,, + Cw,y, (3e)
- 0 ?f m %s on—ch'%p (36)
1 if m is off-chip

where ResM TPt is the M1 value constrained
by memory port, ResMII} —is the MII
counterpart constrained by dependent memory
accesses, Ar,, is the largest schedule distance
between dependent read transactions for memory
interface m, C'ry, is the number of connected read
dependency paths for memory interface m, Nry,

and Pr,, are the number of reads and number

11

of read ports for memory interface m. All vari-
ables have their respective counterparts for write
transactions, respectively: Aw,,, Cw,,, Nw,,, and
Pw,,. This whole new calculation wraps around
the previous value of ResMII,em, that now
became ResMIIPort .

The concept of “memory interface” is depen-
dent on whether it is on or off-chip. For on-chip,
each array has its own set of block RAMs and ded-
icated memory ports, thus each array has its own
memory interface m. For off-chip arrays, if bank-
ing if disabled, all arrays share the same memory
interface. With banking, off-chip arrays have their
own interfaces similar to on-chip arrays.

Lin-analyzer only applies its adjustment factor
to write transactions. For read transactions, the
memory recurrence constraint as shown in (3) is
not considered. Lina follows a similar approach:

for on-chip transactions, the ResMII]°C = value
discards the read transactions through the A\,, =0

multiplier.

These equations are calculated by Lina as fol-
lows: first, it counts all read/write transactions
within the DDDG and calculates N1, and Nw,,.
Data packing must be taken in consideration (e.g.
a packed transaction of 4 loads should be seen
as a single increment on Nr,,, not 4). Then dur-
ing scheduling, Lina keeps track of all load/store
nodes that are being scheduled in order to iden-
tify dependent load/store nodes. At the end of
scheduling, Lina has a list of all paths with depen-
dent loads and stores, which is used to calculate
Arp, Awpy,, Cry and Cw,y,. Finally, ResM I em
can be calculated. An example of this calculation,
along with more explanation on Cr, and Cw,,
can be found in Appendix A.3.

5 Exploration Caching
Mechanism

One notable overhead of our estimator is that
dynamic traces are often very large, and points
of interest for DDDG generation are usually scat-
tered through the compressed trace file. That
incurs in large overhead for reading and pars-
ing the trace entries until these points of interest
are found. This was partially handled on previous
work [5], where a trace cursor cache was created to
store known positions on the compressed file once
they are reached. When needed, Lina simply reads

This version of the article has been accepted for publication, after peer review (when applicable) but is not the
Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record
is available online at: http://dx.doi.org/10.1007/s11265-024-01938-3. Use of this Accepted Version is subject to
the publisher’s Accepted Manuscript terms of use https://www.springernature.com/gp/open-research/policies/

accepted-manuscript-terms.


http://dx.doi.org/10.1007/s11265-024-01938-3
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

the cache and if there is a hit, it seeks directly to
the point of interest using the cached cursor, with-
out having to re-parse large parts of the trace for
every design point.

When we started to increase the number of
parallel calls of Lina during kernel explorations
(i.e. multiple design points evaluated at same
time), we noticed that the trace file seek opera-
tions also started to become a bottleneck. Due to
the decompression mechanism, the further away
a seek operation points to, the longer it takes
to reach that point. Since there is data local-
ity across design points - that motivated the
existing trace cursor cache - keeping on mem-
ory these regions that are frequently accessed can
significantly reduce the bottleneck.

This new caching mechanism is composed of
a daemon application named linad. This dae-
mon maintains a shared memory area where these
frequently-accessed regions are stored uncom-
pressed. Instead of each Lina instance opening
the trace file by itself, it communicates with an
API that provides a file-like interface. The API
uses Inter-Process Communication (IPC) to inter-
act with the daemon, which is then responsible
by seeking and decompressing further parts of the
trace file when there is a miss, or to provide a
shared memory pointer when there is a hit. Due to
this mechanism, less seek and decompression oper-
ations are performed for each exploration. Figure 7
presents the daemon and how Lina jobs interface
with it.

6 Experimental Setup

This section presents the experimental setup used
to validate the off-chip model as part of design
space exploration. We present the hardware plat-
form, toolchain, and test kernels used as DSE
inputs.

As opposed to the previous paper [5], we do
not perform a pareto analysis between resource
footprint and performance. Our focus here is on
performance, and the resources estimations are
only used for tiebreaking when needed.

6.1 Hardware/Software Platform

Our test platform is a ZCU104 development kit
containing a Xilinx Zynq UltraScale+ device. The
Zynq UltraScale+ architecture is composed of two

12

) Interface - Compr.
Lina g via IPC Linad trace
0 fread [ Cache

o | miss region 1
fopen b) o
=W fscek Iz 1 region 2
fread =
a region 1
Cache region 2
hit

Fig. 7 Caching mechanism structure showing multiple
Lina calls, the daemon, the compressed trace file, and a
shared memory region. The multiple instances use a file-
like interface to communicate with an API, which in turn
uses IPC to communicate with the daemon (indicated as
1). If the requested trace region is present on the shared
memory (a hit), a pointer to this region is returned to the
API (indicated as 2a). If not present (a miss), the daemon
decompresses the requested region, stores it on the shared
memory and returns the pointer (indicated as 2b).

major components: an ARM-based architecture
(Processing System, PS) and an FPGA region
(Programmable Logic, PL), both with strong cou-
pling. This architecture is quite suitable for HLS
solutions, as it allows software to be executed on
the PS while compute-intensive tasks are offloaded
to custom hardware on PL.

The SDSoC toolchain offered by Xilinx com-
plements this architecture by supplying a user-
friendly approach on such offload. Via C/C++,
the developer is able to mark functions as to be
offloaded to PL. These are synthesised via HLS,
and automatically coupled to the remaining of the
code that executes on PS.

OpenCL is also supported. In this case, the PS
executes the host code, whilst the OpenCL kernels
are offloaded to the PL using HLS. The integration
happens in a similar fashion as to C/C++, but
OpenCL-conformant. Although Lina is tailored
for C/C++, in this paper we use OpenCL as the
input language, but solely for its facilitations in
regard to access to off-chip memory. An array can
be stored and accessed from off-chip memory sim-
ply by adding the __global keyword to the array’s
declaration. Furthermore, OpenCL also facilitates
data packing by providing packed data structures,
such as float4 or int4. Although OpenCL sup-
ports other execution models for kernels — such as
the SIMD pattern using NDRange — we only use

This version of the article has been accepted for publication, after peer review (when applicable) but is not the
Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record
is available online at: http://dx.doi.org/10.1007/s11265-024-01938-3. Use of this Accepted Version is subject to
the publisher’s Accepted Manuscript terms of use https://www.springernature.com/gp/open-research/policies/

accepted-manuscript-terms.


http://dx.doi.org/10.1007/s11265-024-01938-3
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

the single-task approach. In this case, an OpenCL
kernel is executed likewise a C/C++ function?.

The kernels that we use in the experimental
setup are originally in C/C++. These are used
for exploration with Lina. Then, simple modifi-
cations are made in order to transform them to
OpenCL, since the single-task execution model
is used. The modifications are mostly comprised
of adding OpenCL-specific keywords and creating
the OpenCL host initialisation code for the ker-
nels and related buffers. The kernel body is left
practically intact.

A power sensing testbench was created in order
to measure the consumed energy from the kernels.
Appendix B presents the testbench.

6.2 Exploring a CNN Layer with
Off-chip Access

Convolutional Neural Networks (CNN) are par-
ticular applications that have a code structure
suitable to parallelism, and also have a large mem-
ory footprint for inputs and outputs. There are
several studies focused on using smaller on-chip
buffers and loop reordering/tiling [17, 28, 29].
Their primary focus is to optimise the access to
off-chip memory while maximising the usage of
on-chip resources.

Figure 8 presents the basic loop nest of a CNN
kernel. It has a suitable code pattern for memory
optimisation, which we perform using Lina on a
single CNN layer. The design spaces (detailed in
Appendix C) are composed of 680 valid points.

LOF: for(auto m = @; m < M; m++)
LIF: for(auto c = @; c < C; c++)
LSY: for(auto y = 0; y < E; y++)
LSX: for(auto x = @; x < E; x++)
LFY: for(auto k = 9; k < E; k++)
LFX: for(auto 1 = 0; 1 < E; 1++) {
auto p = I[clly * S + kI[x * S + 11;
auto w = WIm][cI[kI[1];
O[mICyl[x] += p * w;
3

Fig. 8 Basic loop nest of a CNN kernel.

We explored two variations of a CNN loop
nest, differing on how memory accesses on border

1OpenCL is only used as a facility for the optimisations esti-
mated by our model. Other HLS languages could be used if the
same features are provided, like data packing.

13

cases are handled. The first version — padmemory
— has padded buffers in such way that all memory
accesses are always within array bounds. The sec-
ond version — padlogic — uses unpadded buffers
and conditionals to check whether a memory
access would be off-bounds or not.

The input arrays I and W are left off-chip,
while the output array 0 is buffered on-chip during
execution. The results from 0 must be trans-
ferred back to the off-chip memory after the CNN
layer completes. We leave memory banking always
enabled.

Since this code has a rather simple loop body,
we created an unroller tool to explicitly unroll the
loop nest. First, we splitted the loop body in such
way that all reads were placed before writes and
added special annotations to guide the unroller
tool. Then, this tool is able to explicitly unroll the
code while keeping all reads before the writes. The
intent of this is to evaluate if there is any per-
formance gain on avoiding the read-after-write
pattern as previously explained. An example can
be found in Appendix D. In the remaining of
this paper, we refer to this approach using the
unroller tool as explicit unroll, and to the nor-
mal approach using unroll pragmas as Vivado
unroll.

6.3 Parboil Benchmark

The Parboil benchmark [8] is a suite of applica-
tions that are presented with different variants
targetting different architectures. We selected 4
applications and used their C/C++ baseline vari-
ants as input for DSE and HLS 2.

Table 2 presents the four kernels tested. These
kernels were selected considering current Lina
limitations. For example, current Lina implemen-
tation does not support loop nests with more than
one loop per level, arbitrary precision data types
or variable loop bounds. See [6] for a detailed
discussion.

6.4 Parallel Execution of Lina

As presented in Section 2.1, the dispatcher script
simply configures and calls Lina for each design

2Parboil was used in this experiment, since it was suitable
for comparison between different architectures. Such compari-
son is out of scope of this paper, but it was performed and is
detailed in [6].

This version of the article has been accepted for publication, after peer review (when applicable) but is not the
Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record
is available online at: http://dx.doi.org/10.1007/s11265-024-01938-3. Use of this Accepted Version is subject to
the publisher’s Accepted Manuscript terms of use https://www.springernature.com/gp/open-research/policies/

accepted-manuscript-terms.


http://dx.doi.org/10.1007/s11265-024-01938-3
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

[
L

==}
L

L.'I.MHHH.HM“

—— Vivado (unrviv)

—— Lina (cons)

o M

Execution time (x10s)
[\ =

A

B AR

—— Vivado (unrexp)

—— Lina (perm)

AA A

Design points

Fig. 9 Design space exploration results for padmemory. Horizontal axis presents the design points tested, and vertical axis
presents the kernel execution time that was found/estimated for the associated design point. The subplot at top couples
Vivado results using normal HLS attributes for unroll with Lina exploration in conservative mode. The bottom subplot
presents Vivado results using our unrolling tool compared to Lina exploration in permissive mode.

Table 2 Parboil kernels tested.

Kernel name  Description
histo Histogramming operation
lbm Lattice-Boltzman Method simulation
mri-q MRI non-cartesian Q matrix
sgemm Single precision general matrix multiply

point. Thus, it can be easily parallelised by dis-
patching multiple concurrent calls. We perform
such exploration and evaluate the total explo-
ration time with different amount of threads. The
four Parboil kernels were explored on a Linux
computer running Ubuntu, with a six-core Intel
i7-9750H CPU and 32GB RAM.

The new caching mechanism as presented in
Section 5 allowed our exploration to run with
more threads and further reduce exploration time.
We adapted the dispatcher script to allow multi-
node execution and tested on the Sorgan Cluster,
located at the Computer Systems Laboratory
(LSC) in UNICAMP, Brazil. This cluster is com-
posed of four nodes with Intel Xeon Gold 6252
CPU (48-core) and 93 GB RAM.

7 Results

This section presents the results related to the
experimental setups. We performed many exper-
iments by toggling the memory policies, data
packing directives, and unroll approach. On each
experiment, the usual HLLS pragmas are explored.

14

These experiment toggles are represented by

aliases as shown on Table 3.

Table 3 Experiment toggles.

Knob 1: Vectorisation

novec DSE performed without data packing analysis

vec DSE performed with data packing analysis
Knob 2: Off-chip memory policy
cons DSE performed using conservative policy
perm DSE performed using permissive policy
Knob 3: Unroll approach
unrviv ~ HLS code unrolled using SDSoC directives
unrexp HLS code explicitly unrolled using our tool

7.1 CNN Layer

We ran Vivado HLS for all points in the design
space that were traversed by our approach, and
collected the actual scheduling results from the
compilations. These values are used as a golden
model for comparison against our DSE. Figure 9
presents the comparison results for the padmemory
kernel (estimations vs. golden model). Similar
figure for the padlogic kernel can be found
in Appendix C. We leave data packing / vec-
torisation enabled on Lina, since we detected
that SDSoC was automatically performing vec-
torisation when possible. Since our unrolling tool
allows reorganising the code in order to miti-
gate read-before-write, Vivado is more likely

This version of the article has been accepted for publication, after peer review (when applicable) but is not the
Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record
is available online at: http://dx.doi.org/10.1007/s11265-024-01938-3. Use of this Accepted Version is subject to
the publisher’s Accepted Manuscript terms of use https://www.springernature.com/gp/open-research/policies/

accepted-manuscript-terms.


http://dx.doi.org/10.1007/s11265-024-01938-3
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

to work similar to the permissive mode of Lina.
Thus, the bottom subplot presents the exploration
using Lina in permissive mode compared to
Vivado synthesis using our unroller tool (unrexp).
The converse rationale is also valid. That is,
using HLS unroll directives may present similar
behaviour as of Lina’s conservative mode, pre-
sented in the top subplot. Although there are
visible deviations between the estimated execution
times and ground truth, the lower regions of the
plots were characterised by Lina with good accu-
racy. As our goal is to reduce execution time, our
greater interest is at the lower regions.

Due to the large interval on the y-axis, it
is not visually clear which subplot presents bet-
ter kernel execution time values. In fact, the
most optimal points vary on the millisecond scale.
Table 4 presents the kernel execution times for the
golden model’s best point (vivbest) versus our
exploration’s best pick (linbest). For vivbest,
using unrexp brought significant better results
in padmemory kernel, but slightly worsened per-
formance in padlogic. For linbest, we reached
the optimal for padmemory with unrviv, but
reached 71% of the optimal when using unrexp.
Results for padlogic are similar, however Lina
DSE reached 89% of the optimal kernel execution
time with unrexp. Table 4 also presents the speed-
ups achieved by these points as compared to HLS
baseline. These values do not consider start/end
data transfers, only the compute part (and con-
sequently off-chip accesses during compute). The
trends are the same as the execution time values.

Table 4 Achieved optimals by the explorations using
HLS for each design point (vivbest), and by exploring
using our DSE approach (linbest).

padmemory padlogic
cons perm cons perm
unrviv unrexp unrviv unrexp
vivbest 41.29ms 9.83ms  65.87ms  72.75ms
speed-up  241.36x  1013.59x  879.88x  796.65%
linbest 41.29ms 13.76ms  65.87ms  81.59ms
speed-up  241.36% 724.02x  879.88x  710.27x

Note that the maximum speed-ups for these
experiments are only known because all explored

design points were synthesised. In a real appli-
cation scenario, the maximum is expected to be
unknown, as in the Parboil experiments.

Table 5 ranks the design points in terms of
speed-up. Our explorations correctly inferred the
best frequency, loop unroll and pipeline config-
urations. It only slightly deviated when select-
ing proper array partition configurations. For all
explorations, the best design points given by Lina
DSE were always in the top-10 best points of the
explored design spaces.

It is also possible to note from Table 5 that
the baseline versions were not in the last rank
positions (around 680). This further indicates that
some pragmas may result in worse performance
than baseline.

Table 5 Design points ranked: baseline, best pick from
HLS exploration and best pick from Lina exploration.
Pragma factors are presented in parentheses when
applicable [6].

Array
Freq. Unroll Pipeline part.
Rank MHz level level 0
padmemory
base 527 100 off off off
vivbest 1 200 3 (2) 3 cyclic (4)
linbest 4 200 3 (2) 3 cyclic (8)
padlogic
base 546 100 off off off
vivbest 1 200 3(2) 3 off
linbest 3 200 3 (2) 3 cyclic (8)

7.2 Parboil Benchmark

Figure 10 presents the execution time speed-up
for the kernels presented in Table 2. For each ker-
nel, more than one exploration was performed by
toggling data vectorisation analysis and memory
policy. And for each exploration, two speed-up
values are presented: full application speed-up
considering host code execution and data transfers
(indicated as full on figure), and the computation
loop speed-up, disregarding data transfers before
and after kernel execution (indicated as compute
on figure).

Due to some explored design space sizes (e.g.
mri_q with 12800 explored points), it is unfeasible
to fully synthesise all points. It is also unfeasible

This version of the article has been accepted for publication, after peer review (when applicable) but is not the
Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record
is available online at: http://dx.doi.org/10.1007/s11265-024-01938-3. Use of this Accepted Version is subject to
the publisher’s Accepted Manuscript terms of use https://www.springernature.com/gp/open-research/policies/
accepted-manuscript-terms.


http://dx.doi.org/10.1007/s11265-024-01938-3
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

25 4 s
B a: novec, cons (full) B
mmm b: novec, perm (full)
207 B c: vec, cons (full)
= mmm d: vec, perm (full)
= 157 mmm e: novec, cons (compute)
'dg_, mmm f: novec, perm (compute)
:;'.1_ 10 4 g: vec, cons (compute)
mmm h: vec, perm (compute)
> + aF i+ il
Lox| W WY -

abcdefgh
histo

abcdefgh abcdefgh abcdefgh

lbm_small mri_q sgemm

Fig. 10 Performance speed-ups for each kernel. Four
experiments were performed using Lina, indicated by a, b,
¢, d (full application speed-up) and e, f, g, h (compute
loop speed-up). The highest speed-up of each kernel and
for each speed-up type is indicated. The horizontal line -
labelled 1.0x - indicates the baseline kernel with no opti-
misation pragmas at 100 MHz. Adapted from [6].

to acquire the full application metrics (execution
time, consumed energy), since this step required
a semi-automatic procedure for result collection.
Therefore we did not compare the Parboil results
to ground truth. We believe that Lina validation
has already been performed by previous papers
and by the convolution results.

Considering the full application speed-ups,
one exploration actually presented a slowdown
(i.e. novec, cons exploration of lbm_small).
Nonetheless, all kernels presented speed-ups when
considering the best exploration of each: 1.1x for
histo, 1.4x for 1bm_small, 2.4x for mri_q and
3.2x for sgemm. In fact, most explorations pre-
sented nearly similar results for each kernel, apart
from the one slowdown in 1bm_small and two Lina
explorations of histo that did not synthesise (let-
ters ¢ and d on Figure 10). These syntheses failed
on late timing analysis.

Considering the compute loop speed-ups (let-
ters e, £, g and h on Figure 10), kernels mri_q and
sgemm present a great discrepancy as compared to
full application: max. 24.2x and 10.3x, respec-
tively. Kernel 1bm_small has a greater speed-up
but in lesser extent (2.4x compared to full applica-
tion’s 1.4x), and histo is unchanged. The histo
explorations that did not synthesise were not
tested (letters g and h on figure).

The kernels with great discrepancy between
full application and compute loop speed-ups
indicate that data transfers take non-negligible

16

times. These could be mitigated by optimisation
strategies, such as interleaving data transfers with
computation. Currently no such optimisation is
performed, and it is out of scope of this paper.

Figure 11 presents the energy efficiency gains
for each kernel. These are using the same optimi-
sation parameters as the results presented in the
previous figure.

[t
w
.

[ g
o
|

<

P‘+

=

w
L
<

=
e
"

Energy efficiency gain (x)
%

o
5]
\

o
o
\

abéa abcd abcd abcd

histo lbm_small mri_q sgemm

Fig. 11 Energy efficiency gains for each kernel. The
four experiments for each kernel are presented similar to
Figure 10. The highest efficiency gain of each kernel is indi-
cated. Adapted from [6].

The energy efficiency gain is a speed-up anal-
ogy, but for energy consumption: how many times
the optimised kernel is more efficient than base-
line. We have only considered the full applications
in this case, since it would be tricky to isolate the
exact energy consumption of the compute loops
using our experimental setup. Energy efficiency
gain values are close to the attained speed-ups, dif-
fering by at most 0.7 points: 1.4x for histo, 1.1x
for 1bm_small, 1.9x for mri_q and 2.9x for sgemm.
Similar to the previous figure, the histo explo-
rations that did not synthesise were not tested
(letters c and 4d).

7.3 Lina Parallel Execution Time
Analysis

Figure 12 presents the exploration results for each
kernel when using our approach, with varying
number of parallel threads in the i7-9750H com-
puter. Apart from histo, all other kernels took a
couple of minutes to generate the dynamic trace
file. This step is sequential and does not bene-
fit from the parallel setup. In this computer, 16

This version of the article has been accepted for publication, after peer review (when applicable) but is not the
Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record
is available online at: http://dx.doi.org/10.1007/s11265-024-01938-3. Use of this Accepted Version is subject to
the publisher’s Accepted Manuscript terms of use https://www.springernature.com/gp/open-research/policies/

accepted-manuscript-terms.


http://dx.doi.org/10.1007/s11265-024-01938-3
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

threads appeared to be the optimal configuration,
with most kernels having only a marginal gain (or
even a slight slowdown) when using 32 threads.

Ibm _small

Trace time: 194.76s

# DSE points: 192
2Uncomp. trace size: 17.26G

histo

Trace time: 13.63s

# DSE points: 2560
Uncomp. trace size: 1.24G

8 .
4 1
V5.4
LRI I V15 v19 vyl
0 ol vl g%
v3.5 v1.4 v1.3 V1.0 0- Vi3 w12 w11
1t 4t 8t 16t 32t 1t 4t 8t 16t 32t
mri_q sgemm

Trace time: 214.83s
# DSE points: 1920
Uncomp. trace size: 20.96G

Trace time: 515.09s
# DSE points: 12800
Uncomp. trace size: 44.15G

V4.8 y2.9

v2.9 Al.2

T T T T T
8t 16t 32t 1t 4t
=+ Uncached ® Cached

1t 4t 8t 16t 32t

Fig. 12 Exploration statistics for the Parboil kernels on
the i7-9750H computer. The x-axis represents the number
of threads, and y-axis represents total Lina DSE execution
times (1000s of seconds). Each point (apart from 1 thread)
are accompanied with a numerical value that depicts its
speed-up or slowdown when compared to the previous point
(for example, ¥5.0 means a 5x speed-up). Values with A
represent slowdowns.

For mri_q and sgemm, the caching solution as
presented in Section 5 gave better results than
running the exploration without it. Notably the
mri_q had an exploration time reduction of 9406
to 731 seconds on 16 threads by using the cache.
For the histo kernel, the caching mechanism pre-
sented worse results. We believe that this is due
to the small trace size for histo, which leads
to low I/O intensity in overall. In this case, the
caching mechanism overhead becomes more visi-
ble. For 1bm_small, the cached solution is worse on
lower threads count, but slightly better on higher
counts.

In order to avoid unnecessary overhead, a sim-
ple toggle mechanism could be used to enable
or disable the dynamic trace cache. For example,
the exploration could initially start with cache
disabled. Then if it detects that the dynamic

17

trace cursor is constantly reaching very high val-
ues, the cache could be enabled from this point
onwards. Very high dynamic trace cursors will
incur in decompression and I/O overhead that can
be avoided by the caching mechanism. An alter-
nate simpler approach is to consider a trace size
threshold to decide whether to use caching or not.
For example, histo has a very small trace size that
discourages the use of the cache. Using a thresh-
old of 5G'B for example would make all but histo
explorations to be performed with cache. This is
consistent with the fastest results presented.

The speed-up when increasing the number of
threads was higher on the cached executions as
compared to the uncached ones. This is specially
noticeable on mri_q and sgemm. A speed-up of
~ 3x was reached when increasing from 8 to 16
threads.

The total exploration time (including trace
and with 16 threads) for each kernel is: 267 sec-
onds for histo, 479 seconds for 1bm_small, 1246
seconds for mri_q, and 321 seconds for sgemm.
This considers four experiments for each kernel,
by switching the toggles as presented in Table 3.

Figure 13 presents the explorations performed
on the computer cluster. We used the 5G' B thresh-
old as explained above for toggling the cache. In
this setup, 32 threads seemed to be the optimal
approach. Partitioning the design space into mul-
tiple nodes brought improvements as expected.
For kernel mri_q, the exploration time (excl. trace
generation) reduced from 575 to 233 seconds when
increasing from 1 to 4 nodes.

8 Discussion

The CNN layer experiments present the impor-
tance of using directives in order to boost HLS
quality. With simple unroll and pipeline prag-
mas, speed-ups with two orders of magnitude were
achieved by improving the off-chip memory access
on the loop nest.

After understanding the compiler’s limita-
tion — e.g. the read-after-write pattern that
degrades performance — our results have also
shown that explicit code manipulation in order
to alleviate such limitations can also lead to per-
formance improvements, as in padmemory. Con-
versely, they also lead to performance degrada-
tion in the case of padlogic. This non-linearity

This version of the article has been accepted for publication, after peer review (when applicable) but is not the
Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record
is available online at: http://dx.doi.org/10.1007/s11265-024-01938-3. Use of this Accepted Version is subject to
the publisher’s Accepted Manuscript terms of use https://www.springernature.com/gp/open-research/policies/

accepted-manuscript-terms.


http://dx.doi.org/10.1007/s11265-024-01938-3
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

histo Ibm _small
3 0.3
Ne— [
0.2 1 0.2 1 M
0.1 - X\m 0.1 - \\:F
A
0~O T T T 0.0 T T T
16t 32t 64t 16t 32t 64t
mri_q sgemm
1.0 &L( 0.2
059 - 0.1+
0.0 T T T 0.0 T T T
16t 32t 64t 16t 32t 64t
X1 node - 2nodes @4 nodes % i7-9750H

Fig. 13 Exploration statistics for the Parboil kernels on
the computer cluster. The x-axis represents the number
of threads, and the y-axis is the total exploration time in
thousands of seconds. The results with 16 and 32 threads
from Figure 12 are also presented here for reference. For
histo these points are from the uncached version. For other
kernels, these points are from the cached version.

between cause and effect further suggests the use
of automated exploration tools.

Lina DSE correctly inferred the best operating
frequency, loop unroll factors and pipeline direc-
tives in all CNN explorations. The results were
always in the top-10 best design points of each
explored design space.

The kernels explored from Parboil presented
more concrete use cases of Lina DSE, since in
this case the whole applications were considered,
including data transfers from a host machine to
the FPGA device. Considering the best explo-
ration performed for each kernel, Lina DSE was
able to provide performance speed-up (avg. 2.03x)
and energy efficiency gains (avg. 1.83x). When
analysing the speed-up of the computation loop
only (disregarding data transfers), the improve-
ments were even greater (avg. 9.5x). This is not
unexpected, as Lina does not currently consider
shadowing memory transfers with computations.
Nonetheless, we believe that the results indicate
that Lina DSE effectively improves the perfor-
mance of computation loops that may access
off-chip elements, sequentially or not.

18

As an extra experiment, we adapted our
unroller tool used in the CNN kernel to accept
more generic codes, as the ones from Parboil. The
input kernel must be adapted to adopt a pat-
tern similar to the code presented in Appendix D.
These versions did not bring any result that
were both synthesisable and better than compared
than the ones already presented. According to
HLS compilation reports, explicitly unrolling the
code and enabling vectorisation would improve the
speed-up of mri_q from 24.2x to 85.1x. But, this
solution failed to pass full synthesis. The bottom
line is that although rearranging all reads before
write can improve the quality of HLS scheduling
policies, it also increases the code size, that in turn
pushes the HLS compiler on other edges. This can
eventually lead to performance degradation — as
seen in padlogic — or to synthesis failure, as in
mri_q.

The experimental results further corrobo-
rates the viability of performing synthesis-less
design space exploration. Related work - such as
ScaleHLS - also contributes towards this goal.
However, Lina provides a more robust off-chip
memory model. For example, their ResM I calcu-
lation does not consider off-chip memory accesses.
Using a dynamic trace for memory analysis has the
benefit of having all addresses already calculated
through code execution.

9 Conclusion

This paper presented a design space exploration
approach that uses Lina, a tool capable of estimat-
ing performance of HLS-generated designs includ-
ing several aspects. The most important herein
presented being an off-chip memory model, that
estimates accesses to off-chip memory. Potential
optimisations are considered, such as burst and
data packing.

For a simple convolution kernel with off-chip
memory accesses, Lina correctly inferred the best
frequency, the best loop unroll configuration and
the best loop pipeline configuration, only with a
slight deviation when selecting the array partition
configuration. The best points given by Lina were
always one of the top-10 best points in the design
space, reaching significant speed-ups.

We also presented the exploration of 4 kernels
from Parboil benchmark. Lina DSE was able to

This version of the article has been accepted for publication, after peer review (when applicable) but is not the
Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record
is available online at: http://dx.doi.org/10.1007/s11265-024-01938-3. Use of this Accepted Version is subject to
the publisher’s Accepted Manuscript terms of use https://www.springernature.com/gp/open-research/policies/

accepted-manuscript-terms.


http://dx.doi.org/10.1007/s11265-024-01938-3
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

provide performance speed-ups on all kernels, con-
sidering the whole application execution. However,
there is still significant data transfer overhead
before and after the computation loops, that our
approach does not currently optimise.

Although our approach is quite fine-tuned
in several aspects to Vivado HLS and SDSoC,
our methodology has further shown the bene-
fits of using dynamic traces for decision making
when performing DSE. For example, the mem-
ory accesses are already resolved by the trace, not
requiring any static complex inferring that could
incur in larger estimation times.

Our model assists on reducing the hardware
burden when programming FPGAs via HLS. It
does so by providing guidance on optimisation
that would take much longer to be manually
found. It also helps to reduce the gap between
(high-level) hardware and software workflows,
broadening FPGA accessibility.

Acknowledgements. The authors  would
like to thank Sao Paulo Research Foundation
(FAPESP) for the financial support. A great
appreciation also goes to Prof. Guido Araujo and
the rest of the Computer Systems Laboratory
(LSC) in UNICAMP for the support given via the
Sorgan cluster. At last, we thank the reviewers
for all the orientations given.

Data Availability. Lina and the design space
exploration framework used in this paper are
available at https://github.com/comododragon/
cirith-fpga. For other requests, please contact the
corresponding author.

Author Contributions. Model development,
validation, interpretation, and writing of paper:
Perina, André B.; Concept design, interpretation,
and content review: Becker, Jiirgen, and Bonato,
Vanderlei.

Funding. This work was supported by Sao
Paulo Research Foundation (FAPESP) under
grants no. 2016/18937-7 and 2018/22289-6.

Declarations

Competing Interests. The authors declare no

conflicts of interest.

19

References

[1] Takach, A.:. High-Level Synthesis: Status,
Trends, and Future Directions. IEEE Design
& Test 33(3), 116-124 (2016)

Zohouri, H.R., Maruyama, N., Smith, A.,
Matsuda, M., Matsuoka, S.: Evaluating and
optimizing OpenCL kernels for high perfor-
mance computing with FPGAs. In: Proceed-
ings of the International Conference for High

Performance Computing, Networking, Stor-
age and Analysis, p. 35 (2016). IEEE Press

Weller, D., Oboril, F., Lukarski, D., Becker,
J., Tahoori, M.: Energy Efficient Scientific
Computing on FPGAs using OpenCL. In:
Proceedings of the 2017 ACM/SIGDA Inter-
national Symposium on Field-Programmable
Gate Arrays, pp. 247-256 (2017). ACM

Perina, A.B., Becker, J., Bonato, V.: Lina:
Timing-Constrained High-Level Synthesis
Performance Estimator for Fast DSE. In:
2019 International Conference on Field-
Programmable Technology (ICFPT), pp.
343-346 (2019). IEEE

Perina, A.B., Silitonga, A., Becker, J., Bon-
ato, V.: Fast Resource and Timing Aware
Design Optimisation for High-Level Synthe-
sis. IEEE Transactions on Computers 70(12),
2070-2082 (2021)

Perina, A.B.: Lina: a fast design optimisa-
tion tool for software-based FPGA program-
ming. PhD thesis, Universidade de Sao Paulo
(2022)

Zhong, G., Prakash, A., Liang, Y., Mitra, T.,
Niar, S.: Lin-analyzer: a High-level Perfor-
mance Analysis Tool for FPGA-based Accel-
erators. In: 2016 53nd ACM/EDAC/IEEE
Design Automation Conference (DAC), pp.
1-6 (2016). IEEE

Stratton, J.A., Rodrigues, C., Sung, I.-J.,
Obeid, N., Chang, L.-W., Anssari, N., Liu,
G.D., Hwu, W.-m.W.: Parboil: A Revised
Benchmark Suite for Scientific and Com-
mercial Throughput Computing. Center for
Reliable and High-Performance Computing

This version of the article has been accepted for publication, after peer review (when applicable) but is not the
Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record
is available online at: http://dx.doi.org/10.1007/s11265-024-01938-3. Use of this Accepted Version is subject to
the publisher’s Accepted Manuscript terms of use https://www.springernature.com/gp/open-research/policies/

accepted-manuscript-terms.


http://dx.doi.org/10.1007/s11265-024-01938-3
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://github.com/comododragon/cirith-fpga
https://github.com/comododragon/cirith-fpga

127, 29 (2012)

from Matlab Execution Traces. In: Proceed-
ings of the Tenth International Symposium

[9] Makni, M., Niar, S., Baklouti, M., Abid, on Hardware/Software Codesign. CODES
M.: HAPE: A high-level area-power estima- 2002 (IEEE Cat. No. 02TH8627), pp. 31-36
tion framework for FPGA-based accelerators. (2002). IEEE
Microprocessors and Microsystems 63, 11-27
(2018) [17] Zhang, C., Li, P., Sun, G., Guan, Y., Xiao,

B., Cong, J.: Optimizing FPGA-based Accel-
[10] Rajagopala, A.D., Sass, R., Schmidt, A.: erator Design for Deep Convolutional Neu-
Impact of Off-Chip Memories on HLS- ral Networks. In: Proceedings of the 2015
Generated Circuits. In: FSP Workshop 2019; ACM/SIGDA International Symposium on
Sixth International Workshop on FPGAs Field-programmable Gate Arrays, pp. 161-
for Software Programmers, pp. 1-10 (2019). 170 (2015)
VDE
[18] Zhong, G., Prakash, A., Wang, S., Liang, Y.,
[11] Shao, Y.S., Reagen, B., Wei, G.-Y., Brooks, Mitra, T., Niar, S.: Design Space Exploration
D.: Aladdin: A Pre-RTL, Power-Performance of FPGA-based Accelerators with Multi-level
Accelerator Simulator Enabling Large Design Parallelism. In: Design, Automation & Test
Space Exploration of Customized Architec- in Europe Conference & Exhibition (DATE),
tures. In: 2014 ACM/IEEE 41st Interna- 2017, pp. 1141-1146 (2017). IEEE
tional Symposium on Computer Architecture
(ISCA), pp. 97-108 (2014). IEEE [19] Choi, Y.k., Cong, J.. HLS-Based Opti-
mization and Design Space Exploration for
[12] Austin, T.M., Sohi, G.S.: Dynamic Depen- Applications with Variable Loop Bounds. In:
dency Analysis of Ordinary Programs. In: 2018 TEEE/ACM International Conference
Proceedings of the 19th Annual International on Computer-Aided Design (ICCAD), pp.
Symposium on Computer Architecture, pp. 1-8 (2018). IEEE
342-351 (1992)
[20] Zhao, J., Feng, L., Sinha, S., Zhang, W.,
[13] Enzler, R., Jeger, T., Cottet, D., Troster, G.: Liang, Y., He, B.: Performance Modeling
High-Level Area and Performance Estima- and Directives Optimization for High Level
tion of Hardware Building Blocks on FPGAs. Synthesis on FPGA. IEEE Transactions on
In: International Workshop on Field Pro- Computer-Aided Design of Integrated Cir-
grammable Logic and Applications, pp. 525 cuits and Systems (2019)
534 (2000). Springer
[21] Wang, S., Liang, Y., Zhang, W.: FlexCL: An
[14] Kulkarni, D., Najjar, W.A., Rinker, R., Kur- Analytical Performance Model for OpenCL
dahi, F.J.: Compile-Time Area Estimation Workloads on Flexible FPGAs. In: Proceed-
for LUT-Based FPGAs. ACM Transactions ings of the 54th Annual Design Automation
on Design Automation of Electronic Systems Conference 2017, pp. 1-6 (2017)
(TODAES) 11(1), 104-122 (2006)
[22] Dévila-Guzmén, M.A., Tejero, R.G,,
[15] Bilavarn, S., Gogniat, G., Philippe, J.-L., Villarroya-Gaudé, M., Gracia, D.S.: An
Bossuet, L.: Design Space Pruning Through Analytical Model of Memory-Bound Appli-
Early Estimations of Area/Delay Tradeoffs cations Compiled with High Level Synthesis.
for FPGA Implementations. IEEE Transac- In: 2020 IEEE 28th Annual International
tions on Computer-Aided Design of Inte- Symposium on Field-Programmable Custom
grated Circuits and Systems 25(10), 1950 Computing Machines (FCCM), pp. 218-218
1968 (2006) (2020). IEEE
[16] Bjureus, P., Millberg, M., Jantsch, A.  [23] Gautier, Q., Althoff, A., Crutchfield, C.L.,

FPGA Resource and Timing Estimation

20

Kastner, R.: Sherlock: A Multi-Objective

This version of the article has been accepted for publication, after peer review (when applicable) but is not the
Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record
is available online at: http://dx.doi.org/10.1007/s11265-024-01938-3. Use of this Accepted Version is subject to
the publisher’s Accepted Manuscript terms of use https://www.springernature.com/gp/open-research/policies/
accepted-manuscript-terms.


http://dx.doi.org/10.1007/s11265-024-01938-3
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

Design Space Exploration Framework. ACM
Transactions on Design Automation of Elec-
tronic Systems (TODAES) 27(4), 1-20
(2022)

[24] Jun, H., Ye, H., Jeong, H., Chen, D.:
AutoScaleDSE: A Scalable Design Space
Exploration Engine For High-Level Synthe-
sis. ACM Transactions on Reconfigurable
Technology and Systems 16(3), 1-30 (2023)

[25] Ye, H., Hao, C., Cheng, J., Jeong, H., Huang,
J., Neuendorffer, S., Chen, D.: ScaleHLS: A
New Scalable High-Level Synthesis Frame-
work On Multi-Level Intermediate Represen-
tation. In: 2022 IEEE International Sympo-
sium on High-Performance Computer Archi-
tecture (HPCA), pp. 741-755 (2022). IEEE

[26] Li, P., Zhang, P., Pouchet, L.-N., Cong,
J.: Resource-Aware Throughput Optimiza-
tion for High-Level Synthesis. In: Proceedings
of the 2015 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays,
pp- 200-209 (2015)

[27] Rau, B.R.: Iterative Modulo Scheduling: An
Algorithm For Software Pipelining Loops. In:
Proceedings of the 27th Annual International
Symposium on Microarchitecture, pp. 63-74
(1994)

[28] Stoutchinin, A., Conti, F., Benini, L.: Opti-
mally Scheduling CNN Convolutions for
Efficient Memory Access. arXiv preprint
arXiv:1902.01492 (2019)

[29] Peemen, M., Setio, A.A., Mesman, B., Corpo-
raal, H.: Memory-Centric Accelerator Design
for Convolutional Neural Networks. In: 2013
IEEE 31st International Conference on Com-
puter Design (ICCD), pp. 13-19 (2013).
IEEE

Appendix A Off-chip
Memory Model
Material

Additional material regarding the off-chip memory
model can be found here.

A.1 Reporting

Figure 14 presents a snippet of the report gen-
erated by Lina’s memory model. Notice that two
data packing (vectorisation) attempts are made.
The first one fails, since Lina detects that not
all DDDGs show compatibility with 4 packed
elements. Then, data packing is successful when
packed as twos.

[WARN] Burst possibility between loop iterations failed
for array A
at loop level 1
at region before the loop nest
Reason: detected reads for the same array
at loop level 2
within the loop nest

[WARN] Vectorisation attempt failed
for array B
with 4 elements vectorised
Reason: cannot align write with pack size
due to 2 unused element(s) after
at loop level 1
at region before the loop nest

[INFO] Vectorisation attempt successful
for array B
with 2 elements vectorised

Fig. 14 Snippet of a memory report generated by Lina.

A.2 Implemented Policies

Table 6 presents how several aspects of the off-
chip memory model behave depending on selected
memory policy. The concept of “memory space”
herein used is similar as to the “memory interface”
concept previously presented, that is: if banking
is enabled, each off-chip array has its own mem-
ory space. Otherwise, all share the same memory
space.

A.3 Additional Insights
Considering Loop Pipeline

The extended ResM Iy, calculation in (3) con-
siders chained load/store operations, and relaxes
IT so that it avoids potential memory conflicts.
Figure 15 presents an example of the delta cal-
culations. Consider that all loads are in the same
interface and it is single-ported. According to (3),
the longest delta is selected, in this case Az. How-
ever, if A3 was set as ResMII™¢¢ . there would

mem)

still be overlap between these chained loads, which

This version of the article has been accepted for publication, after peer review (when applicable) but is not the
Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record
is available online at: http://dx.doi.org/10.1007/s11265-024-01938-3. Use of this Accepted Version is subject to
the publisher’s Accepted Manuscript terms of use https://www.springernature.com/gp/open-research/policies/

accepted-manuscript-terms.


http://dx.doi.org/10.1007/s11265-024-01938-3
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

Table 6 The effect of scheduling policies on the memory model [6].

Aspect

Permissive Policy

Conservative Policy

Inter-iteration
bursts (read)

Inter-iteration
bursts (write)

Setup (read)

Setup (write)

Commit (write)

Promoted nodes
(nodes promoted
from inner loop

Allowed when in same or deeper loop
level there are: no other reads for same
array; and no other writes for same
array

Allowed when in same or deeper loop
level there are: no other reads for same
array; and no other writes for same
array

Allowed when active reads and writes
in same memory space are for regions
with no overlap

Allowed when active reads and writes
in same memory space are for regions
with no overlap

Always allowed

Can execute concurrently if all active
transactions in same memory space
are non-overlapping

Allowed when in same or deeper loop
level there are: no other reads for same
memory space; and no other writes for
same array

Allowed when in same or deeper loop
level there are: no other writes for
same memory space; and no other
reads for same array

Allowed when: active reads are not
burst; and writes in same memory
space are for regions with no overlap

Allowed when there is no other active
write in same memory space

Allowed when active reads in same
memory space are for regions with no
overlap

For read: can execute concurrently
if all active transactions in same
memory space are non-overlapping

levels due to
inter-iteration
burst optimisation)

For write: cannot execute
concurrently with any other
transaction in same memory space

can lead to port contention. In order to avoid that,
ResMIITe  should comprise at least all these
chained loads. Since HLS will attempt to optimise
and pack memory operations together at start
or end of schedulings, successive chained memory
operations will often be placed one after another in
a “stairs” pattern (indicated on figure). The min-
imum value that comprises all these chained loads
is equal to the largest delta, plus the distance cre-
ated by the “stairs” pattern. Each isolated set of
chained operation adds one step to the staircase
(i.e. one clock cycle), and this is why we add the
number of connected sets C'r,,, to the largest delta
when calculating ResMII; ¢ .

Back to Figure 15, there are three connected
sets of loads, and the largest delta is 12. Thus, the
MII must be at least 12+ 3 = 15 in order to avoid
overlap between any of these sets. The rationale is
similar for write operations and Cw,,.

Fig. 15 Example of three chained sets of load operations,
all for a same single-ported interface. The largest delta is
As = 12. There are three chained sets, thus Cr, = 3.
Then, ResM11775,, = 12 + 3 = 15. This value is relaxed
enough to conservatively avoid any contention between
these chained sets. The “stairs” pattern explained on text

is indicated by the dashed diagonal stripe in background.

This version of the article has been accepted for publication, after peer review (when applicable) but is not the
Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record
is available online at: http://dx.doi.org/10.1007/s11265-024-01938-3. Use of this Accepted Version is subject to
the publisher’s Accepted Manuscript terms of use https://www.springernature.com/gp/open-research/policies/

accepted-manuscript-terms.


http://dx.doi.org/10.1007/s11265-024-01938-3
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

Appendix B ZCU104
Testbench

Figure 16 presents the FPGA platform, including
the additional modules used for power sensing.

Computer
with
coordinating
framework

sensors reader
{arduino)

to
PC w/
zynprof APl

zcu104 DCIN PMBus
BOARD Irc.

Fig. 16 FPGA experimental setup. The power sensing
system is highlighted. An Arduino module reads the PSU
current sensor and communicates with the regulators using
the PMBus interface. The raw information is collected
and sent to the host machine, which calculates consumed
energy. Adapted from [6].

Appendix C CNN
Experiment
Materials

For the CNN experiment presented in Section 6.2,

we used ZFNet’s 6th layer configuration as pre-

sented in [28] and in Table 7. These parameters
relate to the constants used in Figure 8.

Table 7 ZFNet CNN layer configuration used [6].

Name  Description Value
C # input feature maps 256
M # output feature maps 256
H Input feature map size (H X H) 6
R Convolution kernel size (R X R) 3
S Convolution kernel stride 1
E Output feature map size (E X E) 6

23

Table 8 presents the knobs that compose the
design spaces for both CNN kernels tested. The
design spaces have 680 valid points.

Table 8 Optimisation knobs for the CNN kernels [6].

Loop knobs
Name Loop depth  Unroll factors  Pipeline
LOF 1 Ooff off
LIF 2 Ooff off
LSY 3 Off, 2 Off, on
LSX 4 Off, 2 Off, on
LFY 5 Off, 3 Off, on
LFX 6 Off, 3 Off, on
Array knobs
Name I/0 Partitioning
I Input No partitioning (off-chip access)
W% Input No partitioning (off-chip access)
O Output Off; Block: 4, 8; Cyclic: 4, 8

Frequencies

75, 100, 150, 200

Values (MHz)

Figure 17 presents the DSE results for the
padlogic kernel.

Appendix D Unroller Tool
Examples

There are two automated unroller tools pre-
sented in this paper. The first one - mentioned in
Section 6.2 - was tailored for CNN layer. Figure 18
presents an example of code generated by this tool.
All read statements (lines 10 to 17) were placed
before all write statements (lines 19 to 22).

The second tool - mentioned in Section 8 - is
an expansion of the more domain-specific used for
the CNN experiments. It is a simple tool and thus
it relies on code manipulation and annotations.
Figure 19 presents the sgemm code adapted for the
tool. Notice the presence of various keywords, such
as <LITER>, <LINCR>, etc. The <LFRONT> defines
the loop boundary between reads and writes. All
off-chip reads should be placed before this front,
and all off-chip writes after that. The code must be
further adapted so that the tool is able to replace
the <LCTR> and <LITER> keywords with unrolled
values.

This version of the article has been accepted for publication, after peer review (when applicable) but is not the
Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record
is available online at: http://dx.doi.org/10.1007/s11265-024-01938-3. Use of this Accepted Version is subject to
the publisher’s Accepted Manuscript terms of use https://www.springernature.com/gp/open-research/policies/

accepted-manuscript-terms.


http://dx.doi.org/10.1007/s11265-024-01938-3
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

51 —— Vivado (unrviv)
5.0 4 (cons)
< 254
—
X
g 0.0 1 T T T T T T T
=] J
s 5 —— Vivado (unrexp)
£ 504 —— Lina (perm)
o
9]
X
w25
001, .

Design points

Fig. 17 Design space exploration results for padlogic. Horizontal axis presents the design points tested, and vertical axis
presents the kernel execution time that was found/estimated for the associated design point. The subplot at top couples
Vivado results using normal HLS attributes for unroll with Lina exploration in conservative mode. The bottom subplot
presents Vivado results using our unrolling tool compared to Lina exploration in permissive mode.

1 LOF: for(auto m = @; m < M; m++)

2 LIF: for(auto c = 0; c < C; ct++)

3 LSY: for(auto y = 0; y < E; y++)

4 LSX: for(auto x = 0; x < E; x++)

5 LFY: for(auto k = 0; k < E; k++)

6 LFX: for(auto 1 = 0; 1 <E; 1 +=4) {
7 auto __ySk =y * S + k;

8 auto __xS1 = x x S + 1;

9

10 auto __p_0 = I[cI[__ySkI[__xS17;

1 auto __w_0 = WLm][c1CkI[1];

12 auto __p_1 = I[cJ[__ySkI[__xS1 + 11;
13 auto __w_1 = WLmI[cICkI[1 + 17;

14 auto __p_2 = I[cJ[__ySkI[__xS1 + 21;
15 auto __w_2 = W[mJ[cI[kI[1 + 27;

16 auto __p_3 = I[c][__ySkI[__xS1 + 31;
17 auto __w_3 = WLm][cI[kI[1l + 3];

18

19 OLmILyl[x] += __p_0 * __w_0;

20 OLmILyl[x] += __p_1 * __w_1;

21 O[mILyl[x] += __p_2 * __w_2;

22 O[mILyl[x] += __p_3 * __w_3;

23 }

Fig. 18 Example of convolutional kernel, unrolled (factor
of 4) using the unroller tool. All off-chip reads are placed
before off-chip writes.

<LOOP_0_1> for(int mm = @; mm < M; mm++) {
<LOOP_0_2> for(int nn = @; nn < N; nn++) {
float c = 0.0f;

<LOOP_0_3> for(int i = @; i < K; i += <LINCR>) {
<LPREAMB>
float a_<LCTR>;
float b_<LCTR>;

<LBEGIN>
a_<LCTR> = <ARR_A>[mm + (i + <LITER>) * M];
b_<LCTR> = <ARR_B>[nn + (i + <LITER>) * NIJ;
<LFRONT>

¢ += a_<LCTR> * b_<LCTR>;

<LEND>
3

<ARR_C>[mm + nn * M] =
<ARR_C>[mm + nn * M] %* BETA + ALPHA % c;

Fig. 19 Example of sgemm’s loop nest adapted for the
unroller tool.

This version of the article has been accepted for publication, after peer review (when applicable) but is not the
Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record
is available online at: http://dx.doi.org/10.1007/s11265-024-01938-3. Use of this Accepted Version is subject to
the publisher’s Accepted Manuscript terms of use https://www.springernature.com/gp/open-research/policies/

accepted-manuscript-terms.


http://dx.doi.org/10.1007/s11265-024-01938-3
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

	Introduction
	Background
	Design Space Exploration
	Timing and Resource Awareness
	Memory Awareness
	Trace-based Estimation

	Related Work
	Off-Chip Memory Model
	Memory Optimisations and Second Stage DDDG Transform
	Burst
	Data Packing
	Memory Banking

	Interaction Between Multiple Transactions and Pragmas
	Loop Unroll
	Loop Pipeline


	Exploration Caching Mechanism
	Experimental Setup
	Hardware/Software Platform
	Exploring a CNN Layer with Off-chip Access
	Parboil Benchmark
	Parallel Execution of Lina

	Results
	CNN Layer
	Parboil Benchmark
	Lina Parallel Execution Time Analysis

	Discussion
	Conclusion
	Acknowledgements
	Data Availability
	Author Contributions
	Funding
	Competing Interests




	Off-chip Memory Model Material
	Reporting
	Implemented Policies
	Additional Insights Considering Loop Pipeline

	ZCU104 Testbench
	CNN Experiment Materials
	Unroller Tool Examples

