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ABSTRACT

The Labyrinthic map is a two-dimensional area-preserving map that features a robust transport barrier known as the shearless curve. In
this study, we explore a dissipative version of this map, examining how dissipation affects the shearless curve and leads to the emergence
of quasi-periodic or chaotic attractors, referred to as shearless attractors. We present a route to chaos of the shearless attractor known as
the Curry-Yorke route. To investigate the multi-stability of the system, we employ basin entropy and boundary basin entropy analyses to
characterize diverse scenarios. Additionally, we numerically investigate the dynamic periodic structures known as “shrimps” and “Arnold

tongues” by varying the parameters of the system.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0225577

Area-preserving maps are an important means of understanding
how systems evolve and how they transport energy or parti-
cles. When we look at a Hamiltonian system, a type of system
that conserves energy, a perturbation can lead to both periodic
and chaotic behavior in its motion simultaneously. An essential
property in those systems is the twist condition, which helps us
distinguish between two types of systems: twist and non-twist.
This distinction is key because it influences how a system transi-
tions into chaos. Non-twist systems can reorganize the structure
of their phase space, presenting strong barriers that can prevent
transport, such as shearless curves. These concepts help explain
various phenomena, such as wind patterns in the atmosphere and
the behavior of magnetic fields in devices that contain plasma.
The non-twist maps serve as useful models for studying these
dynamics. Additionally, when we introduce dissipation into these
systems, we can see the emergence of attractors, which are solu-
tions that can be periodic, quasi-periodic, or chaotic. This study
investigates how shearless barriers behave when dissipation is

present in a non-twist map, focusing on how their stability is
related to the control parameters and the symmetry of the system.

I. INTRODUCTION

Area-preserving maps, a common type of conservative system
studied in Hamiltonian dynamics, are widely used to analyze sys-
tem evolution and transport properties. When considering a slightly
perturbed integrable Hamiltonian system, its phase space can exhibit
both chaotic and periodic motions, especially under certain param-
eter conditions. The Poincaré-Birkhoff and KAM theorems provide
crucial insights into the behavior of nearly integrable Hamiltonian
systems.

The non-degeneracy criterion for a Hamiltonian system,
described in action and angle coordinates (I,0), is expressed as
92H/0I* # 0. This criterion, known as the twist condition for maps,

is denoted by |aeg;r1 | # 0. Therefore, satisfying the twist condition
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means that the system has non-degenerate orbit frequencies. The
transition to chaos in non-twist systems significantly differs from
that in twist systems, as the fulfillment of the twist condition is
essential for the validity of the KAM theorem. The KAM theorem
provides solutions for quasi-integrable Hamiltonian systems with
non-degenerate frequency orbits. However, for degenerate Hamil-
tonian systems, the solution remains an open question.

Moreover, the violation of the twist condition leads to topo-
logical reorganizations in phase space. In terms of transport
investigation, this violation results in the emergence of a robust
transport barrier known as the shearless curve®' or multiple shear-
less barriers,” along with other related phenomena.®~” Various phys-
ical phenomena, such as atmospheric zonal flow'’ and the behavior
of magnetic field lines in plasma confinement devices with reversed
magnetic shear,''”"> can be effectively explained through non-twist
systems. Numerical results suggest that the orbit violating the twist
condition, the shearless curve, is likely to be the last torus to be
destroyed.'*""*

All non-twist phenomena, except for multiple shearless curves,
can be encompassed by the non-twist standard map (SNM) intro-
duced in 1993." This two-dimensional perturbed symplectic map
deviates from the twist condition in a single orbit, featuring only one
shearless curve, and is governed by two control parameters. Since
its introduction, the SNM has undergone various modifications and
expansions.”””" One notable modification is the Labyrinthic map
(LM)," another two-dimensional perturbed symplectic map. Unlike
the SNM, the LM incorporates two perturbed terms and introduces
an additional control parameter that significantly influences the
system’s dynamics.

Conservative systems inherently maintain the conservation
of phase space volume. However, the introduction of dissipation
disrupts this conservation, leading to the loss of the previously
preserved volume. Consequently, any given initial condition (IC)
gradually converges asymptotically to states known as attractors,
which can be periodic, quasi-periodic, or chaotic. This is particularly
important for modeling practical systems, where dissipation due
to friction or drag is always present, making Hamiltonian systems
with dissipation more representative of actual physical processes.
Previous studies have detailed the impact of dissipation on the
LM, particularly on the shearless torus. These studies revealed
the evolution of this torus into an attractor, known as a shearless
attractor (SA), which can display quasi-periodic or chaotic behavior
depending on the control parameters.

Attractors can undergo abrupt and significant changes in their
stability based on the control parameters, one of which is the tran-
sition from a quasi-periodic attractor to a chaotic one, known as
the Curry-Yorke route.”** These changes are associated with the
dynamics of the manifolds and the attractors, such events, often
called crises, have been observed in a wide range of experimental
and numerical setups.”’~"!

In this study, we choose the LM to investigate the evolution
of the shearless attractor, with particular emphasis on the map’s
symmetry, focusing on results in terms of symmetry, as previous
evaluations of the shearless attractor were conducted for symmet-
ric non-twist maps with only one perturbative term.” We evalu-
ate the shearless breakup scenarios in the conservative case and,
for the same range of parameters, compare the behavior of the
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shearless curve upon the introduction of dissipation. Subsequently,
we present a route to chaos for the shearless curve, where the
quasi-periodic attractor transitions into a chaotic band and even-
tually into a chaotic attractor, following the Curry-Yorke route. We
then analyze multi-stability scenarios in the phase space using basin
entropy and boundary basin entropy. Finally, we identify and ana-
lyze periodic structures in the parameter spaces, such as Arnold
tongues and shrimps, which have been observed in several dissi-
pative systems.”=> These structures are associated with periodic
windows embedded within chaotic regions and are linked to the
transition to chaos via two types of bifurcations,”* such periodic
windows have been observed in Chua’s circuit experiments.”*’
This paper is organized as follows: in Sec. 1, we present the
LM main characteristics and discuss the shearless curve breakup in
terms of the parameters. In Sec. I1], we introduce the dissipative ver-
sion of the LM and abbreviate the map as DLM; we also present the
evolution of the orbits when subjects dissipation. In Secs. I[V-VI]I,
we discuss the route to chaos, stability, multi-stability, and periodic
structures of the system, and the paper is concluded in Sec. VIII.

Il. BASIC CHARACTERISTICS OF THE LM

The Labyrinthic map (LM) is an example of a map that cap-
tures the dynamic of a nearly integrable Hamiltonian system. The
equations define the LM

I,y = I, — bsin 2n6,) — bsin 27 nb,), (1a)

9n+1 = 6” — a(I,,H — rl)(IrH»l — Tz) mod 1, (lb)

where I, € Rand 6, € [0, 1]. The control parameters a and b govern
the influence of the non-twist term (the function that scales with a)
and the amplitude of the system’s nonlinearity, respectively. In order
to maintain the symplectic propriety of the map, we assume integer
values for 7. Furthermore, r; and r, represent the positions of pri-
mary resonances. For this analysis, we have chosen to set r; = 1 and
r, = —1. One way to distinguish orbits in phase space is by their
frequency, which can be ascertained using the winding number,
defined as
en — 90

o = lim , (2)
n—00 n

where n is the number of iteration, 6, is the initial condition (IC),
and 6, is the nth iteration of 6. Its profile concedes information
about the shearless curve since the coordinates of the extrema
provide a condition over the shearless torus in the phase space.

In dynamic systems, an important aspect is the presence of
symmetry transformations and the fulfillment of a symmetry trans-
formation group. In non-twist systems, when a map meets specific
symmetry transformation criteria, it has indicator points, which are
conditions on the shearless curve. A transformation T is deemed a
symmetry if M = T~'MT holds, indicating that the map remains
invariant under T. For the map to have indicator points, it must
adhere to the following symmetry transformation:

In+l =—1,
S: 1 (3)
0n+l =0, % 5;
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FIG. 1. Phase space of the LM for a = 0.4 and b = 0.07. The red curve is the shearless torus. The red point is the initial condition in (a) (6, /) = (0.5, —0.05576) for

n =3and (b) (6,/) = (0.5, —0.04585) for n = 2.

where LM is symmetric for the S transformation only for odd values
of n. The indicator points for the LM are given by

(IPy),, = [iig (£1+ (—1)“7*“/2)}, (4a)
1
apy),, = [— “2’2 + Z’O]’ (4b)

In Figs. 1(a) and 1(b), we illustrate the phase space of the
LM for a = 0.4, b =0.07, and n = 3 for Fig. 1(a), and n =2 for
Fig. 1(b). These plots reveal several key features. The resonance
islands around the elliptic points (shown as colored points), occur
when the frequencies of the perturbation (b # 0) become commen-
surate with the non-perturbative system (b = 0) frequencies, leading
to the formation of regular, closed orbits in phase space. The pri-
mary resonance islands at I = £1 persist in both cases. However, for
n = 2, the primary resonances undergo a saddle-node bifurcation,
where the main resonance splits into two distinct resonances. Addi-
tionally, we observe chaotic orbits in the regions surrounding these
islands. Furthermore, period three islands emerge around I &~ £0.5.

Moreover, a series of invariant spanning curves around
I'=0 delineates stability regions within the system, notably, in
red, the shearless curve. The coordinates of a red dot along this
curve are specified in Figs. 1(a) and 1(b). In Fig. 1(a), the coordi-
nates are (6,I) = (0.5, —0.05576), while in Fig. 1(b), they are (6,I)
= (0.5, —0.045 85). This red dot represents the initial condition
iterated to generate the shearless curve.

The initial conditions were determined by locating the max-
imum point of the winding number profile, as depicted in
Figs. 2(a) and 2(b), corresponding to n = 3 and n = 2, respectively.

Despite variations in 7, the shearless curves exhibit consistent fre-
quencies, w ~ 0.399. This observation underscores the robustness
of the shearless dynamics, persisting across different parameter
values.

As mentioned, a direct consequence of the choice of 7 is the
existence of indicator points. In non-twist systems, the shearless
curve is the invariant torus candidate to be the last torus destroyed,
therefore studying its breakout in terms of the control parameters of
the map gives an insight into the transition to chaos. We choose the
crossing flight to identify shearless breakup. Essentially, this involves
creating a set of initial conditions in a specific phase space region
and iterating each condition a certain number of times. If the orbit
of any initial condition reaches a different region of phase space, it
indicates that the shearless curve has been destroyed for this set of
control parameters.

The parameter spaces (g, b) shown in Figs. 3(a) and 3(b) were
obtained using the crossing flight criterion for n =3 and n =2,
respectively. In red, scenarios depict pairs of parameters where
shearless exists, while in white, scenarios represent instances where
shearless has been destroyed. In this study, 10° initial conditions
at I = 10 underwent 10° iterations each. The shearless curve was
considered destroyed (is no longer an invariant torus, became a
chaotic orbit) if the orbit of any initial condition reached I = —10.
The parameter spaces have similar characteristics, including smooth
and non-smooth boundaries. The smooth boundaries are associ-
ated with bifurcation phenomena.'® Notably, this criterion is inde-
pendent of the knowledge of a condition on the shearless curve,
making it a recommended method for maps lacking the previ-
ously mentioned symmetries. In Sec. VI, we will analyze for the
same set of parameters in Fig. 3, the dynamics when dissipation is
introduced.
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0.4
(b) Wriax ~ 0.399
Iy ~ —0.04585
0.38 T \ T
-0.3 Iy 0.1

FIG. 2. The winding number profile using &, = 0.5and y € [—0.3,0.1]. The red dotted line corresponds to the extremum of the winding number. Fora = 0.4 and b = 0.07,

in(a) n =3and (b) n = 2.

lll. DISSIPATIVE LABYRINTHIC MAP
A dissipative version of the LM is defined by

Ly = (1 — y)I, — bsin 276,) — bsin (27 n6,), (5a)

Opy1 =60, — a1 — 1)y — ) modl, (5b)

where y is the control parameter responsible for the dissipation, for
y = 0 we recover the conservative case.

0.6

When considering dissipation in symplectic maps, the elliptic
fixed points (the centers of the islands) become stable focus (sinks),
where the trajectories approach asymptotically, forming spirals. The
region previously occupied by the islands becomes the basin of
attraction (or part of it) of the stable focus, and the chaotic orbits
become either chaotic transients that converge toward the focus or
(more rarely) orbits belonging to a chaotic attractor. The shear-
less curve transforms into the shearless attractor (SA), exhibiting
either quasi-periodic or chaotic behavior dependent upon control

0 a

FIG. 3. Parameter spaces depicting shearless breakup in (a) for n = 3 based (b) n =
where the shearless curve is destroyed.

1 0 a 1

2. Inred are scenarios where the shearless curve is present, and in white are scenarios
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10 0 1

FIG. 4. Attractors of the DLM for a = 0.4, b = 0.07, and y = 0.1.In (a) for » = 3and (b) n = 2. The red curve is the shearless attractor, and the colored dots are periodic

attractors.

parameters, and it is possible to obtain scenarios with more than
one attractor in phase space. The occurrence of multiple attractors
is referred to as a multi-stability phenomenon."'=**

Figure 4 illustrates the attractors and their respective basins of
attraction when a dissipation parameter y = 0.1 is introduced for
n = 3 and n = 2, corresponding to the same a and b parameter val-
ues as in Fig. 1. The shearless curve evolves into a quasi-periodic
attractor (the shearless attractor, shown in red). Some of the ellip-
tic points become point attractors (colored dots), and the islands

0.42
(a)
w >~ 0.399
w
0.32 T T T
-0.6 Iy 0.6

surrounding these elliptic points become their respective basins
(represented in various colors).

In Fig. 1(a), the phase space shows two primary resonances
and a period-three island near the shearless region. When dissipa-
tion is introduced, as seen in Fig. 4(a), the period-three fixed point
evolves into a period-three attractor (yellow triangular dots), with
the surrounding islands becoming their basins (in green). The same
transformation occurs for the period-one attractor. Additionally, the
shearless curve evolves into a quasi-periodic attractor (red), with

0.45

(b)

0.15 . T T
1.12 Iy 1.24

FIG. 5. The winding number profile using 6, = 0.5. The red dotted line corresponds to the extremum of the winding number. For a = 0.4 and b = 0.07, in (a) = 3 and

(b)n =2
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its respective basin shown in gray. The same analysis applies to
Fig. 4(b).

In Fig. 5, we compute the winding number using Eq. (2), disre-
garding the transient phase (first 1 x 10° iterations) to ensure con-
vergence of initial conditions toward an attractor. In both cases, we
observe that certain initial conditions converge to an attractor with
a winding number close to @ & 0.399, consistent with the shearless
curve in the conservative scenario. This suggests that the shearless
curve transitions into a quasi-periodic attractor upon the intro-
duction of dissipation. These certain initial conditions lie in the
shearless attractor basin as expected. Conversely, in the second sce-
nario, initial conditions converge from a different winding number
than w & 0.399, indicating convergence toward a periodic attrac-
tor. This aligns with the expected evolution of elliptic points in the
conservative case toward periodic attractors.

IV. SHEARLESS ATTRACTOR BIFURCATION

To analyze the topological changes within the shearless attrac-
tor, we compute the bifurcation diagram along with the largest
Lyapunov exponent, denoted as X, by varying the control parameter
a while keeping (b, y) constant. In Fig. 6, we select the initial condi-
tion (IC) corresponding to the indicator point (IPy),, as defined by
Eq. (4). This choice is made assuming that this indicator point likely
resides within the basin of attraction of the shearless attractor when
dissipative effects are accounted for.

To compute the Lyapunov exponent, we used the Wolf
algorithm that employs the concept of finite-time Lyapunov expo-
nents to estimate the spectrum of Lyapunov exponents,** capturing
the exponential divergence rates of nearby trajectories in chaotic
systems through a carefully designed algorithmic approach and is
defined as

1
Aj = lim [fln‘A;")

n—oo | 1

], j=12..., (6)

where A;") are the eigenvalues of the matrix T =[], J(6;, 1),
J(0;,1;) is the Jacobian matrix calculated at the point (6, 1;). If the
orbits diverge, the largest Lyapunov exponent is positive, A > 0,
and the dynamics are chaotic. If the orbits stay close to each other,
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the largest Lyapunov exponent is A = 0 or A < 0, characterizing
quasi-periodic and periodic motion, respectively. If, by chance, the
exponent profile abruptly goes to zero, the orbit has suffered a
bifurcation.

The bifurcation diagram depicted in Fig. 6 illustrates a vari-
ety of distinct behaviors. Notably, the attractors manifest across a
range of values for the variable I, with periodic attractors identifi-
able as discrete points. In the context of Fig. 6, for lower values of
parameter g, the attractors fill the I range and exhibit a Lyapunov
exponent of zero, indicating the presence of quasi-periodic shearless
attractors. At the same time, the points represent periodic attrac-
tors characterized by a negative Lyapunov exponent. Conversely,
as parameter a increases, we observe the emergence of attractors
and chaotic windows with a positive Lyapunov exponent. To exam-
ine the configurations of these attractors, we focus on three specific
points (a,b = 0.6) denoted by vertical dashed lines of purple, yel-
low, and green colors, constructing corresponding phase spaces for
each scenario, as depicted in Fig. 7.

In Fig. 7, distinct phenomena are visible when examining the
attractors in each phase space. Figure 7(a) shows an attractor that
resembles a torus, signifying a quasi-periodic shearless attractor sur-
rounded by ghost-fixed points. These ghost points, highlighted in
red, correspond to periodic attractors at a different parameter set-
ting, specifically when a = 0.7063, both displaying a period of 48.
With a slight increase in the parameter a, Fig. 7(b) illustrates a dif-
ferent scenario. Multiple separated structures appear in the phase
space near the ghost periodic attractors from the previous parame-
ter. The magnified view in Fig. 7(b) reveals that each black-separated
structure, or band, is traversed by a single orbit, resulting in a phase-
locking phenomenon. The positive Lyapunov exponent for case (b)
in Fig. 6 (indicated by the yellow vertical dashed line) confirms the
presence of a chaotic banded attractor.

Moving to the final phase space, Fig. 7(c), a more intricate
attractor shape is observed, indicative of chaotic behavior as con-
firmed by the Lyapunov exponent in Fig. 6 (green dashed line).
This succession in the phase space illustrates the transition to chaos,
wherein an attractor on a “torus” destabilizes, leading to a series
of phase-locking (banded attractor) events preceding the emer-
gence of a chaotic attractor. In Fig. 7, we witness the Curry-Yorke

0.5

P
%
14

VA Y

0.2
A

L 0

-0.5 A
0.638

—EIR ) 06
0.642

FIG. 6. Bifurcation diagram and the Lyapunov exponent vs the parameter a for b = 0.2 and y = 0.1. The quasi-periodic and periodic attractors alternate between each
other until a chaotic behavior appears on the right side of the diagram. The black and red points indicate the diagram and the Lyapunov exponent. The magenta, yellow, and
green vertical dashed lines correspond to the values of parameters: a = 0.638 272, a = 0.640 665, and a = 0.6408, respectively.
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FIG. 7. The route to chaos for b = 0.2. For (a) a = 0.638272, the smooth
quasi-periodic attractor on the torus is represented by the black curve, and
there is a ghost periodic attractor, indicated by the red points. In (b), we have
a = 0.640 665; there are chaotic banded attractors, and the ghost attractors are
two chains of period 40. For (c) a = 0.6408, there is only one chaotic attrac-
tor on the torus. The ghosts in (a) and (b) are shown for a = 0.638 62 and

a = 0.640441, respectively.

1

ARTICLE pubs.aip.org/aip/cha

mechanism, often referred to as the “soft” transition to chaos. This
process entails the destabilization of the attractor on a torus, fol-
lowed by a succession of phase-locking events that lead to a banded
attractor before ultimately culminating in chaos; this route to chaos
was already reported for the dissipative non-twist map.”’

V. SHEARLESS ATTRACTORS SCENARIOS

In Sec. IV, we analyzed the shearless attractor stability using the
Lyapunov exponent and the bifurcation diagram perspective. This
analysis was conducted for a fixed value of b and a narrow range
of a. With y set to 0.1, the behavior of the DLM is influenced by
both a and b. When exploring bifurcation routes in systems with
two parameters, intricate paths within the parameter space can be
uncovered. In this section, our goal is to investigate the character-
istics of solutions within the phase space for every parameter pair
(a, b). While bifurcation diagrams are commonly used for studying
bifurcation routes when a single parameter is varied, extending this
analysis to systems with two varying parameters presents challenges
in visualization and interpretation. Therefore, we will focus on the
Lyapunov exponent and the orbit period. We will calculate the Lya-
punov exponent and the orbit period for each pair (a,b), where a
ranges from 0 to 1 and b ranges from 0 to 0.6. The results will be
depicted using a color scale in the parameter space a x b.

We use a systematic approach to create the parameter spaces
shown in Fig. 8 for n = 2 and n = 3 (a) and (b) respectively. Ini-
tially, we set a fixed value for the parameter a and designate the
indicator point of the conservative case, denoted as (IP;),, as our
IC for the first value of b. We repeat this process until the final
iteration n = 2 x 10°, excluding the initial 1 x 10° iterations. Dur-
ing this iteration, we calculate the orbit period up to a maximum
period of 100 with a precision of 1 x 1078, For cases that did not
correspond to any period, we numerically determined the largest
Lyapunov exponent A and classified the system’s behavior at that
point. It is worth recalling that for maps, the quasi-periodic stability
is characterized by the largest Lyapunov exponent remaining equal
to zero while parameters vary. For the next value of b, we use the
last iteration (6,I) from the previous parameter as the initial con-
dition, repeating the computation of y until b = 0.6. This process
is repeated for subsequent values of a, where the initial condition is
reset. The parameter spaces shown in Fig. 8 are generated using a
linear grid comprising 2000 x 2000 points (a, b).

We generated Fig. 8 intending to study the periodic structures
in terms of period formation rules, highlighting the multi-stability
character of the map dynamics, and comparing with the parameter
space of the shearless breakup of Fig. 3. In both Figs. 8(a) and 8(b),
corresponding to = 2 and n = 3, respectively, the quasi-periodic
regions (in black) bear a resemblance to the red regions in Fig. 3.
This shows that in scenarios where the shearless curve exists with
the introduction of dissipation, it transforms into a quasi-periodic
attractor. Conversely, a shift to a chaotic attractor (gray) occurs in
regions of the breakup space where the shearless curve is absent
(white).

Upon closer examination of small values of a, a difference
becomes apparent between the parameter spaces for the shearless
curve and the shearless attractor. In the conservative scenario, the
shearless curve is observable, whereas in the dissipative case, there
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FIG. 8. Parameter spaces (a, b) in (@) n = 3 and (b) n = 2. The periods were counted up to 100 and are represented in color, according to the caption. Chaos (C) and

quasi-periodicity (QP) were identified through the largest Lyapunov exponent.

is a tendency for orbits to converge toward periodic attractors. It is
important to note that while there is a preference for a single attrac-
tor in the phase space, rigorous proof of its existence remains elusive.
As a increases within the parameter space, a noticeable inclination
toward chaotic behavior in the phase space becomes evident. Red,
orange, and purple dots have been selected to indicate regions of
positive Lyapunov.

Still, in Fig. 8, we see periodic structures with a shape similar
to a tongue, known as Arnold’s tongues,””~” starting in the quasi-
periodic region (black) and ending in the chaotic (gray). The period
formation rule for these structures is according to a Farey tree.
Another characteristic identified in the parameter space in Fig. 8 is
the region of multi-stability, which represents the mix of periodic
structures.

VI. MULTI-STABILITY AND BASIN ENTROPY

The DLM exhibits multi-stability under specific parameter val-
ues. As illustrated in Fig. 10, the phase spaces demonstrate the pres-
ence of multiple attractors and their corresponding colored basins of
attraction for n = 3 at the top and n = 2 at the bottom. It is worth
noting that for odd values of 7, the periodic attractors are symmet-
ric and possess a twin attractor that conforms to the transformation
T(I,0) = (—I1,0 + 0.5). However, this behavior is not observed for
even values of 7, indicating a lack of symmetry in the map.

The method used to distinguish between different scenarios in
Fig. 9 is basin entropy.** This method measures the intrinsic uncer-
tainty within the basins by analyzing the entropy in the discretized
phase space for a particular set of parameter values, each associ-
ated with N, distinguishable attractors. A finite number of boxes
are placed in the phase space to discretize it, resulting in a two-
dimensional grid with Ny non-overlapping boxes. Each box contains
initial conditions that converge to one of the N, attractors. After

constructing the basins of attraction, colored points are found inside
the boxes. The Gibbs entropy can be calculated for each box i.

n; 1
j=1 H

In this scenario, n; indicates the number of distinct colors
within the box, where #; ranges from 1 to N. Conversely, p;; repre-
sents the probability of a particular color j appearing in box i. This
probability is calculated by dividing the count of points with color j
by the total number of initial conditions in the box. It is important to
note that S; attains a non-zero value only when more than one color
is present in the box. For the purposes of this investigation, we focus
on a box containing 25 initial conditions.

After computing the entropy (7) for all Ny boxes, we calcu-
late the basin entropy S, and the boundary basin entropy Sy. These
quantities are defined as

Nt
S 1
S="7=7—)_8 ®)
Nr Nri3
for the basin entropy and
Nt
N 1
Sp=—=—) S, 9
n= TN )

for boundary basin entropy, denoted as S, is calculated using the
number of boxes N, in the boundary between the basins, which are
essentially boxes containing more than one color. This entropy mea-
sure can be used to characterize structures in the phase space and
is linked to the uncertainty of the basin. The boundary values for
basin entropy are S, = 0 for a single attractor and S, = log N, for a
fully randomized basin. Additionally, the boundary basin entropy is
associated with the uncertainty of the boundaries.
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FIG. 9. Basins of attraction are depicted, where each color represents a distinct basin. The parameter y is constant at 0.1. In the top row: (a) a = 0.36 and b = 0.15,
(b)ya=0.22and b = 0.3,and (c) a = 0.222 646 and b = 0.4, all for » = 3. In the bottom row: (d) a = 0.26 and b = 0.3, (€) a = 0.2165and b = 0.3, and (f) a = 0.326 44

and b = 0.5, all for n = 2.

Figure 9 illustrates the basin of attraction and its attractors
within the multi-stability scenarios of the DLM. The upper part of
the figure corresponds to n = 3, while the lower part corresponds
to n = 2, with all depicted scenarios demonstrating multi-stability.
Figures 9(a) and 9(d) show scenarios devoid of shearless attrac-
tors, featuring only periodic attractors. Figures 9(b) and 9(e) display
phase spaces for these parameters, presenting quasi-periodic shear-
less attractors (in red) and their respective basins of attraction
(in gray), along with periodic attractors and their basins. Finally,
Figs. 9(c) and 9(f) depict scenarios featuring chaotic shearless attrac-
tors (in red) and their respective basins (in gray) alongside periodic
attractors.

For all the phase spaces present in Fig. 9, we compute the basin
entropy S, and the boundary basin entropy Sy, for each case using
a grid comprising 2000 x 2000 boxes. We conduct 25 iterations of
initial conditions within each box, discarding the first 1 x 10° itera-
tions as transient, and continue until 2 x 10° iterations to determine
the final state or attractor. Table I displays the S, and Sy, values.
Based on the findings presented in Table I, it is evident that all basins
exhibit a level of uncertainty when S, > 0 in all instances. Notably,
in Figs. 9(c) and 9(f), the area of mixed basins is more extensive and
is characterized by high values of S;. On the other hand, the lowest
basin entropy values are observed in Figs. 9(a) and 9(e), indicating a
lower degree of mixing in these cases.

For all the phase spaces presented in Fig. 9, we compute the
basin entropy S, and the boundary basin entropy Sy, for each case

using a grid comprising 2000 x 2000 boxes. We conduct 25 iter-
ations of initial conditions within each box, discarding the first
1 x 10° iterations as transient, and continue until 2 x 10° iterations
to determine the final state or attractor. Table I displays the S, and
Spy values. Based on the findings presented in Table I, it is evi-
dent that all basins exhibit some level of uncertainty, as indicated
by S, > 0 in all instances. Notably, in Figs. 9(c) and 9(f), the area
of mixed basins is more extensive and characterized by high values
of S,. Conversely, the lowest basin entropy values are observed in
Figs. 9(a) and 9(e), indicating a lower degree of mixing in these cases.

TABLE I. Basin entropy (S,), boundary basin entropy (Sys), number of attractors
(NA), and attractor types for each case of an indicated in Fig. 9. The letters P, QP, and
C in the last column mean periodic, shearless quasi-periodic, and shearless chaotic,
respectively.

Sy Sy N, Types of attractor
Figure 9(a) 0.0612 0.512 4 P
Figure 9(b) 0.163 0.552 9 P,QP
Figure 9(c) 0.252 0.267 5 P,C
Figure 9(d) 0.107 0.508 6 P
Figure 9(e) 0.0729 0.533 5 P,QP
Figure 9(f) 0.321 0.391 7 P,C
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When examining the basin boundary entropy, it can be divided
into two scenarios: when S, < 0.5 and when S, > 0.5. In the
former scenario, as depicted in Figs. 9(c) and 9(f), a distinct solid-
colored region around I = 0 can be observed at the center of the
basin, while a blending of basins occurs for higher and lower val-
ues of I In the latter scenario, a solid central region is observed
around the periodic attractors in Figs. 9(a) and 9(d), as well as the
shearless attractor in Figs. 9(b) and 9(e). The results for the first sce-
nario are attributed to the solid region around I = 0, which reduces
the final value of Sy;. This is also a consequence of the large mixing
region, increasing the number of boxes and decreasing the value of
Spp- In contrast, the second scenario exhibits a relatively small mix-
ing area, resulting in a smaller number of boxes and a larger value
of Sbb-

VII. ARNOLD TONGUES AND SHRIMP-SHAPED
STRUCTURES

In Sec. V and VI, we focused on the behavior of the shearless
attractors in terms of the parameters 7, 4, and b. For such analy-
ses, we fixed the positions of the primary resonances r;, and the
dissipation y. Now, our focus shifts to detecting periodic struc-
tures immersed in chaotic regions, specifically Arnold tongues and
shrimp structures. This section presents the numerical results from
iterating the DLM and qualitatively characterizing its dynamics. We
graphically represent the parameter spaces (A, b) using the largest
Lyapunov exponent and orbit period to achieve this.

Figure 10 shows the parameter spaces (y,b), where the color
scheme indicates the values of the largest Lyapunov exponent
depicted in color for (a) n = 4 and (b) n = 7. The Lyapunov expo-
nent was computed up to the final iteration n = 2 x 10°, excluding

0.046_0‘03

0.042 v 0.056
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the initial 1 x 10° iterations as transient. The initial conditions
used were (0,1) = (0.25,0) for n = 4;and (,I) = (IP,); forn =7,
given by Eq. (4). In both parameter spaces, periodic, quasi-periodic,
and chaotic scenarios are identified. quasi-periodic scenarios are
shown in black, chaotic scenarios range from red to purple, and
periodic scenarios are represented in a spectrum from white to
gray, indicating a negative Lyapunov exponent. In both parameter
spaces, periodic structures, known as Arnold tongues, are formed.
Figures 11 and 12 present magnifications of Fig. 10 for n = 4 and
n = 7, respectively. Figures 11(a) and 12(a) depicts the orbit period
using a color scheme, while Figs. 11(b) and 12(b) illustrate the largest
Lyapunov exponent, also employing a color scheme, for n = 4 and
n =7, respectively. In these magnifications, we observe primary
shrimp-like structures that appear alongside additional shrimps in
the vicinity of the main structures. In Fig. 12, we observe that the
shrimp with a period of 150 overlaps with the main shrimp, which
is an indicator of multi-stability in the region.

In the periodicity region, the two white curves depicted in
Figs. 11(b) and 12(b) within the shrimp structures represent super-
stable orbits, periodic orbits characterized by very high stability.
These curves indicate that trajectories rapidly converge to attrac-
tors. In Figs. 11(a) and 12(b), the orbit period parameter space
reveals that the boundary separating the light blue and gray (chaotic)
regions is a result of a tangent bifurcation. Similarly, the boundary
between the light blue and green regions, as well as the subsequent
boundaries (green to yellow regions), indicates period-doubling
bifurcations. We can observe that at the borders of these regions,
when compared with the parameter space of the Lyapunov expo-
nent, the exponent passes through zero, indicating a bifurcation.
This series of bifurcations outlines the route to chaos through a
cascade of period-doubling bifurcations.

0.022 v 0.075

FIG. 10. Parameter spaces (y, b) for (a) » = 4 and (b) n = 7. The colors represent the values of the largest Lyapunov exponent. The gradient from white to black indicates
periodic orbits, navy blue indicates quasi-periodic orbits, and the gradient from red to purple indicates chaotic orbits. In both parameter spaces, periodic structures known as
Arnold tongues are observed. These structures emerge from chaotic regions and extend into quasi-periodic regions.
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0.0451

0.0503 y 0.0506 0.0503 0l 0.0506

FIG. 11. Magnifications of the parameter space (y, b) from Fig. 10(a). In (a), the colors represent the orbit period, counted up to 2000. Chaotic orbits are denoted by (C)
and shown according to the color legend. In (b), the colors represent the largest Lyapunov exponent. The gradient from white to black indicates periodic orbits, navy blue
indicates quasi-periodic orbits, and the gradient from red to purple indicates chaotic orbits.

Another feature of the shrimp structures that can be observed
in the orbit period parameter space is their self-similarity at the sec-
ondary shrimps close to the legs of the main shrimp. In Figs. 11(a)
and 12(a), the primary shrimp structure exhibits secondary shrimp
structures with periods that are multiples of the primary period.
These secondary shrimp structures can also include the presence of

2000

0.0495

chaos signatures with periods that are multiples of a smaller base
period. Additionally, a period-adding sequence can be observed,
where the period increases by the primary period value, maintaining
the periodicity of the main shrimp. This self-similarity character-
istic can be observed across different primary periods, showing
consistent patterns in the secondary structures.

0.05 v 0.0535 0.05 v 0.0535

FIG. 12. Magnifications of the parameter space (y, b) from Fig. 10(b). In (a), the colors represent the orbit period, counted up to 2000. Chaotic orbits are denoted by (C)
and shown according to the color legend. In (b), the colors represent the largest Lyapunov exponent. The gradient from white to black indicates periodic orbits, navy blue
indicates quasi-periodic orbits, and the gradient from red to purple indicates chaotic orbits.
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VIIl. CONCLUSIONS

The introduction of dissipation in the Labyrinthic map pro-
duces the transition of the shearless curve into a shearless attractor,
regardless of the map symmetry in terms of . This formed attractor
can manifest as either quasi-periodic or chaotic and for the pre-
vious, possess the same frequency as the torus in the conservative
case. Our analysis of the parameter spaces (g, b) for the Lyapunov
exponent reveals that quasi-periodic shearless attractors exhibit a
structure similar to the parameter space associated with the breakup
of the shearless curve in conservative maps for both odd and even
values of 1. For lower values of a and b, dissipation causes the ICs to
asymptotically converge to periodic attractors or the quasi-periodic
shearless attractor. In contrast, for higher values of a and b, the
ICs tend to converge toward the chaotic shearless attractor. We also
observe structures resembling Arnold’s tongues within these param-
eter spaces, which appear to conform to the period rule of the Farey
sequence.

Additionally,through bifurcation diagrams and phase space
constructions, we identify a transition to chaos for the shearless
attractor. By fixing the parameter b, we observe the occurrence
of a transition known as the Curry-Yorke route, within a specific
range of a, during which the quasi-periodic attractor on the torus
transitions into chaotic bands before finally evolving into a chaotic
attractor.

Our investigation also explores the multi-stability within the
system, which is observed in both symmetric and non-symmetric
cases. By constructing the basins of attraction, we present the coex-
istence of three distinct attractors in the phase space: the shear-
less attractor and two twin periodic attractors, notably, the twin
attractors arise specifically in the symmetric case. We analyze
basin entropy and boundary basin entropy by discretizing the
phase space for a set of parameter values, revealing that the
basins exhibit a degree of uncertainty. Moreover, phase spaces
with the same number of distinct attractors can present differ-
ent interaction scenarios between the basins of attraction, which
are discernible through basin entropy and boundary basin entropy
analyses.

Finally, our examination of the parameter space (y,b) reveals
common periodic structures characteristic of dissipative systems,
including Arnold’s tongues and shrimps. Through period count-
ing and Lyapunov exponent analysis, we identify two bifurcation
pathways leading to chaos within the shrimp structures. More-
over, our study uncovers super-stability curves and self-similarities
within these formations, concluding that such structures can emerge
regardless of their symmetry.
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