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Abstract
The interaction between cities and their respective green regions corresponds to an interesting
issue that has received growing attention over the last decades. These relationships have multiple
natures, ranging from providing habitat for animal life to temperature and humidity dynamics.
Several methods based on area, size, shape, and distance have been considered in the literature.
Given that several important contributions of green regions to urban areas involve temperature,
humidity, and gases exchanges, which are intrinsically related to physical diffusion, it becomes
particularly interesting to simulate the diffusion of green effects over urban areas as a means of
better understanding the respective influences. The present work reports a related approach. Once
the green regions of a given city are automatically identified by semantic segmentation and have
eventual artifacts eliminated, successive convolutions are applied as a means to obtain the unfolding
of the diffusion of the green effects along time. As illustrated, the diffusion dynamics is intrinsically
interesting because it can be strongly affected by the spatial distribution of the green mass. In
particular, we observed that smaller green regions could substantially contribute to the diffusion.
The reported approach has been illustrated with respect to the Brazilian city of Ribeirão Preto,
whose small- and medium-sized green regions were found to complement in an effective manner
the diffusion of the green effects as inferred from the performed simulations under specific pa-
rameter settings.
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Introduction

As we progress into the 21st century, important issues remain as a subject of scientific research,
including the study of the quality of life in cities and towns, which is not only a multidisciplinary
problem, but also involves many characteristics and dimensions including but not being limited to
mobility, security, and access to common resources such as parks, hospitals, etc. (Zanjirani Farahani
et al., 2010). Among these several aspects, the presence of green areas, their distribution, access,
effects, etc., have constituted the subject of continuous studies and discussions (Cetin, 2015; Fahrig,
2020; Ovaskainen, 2002; Rusche et al., 2019). Green areas are important in an urban environment
for several reasons, including (i) preservation of living species; (ii) attenuation of urban noise; (iii)
landscape design; and (iv) leisure. Therefore, it becomes important to devise means for quantifying
these effects and interactions in an objective manner, so that different city organizations can be
respectively studied and characterized.

Possible quantitative approaches to studying the effect of green regions in urban areas include the
consideration of distance from urban spots to the nearest green regions (Rusche et al., 2019), the
distribution of the area (Cetin, 2015), size (Antonela et al., 2014), shape (Zhang et al., 2009), and
distance between green regions (Santiago and Pascual-Hortal, 2007). Those studies are intrinsically
related to the single large or several small (SLOSS) problem (Fahrig, 2020; Ovaskainen, 2002).
Though each of these methods are interesting and important in themselves, each of them focuses on
a relatively specific property of the studied problem, so that a more complete characterization,
modeling and understanding of the presence of green areas in cities should benefit from additional,
complementary approaches.

The problem of modeling the diffusion of particles in the air, in particular of gases, has been
widely studied in the literature (Earl and Edward, 1973; Lugg, 1968). Several of these works take
into other variables, such as the city traffic (Johnson et al., 1973) and the urban morphology
(Adolphe, 2001; Jiang et al., 2021). For instance, in (Adolphe, 2001), the authors propose a set of
topological and geometrical measurements from the city that can be used, for instance, to study the
diffusion of temperature.

The main purpose of the present work is to develop a framework for quantifying the potential
effects of green regions in urban areas by taking into account the physical phenomenon of diffusion.
Indeed, several fundamental dynamics in the physical world are directly related and influenced by
diffusion, including thermal propagation, dissemination of gases, as well as the diffusion of ele-
ments in water and other liquids. At the same time, several non-linear dynamics often incorporate a
diffusive component. Therefore, it becomes interesting to consider the effect of green areas into an
urban environment in terms of numerically simulated diffusion of gases, temperature
(Maimaitiyiming et al., 2014), humidity, as well as other elements to and from the green areas. In
order to isolate the effect of greenery, we carefully considered the morphology of the respective
areas. This constitutes the main objective of the present work.

The proposed methodology is applied as follows. Satellite images are systematically collected
from a city of interest. A sample of the images are manually annotated regarding the green regions
and a deep-learning-based model is trained to automatically identify green regions in the images.
Eventual artifacts generated in the segmentation are removed in a post-processing step. The re-
sulting image can then be used as input for the simulation of the diffusion of green effects, which we
henceforth call green diffusion. The green regions are used as sources and the diffusion is calculated
by successive convolutions with a gaussian kernel. We simulate the green regions role as sources by
performing a diffusion with sources, that is, at each step, the green areas are replenished to full
capacity.

In order to illustrate the potential of the reported methodology, we took into account a satellite
image of the city of Ribeirão Preto, Brazil. Having identified the respective green regions, we also
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considered two respective versions without the small- and medium-sized green regions, therefore
allowing the study of the effect of those areas into the overall obtained diffusion of green effects.
Among the several effects that could have been considered, here we focus on humidity diffusion,
which corresponds to a potentially important contribution to be derived from the green regions of a
city. Interestingly, it was observed that the incorporation of relatively small green areas can
substantially boost the diffusion of humidity from the green regions.

This article starts by briefly revising some of the main related works, and proceeds by describing
the adopted dataset and segmentation of the respective images regarding their green regions, as well
as pre-processing required for removing some segmentation artifacts. The numerical simulation of
the diffusion of effects from the green regions is then described. A case example with respect to the a
Brazilian city is then presented and discussed.

Related work

Satellite images are employed in various studies and can reveal valuable information about given
regions (Bonthoux et al., 2019; He et al., 2020; Tong et al., 2018). One example consists of a study
that analyzed the reforestation in China regarding the amount of green vegetation cover along time
(Tong et al., 2018). Researchers have also investigated the preferences of people regarding different
approaches to implementing green areas in cities (Bonthoux et al., 2019). Another important aspect
that has been studied is the impact of temperature changes on vegetation (Herbert and Wurzel,
2003). Furthermore, in another study (He et al., 2020), the authors shows that economic growth can
positively impact the green area level, but vegetation development does not necessarily imply
economic growth. Researchers also studied the possible relationship between vegetation areas and
people’s education and income (Nesbitt et al., 2019). The spatiotemporal changes of these green
regions, focusing in a particular ecosystem, such as in mountains, is also the topic of several studies,
such as in (Bian et al., 2020).

Many distinct aspects, intrinsically related to the interplay between cities’ green and urban areas,
have been explored (Antonela et al., 2014; Janhäll, 2015; Jin et al., 2018; Robitu et al., 2006). Some
of these studies reveal characteristics regarding the influence of vegetation in cities, such as the
impact on temperature (Antonela et al., 2014) and carbon storage (Yin et al., 2011). The information
regarding rural areas surrounding the city has also been considered (Cui et al., 2019). Interestingly,
in (Antonela et al., 2014) the effect of the sizes of the green regions patches on urban heat islands is
studied. However, not only the size of the green area plays an essential role in mitigating the effect of
the heat islands, but also their pattern (including the border geometry and specific vegetation
aspects) (Ren et al., 2015). The authors of (Ali et al., 2015) investigated how urban land surface
temperature varies according to diverse patterns of green cover patches. Interestingly, they found
that homogeneously dispersed green patches tend to be more efficient in reducing the surrounding
area’s temperature. The emergence of heat islands motivates researchers to also consider the
distribution of these green patches (Du et al., 2017; Lin et al., 2015). For instance, in (Lin et al.,
2015) the authors estimate the cooling effect of adjacent parks in the city. Moreover, the shape of the
green patches can also play an important role in the land surface temperature (Zhang et al., 2009).
Although many studies have described the importance and impact of vegetation in cities, the authors
of (Xing and Peter, 2019) suggest that the greenery of urban parks could play a limited role in air
purification.

Other studies deal with model simulations that incorporate characteristics of the real systems
(Robitu et al., 2006; Takebayashi, 2017). For example, in (Robitu et al., 2006) the authors deal with
the problem of the influence of vegetation and water on the city microclimate by considering
computational fluid dynamics. Another simulation approach, proposed in (Takebayashi, 2017),
considered the air temperature on the relationship between urban and green areas.

Tokuda et al. 1025



Material and methods

The main steps of the methodology are as follows: (i) dataset acquisition; (ii) segmentation of green
areas; (iii) post-processing using mathematical morphology; and (iv) simulation of a diffusion
dynamics using the identified green areas as source. These steps, which are illustrated in Figure 1,
are explained below.

Dataset acquisition

The images used in this study were obtained from Mapbox (Mapbox, 2010), which provides high-
resolution images frommany different places. The boundary of the region of interest (i.e., urban area
of the cities) was manually identified. Due to the tileset convention (OpenStreetMap, 2018) used in
Mapbox API, it is necessary to convert latitudes and longitudes into another set of numerical
coordinates before requesting the download of satellite images of the area through the API. In this
convention, the entire region is divided into square images with the same sizes (tiles). Each column
in this division is mapped to a Yvalue and each row to a X value. This pair X, Yuniquely identifies a
square of the region and covers an interval of coordinates. Providing the list of X, Y coordinates that
forms the region, it is possible to retrieve the image of the entire area of interest. Specific technical
details of the adopted dataset in our experiments are presented in Section Results and Discussion.

A ground truth dataset was manually generated using the online annotator tool Supervisely
(Supervisely, 2018). A sample of the images was randomly inspected (preferably not at the urban
periphery) and polygons covering the class of interest (green areas) were generated. As a result, a
binary mask for each image is generated indicating the presence of green.

Image segmentation of green areas

To characterize a satellite image, it is usually necessary to first identify its main relevant structures.
We start this process by green areas segmentation. Many works have approached the problem of
segmenting areas of interest in remote sensing images. For instance, (Barbieri et al., 2011) con-
sidered several types of aerial images and, by using the concept of Shannon entropy (Thomas,
1999), sought to distinguish the regions as being urban, rural, or aquatic. More recently, deep-
learning methodologies have been considered (Flood et al., 2019; Ivanovsky et al., 2019; Khan
et al., 2017; Siti et al., 2016), such as in (Siti et al., 2016), where a CNN (Convolutional Neural
Network) was adopted for automatically identifying natural disasters from satellite images. In

Figure 1. Workflow of the methodology described in the present work.
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another study, by using a CNN architecture and temporal information, changes in forest regions
have been identified (Khan et al., 2017).

A deep-learning configuration frequently considered in remote sensing studies is the U-Net
(Ronneberger et al., 2015), which is also based on convolution layers. More information regarding
this architecture is presented in Section 3.2. Interestingly, though the U-Net was originally con-
sidered for dealing with biomedical image segmentation (Ronneberger et al., 2015), many studies
employed U-Net variations in the analysis of satellite imagery, such as in the detection of buildings
(Ivanovsky et al., 2019) and green areas (Flood et al., 2019).

In this study, we focus on inferring the composition of green areas in the urban scenery in
satellite images, which do not necessarily have a homogeneously green color. Thus, the seg-
mentation of such areas constitutes a challenging task. Here, we consider mostly urban vegetation
with green coloration in the definition of Green area: the presence of trees, gardens, squares, yards,
flower beds, recreational space with a grass field, trees at roadsides, sidewalks, or between resi-
dences. In some cases, plantations near the city borders were included. However, there are some
areas for which it is difficult to determine the presence or absence of vegetation, such as plantation
harvest regions, muddy or barren regions, and dry grass with yellow coloration. For these am-
biguous regions, we take into consideration the presence of trees as a crucial factor to determine if
the area were to be considered as a green area or not. In general rules, the presence of trees will
indicate the presence of green. As an example, in the Figure 2 there are brown regions surrounded by
grass. In Figure 2(a) we can observe the presence of small trees between the region without grass,
and thus, this region was labeled as a green area. In contrast, the region shown in Figure 2(b) also has
a brown region but without the presence of any tree and thus was not considered as a green area.

After the construction of the supervised dataset, the data is provided to a supervised learning
method to identify the green area regions. The model training process for a segmentation task is
challenging because it requires predicting the category of each pixel in the image. In this study, a
U-Net (Ronneberger et al., 2015) architecture was adopted. The model’s architecture is fully
convolutional and consists of symmetrical contraction and expansion paths.

Post-processing using mathematical morphology

Because the images are obtained initially as a set of squares, and we employ a tiled-based processing
method before assembling the entire image, some artifacts can be respectively implied in the

Figure 2. Example of how ambiguous regions are treated: (a) when trees are present in bare soil, the
respective region is considered as a green area; (b) bare soil region devoid of trees is not considered a green
area.
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predicted labels. In general, unwanted vertical and horizontal lines result near the square borders. To
deal with this problem, we employed a data-based noise reduction post-processing step. First, we
apply morphological closing operation using a disk structuring element to reduce noise. Fur-
thermore, morphological closing is also adopted to remove straight line artifacts. More specifically,
this step was constrained to the regions composed of pixels that are no further than six pixels from
the tile boundaries. In order to remove both the horizontal and vertical unwanted lines, we processed
these regions separately, as four rectangles with an overlap at the four corners. These rectangles are
named Left (L), Right ®, Up (U), and down (D), according to their positions. With respect to each of
the rectangles, kernels with dimensions 6 × 6 are defined, as follows:

KL ¼

2
666666664

0 0 1 1 1 1

0 0 1 1 1 1

0 0 1 1 1 1

0 0 1 1 1 1

0 0 1 1 1 1

3
777777775
,KR ¼

2
666666664

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

3
777777775
,

KU ¼

2
666666664

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

3
777777775
,KD ¼

2
666666664

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

0 0 0 0 0 0

0 0 0 0 0 0

3
777777775
:

(1)

By considering each of these kernels, we compute their convolutions with the respective
rectangles. To obtain regions with the same size as the original rectangle, the convolution is
performed with zero-padding. The resultant matrix is formed by real numbers. So, to convert this
matrix to binary numbers, a threshold, τ, is applied, and the values above τ are converted to 1,
otherwise being assigned 0 (here, we use τ = 0.5). This operation starts from the rectangle L, and the
remaining are computed by following the order: R, U, and D. Note that, for the overlapped regions,
this operation is performed twice so as to remove both the horizontal and vertical artifacts.

Green diffusion

Nature and vegetation are essential in promoting healthy living on earth. Thus, it becomes important
to analyze the distribution of the green and non-green regions in its cities.

The diffusion is the displacement of an element (e.g., energy, water molecules) from a region to
another, generally occurring from the higher concentration region to the lower concentration one
(Crank, 1979). There are several mathematical approaches to modeling diffusion, and they are
commonly categorized between normal and anomalous diffusion, depending whether the process
obeys the Fick’s law or not (Fick, 1855). In the specific case of diffusion of particles in the air,
turbulent diffusion (Egan and James, 1972; Majda and Kramer, 1999; Roberts and Webster, 2002;
Warhaft, 2000) is often considered, which is governed by

∂c
∂t

þ u=c ¼ D=2c (2)
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where c, varying along position and time, represents the concentration of the substance, D is the
diffusion coefficient, which in this case is assumed constant in space and time, and u represents a
turbulent flow (also varying along time and space), which takes into account the atmospheric forces
(Garratt, 1994). In this case, u may dominate the equation, in which case it leads to an anomalous
diffusion process. A simplification of this approach ignores the atmospheric effects, reducing it to
the normal diffusion equation:

∂c
∂t

¼ D=2c (3)

Here, we propose a physics-inspired approach for characterizing the interaction between co-
existing green and non-green regions, which we call green diffusion. A simple process charac-
terizing several natural phenomena is as a two-dimensional normal and isotropic diffusion, or
simply diffusion (Crank, 1979) which, for simplicity’s sake, is henceforth considered in the present
work. For instance, the diffusion of humidity follows this type of dynamics. This provides one of the
main motivations for the present work, namely, the simulation of a diffusion process emanating
from the green regions into the non-green areas. If allowed to unfold along time, defining a re-
spective signature, such a diffusion dynamics can provide an indication about the potential influence
of the green regions over the other areas. The specific profile observed in these signatures can vary
largely depending not only on the proximity, but also on the geometry of the green regions. Several
desired green effects such as humidity, soil preservation, air filtering—not to mention providing
habitat for birds and small animals—which contribute to environmental and urbanistic aspects, can
be reasonably modeled in terms of a linear diffusive dynamics. The green regions are represented as
corresponding to sources of diffusion. More specifically, their values are kept constant at all times.

We model the diffusion of the humidity in terms of point source isotropic diffusion (Arfken and
Weber, 1999), approached in terms of a two-dimensional point-spread function P(r, t) by using the
following equation:

Pðr, tÞ ¼ e
�
�

r2
4Dt

�

4πDt
(4)

where r is the distance (in m) to the source, t (in s) corresponds to the time, andD is the diffusion
coefficient (in m2/s).

In a more practical aspect, this method can be computed through successive convolutions with
the green region (Arfken and Weber, 1999). First, a mask with value one representing the green
areas, and zero otherwise, is created by considering the green areas segmented from the satellite
image. For each iteration, the image is convolved with a smooth kernel (e.g., Gaussian). This
procedure is repeated n times, to simulate the diffusion of humidity throughout the city.

As an alternative dynamics, we consider the diffusion with sources. This approach starts with the
same process employed in the former methodology. However, at the end of each iteration, the
intensity of the initially detected green regions is set to one again. Here, the number of iterations is
controlled by the following equation:

c ¼ areagreen
areatotal

, (5)

where areagreen is the number of pixels reached by the green diffusion, and areatotal is the total number
of pixels in the image. The dynamics finish when t ≤ c, where t is a parameter. An interesting measure,
obtained from these simulations, is the time required to achieve a desired overall green level.
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Interestingly, though corresponding to a ubiquitous phenomenon in nature, diffusion dynamics
can vary in surprising manners depending on the spatial distribution and size of the green sources.
This important issue is illustrated in Figure 3, which depicts three distinct distributions of green
regions but with the same total green area. The three considered types of green spatial distributions
can be summarized as follows: (a) a single, large connected area, for instance, as corresponding to
parks and squares; (b) a branched distribution of vegetation, as typically observed around rivers and
streams; and (c) a large number of relatively small vegetation areas, as in gardens and backyards,
distributed in a nearly uniform manner. Also shown in Figure 3 are waterfall diagrams containing
the histograms of the diffused green effect along time, given by the concentration of pixels re-
spectively to each of the three considered configurations.

The first important result is that quite distinct green diffusion profiles can be obtained with
respect to each of the three types of spatial distribution. The case involving a single, large green area
led to histograms indicating large frequency of relatively low diffused effects, therefore corre-
sponding to a little effective influence of the green region as gauged by diffusion. The branched case
yielded a relatively more effective diffusion, with histograms being shifted to the right. However,
the third type of green spatial distribution, involving a relatively uniform spreading of small
vegetation areas, resulted in the most effective diffusion of humidity from the city green regions,
being substantially distinct from the other two types of distribution types. This result is particularly
important with respect to the present work because: (i) it shows that the diffusion can critically and
abruptly vary in non-intuitive manner depending on the size and spatial spread of the green areas and
(ii) the most effective diffusion of a total green area takes place for several small regions distributed
in nearly uniform manner.

Results and discussion

Dataset and implementation details

To illustrate the proposed methodology, we select a Brazilian city, Ribeirão Preto. Our methodology
starts by acquiring satellite images, identifying green areas, and analyzing a dynamical process
considering this topology. The satellite images used in this study were obtained using the Mapbox
Raster Tiles API (Mapbox, 2010), with the zoom at level 18, which corresponds to the resolution of
approximately 0.6 m/pixel, providing high-resolution images from the entire region of the city. With
this resolution, a total of 49,911 tile images were acquired to compose the entire region of the city.
The three-band RGB color images, with size 512 × 512 each, were obtained in the year 2018.

A total of 150 images were annotated and mapped into binary labels. Applying rotations of 90,
180, and 270° to augment available data for model training, a total of 600 images were used and then
divided into training, validation and test sets with 70%, 20%, and 10% split proportions,
respectively.

The model was implemented in Python using Keras and TensorFlow libraries. The Adam
optimizer was used in the network training with a learning rate 0.00,015 and the dice coefficient loss
function. The number of epochs was set to 100 and the mean dice coefficient reached 95% on the test
dataset. Here, we applied a threshold of 0.6 to consider a pixel as belonging to a green area. The
segmentation experiments were carried out in a GeForce GTX 1080 Ti graphics card. Training the
neural network took approximately 3 h in this hardware.

An example of segmentation of the green regions in the satellite image of Ribeirão Preto (Figure
4(a)) according to the adopted methodology (Section 3.2) is shown in white in Figure 4(b). Rural
areas were removed using a mask (Figure 4(c)) that is applied to the segmentation result, yielding
the result shown in Figure 4(d). This mask was obtained by manual segmentation of the estimated
urban region.
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Figure 3. Diffusion with sources for three toy models (a), (b), and (c). The first column shows different green
area distributions and the second column shows the corresponding histograms across time. Observe the
different scales in the histograms density axes, for the sake of better visualization.
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Diffusion of the green effects

The obtained masks were downsampled by 8× the original image, resulting in a frame of size 7360 ×
6944. The adopted convolution mask was a square 201-pixel sides window with values determined
by equation (4). The diffusion coefficient of the water was adopted as D = 2.6 × 10�5 m2/s (Wang,
1965). Pixels lying outside of the image are considered as having value of zero (free boundary
condition). All measurements were handled in the S.I., including the distances in the image (1 pixel
= 0.19 m) The process was evaluated for 100 steps.

In order to study the effect of the green region area on the overall diffusion, we consider not only
all the identified green area, shown in Figure 5(a), but also two additional images obtained by
removing the green regions with area smaller than or equal to 5A, where A = 100 is the typical size of
a tree and by removing medium-sized green regions with area smaller than or equal to 2B, where B =
1000 is the typical size of a block. However, given that the removal of the small- and medium-sized
green regions effectively reduces the overall green area in those images, it would not be proper to
compare the diffusion effects between them. In order to ensure identical overall green areas in the
three compared images, we dilated the two thresholded images until they all had the same area as the

Figure 4. Satellite image (a) and corresponding segmentation of green areas (b) from the city of Ribeirão
Preto. Satellite image obtained from Mapbox© (Mapbox, 2010). In order to remove the rural areas, a mask
(c) is applied to the segmentation result in (b), yielding (d).
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Figure 5. Diffusion of humidity from green sources considering the city of Ribeirão Preto. The first column
the originally detected green regions (a), as well as the two considered dilated respective versions of the
previous image after removal of small (b) and medium (c) size green areas. The second column contains the
corresponding distribution of green along time in the green diffusion.

Tokuda et al. 1033



original image in Figure 5(a). These dilated images are depicted in 5(a) and 5(b), respectively, to the
removal of small- and medium-sized green regions.

Figure 5 presents the green diffusion results obtained for (i) the full resolution image of green
regions; (ii) the same region after removing connected components smaller than or equal to 5A; and
(iii) the region in (i) after removing all connected component smaller than or equal to 2B. The
consideration of these three situations allows the verification of the effect of the smaller regions on
the overall diffusion dynamics.

The results obtained in all the three considered situations confirm the effect of diffusion of the
green effects, in particular humidity, verified in the progressive right-shift of the mass of the
histograms in the waterfall plots along time. However, in case (i) the diffusion takes place at a much
faster rate, reaching saturation after about 20 diffusion steps. Contrariwise, the situation in (iii) is
completely different, with rather slow right-shifting of the mass in the histograms. Situation (ii)
represents an intermediate result, but with saturation being observed only after 40 diffusion steps.

These results are in full agreement with our previous experiments in Section 3.4, corroborating
further the particularly important effect of the spatial distribution of the green areas on the velocity in
which the green effects diffusion can take place. From a real-world perspective, these results suggest
that smaller patches of vegetation may play an important role as far as diffusion of green effects as
modeled in the present work are concerned.

Conclusions

A good deal of the influence of green regions in an urban environment take place through diffusion
(e.g., temperature variations, gases displacement, as well as air humidity), it becomes interesting to
simulate the diffusion of these effects from green regions in segmented areas of cities.

The present work reported a related approach, focusing on diffusion of humidity. First, satellite
images have their green regions identified and treated as sources of diffusion. Then, diffusion is
simulated by using a numerical approach, more specifically successive convolutions with a gaussian
kernel. After the diffusion has become nearly stable, histograms of the respectively achieved
concentrations at each of the considered pixels are obtained. These histograms provide a particularly
effective means for gauging the diffusion of green effects given particular regions and cities of
interest.

One particularly interesting question implied by diffusion dynamics concerns the fact that
distinct spatial distributions of the green sources, as well as their specific morphology, can have
unpredictable and even surprising effects. This has been illustrated with respect to three hypothetical
images containing the same total green area distributed as a single compact area, a branched
structure remindful of rivers and streams, as well as an almost uniform distribution of small patches
of green regions. Interestingly, the histograms of green effects obtained in each of these three cases
are markedly distinct, with the latter configuration accounting for the most effective diffusion.

As a real-world case example illustrating the proposed methodology, we took into account the
Brazilian city of Ribeirão Preto. In order to study the effect of the size of the green regions, we
thresholded the respectively obtained green regions so as to remove the small- and medium-sized
areas, while special care (dilation of the threshold images) is applied in order that all the three
compared configurations have the same total green area. The respectively obtained simulation
results, considering humidity diffusion, suggest that the incorporation of small- and medium-sized
green regions could have a significant effect in boosting the diffusion of green effects as far as
humidity is concerned, and under the assumed hypothesis (normal and isotropic diffusion). Al-
though it is know that more distributed, smaller regions can contributed to more effective diffusion,
the consideration of a real-world city and the specific aspect of humidity diffusion allowed more
objective, quantitative results to be obtained that showed that even substantially small regions can
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contribute significantly to enhance the diffusion of water vapor. For instance, it was verified that the
diffusion was particularly effective when all regions were considered, with the humidity density
increasing steadily along the first 10 days. The removal of the small green areas influenced strongly
the resulting density, taking almost 2 months for reaching increasing by about 10%. The further
removal of the medium size green areas had an even greater impact on the humidity diffusion, with a
rather slow increase along months.

It should be kept in mind that the obtained results are respective to the dynamics of diffusion as
simulated numerically considering specifically adopted city and parameter configurations in
simplified settings (e.g., absence of wind and other external influences, adopted diffusion coef-
ficient, etc.), so that the obtained results correspond only to a rough and specific estimation and
significantly different results can be obtained in other situtations. In addition, it should be observed
that the considered diffusion dynamics is more closely related only to some of the various important
roles of green regions in urban areas. These diverse dynamics present other characteristics not
modeled by diffusion, such as the need for larger green areas required for animal life, etc. Additional
research is required for validating and extending the reported results with respect to more realistic
and diverse configurations.

The methodology and results described in the present work pave the way to several interesting
subsequent related studies. For instance, it would be interesting to compare the diffusion dynamics
with other types of physical dissemination, such as progressive dilation of regions as observed when
expanding or reducing the areas of parks. Another interesting possibility regards the incorporation
of effects caused by external effects, such as wind. It would also be interesting to enhance the
segmentation methodology so as to be able to distinguish between different types of green regions
(e.g., trees, lawns, and bushes), as well as their respective conditions (e.g., dry or wet seasons).
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