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Astrophysical interpretation of Pierre Auger Observatory mea-
surements of the UHECR energy spectrum and mass composi-
tion
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Abstract. We present a combined fit of a simple astrophysical model of UHECR sources
to both the energy spectrum and mass composition data measured by the Pierre Auger
Observatory. The fit has been performed for energies above 5 EeV, i.e. the region of
the all-particle spectrum above the so-called “ankle™ feature. The astrophysical model
we adopted consists of identical sources uniformly distributed in a comoving volume,
where nuclei are accelerated with a rigidity-dependent mechanism. The fit results suggest
sources characterized by relatively low maximum injection energies and hard spectral
indices. The impact of various systematic uncertainties on the above result is discussed.

1 Introduction

Ultra-high-energy cosmic rays (UHECRS) are particles reaching the Earth from outer space with en-
ergies above 10'® eV. More than half a century after their discovery, their origin is still unknown, but
there is a wide consensus that most of the highest-energy cosmic rays originate outside of our galaxy.
If this is the case, their energy spectrum and mass composition is non-trivially affected by interactions
with photon backgrounds during their propagation through intergalactic space, making it harder to
infer properties of their sources from Earth-based observations. Also, whereas the energy of UHE-
CRs can now be measured with resolution and systematic uncertainty less than 20%, determinations
of their mass are still strongly model-dependent and only possible on a statistical basis.

The Pierre Auger Observatory [1] in western Argentina is the largest UHECR observatory in the
world. It is operated by a collaboration of about 500 members from 86 institutions in 18 countries.
The baseline array for the study of the highest-energy cosmic rays consists of 1 660 water-Cherenkov
stations on a triangular grid with 1 500 m spacing covering a 3 000 km? area (the surface detector array,
SD), overlooked by 24 telescopes in four locations at the periphery of the array (the fluorescence
detector, FD). The Observatory also includes extra SD stations with closer spacing and three extra
FD telescopes with higher elevation for the study of lower-energy cosmic rays, and various other
facilities for atmospheric monitoring, R&D, and interdisciplinary studies.
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Table 1. The propagation models used in this work (see ref. [7] and references therein for details) and the
resulting best-fit parameter values and fit deviances (assuming eros LHC showers and no systematic errors)

model | MC code photodisint. EBL Y log,, (R\C,“‘) Dminggg i
SPG | SimProp  PSB Gilmore | +0.947) 10 T8.67.003 | 1785103
SPD | SimProp PSB Dominguez | —0.45:041  18.27*307 | 193.420
STG | SimProp  TALYS Gilmore | +0.69%0%  18.60-001 | 17693
CTG | CRPropa TALYS Gilmore +O.73J:8:88 18.58<0.01 | 195.3, Si Z
CTD | CRPropa TALYS Dominguez | —1.067,57 18. 19f8:8‘21 192.3 2 i 1
CGD | CRPropa Geant4 Dominguez | —1.29*0-°  18.18* % | 192.5,723

The FD can only operate during clear moonless night (duty cycle ~ 15%), but it provides us with
near-calorimetric measurements of shower energies. These are used to calibrate the energy scale of
the SD, which has duty cycle * 100%. The FD also provides us with measurements of the shower
maximum depth Xj,.x, the most important observable sensitive to the mass composition of UHECRs.

We present the result of a simple phenomenological model of UHECR sources to Pierre Auger
Observatory measurements of the energy spectrum and X,,,, distributions for energies above 10'87 eV,
as a demonstration of the constraining power of Auger data. The source model is not necessarily
intended to be astrophysically plausible. The data above 10'%7 eV consist of 15 bins for the energy
spectrum [2] and 110 non-empty bins for the Xy,ax distributions [3]. Most of these results were already
presented in refs. [4, 5]. An updated version of this work will be published in ref. [6].

2 The models we used
2.1 The astrophysical sources

In this work, we assume that all UHECR sources are identical, with constant comoving density, and
they emit hydrogen-1, helium-4, nitrogen-14 and iron-56 with a broken exponential rigidity cutoff,
Qi(Ein)) = Qopi(Einj/BeV)™ for Eiyj < ZiRey and Qypi(Einj/EeV)™ exp(l — Eiyj/ZiRcy) for Eipj >
ZiR.y. The free parameters of the fit are the normalization constant Q, the spectral parameters y and
Ry, and three of the mass fractions p; (the fourth being bound by }; p; = 1). The choice of cutoff
shape is motivated by numerical convenience rather than astrophysical plausibility, but we will also

show the effects of using a different cutoff shape.

2.2 The propagation through intergalactic space

We simulate the propagation of UHECRSs using two publicly available Monte Carlo codes (Sim-
Prop v2r3 and CRPropa 3), along with two models for the extragalactic background light (EBL)
spectrum and evolution (Gilmore et al. 2012 and Dominguez et al. 2011) and three models of pho-
todisintegration cross sections (PSB, TALYS and Geant4), in the combinations listed in table 1. An
overview of the differences between the two simulation codes and the effects of different EBL and
photodisintegration models can be found in ref. [7].

2.3 Interactions in the atmosphere

We model the Xp,x distribution for each primary energy and mass number as a Gumbel distribu-
tion [8] with parameter values found by fitting it to the results of CONEX simulations of air showers
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assuming epos LHC [9], siByLL 2.1 [10] or QGSJET II-04 [11] as the hadronic interaction model.
We then multiply these distributions by the detector acceptance and convolve them by the detector
resolution [3].

3 Our results
3.1 The reference fit

Using the SPG model of UHECR propagation, the epos LHC model of air interactions, and neglect-
ing the systematic uncertainties in the measurements, the best fit to the measured energy spectrum
and X« distributions is found with a relatively hard source spectral index y = 1, low cutoff rigid-
ity Reyt ® 5 EV (see table 1), and heavy composition (62.0% helium, 37.2% nitrogen, and 0.8% iron).
Similar results have already been found by other authors, e.g. [12, 13]. The deviance (generalized y?)
per degree of freedom of our fitis D/n = 178.5/119, corresponding to a p-value of 2.6%. The best-fit
region extends to very low 7y, R.y, because, in the energy range of interest, changes in either spec-
tral parameter can be nearly compensated by changes in the other spectral parameter and the mass
composition.

In this scenario, the high-energy cut-off in the all-particle spectrum at Earth is mostly given by the
photodisintegration of medium-heavy elements, whereas the injection cut-off does limit the flux of
secondary protons with E > Ziy; Ry /Ainj = 2.4 EeV. Since the cutoff rigidity corresponds to an energy
per nucleon way below the threshold for pion production on the CMB, the resulting flux of cosmogenic
neutrinos at EeV energies is negligible. Also, particles with magnetic rigidity £/Z < 5 EV can be
deflected by intergalactic and galactic magnetic fields by several tens of degrees even when originating
from relatively nearby sources [14], making it very hard to infer source positions.

There also is a second local minimum at y =~ 2, R, & 70 EV, but due to the absence of a low
rigidity cutoff this model predicts a higher admixture of protons at high energies than indicated by the
narrowness of the observed X,,,x distributions.

3.2 Effects of systematic uncertainties

Most of the physical quantities relevant to the propagation of UHECRs in intergalactic space are well
known, but some are still very uncertain. For example, recent models of the EBL still differ by a factor
of 2 in the far infrared, and photodisintegration branching ratios have only been measured for a few
channels [7]. To assess the sensitivity of our fit to these uncertainties, we repeated it using various
combinations of simulation codes and EBL and photodisintegration models. The results are shown in
table 1. The best-fit parameter values in the various models differ by much more than their statistical
uncertainties, but they are all aligned in a hyperbola-shaped region of the (y, R.y) plane where the
injection spectra in the energy range we are interested in are similar.

Details of hadronic interactions in kinematic regions relevant to air shower development are not
accessible to accelerator-based measurements and extrapolations are necessary. In our reference fit
we used the erpos LHC model; using siByLL 2.1 or QGSJET II-04 instead, which predict shallower
Xmax values, would result in unacceptable fits even at very low y. Note that the differences between
these models may understate the actual uncertainties in hadronic interactions [15].

We also repeated the fit shifting all energy or Xp,,x measurements within their measurement sys-
tematic uncertainty. The resulting best-fit deviance (as a function of vy, all other parameters being
re-fitted to minimize the deviance) is shown in fig 1, left panels.

Finally, using a different shape (simple exponential) for the injection cutoff function results in
different numerical values for the parameters (y = 0.53, Roy = 10'8%3 V) but they correspond to very
similar injection spectra (see fig 1, right panel) with little difference in the fit deviance (D = 177.2).
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Figure 1. Left: best-fit deviance as a function of the source spectral index y when the energy or X,,,, data are
shifted by their systematic uncertainty. Right: comparison of best-fit injection spectra assuming two different
cutoff shapes, showing that the differences resulting from the two models are slight (solid: simple exponential,
dashed: broken exponential; red: 'H, grey: *He, green: '*N, blue: *°Fe).

4 Discussion and conclusions

We found that our fit results are very strongly sensitive to systematic uncertainties in Xy, predictions
and measurements: shallower predictions or deeper measurements require a lower injection spectral
index and cutoff rigidity and result in a worse fit. The planned upgrade AugerPrime will also measure
another independent mass-sensitive observable, the muon number, hopefully helping us alleviate the
uncertainties in primary mass determinations. To a lesser extent, our fit is sensitive to the interaction
rates in UHECR propagation, which depend on the EBL intensity and photodisintegration cross sec-
tions: lower interaction rates tend to require higher y and R and result in better fits. The systematic
uncertainty on the energy scale and the shape of the injection cutoff have comparatively minor impacts
on the fit.

In a forthcoming work [6], we will publish an update of this fit, in which we will use the latest SD
data, correctly take into account the SD energy resolution and Poisson statistics, include silicon-28
among the possible injected elements, study the effects of possible redshift evolutions of source emis-
sivity (e.g. oc (1 +2)™), and qualitatively discuss the effects of possible extra sub-ankle components.
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