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ABSTRACT
Chemical pollution is one of the major threats to global freshwater biodiversity and will
be exacerbated through changes in temperature and rainfall patterns, acid-base

chemistry, and reduced freshwater availability due to climate change. In this review we
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show how physico-chemical features of natural fresh waters, including pH, temperature,
oxygen, carbon dioxide, divalent cations, anions, carbonate alkalinity, salinity and
dissolved organic matter, can affect the environmental risk to aquatic wildlife of
pollutant chemicals. We evidence how these features of freshwater physico-chemistry
directly and/or indirectly affect the solubility, speciation, bioavailability and uptake of
chemicals [including via alterations in the trans-epithelial electric potential (TEP) across
the gills or skin] as well as the internal physiology/biochemistry of the organisms, and
hence ultimately toxicity. We also show how toxicity can vary with species and
ontogeny. We use a new database of global freshwater chemistry (GLORICH) to
demonstrate the huge variability (often >1,000-fold) for these physico-chemical
variables in natural fresh waters, and hence their importance to ecotoxicology. We
emphasise that a better understanding of chemical toxicity and more accurate
environmental risk assessment requires greater consideration of the natural water

physico-chemistry in which the organisms we seek to protect live.

Key words: alkalinity, antimicrobials, dissolved organic carbon (DOC), environmental
protection, hardness, herbicides, metals, pharmaceuticals, persistent chemicals,

pesticides.

CONTENTS

. Introduction

I1. Water physico-chemistry and the risk of chemicals
(1) pH
(2) Temperature

(3) Oxygen



50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

(4) Carbon dioxide

(5) Divalent cations

(6) Anions

(7) Carbonate alkalinity

(8) Salinity

(9) Dissolved organic matter
I11. Conclusions
IV. Acknowledgements

V. References

I. INTRODUCTION

Pollution is considered one of the major threats to global fresh waters, and derives from
a diversity of sources, including domestic and industrial effluents, agriculture, road run-
off, mine tailings and leakage from landfill sites (Reid, MacBeath & Csatadi, 2013).
Discharges contain complex mixtures of chemicals that can include persistent organic
compounds, pesticides, pharmaceuticals, inorganic nitrogen compounds and metals;
more than 30,000 chemicals are in widespread use (US EPA, 2019). Climate change is
causing dramatic changes in thermal regimes and rainfall patterns, and this, together
with an overall reduction in freshwater availability, is predicted to exacerbate the
adverse effects of chemical pollutants (Balbus et al., 2013; Benateau et al., 2019; Bunke
et al., 2019). Most countries globally are challenged by the availability of fresh water
(TUCN, 2020). There are, however, especially high risks due to the combined effects of
pollution and freshwater flow reductions in Tunisia, Israel, Moldova, Syria, Hungary,
Macedonia, Germany, Netherlands, Czech Republic, Algeria, Pakistan, South Africa,

India, Spain, Nepal, Afghanistan, Korea, Bangladesh, Madagascar and Iraq (IUCN,
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2009; Vorosmarty et al., 2010). Furthermore, freshwater biodiversity is considered to be
most threatened in the Czech Republic, Luxembourg, Kuwait, Belgium, Tunisia,
Germany, Moldova, Syria, Slovak Republic and Spain (IUCN, 2009; Vérosmarty et al.,
2010). In the case of fishes, their biodiversity is most threatened in Indonesia, Mexico,
United States, India, Australia, Tanzania, China, Malaysia, South Africa and Turkey
(IUCN, 2020).

The impact of a chemical, including synthetic organic molecules, metals and
other inorganic toxicants, on an organism depends on the innate toxicity of the
chemical, its persistence, bioavailability, the exposure level, and the presence of other
toxicants (Ibanez et al., 2007). The route of exposure, life stage, health status and sex of
the organism are also important (Ibanez et al., 2007) as is the ability to metabolise and
excrete toxicants. Other influential factors include the organisms’ ecological niche (the
physical environment it inhabits and its trophic position) (Windsor, Ormerod & Tyler,
2018). Importantly, the physico-chemical environment can also directly and/or
indirectly affect both the toxicant bioavailability and potentially its form/innate toxicity.
This is well illustrated for metals such as copper (Cu), where the presence of organic
matter (De Schamphelaere et al., 2004; Boeckman & Bidwell, 2006), temperature
(Boeckman & Bidwell, 2006), and acid-base status (H*, OH-, HCO3~ and COs*") (Long,
Van Genderen & Klaine, 2004; Grosell, 2011) all affect metal speciation which in turn
determines Cu bioavailability and toxicity. In addition, some cations compete with
copper uptake processes in freshwater animals (Na*, Ca?*, and H* at pH<6) or reduce
gill permeability (Ca?*) thereby reducing the toxic impacts of copper (Grosell, 2011).
For metals, the Biotic Ligand Model (BLM), a computational regulatory tool, is now
widely used in environmental guideline generation that takes into account many (but not

all) of the water chemistry variables we consider in this review. This enables the
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generation of site-specific predictions of toxicity for many metals (Di Toro et al., 2001).
For chemicals more generally however, until recently the effects of water physico-
chemistry on their toxicity has received relatively little study.

Chemicals are regulated in order to minimise their risks to the health of humans
and wildlife populations, and avoid adverse ecological impacts (Gunnarsson et al.,
2019). The approach for evaluating chemical risk in the environment operates by
identifying the potential hazard of chemicals, assessing exposure risk (predicted
environmental concentration; PEC), characterising the ecological hazard (predicted no-
effect concentration; PNEC), and then assessing the likely risk through calculation of
the risk quotient (PEC/PNEC), which for wildlife species uses the endpoints of growth,
development and/or reproduction (Amiard & Amiard-Triquet, 2015; Gunnarsson et al.,
2019). For approval of new chemicals in the European Union (EU) and the United
States (US), an environmental risk assessment (ERA) is mandatory. These ERAs and
ecotoxicological studies are carried out in accordance with guidelines from the
Organisation for Economic Co-operation and Development (OECD) and the US
Environmental Protection Agency (US EPA) (Ruden et al., 2017). Even so, of the 5,000
new high-production-volume chemicals synthesised since the 1950s, less than half have
undergone robust environmental safety assessments (Landrigan et al., 2018).
Furthermore, these ecotoxicity tests are very basic, assessing only the effects on
mortality, growth and reproduction of single species; development and behaviour are
not considered, yet these are fundamental life processes that can affect individual fitness
with population-level consequences (Gunnarsson et al., 2019). It is also the case that
standardised procedures for chemical testing can vary among countries (Norberg-King
et al., 2018), and they use a very narrow species range. For the aquatic environment, the

test species include representatives of algae, invertebrates and fish taxa. The most
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commonly used species for chemical testing are the green alga Scenedesmus obliquus,
the planktonic crustacean Daphnia magna, and the zebrafish, Danio rerio. For fish,
other species, notably the fathead minnow (Pimephales promelas), Japanese medaka
(Oryzias latipes) and rainbow trout (Oncorhynchus mykiss) have also strongly
influenced regulatory guidelines. These species may not necessarily represent the
diversity of freshwater biota within any given taxonomic group. As an example, the
sensitivity of growth inhibition in response to antibiotic exposure can vary by orders of
magnitude among species of cyanobacteria, influenced by the antibiotic modes of action
(MoA; Le Page et al., 2019). Tests also tend to focus on a single route of exposure,
normally via the water, whilst ignoring the dietary route or the fact that most organisms
are simultaneously exposed to complex chemical mixtures in nature. Further challenges
in extrapolating between chemical effects from laboratory-based exposures and wildlife
populations relate to possible differences across the life stages used, and the limited
concentration ranges normally tested (Amiard & Amiard-Triquet, 2015). These tests
also do not consider the environmental degradation of compounds or the possibility for
acclimation or adaptation of organisms in polluted environments. Moreover, and
importantly, these standardised tests do not account for the considerable variation that
occurs in the physico-chemistry of natural fresh waters, which is increasingly
recognised as being fundamentally important in understanding chemical toxicity to
aquatic organisms.

This review investigates physico-chemical characteristics of natural fresh
waters, including pH, temperature, oxygen, carbon dioxide, divalent cations, anions,
carbonate alkalinity, salinity, and dissolved organic matter that affect the nature, form
and bioavailability of chemicals and assesses how this may impact on their toxicity to

aquatic organisms from algae to invertebrates and fish (Fig. 1). We consider what the
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implications are for these environmental influences on chemical risk. In the final part of
the review we discuss approaches to identify global areas of concern for the interactive

effects of selected water physico-chemistry parameters and pollutant toxicity.

Il. WATER PHYSICO-CHEMISTRY AND THE RISK OF CHEMICALS
(1) pH
The absorption and toxicokinetics of chemicals in fresh waters are directly related to the
acid dissociation constant (pKa) and the ionic arrangement of the molecule (i.e. whether
it is ionized or not), with the non-ionized (neutral) form, which is lipophilic, passing
more easily through cell membranes. These factors are all affected by the pH of the
surrounding water.

In the natural environment, the pH of fresh waters varies widely (from pH 2 to
11) reflecting differences in regional geomorphology, hydrology, climate and/or
anthropogenic influences (Valenti et al., 2009; Hartmann, Lauerwald & Moosdorf,
2014, 2019; Fig. 2A). lllustrating this, in the Rio Negro, the largest tributary of the
Amazon, extremely low buffering capacity and large quantities of organic acid from
decaying vegetation create naturally low pH values, between 4 and 5 in the main river,
and as low as pH 2.5 in forest streams (Walker & Henderson, 1996). Acidic pH values
(4-5) are also now common since the 1970s in large areas of northern Europe and
eastern Canada (Schindler, 1988), and more recently in China (Liu et al., 2020). This
acidification occurs where poor buffering capacity is coupled with inputs of
anthropogenic ‘acid rain’, derived from fossil fuel emissions with high content of
sulphur and nitrogen oxides that generate strong acids (sulphuric and nitric) in rainwater
(Schindler, 1988). At the other end of the spectrum, there are endorheic lakes in arid

regions that can exceed pH 10 but these are also highly saline (‘soda lakes’ > 17 ppt



175  salinity) and so not strictly fresh water (e.g. Lake Magadi, Kenya and Lake Van,

176  Turkey; Wilkie & Wood, 1996). However, a few lakes and rivers with salinities <5 ppt
177 have pH values consistently above 9.5 (e.g. Pyramid Lake, Nevada; River Ganga in
178  Rishikesh, India) due to extremely high carbonate alkalinity (HCOs~ and COs% ions)
179  released by dissolution of minerals in the unusual local geology (Wilkie & Wood, 1996;
180  Haritash, Gaur & Garg, 2016). Considerable temporal and spatial changes in pH (Blume
181  etal., 2010; Rothwell et al., 2010; Nienie et al., 2017) can also occur in freshwater

182  systems due to both natural (e.g. catchment geology, land cover, primary production,
183  soil characteristics and water source contributions) and anthropogenic factors (e.g.

184  eutrophication via farmland irrigation, livestock densities, mining, domestic and

185  industrial sewage) (Rothwell et al., 2010; Feng et al., 2017; Varanka & Hjort, 2017).
186  However, more than 95% of surface fresh waters globally are between pH 6 and 9, and
187  99.8% are between pH 4 and 9.5 (GLORICH database; Hartmann et al., 2014, 2019;
188  Fig. 2A).

189 The pKa, of each chemical identifies whether it is a weak acid or base and

190  whether it will be neutral or charged at a given water pH, which therefore affects its
191  bioavailability through chemical speciation (Stehly & Hayton, 1990) and potentially
192  predicts toxicity. When the chemical species is ionized (e.g. HA") it is more easily

193  dissolved in water relative to a non-ionized species (e.g. A), and the proportion present
194  as HA" increases as pH decreases (more acidic) below the pK, value (Nakamura et al.,
195  2008). By contrast, molecules that are non-ionized are more lipid soluble and can,

196 therefore, diffuse more easily through biological membranes, increasing their uptake
197  into living cells independently of specific membrane transport systems (Erickson et al.,
198  2006a,b; Saparov, Antonenko & Pohl, 2006; Karlsson et al., 2017). This is exemplified

199 by the example of ammonia (NHs)/ammonium (NH."), whereby higher pH increases the
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proportion present as non-ionized ammonia (NHz), leading to greater internal
accumulation and toxicity even when the external water total ammonia concentration
(i.e. [NHz + NH4™) is constant (US EPA, 2013).

Speciation effects of pH have been studied extensively for metals, where it
influences bioavailability and/or toxicity based on the proportion of chemical species
generated. For example, aluminium metal species have amphoteric properties which
depend on pH; when in acidic water (pH <6.0) aluminium becomes bioavailable in the
form of APP*, in neutral environments it becomes AI(OH)z which is insoluble, while at
basic pH (>8.0) it presents as AlI(OH)s~ (Namiesnik & Rabajczyk, 2010; Wilson, 2011).
More recent studies demonstrate interactions of environmental pH with the toxicity of a
wider range of chemicals, which we now illustrate.

In the algae S. obliquus, interactions have been observed between pH and the
chlorophenols (weak acids), with 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol
(2,4,6-TCP) and pentachlorophenol (PCP) found to be more toxic (lower EC50) at
lower pHs (6.5 > 7.5 > 9.0) and a similar pattern is observed in the invertebrate, D.
magna (Xing et al., 2012). The toxicity and uptake of triclosan also changes greatly
with pH in Navicula sp. diatoms (Ding et al., 2018), the green alga Chlorella
ellipsoidea (Khatikarn et al., 2018) and freshwater shrimp, Gammarus pulex (Rowett,
Hutchinson & Comber, 2016), with the highest toxicity and bioaccumulation occurring
at pH <7.5 due to a preponderance of non-ionized species which diffuse more readily
into cells. The toxicity of hydroquinone to Pseudokirchneriella subcapitata was
maintained for longer at pH 7, with higher pHs leading to oxidation of hydroquinone
and loss of toxicity (Bahrs, Putschew & Steinberg, 2013).

In addition to greater bioavailability for uptake, neutral forms, under certain

conditions, can generate charged fractions in the cell cytoplasm (Fahl et al., 1995). In
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the algae Scenedesmus vacuolatus, which are capable of maintaining internal pH
independent of the external environment, the pharmaceuticals fluoxetine, norfluoxetine,
propranolol, and trimipramine (which contain a protonated basic amino group and are
positively charged at internal physiological pH) showed an enhanced toxicity at higher
media pH (tested at between 7.5 and 10.0) suggesting that the change in toxicity was
due an effect of speciation of the basic compounds (Neuwoehner & Escher, 2011).

The toxicity of chloroquine (a weak base) has been shown to increase with
increasing pH in D. magna due to ionization behaviour. This is true for the weak base
pharmaceuticals fluoxetine, paroxetine and citalopram across a range of freshwater
invertebrate species including in larval Aedes aegypti (Insecta: Diptera), Cypridopsis
vidua (Crustacea: Ostracoda), and Hydra vulgaris (Cnidaria: Hydrozoa) (Sundaram,
Smith & Clark, 2015). Here, toxicity was related to both the ionization state and
membrane permeability to the uncharged form (Sundaram et al., 2015). Similarly,
studies on D. magna have shown that as pH increases toxicity changes in opposite
directions depending on whether pharmaceuticals are weakly acidic (toxicity decreasing
for naproxen, diclofenac, ibuprofen and ketoprofen) or weakly basic (toxicity increasing
for fluoxetine and sertraline) (Bostrom & Berglund, 2015). Similarly, for other weakly
acidic pharmaceuticals (acetaminophen, enrofloxacin, and sulfathiazole), toxicity
decreases as the pH of the water rises and the non-ionized fraction decreases (Kim et
al., 2010).

Similar effects of pH on pharmaceutical toxicity are observed in vertebrates. For
example, increasing water pH enhances toxicity of the weakly basic drugs fluoxetine (in
larval medaka), and sertraline (in fathead minnow) (Nakamura et al., 2008) including

effects on feeding, growth and survival (Valenti et al., 2009). These findings are also

10



249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

observed for sertraline, fluoxetine, and diclofenac, in zebrafish; for sertraline the uptake
was higher with increasing water pH (Alsop & Wilson, 2019).

The toxicity of the B-blockers metoprolol and propranolol (weak bases) has also
been shown to increase with increasing water pH in zebrafish embryos (Bittner et al.,
2018). Sublethal effects (e.g. on heart rate and behaviour) of these drugs were
associated with the neutral fraction (Bittner et al., 2018). Interestingly, the speciation of
the compound may only be relevant to its absorption (toxicokinetics) and not for its
intrinsic toxicity, as freshwater pH was not found to be related to the effective internal
concentration (IEC) (Bittner et al., 2018).

The majority of these studies use physico-chemical parameters (including pH)
set out in standardised test (e.g. OECD) guidelines. However, these test media
conditions may not be applicable to the pH range observed in nature where either the
study species or the chemicals being tested are relevant. Therefore, some effects of
speciation and toxicity may be underestimated or overestimated — directly influencing
ecological risk assessments (Valenti et al., 2009; Bostrom & Berglund, 2015). We
therefore emphasise the importance of understanding the link between water pH and the
toxicity of the chemical in risk assessment.

Water pH also exerts a much lesser known effect directly on the trans-epithelial
electrical potential (TEP) across the outer surface of aquatic animals (McWilliams &
Potts, 1978; Wood et al., 1998; Fig. 3A) which in turn can potentially affect their
sensitivity to chemical effects. The change in TEP with water pH is of sufficient
magnitude (>50 mV range) to influence the electrochemical gradient of any charged
molecules (both inorganic and organic) and hence their uptake via the gills and skin.
Ecotoxicological studies have not yet addressed this concept. However, given the large

pH range in fresh water globally (Hartmann et al., 2014, 2019; Fig. 2A) it likely plays
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an important role in determining the uptake and hence toxicity of any charged
chemicals. We recommend that future laboratory-based testing should consider the
environmentally relevant water pH range when designing media for determining toxic

impacts, chemical speciation and other aspects that influence uptake (such as TEP).

(2) Temperature

Temperature has a strong influence on a wide range of physiological processes in
aquatic poikilotherms, whilst also affecting the bioavailability, adsorption, elimination
and relative toxicity of chemicals (Kim et al., 2010; Patra et al., 2015; Op de Beeck et
al., 2017). The temperature effects on chemicals may occur directly through altering
their physico-chemical behaviour (e.g. degradation and volatilisation), their transport,
transfer, deposition and their fate between the water, suspended organic matter and
sediments (MacDonald, Harner & Fyfe, 2005). Effects of temperature on the toxicity
and bioavailability of toxicants vary with the type of chemical, and may differ among
algae, invertebrate, and vertebrate species, as well as among ontogenetic stages. In
many natural cases multiple effects of temperature will influence the toxicity of a
chemical to aquatic organisms.

Temperature can modulate the rate of uptake of a chemical into aquatic
organisms through directly affecting the chemical’s mobility. At elevated temperatures
chemical molecules diffuse more quickly, resulting in faster rates uptake into the
organism. In turn the toxicological threshold for a chemical may be reached more
rapidly. In natural systems this could determine whether a toxic effect occurs where the
exposure is relatively short-lived, for example as a consequence of a chemical spill into
a river. Temperature can also have a direct effect on the toxicity of a chemical through

affecting the rate of its degradation. In the green algae P. subcapitata, for example, the

12
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herbicide diuron has been shown to have a lower toxicity (on growth and suppression of
photosystem 11 activity) at higher (20, 25 and 30 °C) versus lower (10 and 15 °C)
temperatures due to enhanced rates of chemical degradation/volatilisation at the warmer
temperatures (Tasmin et al., 2014). Similarly, in the damselfly Ischnura elegans there
was a lower toxicity for exposure to the pesticide chlorpyrifos at 24 °C versus 20 °C,
due to a higher rate of biodegradation, which produces compounds that are less toxic
(Op de Beeck et al., 2017). By contrast, a faster rate of biotransformation of the
organophosphate insecticide chlorpyrifos induced by higher temperatures increases its
toxicity to the benthic invertebrate C. dilutes, in this case because the biotransformation
products are more toxic to the organism (Harwood, You & Lydy, 2009).

The metabolic rate in poikilotherms is strongly influenced by temperature with
an approximately twofold increase for a 10 °C change in water temperature (Q10
effect). The metabolic rate of an organism will in turn affect the rate at which a
chemical is taken up and the rate (and how) the chemical is metabolised (and excreted).
Enhanced chemical uptake at elevated temperatures has been shown for a wide range of
chemicals and aquatic organisms. Examples include mefluoride in the zebra mussel
Dreissena polymorpha at 22 versus 17 °C (Del Piero, Masiero & Casellato, 2012), the
fungicide pyrimethanil in larval stages of Chironomus riparius and D. magna at 26
versus 14 °C (Seeland, Oehlmann & Miiller, 2012) and the pharmaceuticals diclofenac,
ibuprofen and carbamazepin in the invertebrate Atyaephyra desmarestii at 25 versus 20
°C (Nieto et al., 2016). In the cyprinid fish Spinibarbus sinensis, greater uptake of
perfluorooctane sulfonate (PFOS; a fluorosurfactant) at 28 versus 18 °C has been shown
to cause a marked reduction in its ability to respond to a predatory attack (Xia et al.,

2015). In the above examples, higher rates of ventilation with associated higher
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diffusion and/or active transport across the gills at higher temperatures are often
associated with accumulation of these contaminants.

In some cases higher exposure temperatures result in effects on the organism’s
metabolic ability to reduce a chemical’s toxicity. For example, in the snail Physella
acuta, the fungicide pyrimethanil caused a less inhibitory effect on hatching at 25 and
20 °C versus 15 °C due to a more rapid chemical metabolism, as well as an enhanced
capability for cell repair in embryos (Seeland et al., 2013). Similarly, lower rates of
mortality and higher swimming performance have been reported in the epibenthic
amphipod Hyalella azteca exposed to the pyrethroid insecticide bifenthrin at 20 °C
versus both 12 and 16 °C (Hasenbein, Poynton & Connon, 2018) and this was related to
enhanced metabolism of the insecticide (Narahashi, 2002). In the benthic invertebrate
Chironomus dilutes toxic responses to the organochlorine dichloro-diphenyl-
trichloroethane (DDT) and the pyrethroids permethrin and lambda-cyhalothrin were
lower at 23 °C versus 13 °C due to reduced nerve sensitivity at the higher temperature
(Harwood et al., 2009).

In some cases temperature can affect a specific metabolic enzyme to enhance a
chemical exposure effect. For example, in the case of the herbicide diuron (which
causes thyroid disruption) exposure of tadpoles of Lithobates catesbeianus at 34 °C
versus 28 °C accelerated tadpole metamorphosis due to a temperature-induced increase
in gene expression of the key enzyme, iodothyronine deiodinase Il (Freitas et al., 2016).
In studies on zebrafish an increase in temperature from 28 °C to 33 °C enhanced the
gonadal feminising effects of the aromatase inhibitor clotrimazole (Brown et al., 2015).
A further illustration of how temperature can affect enzyme processes to alter a
toxicological response has been shown in fathead minnow exposed to the steroidal

oestrogen oestrone (E1). At a lower temperature (15 °C versus 18, 21 and 24 °C) there
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was a greater effect of E1 on escape performance and larval foraging due to slower
degradation and elimination of the steroid (Ward, Cox & Schoenfuss, 2017). For the
antibiotic, florfenicol, which inhibits protein synthesis, exposure of D. magna at warmer
temperatures (from 20 °C to 25 °C) was increasingly toxic due to greater inhibition of
protein biosynthesis repair mechanisms (Martins, Guimarées & Guilhermino, 2013).

The life stage of an organism can also influence how temperature affects a
chemical’s toxicity. Juvenile life stages of the copepod Eucyclops serrulatus have been
shown to be more sensitive than adults to the effects of ammonia, imazamox (an
herbicide), and a mixture of these pollutants, at 18 °C versus 15 °C due to the greater
effect of temperature on metabolic rate in juveniles, resulting in greater uptake (Di
Lorenzo et al., 2015). Juvenile life stages of some invertebrates also have less-efficient
mechanisms for detoxification, one example being juveniles of the prawn
Macrobrachium tenellum, which are less able to detoxify ammonia-N, and as a result
are more susceptible to its toxic effects compared with adults (Figueroa-Lucero,
Hernandez-Rubio & Gutiérrez-Ladron De Guevara, 2012).

In some cases the effects of temperature on chemical toxicity appear to be
particularly complex. For example, in the freshwater snail Potamopyrgus antipodarum,
where temperature is directly involved with the reproductive process, exposure to the
oestrogenic endocrine disrupter Bisphenol A, has been shown to have greater
reproductive effects at the lower and higher temperatures tested (7 and 25 °C) compared
with at 16 °C (Sieratowicz et al., 2011), but the underlying mechanism(s) have not been
established.

Different populations of the same species may show differences in how
temperature influences chemical toxicity. For example, populations of the damselfly 1.

elegans adapted to lower latitudes (warmer temperatures) suffer less toxicity in

15



373 exposures at high temperatures than populations adapted to higher latitudes (cooler
374  temperatures) (Op de Beeck et al., 2017). Thus, the local thermal ranges of the

375  populations being studied should be considered, as their prior thermal adaptations may
376  have a significant bearing on how temperature affects toxic responses to pesticides in
377  invertebrates.

378  Temperature can also affect community-level responses to chemicals. As an example,
379  exposure to the pesticide esfenvalerate had greater negative long-term effects on

380 Daphnia sp. at higher temperatures as a result of altered competition across the wider
381  zooplankton community, potentially due to increased sensitivity to competition in

382  warmer water (Knillmann et al., 2013).

383 An important but neglected issue is that OECD test guidelines and

384  environmental regulations generally adopt a fixed temperature regime that does not
385 allow for the fluctuations that individual organisms in their natural environment can
386  experience daily, seasonal and/or annually, which, as illustrated in the examples above,
387  may have a major impact upon the toxic effects of chemicals. This illustrates an

388 important difference between standardised laboratory toxicity test regimes and the

389 natural habitats of the organisms we are seeking to protect, as well as when accounting
390 for future climate change.

391

392 (3) Oxygen

393  Oxygen is necessary for aerobic metabolism, including respiration in aquatic algae,
394  plants, invertebrates and vertebrates. Fresh water holds 2040 times less oxygen than
395  atmospheric air when they are fully equilibrated (Cameron, 1986). Hence, water-

396  breathing organisms are compromised relative to their terrestrial counterparts in terms

397  of their potential capacity for aerobic metabolism. In addition, the availability of oxygen
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in freshwater habitats can show considerable daily oscillations, affected by temperature
and light (driving respiratory and photosynthetic rates), the presence of organic matter
(a resource for microbial respiration) and various other factors (Fig. 2F). In some cases,
these natural factors can lead to hypoxia. The incidence of hypoxia in freshwater
environments has been increasing over the last three centuries due to anthropogenic
nutrient release (eutrophication), and has been accelerated further by climate change
(warming) which directly reduces dissolved oxygen levels (Diaz & Breitberg, 2009;
Jenny et al., 2016). These changes in oxygen availability can alter the behaviour and
physiology of an organism, which in turn can have a major bearing on chemical
toxicity. For example, under hypoxic conditions gill ventilation rate in fish and aquatic
invertebrates increases to maintain oxygen uptake rate. However, the greater rate of
water movement over the gills will also increase the uptake rate for some xenobiotics
dissolved in water (McKim, Schmieder & Veith, 1985; Randall, 1990; McKim &
Erickson, 1991; Yang et al., 2000; Schiedek et al., 2007). Hypoxia can also lead to an
increase in the functional surface area of fish gills and a reduction in the mean diffusion
distance between blood and water. These changes can occur quite rapidly, for example
by redirection of blood flow pathways within the gills, and increases in haemoglobin
concentration and its affinity for Oz, and over the longer term (days/weeks) due to
reversible gill remodelling. The latter can include an interlamellar cell mass (present in
some species in normoxia) which atrophies in hypoxic conditions revealing a much
greater lamellar area (Nilsson, Dymowska & Stecyk, 2012; Wood & Eom, 2021). These
factors that enhance functional gill area and gas exchange during hypoxia may
simultaneously also enhance xenobiotic uptake rates (Sundin & Nilson, 1998; Val,

2000; Du et al., 2018; Gilmour & Perry, 2018; Saari et al., 2020).
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Despite this knowledge, few studies have evaluated the combined effects of
hypoxia and chemicals in the aquatic environment. In one such study on the three-
spined stickleback (Gasterosteus aculeatus), exposure to diclofenac under hypoxic
conditions (2.0 = 0.2 mg I dissolved oxygen) has been shown to result in the
upregulation in the liver of cytochrome P4501A (CYP1A) activity, which mediates
chemical biotransformation (Prokkola et al., 2015). However, in contrast,
downregulation of cyplal (and hsp90 ) occurs in the gills of G. aculeatus (Lubiana et
al., 2016) under the same exposure conditions. Thus, oxygen availability can
potentially affect toxicity via both chemical uptake and responses in the enzyme
detoxification system and this may vary between different tissues and result in
differences in tissue sensitivities to the affects of hypoxia (Prokkola et al., 2015;

Lubiana et al., 2016).

Chemical test guidelines for oxygen levels vary. For example, OECD test
guidelines for algae do not provide recommendations for the concentration of dissolved
oxygen [e.g. OECD Test No. 201 (OECD, 2011a)]. Yet for D. magna [Test Nos 202
and 211 (OECD, 2004, 2012a)] levels above 3 mg I* of dissolved oxygen in water are
recommended, and for fish the recommendations are for more than 60% [Test Nos 203,
210, 212, 215, 229, 234 (OECD, 2019, 2013a, 1998, 2000, 2012b, 2011b)] or above
80% dissolved oxygen saturation [Test No. 236 (OECD, 2013b)]. We see a major
knowledge gap in understanding and assessing toxicity of chemicals to aquatic
organisms under varying environmental oxygen concentrations, as well as in
understanding how these affect chemical solubility and the formation of possible toxic
by-products. Research into how hypoxic conditions affect the physiology of aquatic
organisms and their ability to cope with chemical toxicity is much needed given the

large (and increasing) expanse of surface waters experiencing such conditions. Recent
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studies on interactions between hypoxia and metal toxicity in zebrafish (D. rerio) and
three-spined stickleback highlight the potential for major impacts of environmental
oxygen (Fitzgerald et al., 2016, 2019; Fitzgerald, Katsiadaki & Santos, 2017). For
example, hypoxia halved the toxicity of copper during a continuous 4-day exposure in
zebrafish embryos. This effect was highly dependent on developmental stage; once the

larvae hatched hypoxia increased copper toxicity (Fitzgerald et al., 2016).

(4) Carbon dioxide
Most laboratory ecotoxicology studies are conducted under conditions where the partial
pressure of gases is close to equilibrium with the atmosphere. Current atmospheric CO>
averages about 413 patm (CO2now.org), having risen since the industrial revolution
from a previously stable value of ~280 patm and is predicted to continue this
exponential rise reaching ~1,000 patm by 2100 (Meinshausen et al., 2011), infamously
leading to ‘ocean acidification’. However, it is more accurate to refer to this
phenomenon as ‘aquatic acidification’ because all surface waters (fresh water and
saline) are affected. However, whilst many papers have investigated how increased CO;
may affect marine organisms, relatively few have focussed on freshwater organisms,
and even fewer have considered any interactions between dissolved CO, and toxicants.
It is worth pointing out that levels of dissolved CO; in fresh water are often
much higher than in the atmosphere or in oceans, even when compared to climate
change predictions for the year 2100 (see Fig. 2C). For example, the average pCO; for
over 6,700 streams and rivers was >2,300 patm according to Raymond et al. (2013).
Furthermore, the natural variability in freshwater CO2 concentrations far exceeds

oceans, ranging from effectively zero to >2,400 patm on both diel and seasonal
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timescales; driven by extremes in the rate of photosynthesis in response to day/night and
summer/winter cycles (Maberly, 1996; Hartmann et al., 2019; Xu, Xu & Yang, 2019).

Dissolved CO- in freshwater environments is important because it can affect the
toxicity of chemicals by affecting the acid-base chemistry of both the external water and
the internal fluids of the organism. An increase in carbon dioxide causes acidification by
reacting with water to form carbonic acid which dissociates to form protons (H*) and
bicarbonate ions (HCOz"). The chemical speciation of many toxicants shifts towards
greater bioavailability for uptake in more acidic waters (see Section 11.1). However,
elevated environmental CO2 simultaneously causes increased internal CO>
(hypercapnia) in aquatic organisms, due to the permeability of their gas exchange
surfaces. When this occurs rapidly it initially causes internal acidosis (Brauner et al.,
2019), i.e. reduced pH in the blood of fish or haemolymph of invertebrates, and in the
intracellular fluids of all organisms, including algae. The structure and functions of all
proteins are sensitive to pH, and most organisms have evolved mechanisms that
eventually restore internal pH in response to prolonged exposure to high environmental
CO:a. For fish and crustaceans at least, this is typically achieved by active ion-
transporting cells in the gills and/or skin (Hwang & Lee, 2007; Evans, 2008). The net
effect is an accumulation of HCO3™ in the internal fluids, which can restore internal pH
despite internal CO2 remaining elevated. Although the internal pH may be completely
restored, the new acid-base chemistry is very different, often with internal HCO3™ levels
elevated several-fold. This may influence the chemical speciation and therefore the
toxicity of chemicals once internalised. Metals tend to become less toxic when
complexed with HCOs", although the CO2-induced external acidification will increase
their likelihood of uptake into the organism. However, the potential for internal

complexation of metals (and so enhanced ‘protection’) by elevated plasma HCO3™ will
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also depend on the relative affinity of the metal for plasma proteins, which may limit
such beneficial effects. This concept of external versus internal acid-base impacts of
COz has been poorly studied in freshwater animals, but there is evidence that it is
important to ecotoxicology in marine organisms. For example, DNA damage caused by
copper exposure was four times lower in sea urchins (good acid-base regulators)
compared to mussels (poor acid-base regulators) when simultaneously exposed to
elevated CO> (Lewis et al., 2016). It is worth noting that the ability to regulate the acid-
base balance is variable, and any protective effects of CO. against toxicants are likely to
be specific to both life stage and species (Brauner et al., 2019; Melzner et al., 2009).

Although very few studies have explicitly investigated the potential role of
elevated internal HCO3™ in moderating chemical toxicity during simultaneous exposure
to high CO,, there are some additional examples. For example, elevated environmental
CO. provided some protection against the physiological impacts of waterborne copper
in fish, both in fresh water (rainbow trout; Wang et al., 1998) and in sea water (cod
Gadus morhua; Larsen, Portner & Jensen, 1997). Exposure of saltwater medaka
(Oryzias melastigma) embryos to ~1,000 patm CO, combined with the water-soluble
fraction of crude oil resulted in greater histological damage to eyes, kidney, pancreas
and liver compared to larvae from embyros treated with each stressor separately (Sun et
al., 2019).

Currently, chemical test guidelines do not contain recommendations for COs,
but it seems clear that: (i) freshwater ecosystems are highly variable in terms of
dissolved CO., and (ii) there is evidence for some chemicals that CO, affects both the
external water chemistry and the internal physiology of aquatic animals in ways that can
dramatically influence their toxic impacts. It is also worth highlighting that toxicologists

use various methods to adjust and maintain target pH levels during toxicity tests. These
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methods can include the manipulation of CO>, but also addition of mineral acid or base
or organic buffers. However, each approach has implications for the physiology of the
fish (e.g. for internal acid-base regulation when CO; is manipulated) and/or the
chemistry of the toxicant under study. Therefore, replicating the natural ambient
conditions as far as possible is recommended, for example to avoid overestimating the
impact of pH on metal toxicity when using CO2 or an organic buffer (Esbaugh et al.,

2013).

(5) Divalent cations

Water hardness reflects the quantity of divalent cations, mainly calcium and
magnesium, dissolved in the aquatic environment (Wurts, 1993). It is well known that
water ‘hardness’can have protective effects against chemical toxicity and allowable
toxicant limits are adjusted for water hardness in many environmental guidelines.
Where the BLM is used to estimate the toxicity of metals, calcium and magnesium are
important input parameters. The presence of divalent cations varies greatly among
inland aquatic environments (Fig. 2H, 1) depending on the surrounding geological
characteristics and erosion processes, as well as anthropogenic factors including
agriculture, mining and the dumping of industrial and domestic waste (Wurts, 1993).
Concentrations of Ca?* and Mg?* are usually reported in pM units, but hardness is often
reported in milligrams per litre as calcium carbonate (mg It CaCO3) or general
hardness (°dH; 1 °dH = 17.9 mg I* CaCOs) which assumes that all divalent cations are
derived from dissolution of solid calcium carbonate. Thus, while hardness indicates the
total quantity of divalent cations dissolved in the water, it does not provide information
on the separate contributions of calcium and magnesium. For example, in theory, it is

possible to have water with a high hardness that contains no calcium (i.e. all hardness is
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derived from magnesium; Wurts, 1993). The freshwater environment is often classified
in terms of hardness; water with low hardness is referred to as ‘soft’ water and high
hardness as ‘hard’ water.

Various studies have shown that hardness can influence the toxicity of chemicals
to freshwater organisms (Soucek et al., 2011; Marchand et al., 2013; Baldisserotto et
al., 2014; Hundt et al., 2016). For example, chloride toxicity is markedly reduced by
elevated water hardness in Simulium simile, Gyraulus parvus, and Tubifex tubifex
(Soucek et al., 2011). Elevated Ca?* and, to a lesser extent Mg?*, concentrations, are
thought to tighten cellular junctions in the gills and skin, reducing the paracellular
permeability of the epithelium to the diffusion of chloride ions, and hence saving energy
required for ion regulation (Soucek et al., 2011).

Water hardness has also been shown to affect the toxicity of disinfectants and
antibiotics to fish (Marchand et al., 2013; Hundt et al., 2016). For peracetic acid, the
toxicity to zebrafish embryos was negatively correlated with water hardness (25, 250
and 2,500 mg I"* CaCOs; Marchand et al., 2013), and oxytetracycline (OTC) was more
toxic to zebrafish at extremes of water hardness (5.5 and 32.5 °dH), compared to
intermediate hardness levels (15.5 and 25.5 °dH; Hundt et al., 2016). For OTC, it
appeared that low levels of cations increased the quantity of the free, more toxic form.
Its greater toxicity may result from higher levels of OTC-metal precipitate inhibiting
respiration (Hundt et al., 2016). Water hardness can also attenuate the toxicity of
nitrogenous compounds such as ammonia (NHs) in freshwater fish, for example
protecting against its neurotoxic effects and improving growth in juvenile silver catfish
Rhamdia quelen (Carneiro et al., 2009; Ferreira, Cunha & Baldisseroto, 2013;

Baldisserotto et al., 2014).
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Calcium is well known to mitigate directly against the toxicity of several metals
(Zn, Cd, Co, Pb and Sr) primarily via direct competition with these metals for
physiologically important Ca?*-uptake pathways in the gills (Wood, 2011). However,
calcium also plays a less well-known role in regulating processes that can influence the
uptake of chemicals, and ionized chemicals in particular. Firstly, calcium is potent at
controlling the permeability properties of fish gills and skin, and indeed of epithelia
more generally, by binding to tight-junction proteins and decreasing paracellular
permeability to all molecules (Lauren & McDonald, 1985; Wood, 2011). Specifically
for charged molecules, external calcium (like water pH, see Section I1.1) within the
naturally occurring range (Fig. 2H) strongly regulates the TEP (Potts, 1984; Eddy,
1975; McWilliams & Potts, 1978; Wood et al., 1998; Fig. 3B), with a magnitude that is
sufficient to influence the uptake of charged molecules via the electrochemical gradient
across the gills and skin. However, as for the effect of pH on TEP (see Fig. 3A and
Section 11.1), this has yet to be considered in ecotoxicological studies and risk
assessments, but should be taken into account when designing media for testing
toxicity.

There are currently no recommendations for water hardness levels in guidelines
for tests with algae. For D. magna [OECD Test Nos 202 and 211 (OECD, 2004,
2012a)] suggested levels are 140-250 mg I"* CaCOs, and for fish recommendations
vary among different tests. For Test No. 203 [fish acute toxicity test (OECD, 2019)]
recommended levels are 40-250 mg It CaCO; but preferably <180 mg It CaCOs, for
Test No. 212 [fish short-term toxicity test on embryo and sac-fry stages (OECD, 1998)]
they are 250 mg It CaCOs, for Test No. 215 [fish juvenile growth test (OECD, 2000)]
they are >140 mg It CaCOs, and for Test No. 236 [fish embryo acute toxicity FET test

(OECD, 2013b)] they are 30-300 mg It CaCOs. However, given the potential for water
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hardness to influence the toxicity of many chemicals, guidelines should perhaps include
testing a range of hardness levels to allow a fuller understanding of potential biological

impacts.

(6) Anions

A very specific and well-studied example of a naturally abundant freshwater anion
influencing the toxicity of anthropogenic chemicals is that of CI~ reducing the toxicity
of nitrite (NO2"). High levels of nitrite can kill fish very quickly by rapid uptake into the
blood followed by inhibition of methaemoglobin reductase in red blood cells. This
enzyme repairs haemoglobin (Fe?*) that has been oxidised to methaemoglobin (Fe®*)
(Freeman, Beitinger & Huey, 1983); as methaemoglobin is unable to bind oxygen, its
formation compromises tissue oxygen delivery (Jensen, 2003). The initial uptake of
nitrite ions from the external water is via the same molecular pathways that transport
chloride ions in freshwater fish and invertebrates. Thus, higher environmental
concentrations of chloride can be extremely effective at reducing nitrite uptake and
toxicity, in accordance with the predictions of a competitive inhibition model (Jensen,
2003). This has been demonstrated in multiple freshwater fish including rainbow trout,
perch Perca fluviatilis, pike Esox lucius, eel Anguilla anguilla, carp Cyprinus carpio,
tench Tinca tinca, Killifish Fundulus heteroclitus, channel catfish Ictalurus punctatus
and bluegill Lepomis macrochirus (Williams & Eddy, 1986; Tomasso & Grosell, 2005).
A similar relationship has been shown in some freshwater invertebrates, including
crayfish (Astacus astacus), an amphipod (Eulimnogammarus toletanus) and a planarian
(Polycelis felina) (Jensen, 1996; Alonso & Camargo, 2008). For both fish and
invertebrates, the mitigating impact of chloride on nitrite toxicity is proportional to the

animal’s capacity for chloride transport via the gills or skin. Species that have low
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capacity for chloride uptake (e.g. eel, carp, tench, bluegill, killifish, and P. felina) are
both less sensitive to nitrite per se, and benefit less from the protective effects of
environmental chloride (Jensen, 2003; Tomasso & Grosell, 2005; Alonso & Camargo,
2008).

Another example is protection against fluoride toxicity by chloride ions. In the
freshwater invertebrate H. azteca, fluoride toxicity decreases (lethal median
concentration [LC50] increases from 8.1 to 24.8 mg I"* fluoride) as freshwater chloride
increases (from 3 to 25 mg I'; Pearcy, Elphick & Burnett-Seidel, 2015). The same
effect was observed in soft water conditions in rainbow trout: when chloride increased
from 2 to 30 mg I, fluoride toxicity decreased from an LC50 of 27.7 to 90.9 mg I*
fluoride. However, in hard water conditions, chloride had no effect. This can be
explained by the effect of calcium on fluoride solubility (i.e. CaF2 precipitation in hard
water; Pearcy et al., 2015). Similar effects have been reported for other species of
aquatic organisms including H. azteca, and P. promelas (Pearcy et al., 2015). At very
high concentrations of chloride in both soft or hard water chloride itself can be toxic
through osmotic stress caused by disruption to cellular processes associated with acid-

base regulation (De Boek et al., 2000).

(7) Carbonate alkalinity

Bicarbonate (HCO3") and carbonate (CO3*") ions, collectively known as carbonate
alkalinity, are also anions. However, as bicarbonate is the second most abundant anion
in fresh waters (as a global average, equating to 58% of the chloride concentration;
Hartmann et al., 2019), and because these ions have such a major influence on the
impact of many toxicants, we consider carbonate alkalinity separately from the other

inorganic anions.
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The major source of carbonate alkalinity is an underlying geology consisting of
minerals of calcium carbonate (e.g. chalk, limestone) or calcium magnesium carbonate
(dolomite). This results in fresh waters with high concentrations of both bicarbonate and
carbonate, and typically a high pH (see Section 11.1). However, carbonate alkalinity has
an influence on the speciation of many toxicants that is separate to the effects of pH.
Furthermore, although a high pH and high alkalinity typically are found together, the
relationship is only consistent if pCO> is constant, which is rarely the case for inland
aquatic ecosystems. As an example of the complexity of this relationship, for a given
pH value, such as the global average of 7.6, given the common fivefold range in pCO>
(see Section 11.4), then alkalinity will also vary by fivefold.

Carbonate alkalinity refers to the combined effect of the concentrations of
bicarbonate and carbonate ions in terms of their ability to neutralise acid. Each
carbonate ion (CO3?") can neutralise two protons compared to only one by each
bicarbonate ion (HCO3z"), hence carbonate alkalinity is numerically equal to [HCO3] +
2[CO3?7], with units most usefully reported as uM or PEq. However, units of milligrams
per litre as calcium carbonate (mg I"* CaCOs) are often used which theoretically
assumes all the alkalinity is derived from dissolution of solid calcium carbonate. The
use of these different units can cause confusion. For clarity, the molecular mass of
calcium carbonate is 100, so a carbonate alkalinity of 10 mg I* as CaCOs3 equates to
100 pM (0.1 mM) as CaCOs, but because each carbonate ion can neutralise two protons
this also equates to 200 pEq (which would have the same acid-neutralising capacity as
200 uM of HCO3").

The consideration of alkalinity as being entirely derived from calcium (and/or
magnesium) carbonate minerals can create further confusion because it is often assumed

that hardness (i.e. calcium and magnesium concentrations) changes in parallel with
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670 alkalinity. Although this is commonly true due to the prevalence of calcium carbonate-
671  based geology, it is not always the case, and alkalinity can be derived from sodium

672  rather than calcium (or magnesium)-based carbonate minerals, and/or

673  calcium/magnesium can be precipitated in high-pH waters, yielding low hardness but
674  high alkalinity (Witherow & Lyons, 2011). Thus hardness and carbonate alkalinity

675  should be considered separately, even though they are often well correlated in nature.
676 When considering its protective effects against chemical toxicity, adjustments
677  are made for alkalinity in many environmental guidelines, as they are for water hardness
678  (see Section 11.5). For example, alkalinity is a key input parameter when using the BLM
679  to evaluate metal toxicity and ambient water quality criteria (AWQC). Furthermore,
680  carbonate alkalinity varies enormously (Fig. 2E) from essentially zero (in more acidic
681  waters) to 4,000 LEq (200 mg It as CaCOs) in chalk streams, to 23,000 pEq (1,150 mg
682 |t as CaCOs) in freshwater alkaline lakes, reaching an extreme of 450,000 pEq (22,500
683 mg It as CaCOs) in some saline soda lakes (Wilkie & Wood, 1996).

684 The mitigating influence of carbonate alkalinity is particularly well understood
685  for toxic metals; alkalinity (together with pH for the inorganic components of fresh

686  water) has a dominating effect on the speciation of Cu, Cd, Pb and Zn, with the

687  proportion of free metal ion, its uptake and ultimately toxicity, all decreasing as

688 alkalinity increases, due to the complexation of, and therefore reduction in, free metal
689 ion concentrations (Wood, 2011).

690 Water alkalinity will also interact with environmental CO2: higher alkalinity
691 increases the speed at which blood pH is regulated in fish in response to increased CO>
692 levels (Larsen & Jensen, 1997). Thus water alkalinity could also affect the toxicity of
693  compounds once they have been taken up into the blood (see Section 11.4).

694
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(8) Salinity

The total concentration of all ions (salinity) in fresh waters will reflect the local
geochemistry together with the cumulative contact time. However, it will also be
influenced by a range of anthropogenic activities, including mining, irrigation practices,
vegetation removal for agriculture, fertilizers, pesticides, industrial waste, aquaculture,
road de-icing salts, and alterations to natural buffering margins between salt and
freshwater systems (Mimura, 2013; Hossain & Hasan, 2017; Canedo-Arguelles,
Kefford & Schafer, 2019; Schuler et al., 2019). The total salt content is normally
quantified by the weight in grams of the inorganic matter dissolved in one kilogram of
water (Stumm & Morgan, 1996) and salinity is expressed in S %o [parts per thousand
(ppt)]. It can also be measured by the electrical conductivity of the water, or specific
conductance (measured in Siemens cm™* or mhos cm™*; Harris, 2009), which shows
enormous variation globally (Fig. 2G).

It is well established that the quantity of salts present in the aquatic environment,
as well as their variation, can affect the toxicity of pollutants to freshwater organisms
(Hooper et al., 2013; Borecka et al., 2016; Bosker, Santoro & Melvin, 2017;
Saranjampour, Vebrosky & Armbrust, 2017; Hasenbein et al., 2018; Canedo-Arguelles
et al., 2019). This effect may occur due to changes in the solubility of the pollutant (e.g.
pesticides), alterations to its chemical fate and transport, as well as via changes in the
physiological responses of organisms (i.e. osmoregulation, detoxification processes and
toxicant sensitivity). Furthermore, high-salinity conditions also inevitably mean there
are greater amounts of cations present, which can attach to plasma membrane binding
sites and decrease the toxicity of xenobiotic chemicals like pharmaceuticals and
insecticides (Hooper et al., 2013; Borecka et al., 2016; Bosker et al., 2017,

Saranjampour et al., 2017; Hasenbein et al., 2018).
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Following exposure of Chlorella vulgaris to the drugs sulfapyridine,
sulfamethoxazole, sulfadimethoxine, and trimethoprim, toxicity was reduced at higher
salinities due specifically to higher levels of Na* binding with available hydroxyl
functional groups on the algal surface, reducing cell wall permeability to the drugs
(Kulacki & Lamberti, 2008; Latata, Nedzi & Stepnowski, 2010; Borecka et al., 2016).
By contrast, the pyrethroid insecticide bifenthrin had greater impacts on survival and
swimming performance in H. azteca at higher salinity (Hasenbein et al., 2018) due to its
influence on contaminant bioavailability (Saranjampour et al., 2017), interference with
ion regulation, and heightened organismal sensitivity to the contaminant (Hooper et al.,
2013; Bosker et al., 2017). For the pyrethroid insecticide deltamethrin,
salinity/conductivity had no effect on toxicity in the invertebrates Ceriodaphnia cf.
dubia and Paratya australiensis, or in eastern rainbow fish (Melanotaenia duboulayi)
larvae (Thomas et al., 2008).

Salinity can also affect the route of uptake for chemicals. Teleost fish, and many
invertebrates, are osmoregulators, meaning they maintain a relatively constant
osmolality of their internal fluids in the face of large variations in external salinity
(Marshall & Grosell, 2005). A key osmoregulatory mechanism as environmental
salinity rises is a switch from low drinking rates in dilute fresh water, to very high rates
in sea water (e.g. >10% of body mass per day in some marine fish), with the most
dramatic increase above the iso-osmotic point (when internal and external osmolality
are equal), which is around 10-12 ppt for most teleosts (Marshall & Grosell, 2005). As
drinking rate increases so the gut becomes an increasingly important site of exposure to
waterborne chemicals, together with the gills and skin. That this can influence the

toxicity of chemicals is illustrated by studies on the uptake and impacts of various
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metals in fish and crustaceans (Wilson & Taylor, 1993a,b; Wood et al., 2004; Gerdes et
al., 2005; Blanchard & Grosell, 2006; Capparelli, McNamara & Grosell, 2017).
Salinity is another variable that can influence TEP in fish (Potts, 1984; Potts &
Eddy, 1973; Wood et al., 2020), thereby affecting the electrochemical gradient across
the gills and the uptake of charged molecules. Interestingly the effect of rising salinity
on TEP is not due to the simultaneous change in external osmolality, but is rather
related to the change in concentrations of major ions, in particular Na* and CI~ (Potts &
Eddy, 1973; Wood & Grosell, 2008; Wood et al., 2020). Specifically, for Na™ both the
body fluid concentration and the gill permeability are higher than for CI~. Thus a
slightly greater outward diffusion of Na* compared to CI~ creates the negative TEP
(inside relative to outside) typically seen in freshwater fish. However, as external
salinity increases, the diffusional loss of Na* is slowed down (or reversed where
external concentrations exceeds blood concentrations), making the TEP become less
negative or even positive (e.g. in European flounder Platichthys flesus TEP changes
from —78 mV in fresh water to +19 mV in sea water; Potts & Eddy, 1973). How these
effects of salinity affect the uptake and toxicity of charged chemicals has not been
investigated. It is also noting that increased salination of freshwater environments is a
growing concern (Herbert et al., 2015; Cafiedo-Arguelles et al., 2016). One emerging
multi-ion toxicity (MIT) model (EPRI, 2018) for assessing salt pollution assumes that
the mechanism of toxicity is the disturbance of gill TEP as salinity increases (Wood et
al., 2020). While the major inorganic ions have very different toxicities (a 28-fold range
in LC50), the degree of disturbance of the TEP was extremely consistent for each ion

when expressed as a percentage of its LC50 concentration (Wood et al., 2020).

(9) Dissolved organic matter
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Organic matter in freshwater bodies originates from natural sources and from
human, farm animal and agricultural wastes. Natural organic matter (NOM) represents a
complex mixture of ill-defined biogenic organic molecules derived from the
decomposition mainly of dead plant material, but also from animals and microbes and
quantitatively (by mass concentration) often surpasses the inorganic components of
natural fresh waters (Thurman, 1985; Tipping, 2002; Hartmann et al., 2019). Organic
matter can bind toxic chemicals and thus influence their bioavailability, and
concentrated discharges of organic matter can also affect chemical toxicity indirectly by
reducing oxygen availability via their fertilising effect on microbial respiration. NOM
can be divided into ‘humic acids’ (the high-molecular-mass colloidal component
susceptible to flocculation) and “fulvic acids’ (the acid-soluble, low-molecular-mass
non-colloidal component that resists flocculation); organic matter that cannot be
extracted is called humin (Bleam, 2017). Humic and fulvic acids make up the majority
of aquatic NOM with other bio-macromolecules such as carbohydrates, proteins and
amino acids making up smaller portions (Thurman, 1985; Al-Reasi, Wood & Smith,
2011).

The dissolved fraction of NOM (dissolved organic matter, DOM), usually
defined as the material able to pass through a 0.45 um sieve, can interact with chemicals
via a wide range of mechanisms including ion exchange, hydrogen bonding, charge
transfer, covalent bonding, hydrophobic adsorption and partitioning, all of which can
affect the distribution of different pollutants, and their bioconcentration as well as
toxicity in water (Haitzer et al., 1998; Qiao & Farrell, 2002; Zhang et al., 2014; Chang
& Bouchard, 2016; Ding et al., 2018). Approximately half of DOM by mass is carbon,
referred to as dissolved organic carbon (DOC; Tipping, 2002) and DOC is often the

variable measured and reported. DOC varies greatly in natural waters (see Fig. 2D).

32



794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

Humic acid has been shown to reduce the toxicity of triclosan in the freshwater
alga Cymbella sp. (Ding et al., 2018): complexation or adsorption of triclosan causing
reduced bioavailability. Zhang et al. (2014) found a variety of functional groups, such
as —OH, —CONH,, —CONH, alcohol, and carboxylic and carbonyl groups, on the surface
of humic acids, which enabled interaction with hydroxyl groups in the triclosan
molecule. Humic acids can also accumulate on the surface of algae to cause electrostatic
repulsion between xenobiotics and the algal surface, thus inhibiting uptake (Tang et al.,
2015). DOM has also been shown to reduce the toxicity of triclosan in the crustacean G.
pulex, again due to complexation between triclosan and humic acid present in sewage
effluent (Rowett et al., 2016). Similar effects have been reported in invertebrates for
various pesticides. For example, toxicity of the insecticide deltamethrin was reduced for
P. australiensis and Ceriodaphnia cf. dubia when exposed in river water (with organic
matter) compared to laboratory water without organic matter (Thomas et al., 2008). In
addition to sorptive processes being involved, increased degradation of deltamethrin by
humus-mediated photosensitisation has been implicated for other pyrethroid insecticides
(Jensen-Korte, Anderson & Spiteller, 1987), and/or by bacterial degradation of the
compound (Das & Mukherjee, 1999).

The only study we found evaluating the effect of organic carbon on organic
chemical toxicity in any aquatic vertebrate was for deltamethrin on larvae of the eastern
rainbow fish (M. duboulayi), where there were no conclusive findings (Thomas et al.,
2008). However, there is substantial evidence of DOM moderating the uptake as well as
toxicity of many metals (e.g. Ag, Al, Cd, Co, Cu, Hg, Ni, Pb, Zn; Wood, 2011).
Although the underlying basis for this protective effect of DOM is becoming more
apparent, the precise molecular mechanisms involved are still less well-studied than for

the natural inorganic components of fresh water. Nevertheless, both the quantity and
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quality (i.e. molecular composition) of DOM are important in its influence on toxicants.
The optical properties of DOM are often used as a surrogate to characterise its
molecular composition (e.g. using absorbance and fluorescence spectroscopy), with
darker coloured DOM having a higher aromatic carbon content than lighter coloured
DOM (Al-Reasi, Wood & Smith, 2013). Darker DOM has a higher proton-binding
index (PBI) which is linked to greater protection against metal toxicity (Al-Reasi et al.,
2013). Given that the chemical properties of the molecular groups within DOM vary,
and these properties differentially influence the binding and toxicity of metals, it seems
likely that such surrogate measures will prove useful in investigations of the influence
of DOM on the toxicity of organic chemicals. Interestingly, the chemical signatures of
the components of DOM may vary naturally in a reasonably predictable manner, for
example as they do between naturally acidic, circumneutral and groundwater-fed
freshwater systems in Australia (Holland et al., 2018). This could prove useful in
targeting ecotoxicological risk assessments based on the environments that receive a
particular toxic chemical.

Finally, DOC is another component of freshwater chemistry that is known to
influence TEP in fish, and so also should affect the uptake of charged molecules by
altering the electrochemical gradient between water and the blood. The effect on TEP is
proportional to the aromaticity (= darkness in absorbance/spectrophotometric
measurements) of the DOC at a given total concentration of organic carbon, both in vivo
and in vitro using cultured gill cells (Wood, Al-Reasi & Smith, 2011; see Fig. 3C).
However, as for pH and calcium, the effect of DOC on TEP has not yet been considered
in an ecotoxicology context, and this remains an intriguing knowledge gap to fill in the

future.
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OECD test guidelines [Test Nos 202, 203, 210, 211, 212, 215, 229, 234, 235,
236 and 240 (OECD, 1998, 2000, 2004, 2011b,c, 2012a,b, 2013a,b, 2015, 2019)]
recommend that total organic carbon concentration should be below 2 mg I%, however,
measured concentrations have been shown to range between 1 and 10 mg I"* (Chapman,
1996) in the freshwater environment, but in municipal wastewaters range from 10 to >

100 mg I (Chapman, 1996).

I11. CONCLUSIONS

(1) The interrelationship between the physico-chemistry of fresh waters and chemical
toxicity relates both to (a) effects on the chemical to affect its form, fate and
bioavailability in the water column/sediment, and (b) effects on the organism’s internal
chemistry, physiology or behaviour. There are thus strong arguments for regulatory
testing of chemicals to include conditions relevant to the natural environments occupied
by the organisms we seek to protect. Water physico-chemistry may in turn affect the
dynamics of pollutant transfer through trophic food webs with potentially more
pervasive, or different outcomes, but there is almost no information available with
which to assess this.

(2) Although various studies have demonstrated the potential for pollutants to alter the
capacity of aquatic organisms to adapt to current and future physico-chemical
environmental changes, fewer have addressed how altered climatic conditions in the
future may affect the responses of freshwater organisms to pollutants. This will depend
on the magnitude of changes in physico-chemical conditions, pollutant concentrations,
and the capacity of organisms to acclimate. In all cases, organisms are less likely to be

able to adapt where there are rapid and severe changes to water physico-chemistry.
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(3) Adaptations to altered water physico-chemistry may also affect other fitness traits
and the ability of an organism to adapt to other changes in their environment. It is
possible that direct effects of physico-chemical changes in the environment may
enhance the ability of some organisms to acclimate to pollutant exposures, although
there are limited examples of such facilitating or stimulatory effects. Understanding the
capacity to adapt to future physico-chemical conditions in the context of susceptibility
to pollution exposure is an important, and much needed area for future research for the
protection of ecosystem health.

(4) 1t is now possible to combine maps of global hotspots for individual chemicals, or
classes of chemicals, using concentration data (exposure concentrations) collated from
regional or national data repositories (e.g. EU WFD databases) with physico-chemical
data sets for freshwater environments (e.g. global freshwater environmental variables;
Domisch, Amatulli & Jetz, 2015; Hartmann et al., 2014, 2019). This could allow us to
identify areas of greatest concern regarding chemical toxicity in freshwater
environments globally, and future predicted climatic conditions.

(5) Using such data sets it will be possible to develop risk profiles for chemicals across
global freshwater ecosystems accounting for the influence of water physico-chemistry.
Such risk profiles for specific chemicals could be derived from measured environmental
concentrations collated from existing databases (e.g. GEMStat), toxicity assessments
from laboratory-based studies using standardised tests conditions (UNEP, 2019), and
other suitable data sources (e.g. ECOTOX Knowledgebase; US EPA, 2020). Realistic
estimates of risk could be achieved through combining a range of different physico-
chemical variables and obtaining more accurate information on how they alter toxicity.
Such risk profiles could be extended to cocktails of chemicals. These analyses will

require more complex methods, for example, modelling the physico-chemical variables
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as coefficients that influence the relative toxicity of a given pollutant, for which we
would require additional information from detailed studies. The development of such
global risk assessments could help us to rationalise the risk posed by pollution in the
face of global environmental change.

(6) We show herein that physico-chemical characteristics of freshwater ecosystems can
have a strong influence on the toxicity of divergent chemicals, including
pharmaceuticals, pesticides, metals and inorganic nitrogenous compounds. These
influences result from effects on compound solubility, radical and complex formation,
and on sensitivity of an organism to toxicants, which can vary with ontogenetic stage
and among species. Chemical hazard assessment therefore should be performed with
greater consideration of how features of water physico-chemistry affect chemical
toxicity in aquatic organisms and with more relevance to the natural water conditions in

which these organisms live.
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Figure Legends

Fig. 1. The main water physico-chemistry variables that can alter the bioavailability and
toxicity of chemicals to aquatic organisms, and the known mechanisms by which they
exert their influence. Organisms images from PhyloPic (http://www.phylopic.org/). All
other images from IAN/UMCES symbol and image libraries

(https://ian.umces.edu/imagelibrary/).

Fig. 2. Global variation in freshwater physico-chemical variables for (A) pH, (B)
temperature, (C) CO», (D) dissolved organic carbon (DOC), (E) alkalinity, (F) dissolved
oxygen (DO), (G) specific conductivity, (H) dissolved calcium (1 uM of calcium is

0.040 mg I calcium), (1) dissolved magnesium (1 uM of magnesium is 0.0243 mg I

63


https://ian.umces.edu/imagelibrary/

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

magnesium), and (J) dissolved sodium (1 uM of sodium is 0.023 mg I* sodium). Data
for each variable were extracted from the GLORICH database (Hartmann et al., 2014,
2019) and plotted as the number of records (n) for each variable (i.e. count per bin on

the histogram).

Fig. 3. The influence of A) water pH, B) calcium concentration, and C) dissolved
organic carbon (DOC), on the transepithelial electrical potential (TEP) in various
species of fish. Relationships were redrawn (excluding raw data points) using data from
McWilliams & Potts (1978) for brown trout (Salmo trutta) at 10 °C, and Wood et al.
(1998) for tambaqui (Colossoma macropomum) at 28 °C in A, and from the same
papers plus Eddy (1975) for goldfish (Carassius auratus — temperature not specified) in
B. In C the relationships were redrawn from Wood et al. (2011). In A and B the TEP
represents absolute measurements made in vivo relative to the external (water-side)
potential. A negative TEP therefore means the blood side is negative relative to the
water side. The same principle applies to C, except that the y-axis represents the change
in TEP measured following transfer from control water with low DOC (Lake Ontario
water) and low aromaticity (2.2 cm?/mg C) to different waters containing consistently
high DOC (all at 10 mg/l) with a range of aromaticity values from 2.7 to 53.5 cm?/mg
C. SAC refers to the specific absorption coefficient (at 340 nm). The two lines in C
represent TEP changes measured in vivo (dashed line) using cannulated rainbow trout,
and in vitro (solid line) using cultured rainbow trout gill epithelia. Note that increasing
H* and Ca?* concentrations cause TEP to become more positive, whereas increasing

aromaticity of DOC causes TEP to become more negative.
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