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Abstract. We present an analysis of the classical SIS (susceptible-infected—
susceptible) model on the Apollonian network which is scale free and displays
the small word effect. Numerical simulations show a continuous absorbing-state
phase transition at a finite critical value A. of the control parameter A. Since the
coordination number k of the vertices of the Apollonian network is cumulatively
distributed according to a power-law P(k) oc 1/k"~1, with exponent 1 ~ 2.585,
finite size effects are large and the infinite network limit cannot be reached in
practice. Consequently, our study requires the application of finite size scaling
theory, allowing us to characterize the transition by a set of critical exponents
B/vi,v/vy, vy, B. We found that the phase transition belongs to the mean-field
directed percolation universality class in regular lattices but, very peculiarly, is
associated with a short-range distribution whose power-law distribution of & is
defined by an exponent 7 larger than 3.
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1. Introduction

In the last few years the scientific community has recognized that many real-world
networks show complex topological properties such as the small word effect, related to a
very short minimal path between vertices, and the scale-free property, which is related
to the power-law nature of the cumulative distribution of the number k of contacts
(P(k) o< 1/k"1). These complex properties have important implications in the study
of real processes in these networks, such as virus spreading in computers, sharing of
technological information and diffusion of epidemic diseases, to name just a few. For this
reason, there is a great deal of interest in experimental, analytical and numerical study
of the dynamical processes in these networks. For instance, in [1]-[3] the problem has
been studied through the analysis of real data (such as real computer virus spreading),
and compared with analytical and numerical studies of theoretical processes on scale-free
networks such as Watts—Strogatz and Barabasi-Albert [4, 5].

Among complex networks, the Apollonian network is a particularly useful theoretical
tool, since it belongs to a particular class of networks which are scale free, display the
small-world effect, can be embedded in a FEuclidean lattice and show space filling as well
as matching graph properties. Therefore, in spite of its deterministic nature, it shares the
most relevant characteristics of real-world networks.

In this work we focus our attention on the statistical properties of the SIS
(susceptible-infected—susceptible) model [6]-[9], performing an extensive numerical
simulation of its dynamics on the Apollonian network (see [10]-[14] for recent literature
on the SIS model in scale-free networks).

Since the coordination number of the vertices of the Apollonian network is distributed
according to a power-law with exponent n ~ 2.585, finite size effects are large and the
infinite network limit cannot be reached in practice. Therefore, our study required the
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application of finite size scaling theory, which has allowed us to determine the threshold
Ae of the continuous phase transition between a stationary active state and an absorbing
one, characterizing the transition by a set of critical exponents 3/v,, v/v., v,, 5. We
found that the phase transition belongs to the mean-field directed percolation universality
class in regular lattices but, very peculiarly, corresponds to a power-law distribution of
k with an exponent n larger than 3 (or to a short-range distribution). Recalling that,
according to the mean-field approximation, the critical behavior of the system depends
on the distribution exponent 7, three regions are here identified: for n < 2, there is no
transition for a finite \; for 2 < n < 3, the critical exponents are § = 1/(n — 2) and
v, =(n—1)/(n—2); and for n >3, f =1 and v, =2 [15]-][19]. These last critical
exponents also hold if the coordination number is short-range distributed. The results
in this paper, concerning the SIS model confirms previous results [20] concerning the CP
(contact process) on the Apollonian network.

This paper is organized as follows. In section 2 the Apollonian network model is
described. Section 3 deals with the SIS model and explains the numerical procedure that
we have implemented to realize the associated dynamics. The results of our simulations
are shown in section 4, where the information concerning the critical parameter and the
critical exponents using finite scaling analysis is extracted and analyzed. Finally, section 5
is devoted to some concluding remarks.

2. The Apollonian network

Apollonius of Perga was a Greek geometer and astronomer who lived around the year 200
BC. Very little is known about his life, but his contributions to geometry and astronomy
are, on the contrary, very well known [21]. One of the problems of Apollonius was to find
a circle in a plane that is tangent to three objects: points, lines, or circles, with special
attention to the case where the three objects are all circles. Apollonius of Perga posed and
solved this problem in his work called Tangencies. Unfortunately, Tangencies has been
lost, and only a report of his work by Pappus of Alexandria is left [22].

An immediately related problem is the space filling packing of circles in a two-
dimensional space. This packing is constructed by starting with three mutually touching
circles, whose interstice is a curvilinear triangle to be filled. Then a circle is inscribed,
touching all the sides of this curvilinear triangle. We call this stage the zero generation
(n = 0); for subsequent iterations we indefinitely repeat the process for all the newly
generated curvilinear triangles. In the limit of infinite iterations, the well-known two-
dimensional Apollonian packing is obtained.

From the problem of Apollonian packing, Andrade et al [23] introduced the Apollonian
network, also independently proposed by Doye and Massen [24]. In the Apollonian
network, vertices are associated to the centers of the circles and two vertices are connected
if the corresponding circles are tangential. The resulting graph physically corresponds to
the force network of a dense granular packing (see figure 1), similar to that introduced
by Dodds [25] for random packing which has been also used in the context of porous
media [26]. Its main properties are summarized below.

(a) It is scale free. The number of vertices at generation n is N, = 3 + (3" — 1)/2.
According to this definition, the generation n = 0 corresponds to a network with
four vertices. The number of sites with coordination k is m(k,n), which equals 3"~*

doi:10.1088/1742-5468,/2013 /05 /P05003 3


http://dx.doi.org/10.1088/1742-5468/2013/05/P05003

Critical properties of the SIS model dynamics on the Apollonian network

Figure 1. Apollonian network construction for generations n = 0 (black, larger
rims), n = 1 (orange, intermediate rims) and n = 2 (green, smaller rims).

if k=3 x 2% with s =0,...,n; equals 3 (the three corners) if k =1 + 2""!; and
equals 0 otherwise. According to these facts, the cumulative distribution P(k) =
Y wsim(k,n) /N, exhibits, for large values of NV,, a power-law behavior, i.e., P(k)
1/k"1 with n =1+ In(3)/In(2) ~ 2.585 [27].

(b) It displays the small-world effect. The average length (¢) of the shortest path between
two vertices grows as (¢) oc [In(N,)]?, with ¢ ~ 3/4 [23]. Moreover, the clustering
coefficient, in the limit of large N, is close to C' = 0.828 [23], which is a large value
when compared to the clustering coefficient of sport groups sharing on Facebook
(C'=0.715), and to the movie actors collaboration (0.79). Therefore, since (¢) grows

sub-logarithmically and C'is close to unity, the Apollonian network exhibits the small-
world effect [5].

Because of the coincidence of the scale-free properties and the small word effect,
the Apollonian network has been shown to be useful to describe biological and physical
systems (see, for example, [28]-[31]). Very recently, it has also been used to describe
epidemic processes [20], being, in many respects, very close to the real situation of human
networks.

3. The SIS model and its numerical implementation

The SIS model is probably the simplest process able to describe the propagation of an
infection in a population when transmission is by contact, and infected individuals may
spontaneously recover after a certain time. What can be defined as a contact depends on
the disease: it can be a sexual contact, as in HBV (hepatitis B virus), or simply physical
proximity, as in SARS (severe acute respiratory syndrome). The typical assumption
concerning transmission is that an individual may move from the healthy to the infected
group when they come into contact with one or more infected persons. Contacts result in
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infection only at a given rate; for instance, only a small fraction of sexual contacts result
in the transmission of HBV. Once someone is infected, it takes some random time to move
back to the healthy group, and the individual can eventually be infected again by contact
(no immunization is assumed).

In this paper we will assume that in a time step each individual occupies a site (vertex)
of the network. If they are healthy (inactive) and one or more connected sites in the
network are occupied by infected (active) persons, they will be infected with probability
A (control parameter). On the other hand if they are infected, they will simply turn
healthy. The competition leads to a dynamics characterized by a critical point A.: if
A > A, the infection propagates and the fraction of infected individuals will tend to be
positive constant. Otherwise, if A < A, the infection disappears (absorbing state) and the
fraction of infected individuals goes to zero. Therefore, the critical control parameter A,
is the epidemic threshold from the active to the absorbing state, i.e., at the A\, the system
exhibits a phase transition. The stationary density of infected individuals pp is the order
parameter which vanishes in the absorbing state and is strictly positive in the active one.

The simulation dynamics has been realized according to the follows steps.

(a) It is assumed that each vertex is occupied by a single individual. Therefore, at each
time step ¢, a vertex i is unequivocally associated to the variable o;(t), which takes
either the value 0 if the individual is inactive, or the value 1 if they are active.

(b) At the initial time ¢t = 0, half of the vertices on the Apollonian network, randomly
chosen, are infected, while the remaining half are left healthy.

(c) At each time step, one vertex is randomly chosen and its state o is verified. If 0 =0
and the vertex is connected to one or more infected vertices, it is updated to o =1
with probability A. Otherwise, if ¢ = 1, it is updated to o = 0 with probability 1.

(d) At any time ¢, we compute the density

pp(t) = (1/N) Zal (1)

If the system reaches the absorbing state, i.e, pp(t) = 0, we replace a randomly chosen
healthy individual with an infected one in order that the simulation may continue
(see [32] for rationale and details).

For any value of the network size N and the infection probability A the dynamics is
iterated (items (c) and (d) are repeated) as long as we observe that the system relaxes to
a steady state. We find that 2000 x N steps is always large enough, where a step is here
defined as the updating of a single vertex randomly chosen. After relaxation, the dynamics
continues and we compute the quantities as time averages on a lapse of 2000 x NN steps.
We repeat the procedure for ng samples, where ng equals at least 500. More precisely, ng is
16 000, 8000, 4000, 2000, 1000, 500 for N = 16, 43, 124, 367, 1096, 3283, respectively, and
our quantities are then further averaged over all samples (in section 4, the final averages
will be indicated). The largest size N = 9844 (ns, = 500) is only considered for the precise
determination of the critical point A, (figure 5) and critical exponent 1/v, (figure 6).

doi:10.1088/1742-5468,/2013 /05 /P05003 5
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Figure 2. The density of infected individuals pp against the infection probability
A for different network sizes. A clear transition appears when N is increased.

4. Critical behavior

In this section we show the result of our simulations of the SIS model on the Apollonian
network. Finite size scaling analysis is performed on different quantities in order to
estimate the critical point and the critical exponents 3/v,, v,, v/v, and 3.

In figure 2 we show a typical plot of the average density pp = (pp) against the infection
probability A for different network sizes N. The set of curves indicates a clearly continuous
phase transition with the threshold of transition identified by the critical point A\. when pp
approaches zero. This phase transition may be also observed in figure 3, where the semi-log
plot shows a typical sigmoidal behavior of a continuous phase transition characterized by
a curve with the critical point located at its inflection point [33].

For a continuous phase transition, the critical point A. of the system can be
computed [34] by a finite size scaling analysis of the variance of the order parameter
given by

X = N({ph) — {pp)?), (2)

which is plotted in figure 4 against A for different network sizes N. For any N, the
function y has a maximum at A\*. When N tends to infinity the maximum diverges and
A* approaches the critical point A.. Note that for large values of A all y curves coincide.

Figure 5 shows how A\* depends on the system size. More precisely, the first panel
shows \* against the inverse of the system size 1/N, while the second panel shows In(\*)
against In(1/N). The critical threshold can then be obtained by the asymptotic limit
1/N — 0.

The exponent \, was best determined by the fit A = a+cN~°, where a represents \. and
b the exponent 1/v, . The best fit values of these three parameters are a = A. = 0.099(15),
c=1.95and b =1/v; = 0.46. The fit was performed using data from the first panel (\*

doi:10.1088/1742-5468,/2013 /05 /P05003 6
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Figure 3. The density of infected individuals pp versus the infection probability
A for several network sizes, showing a sigmoidal shape and a marked inflection
point characterizing the critical behavior.
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Figure 4. The behavior of the density fluctuation x versus the infection
probability A for several network sizes. The value of y is multiplied by a factor

of 1073,

against the inverse of the system size 1/N) and then depicted in the second panel to

confirm the result.

In order to better estimate the critical exponent v, we considered again the

relation [35]

1 l/l/l
A*_ACN AT )
(%)
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Figure 5. The profile of the recovery probability A as a function of the inverse
network size. In the limit 1/N — 0 we obtain, by a second order polynomial fit of
data in the first panel, A = 0.099(15). In the second panel, the best fit is tested
against data on a log—log scale.

0.0
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-10.0

In(1/N)

. 1 .
-8.0 -6.0 -4.0
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Figure 6. The scaling behavior of A* — \; as a function of the inverse network
size, allowing us to estimate 1/v, . The linear fit yields 1/v; = 0.47(1).

using the value of \* previously computed (figure 5). In figure 6 we plot our data, the
linear fit of which yields 1/v; = 0.47(1).

Figure 7 shows the best data collapse according to the following critical parameters:
1/vy =0.48(2), v/v,. = 0.39(4) and A. = 0.099(15). To obtain this data collapse we have
used our previous result concerning ., and we have determined best values of 0.39(4) for
v/vy and 0.48(2) for 1/v, . We remark that this last value is in complete agreement with
the previous result obtained by the linear fit depicted in figure 6.

In figure 8 we show the collapse of the order parameter data. In this case, we obtain
/v, =0.46(6), /v, = 0.56(7) and A = 0.099(13). These new values for 1/v, and A, are

doi:10.1088/1742-5468,/2013 /05 /P05003
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2.0 T T T T T y T T T

Figure 7. Data collapse of fluctuations of the order parameter data. Using
Ae = 0.099(15) previously computed, the best data collapse is given by the
following critical parameters: 1/v, = 0.48(2), v/v, = 0.39(4).

50 | | | | |
3
O N=43 4
4.0k O N=124 A
N =367 A
A N=1096
4 N=3283 4

Figure 8. Data collapse of the order parameter. The best data collapse is
given by the following critical parameters: 1/v; = 0.46(6), 5/, = 0.56(7) and
Ae = 0.099(13).

in complete agreement with the values previously estimated. Therefore, we have the final
values A\ = 0.099(14) and v, = 0.47(4), as average values of all the independent estimates.

Finally, the exponent 3 is obtained by the scaling relation pp ~ (A — X.)? [36], which
holds near the critical point. A linear fit of our data gives 5 = 1.3(3). The log-log plot of
figure 9 depicts the power-law behavior of the order parameter as a function of A — A\, for
a network of size N = 3283.
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Figure 9. Power-law behavior of the order parameter as a function of A — A, for
a network of size N = 3283. A linear fit of these data gives 5 = 1.3(3).

Table 1. Critical properties of the SIS model and the contact process (CP) on
the Apollonian network.

)\c ﬁ/VL 7/”L 1/Vi ﬁ

CP  0.700(4) 0.54(2) — 0.51(2) 1.06(7)
SIS 0.099(14) 0.56(7) 0.39(4) 0.47(4) 1.3(3)

The critical behavior pointed out in this paper seems to fall in the same universality
class as the contact process (CP) on the Apollonian network [20], where the authors
show that there exists a continuous phase transition to an absorbing state with an
epidemic threshold A. = 0.700(4) and critical exponents 3/v; = 0.54(2), v, = 0.51(2)
and 5 = 1.06(7).

Table 1 compares the critical exponents and critical parameters in [20] with those in
this paper.

Both the present model and the CP process on the Apollonian network are in
agreement with the exponents =1 and v, = 2 associated with regular lattices with
contacts distributed according to a power-law with exponent larger then 3 (short-range
distributed). These results seem to indicate that, although for the Apollonian network
n =1+ 1In(3)/In(2) ~ 2.585, their profiles are closer to the mean-field model with > 3
or short-range distribution. This confirms that epidemic processes on scale-free networks
may have peculiar properties, as already pointed out in [37].

5. Discussion and conclusions

In this paper we have used the SIS model to mimic epidemic spreading on the Apollonian
network. Finite size scaling analysis was performed in order to estimate the critical

doi:10.1088/1742-5468/2013,/05/P05003 10
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properties of the system. In this way, we have shown that a continuous phase transition
takes place between the active and inactive states at a finite critical point A.. The
critical exponents have also been computed to a high precision, and the associated critical
properties are different from those found in similar epidemic processes, like Watts—Strogatz
and scale-free networks. Our results indicate that the universality class of the SIS
model on the Apollonian network seems to be closely related to the mean-field directed
percolation in regular lattices [38] with n > 3 or short-range distributions, although the
Apollonian network predicts the critical exponent n = 14 1In(3)/1In(2) ~ 2.585! To justify
this discrepancy, one can argue that this peculiar behavior is associated with the particular
nature of the cumulative distribution P(k) o< 1/k"~! of the coordination number in the
Apollonian network, the peculiarities of which make it, in some respects, similar to a
short-range distribution.

Let us explain this point starting from the N,, — oo limit of the ratio m(k,n)/N,,
which gives the probability p(k) that a randomly chosen vertex has k contacts. Using
the expressions presented in section 2, one obtains that p(k) equals (2/3) x 37% if
k=ks=3x2° with s =0,...,n, and equals 0 otherwise. Accordingly, the cumulative
distribution P(k) = >_,~,p(k) equals 375 if 3 x 271 < k < 3 x 2°.

For large values of k, P(k) decays with a power-law behavior, i.e., P(k) oc 1/k"71,
with 7 = 1+ 1n(3)/In(2) ~ 2.585. Nevertheless, the distance ks — ks = 2° = kg between
two allowed values of k grows proportionally to k itself, i.e. the probability p(k) becomes
exponentially sparse for large k. This has the following important consequence: r(k) =
maxg > [p(k)/P(k)] = 2/3, which also holds in the limit £ — co. The maximum is reached
when £’ assumes the lowest of the possible k, values in the range k' > k.

This behavior is at strong variance with the standard power-law distribution, for which
r(k) o< k~! and, therefore, r(k) vanishes for large k. In contrast, this is the typical behavior
of short-range distributions for which r(k) is of order 1.

The meaning is that in the Apollonian distribution there is always a relatively high
number of vertices with lowest allowed value in the range [k, o0). The same is true for short-
range distributions, while, for ordinary power-law distributions, the number of vertices
with lowest allowed value in the range [k, 00) vanishes for large k as 1/k.

As a consequence some democracy is restored, i.e., the contribution of the vertices
with small values of k is larger than one would simply expect from P(k) oc 1/k7"!. Our
ansatz is that the mean-field, short-range values of the critical exponents are a direct
consequence of this particular structure of the distribution of vertices.
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