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We investigate the high-frequency dynamics of Bitcoin and Ethereum perpetual futures traded on Binance from
January 2020 to December 2024. After a thorough discussion of the stylized facts and particularities of Bitcoin
perpetual futures, based on previous research in futures markets, we evaluate the fit of two competing models
of market microstructure: the Mixture of Distributions Hypothesis (MDH) and the Intraday Trading Invariance
Hypothesis (ITIH). Using intraday data at different levels of aggregation, we investigate the relationship
between return volatility per transaction and trade size. We find evidence favoring the MDH in the crypto

1. Introduction

Bitcoin (BTC) is a decentralized electronic currency that enables
monetary transfers over the Internet without relying on traditional
financial institutions such as banks. It has grown exponentially in
popularity since its online emission in 2009 (Eross et al., 2019) and
is built on a technology called blockchain, introduced in Nakamoto
(2008).

Unlike traditional currencies, Bitcoin is not controlled by any cen-
tral authority or issued by any central bank. Its decentralized nature
makes it resistant to censorship and allows access to financial systems in
regions with limited banking infrastructure. Recent research has been
conducted on the institutional impact of Bitcoin and challenges for
regulation (Berg et al., 2019; Guegan, 2017).

Given its limited supply of 21 million coins (Norland & Putnam,
2019), the resource is scarce and therefore its price is adjusted by
market conditions. As such, Bitcoin has been used as a form of payment,
a store of value, or an investment (Alfieri et al., 2019). Some authors
still question whether it is an asset or a currency, without a clear
consensus on this matter (Alfieri et al., 2019; Glaser et al., 2014;
Yermack, 2013). In spite of that, there have been periods of increases
and shifts in BTC/USD prices, usually related to periods of political,
economic or social stress in financial markets.

The first surge in the value of Bitcoin was in 2017, with an increase
of more than 21,000% in value from January 12 to March 17, which
can be potentially attributed to a decrease in trust in central banks
due to financial crises and European bailouts (Eross et al., 2019). More
recently, from March 2020 to March 2021, there was an increase of
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more than 1000% in the BTC/USD price due to COVID-19 and the
subsequent economic crisis. Macroeconomic instability and political
uncertainty arising from the invasion of Ukraine in 2016 and again in
2022 and the war in Israel in 2023, as well as other political tensions in
Asia, Europe, and the United States, might also have had an effect on
the confidence of investors in regulated currencies, leading to BTC/USD
all-time highest values in November 2024. For a discussion, see Al-
Shboul et al. (2023), Alexakis et al. (2024), Auer et al. (2023), Bouri
et al. (2020) and Chen et al. (2024).

Binance is a platform for trading digital assets, including Bitcoin.
It was founded in 2017 and has grown to become one of the largest
cryptocurrency exchanges worldwide measured by trading volume. In
addition, Binance provides intraday historical data on trades since the
end of 2019 for the spot and futures market.

Given the increasing prominence of cryptocurrencies and other
digital assets on the market, in 2019 Binance launched its first fu-
tures market, in particular the BTC/USDT. Bitcoin futures aid in price
discovery between the spot and futures markets and allow partici-
pants to hedge against Bitcoin price volatility and speculate on price
movements. Unlike traditional derivatives, Bitcoin perpetual futures
do not have an expiration date, allowing investors to hold positions
indefinitely. These contracts use funding rates to align their prices
with the spot market and are popular for hedging, leverage trading,
or speculating on Bitcoin price movements. For the sake of simplicity,
hereinafter we refer to Bitcoin perpetual futures contracts as BTC
futures or Bitcoin futures, unless otherwise stated.

After the surge of Bitcoin, other cryptocurrencies and technologies
emerged, with Ether (ETH) being one of the most important. Ethereum
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is a decentralized open-source blockchain platform that allows the
creation and execution of smart contracts running on the blockchain
without the need for intermediaries. It was originally proposed in Bu-
terin (2014), extending the capabilities of Bitcoin by incorporating a
built-in programming language, allowing developers to build decen-
tralized applications in several areas, one of which includes finance.
Ether is the native cryptocurrency of the platform and is used to pay
for computational resources and transaction fees. It is qualitatively
different from Bitcoin, as it was designed primarily to be a utility
token to pay for the use of the Ethereum Virtual Machine (EVM) (Bel-
lon & Figuerola-Ferretti, 2022). Ethereum provides a programmable
infrastructure, making it one of the most widely adopted blockchain
networks. A detailed commentary on Ethereum can be found in John
et al. (2025). Following the success of Bitcoin futures, in Decem-
ber 2019 Binance introduced ETH futures to expand its portfolio of
products.

In this article, we study the intraday dynamics of Bitcoin futures
traded on Binance from January 2020 to December 2024. Following the
analysis of Andersen et al. (2020), we aim to understand the dynamics
of four variables of interest: volume, trade size, number of trades,
and volatility of returns, and in particular to understand whether the
Mixture of Distributions Hypothesis (MDH) in the sense of Clark (1973)
and Harris (1987) applies to the data or whether the Intraday Trading
Invariance Hypothesis (ITIH) in the sense of Andersen et al. (2020)
better suits the data.

To provide a complimentary view, we also compare the dynamics of
Bitcoin futures and Ether futures. Although these cryptocurrencies are
often compared to each other, they differ significantly in qualitative
terms as well as in mechanism, scalability, and conceptualization. One
of the most important differences is at the protocol level: while Bitcoin
operates in proof-of-work, Ethereum has been operating in proof-of-
stake since 2022 (Arslanian, 2022). Therefore, we provide a comparison
of two different cryptocurrencies that, although both very liquid, are
still structurally and functionally different, with protocol-level charac-
teristics that could affect the microstructure of the market, and that
may also have diverse potential traders and investors.

The MDH, in the sense of Clark (1973), describes a theoretical
framework in which the return volatility S, and the trading volume
V, are jointly driven by a latent process or, equivalently, the volatil-
ity per number of trades S,/N, is related to the trade size Q,. This
essentially means that large spikes in trading volume are related to
higher volatility of returns, because price movements are determined
by stochastic information arrival. On the other hand, the ITIH proposed
by Andersen et al. (2020) and Kyle and Obizhaeva (2016) implies that,
all else being equal, the mean trade size O, drops if the volatility of the
return increases or the trading intensity declines.

Volatility, in the sense of the MDH, is primarily driven by the
arrival of new information and macroeconomic factors. In the sense of
the ITIH, volatility is a function of risk transfer and market liquidity
constraints, which follows the scaling law discussed in Andersen et al.
(2020) and Kyle and Obizhaeva (2016). Since these hypotheses have
fundamental differences, a test for which model better describes the
Bitcoin and Ether futures markets is of interest theoretically and for
market players and practitioners.

The MDH of Clark (1973) and Eross et al. (2019) posits that volatil-
ity and trading volume are jointly driven by a latent information arrival
process. For the MDH, it holds that S,/ Nt ~ Qf where g > 0. Therefore,
larger average trade sizes are associated with higher return volatility
per trade, supporting the theory that trading activity is not purely
noise-driven or liquidity-driven, but responsive to information shocks.
If corroborated in our analysis, this would imply that both BTC and
ETH futures markets behave like information-diffusion systems, where
bursts of new information increase both volatility and trade size. The
implications thereof will be discussed in further sections.

Previous studies such as Eross et al. (2019) have analyzed the intra-
day dynamics of the spot market, but did not employ the methodology
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of Andersen et al. (2020). Others, such as Chou et al. (2023), Patra and
Gupta (2025) and Wang et al. (2019), have examined the cryptocur-
rency market at the intraday level or compared it with other settings,
and should be considered complementary to this article, as we analyze
the BTC and the ETH futures market with the goal of understanding
the microstructure of the market. Our study therefore contributes by
both investigating the validity of those models applied to a broader
class of assets and by studying the cryptocurrency futures market
microstructure. To the best of our knowledge, this paper provides a first
systematic comparison of these competing frameworks of foundational
market microstructure theories using high-frequency data for Bitcoin
and Ether derivatives. By evaluating the relationship between volatility
per trade and average trade size across an array of time aggregations
and an array of distributional quantiles, we provide a detailed overview
of information efficiency and order flow dynamics in these specific
decentralized derivative markets, which are still underexplored in the
literature.

The remainder of the paper is organized as follows. Section 2
presents a review of the literature on cryptocurrencies and high-
frequency data. Section 3 provides a thorough discussion of the data
and its stylized facts, as well as a description of the methodology of
this study. In Section 4 we present and discuss the empirical results. In
Section 5 we close with some final remarks.

2. Cryptocurrency literature review

High-frequency time series usually contain stylized facts that should
be taken into account when modeling their behavior. Stylized facts can
be defined as a set of statistical properties emerging from independent
empirical studies of assets (Cont, 2002) that are partly due to the forma-
tion of prices and market microstructure. They are usually shadowed in
lower frequencies and other types of time series, but also depend on the
liquidity of the financial markets in which assets are traded (Dacorogna
et al., 2001; Zivot & Wang, 2005).

Typical stylized facts for prices are long-range dependence on the
conditional mean and conditional variance, intraday jumps, volatility
clusters, fat-tailedness, non-normality, and skewness (Cont, 2002; Da-
corogna et al., 2001). In terms of structure, the data are available in
the “tick-by-tick” format, which means that the quantities of interest
are not usually available in homogeneously spaced time, but rather are
irregularly spaced. Therefore, a regularizing procedure is necessary to
make the time series homogeneous, so that quantities can be computed
from the trades and quotes databases.

Cryptocurrencies are not exempt from these stylized facts. In fact,
Scaillet et al. (2018) discusses the impacts of jumps on market activi-
ties, for example, with jumps commonly occurring at the intraday level.
However, because cryptocurrency markets operate in a continuous
24/7 setting and do not have trading hours as other usual markets
do, Pinto et al. (2023) notes that the magnitude of intraday jumps or
spikes in prices is less noticeable compared to assets traded in regulated
markets with regular trading hours.

The presence of price clusters in Bitcoin is discussed in Urquhart
(2017). It is also possible to identify jump clusters in other cryptocur-
rencies, Pinto et al. (2023), Scaillet et al. (2018). In Conlon et al. (2024)
the authors study the relationship between volume and volatility of
Bitcoin in futures and spot markets, using estimated realized volatility
and a metric based on the Chicago Mercantile Exchange (CME) Bitcoin
Reference Rate.

In Bariviera et al. (2017), the authors investigate other stylized facts
of the Bitcoin market, assessing the presence of long-range dependence
to infer whether it is generated by a self-similar stochastic process.

A study of the cointegration of implied and nominal Bitcoin ex-
change rates is provided in Smith (2016). Auer et al. (2023) explores
how rising Bitcoin prices drive the entry of new retail users, particularly
younger and risk-seeking investors, and the effect of exogenous shocks



M. Gonzalez de Freitas Pinto

Average Transaction Price (Pt)

—— Daily Avg
2-Week Moving Avg

100000 4
80000 -
60000 - W

4
W\

b, ‘m’/ i

40000

20000 A
rv

e

2020

2021 2022 2023 2024 2025

(a) Average Transaction Price

Number of Trades (Nt)

—— Daily Avg
2-Week Moving Avg

1.2
1.0
0.8
0.6

0.4

0.2

0.0

2020 2021 2022 2023 2024 2025

(c) Number of Trades

Borsa Istanbul Review 25 (2025) 1378-1390

1e7 Average Volume (Vt)

—— Daily Avg
2-Week Moving Avg

0.8 4
0.6 1
0.4 4

0.2 4

0.0 4

ZO‘ZD ZDIZZ ZDI23
(b) Average Volume

Average Trade Size (Qt)

0.69 — Daily Avg

2-Week Moving Avg
0.5+

0.4
0.3 1
0.2
0.1

"WMM"‘M%W

2022

2020 2021 2023 2024 2025

(d) Average Trade Size

Fig. 1. Daily averages and 2-week moving averages of price, volume, number of trades, and trade size of Bitcoin futures from January 2020 to December 2024.

in the trading volume. In a recent analysis of the liquidity of Bitcoin, Loi
(2018) concludes that, on average, stocks are more liquid than Bitcoin.

On the matter of the nature of Bitcoin, Alfieri et al. (2019) argues
that Bitcoin behaves like a common stock, evaluating its performance
with risk adjusted return models and finding that it offers opportuni-
ties for diversification due to its low correlation with market indexes
and replicating portfolios. Even though central authorities are usually
against recognizing Bitcoin as a medium for exchange, central banks
are considering introducing cryptocurrencies and digital currencies of
their own (Del Tedesco Lins & Ribeiro Hoffmann, 2024; Hairudin &
Mohamad, 2024). Ether is rather different, as it exists on a smart
contract platform used for decentralized applications (DeFi, NFTs, etc.)
and Ether functions as the utility token to pay for the EVMs, therefore
attracting not only speculators but also developers, DeFi traders and
NFT users, for instance (Arslanian, 2022; John et al., 2025).

An analysis by Kajtazi and Moro (2019) discusses the role of Bitcoin
in optimal portfolios across different constraints using conditional value
at risk (CVaR), suggesting that it remains a speculative asset with
potential diversification benefits.

A recent study of Yi et al. (2022) explores the characteristics of
Bitcoin as an investment asset by comparing it with other major in-
vestment assets. The authors examine Bitcoin’s market efficiency using
the Hurst exponent and its long-term market equilibrium through Shan-
non’s entropy. Although the findings suggest that the Bitcoin market is
less efficient than the other markets the authors compared it with, it
does not differ much in terms of long-run market equilibrium.

Regarding studies on the estimation of the volatility of Bitcoin
using GARCH models, one can refer to Charles and Darné (2019),
Katsiampa (2017) and Liu and Serletis (2019). Still regarding volatility,
in Kim et al. (2021) the authors introduce VCRIX, a volatility index for
the cryptocurrency market, modeled after the VIX used in traditional
financial markets.

In a recent study, Chen et al. (2024) shows that Bitcoin returns
and volatility are influenced by political uncertainty indicators, such as
geopolitical risk and party conflict indices, especially during financial
crises. The authors conclude that some investors use Bitcoin as a
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hedge and a safe-haven asset that mitigates political uncertainty. In
another sense, Al-Shboul et al. (2023) examined the spillover effects
between traditional currencies and cryptocurrencies during the COVID-
19 pandemic, concluding that cryptocurrencies acted as “safe havens”
during this period of market uncertainty. Other studies on this matter
include (Alexakis et al., 2024; Bouri et al., 2020).

3. Methodology and data
3.1. The data

Our dataset comprises intraday trades of Bitcoin and Ether futures
executed on Binance from January 2020 to December 2024.! We
therefore observe all transactions executed across years and, from this
information, we aggregate it into several levels of aggregation: 1-min,
5-min, 10-min, 15-min, 30-min, 60-min levels for intraday aggregations
and a daily level of aggregation of four financial metrics: average trans-
action price (denoted hereinafter P,), transaction rate (trades per time
unit, N,), average percentage return variance (S,), average (unsigned)
number of contracts per transaction (Q,) and cumulative trading vol-
ume (V;). We denote the lowercase p, = log(P,), n, = log(N,), s, =
log(S)), g, = log(Q,), and v, = log(V;). Following Andersen et al. (2020),
the intraday and daily aggregations are calculated by averaging and
summing over the respective interval of the 1-min level aggregation.
The choice of using progressively increasing frequencies for the analysis
diminishes the effects of microstructure noise at very high frequencies
and reveals whether the hypothesized law persists across time scales.
This provides a full array of results, analyzing their consistency and
stability across frequencies.

It is important to stress that, although we include the 1-min aggre-
gation in the analysis, we acknowledge that the data might be too noisy
and lead to distortions at such a high frequency, since the series can be
subject to market microstructure effects (e.g. bid—ask bounce, discrete

1 Data can be obtained from Binance’s Public Market Data webpage.
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Fig. 2. Daily averages and 2 week moving average of prices, volume, number of trades and trade size of Ether futures from January 2020 to December 2024.

price movements, and order book frictions), which have the potential
to distort volatility and therefore our results. The 5-min interval has
been shown to generate the most accurate results and forecasts when
realized volatility is used in microstructure studies of the market (Liu
et al., 2015). A comprehensive discussion on the impact of frequency
choice can be found in the works of Andersen et al. (2001), Liu et al.
(2015), Liu and Serletis (2019) and Ngene and Wang (2024).

The logarithms of each quantity (the lowercase aggregations) are
straightforward. We recompute the annualized volatility according to
its corresponding time aggregation and transform it by the square-root
rule: SIA“““"11 = §,xV/T, where T represents the number of time intervals
per year at each respective frequency. Since Bitcoin has no trading
hours, to annualize 1-min volatility, we use T = 525,600, and use the
same logic to annualize other frequencies (e.g. T = 52,560 for 10-min
and T = 365 for daily data).

Following Andersen et al. (2020), we will also analyze the data
from the perspective of trading hours, which we hereinafter refer to
as “regimes”. The construction of the trading regimes is adapted and
based on the segmentation of 24-h central time (CT) to reflect global
trading activity across major financial markets. They are defined as
follows.

1. Asia: from 19:00 to 2:00 CT.

2. Europe: from 2:00 to 8:30 CT.

3. Americas: from 8:30 to 15:15 CT.

4. Transition Zone: between 15:15 and 19:00 CT.

The Transition Zone represents a lower liquidity period when the
US markets have closed and Asian markets are not yet fully open.

Segmentation into these regimes allows for the examination of
market behavior, such as volatility and trading volume, during each
trading regime and highlights the impact of overlaps and transitions
between major global markets.

Figs. 1 and 2 depict the daily aggregation of the four market metrics
in both datasets. The presence of significant price swings aligns with
the aforementioned price cycles—particularly the sharp appreciations
in 2021 and 2024—even though it is more pronounced for BTC than for
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ETH. The two-week moving average reveals that, while price volatility
remains high, the long-term growth trajectory follows a structured
pattern.

From Figs. 1 and 2 one can also note that surges in trading activity
often coincide with price fluctuations. Peaks in volume during specula-
tive phases could indicate that market participation intensifies during
periods of high volatility.

The number of trades appears to exhibit a cyclical pattern with
increased activity during bullish market periods. The increasing fre-
quency of transactions over time is indicative of an evolving market
structure.

Finally, the bottom right panel of both Figs. 1 and 2 indicates a
noticeable negative trend in the average trade size. This suggests a
structural shift in the microstructure of the crypto market, which would
merit attention and warrant further investigation, as it may stem from
the growing influence of retail trading or increased order fragmentation
by institutional investors.

Figs. 3 and 4 depict one of the aggregations (daily) of the data that
will be used as a test in the methodology and empirical results sections,
displaying the log transform of the following quantities: s, — n,, s,, n,,
and ¢,. There has been a negative trend in the difference between log-
variance and log-trade-count over the years. One can infer that, as the
number of trades increases, the return variance per trade decreases, an
observation consistent with increasing market efficiency.

With the exception of some episodic spikes in volatility, there was
also a decrease in return volatility over time (s,). The increase in the
trade count of both Bitcoin and Ether futures, n,, suggests that the depth
of the crypto futures market has increased over time, leading to greater
price efficiency. There is a noticeable decrease in trade size over the
years, following a pattern similar to that of the difference between log
variance and log-trade-count.

Figs. 5 and 6 show intraday variations in trading behavior, ana-
lyzing trade count, trade size, return variance, and volume across the
different market regimes previously defined and over different years.
The plots show the average value at the yearly level of v,, s,, n, and ¢,
for each trading hour for the years 2020 to 2024. It is clear from the
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Fig. 3. Daily aggregation of market metrics for BTC futures used for testing the MDH vs. the ITIH.
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Fig. 4. Daily aggregation of market metrics for ETH futures used for testing the MDH x the ITIH.

plots that the year 2020 is largely different for both derivatives from the
remaining years of 2021 to 2024 in terms of volatility, trading volume,
trade size, and trade counts, which could be related to the COVID-19
pandemic and its effects on cryptocurrency markets. It could also stand
out because it was the first trading year of the BTC and ETH futures and
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the financial instrument may not yet have reached maturity during that
period.

Analyzing yearly averages of log volatility s, per time of day, one
can note that volatility tends to increase in trading hours close to the
transitions between regimes, particularly during the Asia-to-Europe and
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referred to the web version of this article.)

Europe-to-Americas regime changes, which is an interesting stylized
fact of BTC futures. Years 2020 and 2021 exhibit a clear pattern
of increased volatility compared to the subsequent years, with less
pronounced spikes and a lower volatility level. American and Asian
regimes are associated with higher volatility in the years 2021-2024.
The transition zone is associated with a lower volatility than the others.

From the annual mean number of trades, n,, it is clear that trading
activity follows a strong cyclical pattern, with lower participation dur-
ing the early Asian regime and the Transition Zone, and peak activity
occurring during the American regime. This has been consistent over
several years and both cryptocurrencies, maintaining this U-shaped
pattern of number of trades across the trading day. This observation is
consistent over years, although 2020 clearly differs from other years,
indicating a persistent intraday liquidity cycle. Peaks in n, apparently
occur in trading hours associated with regime transitions.

There is a clear trend of a decrease in ¢, as time passes, which is
consistent with the negative slope noticed in Figs. 1 and 2. Trade sizes
tend to be larger at regime start and end times, which could be caused
by liquidity-driven rebalancing at key market intervals, but this matter
merits further analysis and investigation.

The yearly average trading volume v, by time of day exhibits an
interesting U-shaped pattern. Volumes tend to be higher following
the European and American trading regimes, peaking in the transition
between them. During the Transition Zone regime, as expected, trad-
ing volume is lower for all year averages, which suggests that it is
associated with lower liquidity in markets.

We also explore the intraday cycle with monthly aggregation of
the data. Since we realized that years 2020 and 2021 were behaving
differently than the years 2022 onward, we separate out those years
and compute the monthly average across 2022-2024.

Figs. 7 (BTC futures) and 8 (ETH futures) show the four metrics
v, ny, s, and g, with their monthly averages over years, excluding
the years 2020 and 2021. The color palette is adjusted to correspond
to the seasons of the year in the Northern Hemisphere, thus making
visualization of seasonal patterns straightforward.
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As expected, Figs. 7 and 8 follow the same hourly pattern seen
in Figs. 5 and 6, since the latter is an annual aggregation and the
former is a monthly aggregation. Over the months, the annual pattern
identified in Figs. 5 and 6 remains stable: trading activity is higher in
the American regime and during regime transitions, trading activity is
cyclical and v, and n, are U-shaped, peaking in the American regime
and reaching their lowest values in the Transition Zone.

However, a few aspects are worth noting, particularly seasonal
behavior. For both BTC and ETH futures, the trade volume v, appears to
remain unaffected or less affected by the month of the year, following
the pattern identified in the annual aggregation. The other variables
seem to exhibit a more seasonal pattern, with the months of the year
clearly distinguishable in the plot, even if for », it is to a lesser extent.

The average of the log number of contracts per trade g, from
2022-2024 is lower in April and May, then increasing in June, July, and
August. In Fig. 7 (BTC futures) it shifts to its higher phase from Septem-
ber to March. It appears to follow a clear seasonal pattern, with a lower
g, in months associated with spring and summer months in the Northern
Hemisphere, and a higher ¢, in months associated with fall and winter
in the Northern Hemisphere. This could be the results of portfolio
adjustments before the end of the year and preparations for the market
trends for Q1. Although the difference between spring/summer and
fall/winter is less distinct in the case of ETH futures, a discernible
differentiation remains, following the same overall trend.

A similar but reversed pattern is identified in n,, even though
the months are less distinguishable in Figs. 7 and 8: for the years
2022-2024, there was a higher number of trades in the first semester,
with n, decreasing from January onward. This phenomenon is less
noticeable in the plot of ETH futures.

Log volatility, s,, is another variable with clear, distinguishable
seasonal patterns over the months observed in 2022-2024 for both
ETH and BTC. January, February, and March have higher volatility,
followed by a medium level of volatility from April to August and
lower volatility from September to December. This pattern of volatility
is associated with new-year and end-year positioning, with risk-off
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Fig. 8. Average ETH futures metrics per time of day — monthly aggregation for 2022-2024.

referred to the web version of this article.)

behavior for the latter and more speculation or hedging in the former.
This suggests trading behavior that is most likely associated with
institutional investors, and is consistent in both derivatives.

The high activity levels in certain months could be due to fiscal
reporting cycles, risk management adjustments, and portfolio rebalanc-
ing. The lower activity levels in summer in the Northern Hemisphere
is apparent in both figures.

3.2. Methodology

Our analysis is based mainly on Andersen et al. (2020). The paper
explores an invariance relationship in high-frequency trading data,
specifically in the E-mini S&P 500 futures market. The authors es-
tablished that the volatility of the return per transaction is inversely
proportional to the square of the expected trade size. This relation-
ship holds across both time series and intraday trading cycles, which
challenges existing models in market microstructure with a trading
invariance hypothesis.

The Mixture of Distributions Hypothesis (MDH) was presented in
the seminal paper of Clark (1973) and was further discussed in several
articles, including those of Harris (1987) and Tauchen and Pitts (1983).
It offers an explanation for the (positive) linear relationship between
trading volume and the volatility of returns, assuming that both are
driven by the same underlying information flow. Before Clark (1973),
in an initial analysis, Osborne (1962) observed that the trading volume
was proportional to the number of transactions, implying that the
volatility of the return is proportional to the volume S ~ V. In Andersen
et al. (2020), the authors describe three formulations for MDH: MDH-V,
MDH-N and generalized MDH, corresponding respectively to Egs. (1),
(2) and (3) as stated below.

(€Y
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where s, = log(S,) is the log-volatility of returns, v, = log(V}) is the
log-volume, n, = log(N,) is the log trade size, ¢ is a constant and u, is a
zero-mean noise process for all three equations. Moreover, # > 0 in (3).
Egs. (1) and (2) describe a stochastic process evolving as in Mandelbrot
and Taylor (1967), whereas Eq. (3) encompasses the two previous
models, with # to assume any non-negative value. In Epps and Epps
(1976), the authors find evidence of # > 1 to be consistent, while a
value of f € (0, 1) would be an effect that falls between the predictions
of MDH-V and MDH-N. More details of the theoretical framework can
be found in Clark (1973) and Epps and Epps (1976).

Another hypothesis is the one of Andersen et al. (2020) and Kyle
and Obizhaeva (2016). While Kyle and Obizhaeva (2016) starts from
a market microstructure invariance (MMI) from large speculative bets
fragmented into smaller orders, Andersen et al. (2020) proposes an
intraday trading invariance hypothesis (ITIH), which extends similar
principles to short-horizon transactions while remaining a purely em-
pirical hypothesis, acknowledging the stringent conditions required
for invariance relationships to hold in high-frequency settings. The
equation associated with the ITIH is:

s; —n, =c+pq, +u,

C)

The difference between general MDH and ITIH is clear: while an
assumption of (3) is that g > 0, (4) requires § = —2. More details on
the formulation of the ITIH and why such a stark difference in # arises
can be found in Andersen et al. (2020).

The empirical capacity of the MDH and the ITIH models has been
tested in several studies using real data, including Andersen (1996),
Andersen et al. (2020), Benzaquen et al. (2016), Darolles et al. (2017),
Richardson and Smith (1994) and Wang et al. (2019). However, to the
best of our knowledge, the test of the ITIH versus MDH has not been
previously tested in cryptocurrency markets, and in particular in the
BTC and ETH futures market.

§;—n,=c—2q, +u.
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Therefore, in this study, we analyze the intraday and daily dynamics
of cryptocurrency futures contracts to assess which hypothesis—ITIH
or MDH—better describes the high- and low-frequency behaviors of
this market. The implications of each market microstructure model are
sharply different, making it interesting both in a theoretical framework
and also for market practitioners, investors, players, and risk managers.

If MDH better describes the data, then this means in essence that
the crypto futures market is primarily information driven, implying that
successful strategies should focus on news, sentiment and the speed of
information absorption, as well as macroeconomic and policy effects.
If, on the other hand, the ITIH better matches the data, then this means
that the crypto futures market is primarily liquidity-driven, with good
strategies focusing on market depth, leverage and liquidation risk.

This analysis is important because market microstructure models, in
their original formulation, were developed in the context of centralized
exchanges with defined trading hours. Other markets, such as global
FX markets, also operate continuously, but under different regulatory
conditions. Our analysis, on the other hand, is of a decentralized market
with no trading hours, thus making it interesting to understand if these
theories apply to this market setting.

Furthermore, traditional futures markets (e.g., S&P 500 E-mini)
are dominated by institutional players, while cryptocurrency markets
involve a large proportion of retail traders. All of these differences make
testing the validity of these theories and assessing their limitations to
the crypto market intriguing.

To identify which hypothesis best matches the data, we propose a
regression model based on (3) and test whether f =0, f =1, g = -2
or f > 0, for daily and intraday minute-by-minute aggregations. Our
estimates § will then be used to assess the validity of either hypothesis
in the BTC and ETH futures markets.

Since we have seen from the analysis of Fig. 5 that trading regimes
affect our target metrics, we will also perform this regression for
each regime, for all time aggregations of the data, and for all four
aforementioned hourly trading regimes.

Finally, we implement quantile regressions in order to better mea-
sure how the relationship changes as the distributional features of
the dependent variable change. Traditional ordinary least squares re-
gression is based on restrictive hypotheses, such as homoscedasticity
and linearity across the entire distribution (Seber, 2015). However,
as previously discussed, financial data tend to exhibit asymmetries
and heavy-tailedness, which become more noticeable as the frequency
increases. Although we can use techniques to avoid some of those
specification problems, such as robust standard errors, we choose to
employ quantile regression to account for potential nonlinearities and
stylized facts in the financial data.

Formally, we can write (3) for the quantile regression as:

(5)

where y, = s, — n, and Q,(-|q,) denotes the conditional rth quantile. In
(5), we will have quantile-specific f,, and f, , capturing the effect of
trade size on volatility per trade across different quantiles z.

This method allows us to examine not only the average effect
for each frequency aggregation, but throughout the conditional dis-
tribution of the dependent variable, providing a more comprehensive
understanding of the dynamics of the cryptocurrency futures market.
This is particularly useful for analyzing the tails, where extreme market
behavior might occur, and to determine if the response is homoge-
neous or not. For a complete review of quantile regression and its
justifications, see Davino et al. (2013) and Koenker and Bassett (1978).

Qr(yt | Qt) = ﬁO,r + ﬁl,rqt’

4. Empirical results
4.1. Linear regression
We fit a regression model for the daily level of aggregation of the

data and for the intraday data for the following time aggregations: 1-
min, 5-min, 10-min, 15-min, 30-min and 60-min. Since high frequency
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minute-by-minute data are noisier, it is expected that the linear re-
gression will be less explanatory at the 1-min level of aggregation.
Aggregating data at progressively decreasing levels of frequency (or
equivalently, increasing time-intervals) captures the change in the esti-
mated dynamics as frequency varies, and measures how much the effect
of the intraday frictions can impact the results.

The results of the standard regression tests can be seen in Table 1
for both BTC and ETH futures. The coefficients are such that § > 2 for
all cases and all derivatives. The estimates at 1-min and 5-min levels of
aggregation differ slightly from the remaining ones. R?> was noticeably
lower for intraday regression, especially in the case of BTC futures,
and improves for aggregation levels larger than 5 min. A performance
decrease was expected, as the minute-by-minute data is much noisier
than the daily-level data. The explanatory power is relatively strong
as data is aggregated over larger time spans, indicating that ¢, plays a
significant role in the volatility per trade. The BTC data seems much
noisier than that of the ETH, as seen in the R? value of the 1-min
aggregation level. Still, for both currencies, the estimates for # are more
or less consistent throughout the whole range of frequencies, with more
significant changes in the BTC for daily data than for ETH. In agreement
with the previous literature, the 5-min level of aggregation appears to
be the highest frequency at which estimates seem reliable, as it is more
consistent with other intraday estimates at lower frequencies. After
the 10-min level of aggregation, the intraday estimates are practically
unchanged.

The Durbin-Watson statistics for all models at all levels of aggrega-
tion indicated the presence of autocorrelation in the residuals. For this
reason, we report the Newey—-West HAC robust standard errors (Newey
& West, 1987) in Table 1. There was no statistically significant evidence
of multicolinearity.

The results suggest a rejection of the ITIH, since larger trade sizes
correspond to higher, not lower, return variance per trade. The point
estimates for § > 1 might indicate that large trades tend to occur in
more volatile market conditions, rather than stabilizing returns as the
ITIH suggests. These results are aligned with the plots in Fig. 3, which
indicated a positive relation between s,—n, and g,. Interestingly, despite
the lower explanatory power of the regression at the 1-min level of
aggregation (especially for BTC), the § did not disagree much from the
point estimates from other frequencies, with a larger difference for BTC
compared to ETH.

Since we understood from Figs. 5 and 6 that different trading
regimes are associated with different intraday behavior patterns, we
calculate the regression for the regime using intraday data in order
to assess whether the analysis separating each regime yields different
estimates for . The results are reported in Tables 2 and 3.

Note that not only are the j for each regime comparable, but the
constants also remain practically unchanged, and all of the coefficients
are comparable with the intraday regression outputs in Table 1. This
suggests that, although different regimes exhibit different intraday
patterns, the relationship between trading s, —n, and ¢, (or equivalently
between S,/N, ~ Q,) remains practically unchanged across different
regimes. The R? for each regime for each time aggregation is consistent
with that of the regression without regimes, which was expected since
the coefficients remained practically unchanged.

Since we noted that the 1-min level of aggregation can result in
noisy data and that there are some data points that could distort
the estimation, we performed the same regressions considering the
Huber loss to estimate f in a more robust approach for all levels of
aggregation. The result is practically unchanged, with a # > 1 and
confidence intervals indicating § > 2 for all regressions. For the sake of
parsimony, this is not included here, but tables will be made available
upon request.

In general, point estimates of f all lie within the interval [2.6;2.9]
for both the ETH and BTC regressions, which might suggest a shared
dynamics driving the microstructure of both BTC and ETH futures,
and this would merit further attention and investigation. A Wald test
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Table 1
Regression output for testing the ITIH X the MDH in crypto futures.
Freq. BTC ETH
Const. SE q, SE R? Const. SE q, SE R?
Daily —28.549 0.266 2.648 0.131 0.508 —36.690 0.182 2.761 0.238 0.601
60 min —-25.197 0.057 2.855 0.027 0.516 —-33.686 0.098 2.796 0.131 0.567
30 min —24.490 0.041 2.888 0.020 0.514 —33.025 0.071 2.793 0.094 0.557
15 min -23.827 0.030 2.900 0.014 0.508 -32.359 0.051 2.772 0.068 0.544
10 min —23.466 0.024 2.893 0.012 0.502 —31.964 0.042 2.746 0.056 0.533
5 min —-22.908 0.018 2.853 0.008 0.487 —31.280 0.031 2.676 0.040 0.510
1 min —23.842 0.005 2.312 0.002 0.170 —29.632 0.015 2.272 0.019 0.404
Table 2
Regime-wise regression for different frequency aggregations for BTC futures.
(a) Asia (b) Europe
Const. SE q, SE R? Const. SE q, SE R?
60 m —25.0547 0.505 2.8292 0.242 0.516 60 m —24.8525 0.502 2.9897 0.248 0.554
30 m —24.3387 0.372 2.8677 0.178 0.515 30 m —24.1993 0.359 2.9997 0.177 0.548
15 m —23.6757 0.270 2.8796 0.128 0.510 15m —23.5582 0.262 2.9954 0.128 0.540
10 m —23.3157 0.224 2.8726 0.106 0.504 10 m —23.2097 0.217 2.9801 0.105 0.532
S5m —22.7599 0.162 2.8323 0.076 0.489 S5m —22.6788 0.158 2.9233 0.076 0.513
1m —23.7103 0.052 2.2930 0.022 0.171 1m —23.7098 0.053 2.3366 0.022 0.178
(c) America (d) Transition Zone
Const. SE q, SE R? Const. SE q, SE R?
60 m —25.3691 0.510 2.8588 0.254 0.512 60 m —25.4975 0.666 2.7628 0.326 0.485
30 m —24.6698 0.391 2.8924 0.193 0.510 30 m —24.7747 0.500 2.8073 0.244 0.484
15 m —24.0049 0.279 2.9100 0.137 0.504 15 m —24.0773 0.375 2.8314 0.183 0.482
10 m —23.6353 0.233 2.9076 0.114 0.499 10 m —23.7072 0.309 2.8331 0.150 0.477
5m —23.0634 0.167 2.8754 0.081 0.485 5m —23.1189 0.227 2.8079 0.109 0.464
1m —23.9450 0.053 2.3538 0.023 0.171 1m —-23.9673 0.072 2.3041 0.031 0.163
Table 3
Regime-wise regression for different frequency aggregations for ETH futures.
(a) Asia (b) Europe
Const. SE q, SE RrR? Const. SE q, SE R?
60 m —33.4842 0.1780 2.7843 0.2270 0.5690 60 m —33.6285 0.1940 2.8653 0.2420 0.5850
30 m —32.8260 0.1290 2.7831 0.1670 0.5590 30 m —-32.9766 0.1350 2.8453 0.1740 0.5730
15 m —32.1595 0.0930 2.7595 0.1220 0.5460 15 m -32.3023 0.0970 2.8158 0.1260 0.5580
10 m —31.7653 0.0770 2.7329 0.1010 0.5350 10 m —31.9035 0.0800 2.7851 0.1040 0.5470
S5m —31.0832 0.0560 2.6607 0.0730 0.5110 5m —-31.2150 0.0580 2.7056 0.0750 0.5220
1m —29.4453 0.0280 2.2348 0.0340 0.4000 1m —29.5604 0.0290 2.2680 0.0350 0.4080
(c) America (d) Transition Zone
Const. SE q, SE R? Const. SE q, SE R?
60 m —-33.8712 0.1790 2.8103 0.2300 0.5730 60 m —33.8047 0.2370 2.7557 0.3020 0.5450
30 m —33.2148 0.1340 2.8100 0.1760 0.5640 30 m —33.1510 0.1720 2.7618 0.2270 0.5370
15 m —32.5584 0.0950 2.7934 0.1260 0.5490 15 m —32.4761 0.1290 2.7491 0.1710 0.5270
10 m -32.1635 0.0790 2.7708 0.1050 0.5400 10 m —32.0871 0.1060 2.7287 0.1400 0.5170
5m —31.4830 0.0570 2.7076 0.0750 0.5170 5m —31.4045 0.0770 2.6690 0.1020 0.4970
1m —29.8324 0.0280 2.3378 0.0350 0.4180 1m —29.7552 0.0380 2.2992 0.0480 0.3990

statistic for the ITIH, which means W = (§+2)2/(se(f))?, strongly rejects
the hypothesis of p = -2 for all models. This indicates that volatility per
trade increases more than proportionally with trade size, which means
that trades tend to occur in more volatile market conditions rather than
when prices are more stable. Therefore, the high-frequency dynamics
of cryptocurrency futures on Binance resembles traditional speculative
markets where volatility increases with trading volume, which could
be due to the absence of a stabilizing mechanism.

4.2. Quantile regression

Following the analysis of Section 4.1, we perform quantile regres-
sions for the BTC and ETH futures data. We consider the regression over
the following quantiles: 7 = 0.1,7 = 0.25, = 0.5, = = 0.75, and = = 0.9
for the same frequency aggregations as before. The resulting estimates
of p, . are reported in Figs. 9 (BTC futures) and 10 (ETH futures).

The quantile regressions reinforce the findings from the previous
section, as they agree with the standard regressions in Table 1. For

both BTC and ETH, the positive and statistically significant slope co-
efficients across both the quantiles and frequencies support the MDH,
which suggests that the return volatility per trade increases with trade
size. However, the quantile-specific patterns diverge notably. Bitcoin
futures display a monotonically decreasing slope profile, suggesting a
stronger sensitivity of volatility to trade size in low-volatility regimes.
In contrast, Ether futures exhibit a hump-shaped pattern, with the
strongest effect near the median quantile, indicating a more symmetric
and stable volatility response. These findings are theoretically relevant
and warrant further investigation: they indicate that, while MDH might
broadly hold, the impact of trade size could be shaped by distributional
regimes and might also be instrument-specific.

It is also important to stress that the results at the 1-min level of
aggregation confirm the presence of microstructure noise, especially
for BTC, as indicated by lower R? and flatter quantile profiles, but mi-
crostructure noise also appears in ETH data. This is consistent with the
previous Section 4.1 and with previous literature statements that 5-min
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Fig. 10. Estimates of f, ,, in quantile regression for ETH futures under different levels of aggregation.

aggregation is the highest frequency at which market microstructure

noise is not too distorting.

From Figs. 9 and 10, one can also see that the asymmetry in the
B, slope coefficient across the array of quantiles indicates that market
responses to trade size are not totally uniform. The change in estimates
of p, across different quantiles strongly confirms heteroskedasticity in
the relationship, which justifies the usage of robust standard errors in

Section 4.1.

Overall, for BTC futures, the quantile regressions reveal heterogene-
ity: volatility per trade responds more strongly to trade size at lower
quantiles and less strongly in higher tails. For ETH futures, the hump-
shaped plot indicates that the impact of the trade size is strongest at
median volatility levels. Irrespective of these differences, all results

support the MDH over the ITIH.

4.3. Discussion of results

A consistent finding of § > 0 across multiple time frequencies for
both BTC and ETH futures implies that volatility per trade increases
with average trade size, supporting the MDH. This suggests that both
markets are information-sensitive and reflect latent information flows,
with implications for risk management, price formation, and strategic

trade execution in cryptocurrency futures.

This might indicate that there is limited depth in the market, since
larger trades tend to be executed during volatile periods, suggesting
that the market reacts disproportionally to large trades. Reasons for this
might vary: for instance, it could be due to a thin liquidity pool, mean-
ing that large orders are not absorbed efficiently and suggesting the

potential for order book imbalance, especially in fast-moving settings.
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Since a value of # > 0 goes against the proposition of Andersen
et al. (2020), this suggests that the risk-transfer mechanism is not scale-
invariant in BTC and ETH futures. As such, this “invariance efficiency”
could be a characteristic of a very mature institutional futures market,
like the S&P 500 E-Mini studied in Andersen et al. (2020), while the
crypto market still carries frictions such as asymmetric information,
shallow order books, or retail-driven businesses in market settings, or
it could be market/instrument specific.

A positive value of g reinforces the idea that the arrival of infor-
mation drives both volume and volatility, agreeing with the MDH as
in Clark (1973) and Epps and Epps (1976). A value of f > 2 might
also indicate that crypto futures exhibit liquidity fragmentation, where
large trades disproportionately impact market volatility. This could
also indicate that market order imbalances play a critical role in price
fluctuations. These results align with the evolving nature of the Bitcoin
and Ether futures microstructures, where market depth and liquidity
may still be maturing compared to traditional futures markets, which
merits further analysis.

Nevertheless, a value of f > 0 is also important for risk manage-
ment. Under this assumption, especially the case of # > 2, monitoring
trade size becomes predictive of volatility, as larger trade sizes can
signal incoming volatility spikes. This is useful not only for market
participants but also for the exchange’s risk management and internal
controls. For example, it might be interesting to incorporate trade-size
covariates to enhance GARCH-type models for volatility forecasting.

When analyzing the quantile regression, BTC futures’ declining g,
coefficient implies that larger trades lose explanatory power under
extreme conditions. This has important trading implications because,
at the tails, trade size no longer predicts volatility as effectively. For
risk management, this stresses the importance of nonlinear modeling
in Value-at-Risk (VaR) or tail risk settings with extreme value theory.

Since larger trades are associated with a much higher return vari-
ance, investors may experience significant price slippage and market
impact. This suggests that liquidity in the market may not be sufficient
to absorb large trades. Furthermore, the strong link between trade
size and volatility creates opportunities for volatility-based trading
strategies, such as market-making and statistical arbitrage arising from
low information diffusion.

There are a few particularities of the BTC and ETH futures market
that could explain why the MDH matches the data better than the
ITIH. First, since the crypto market operates in a continuous 24/7
regime, with no trading hours, information arrives asynchronously
across different time zones. The different reactions of traders to these
information arrivals might lead to heterogeneous returns distributions.
Moreover, the greater proportion of retail traders might make the
market more sensitive to the arrival of information, perhaps due to
emotional trading and sentiment-driven moves. If the latter applies, it
would be possible to see a change in § over time as the proportion
of institutional traders increases. It is, nonetheless interesting that a
foundational microstructure model originally developed for equity and
FX markets extends well to decentralized crypto derivatives.

5. Final remarks

Figs. 1 to 4 give the impression that Bitcoin and Ether futures
markets are maturing, with increasing participation and reduced return
variance. The intraday trading patterns observed in Figs. 5 and 6 reveal
the strong effects of the market structure, with clear regime-dependent
liquidity cycles throughout the trading day.

Figs. 7 and 8 might suggest seasonal patterns are a stylized fact
in crypto futures, since it was clear in the years 2022-2024. This
is a potential topic of investigation for researchers interested in the
behavior of cryptocurrencies markets and, in particular, of futures.

Therefore, these preliminary analyses of stylized facts could spur
further research related to structural breaks, nonlinear dependencies,
and market microstructure models to further dissect the complexities
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of cryptocurrency trading dynamics and, in particular, to theoretically
explain some of the stylized facts and to investigate whether they are
noticeable in other cryptocurrencies and trading platforms.

This result is important for both investors and policymakers. For
market participants, evidence favoring MDH implies that volatility is
primarily information driven, which has direct implications for trad-
ing strategies, execution timing, and volatility forecasting, as well as
for risk management strategies. For trading platforms, regulators, and
portfolio managers, a rejection of the ITIH suggests that the market
invariance conditions observed in Andersen et al. (2020) do not hold for
this particular dataset, highlighting potential idiosyncrasies in crypto
futures markets. By investigating how the different derivatives conform
to or deviate from theoretical predictions, our aim is to provide another
framework for assessing the maturity and structure of crypto derivative
markets, thus filling the gap between theoretical models and practical
market behavior.

Our analysis finds consistent evidence favoring the MDH over the
ITIH—for both BTC and ETH futures—to empirically explain the behav-
ior of these futures markets, with more explanatory power at the daily
level of aggregation and at lower frequencies. At the 1-min aggregation
level, we notice the strong effects of microstructure noise, distorting
the results and the explanatory power of the regression. This effect is
stronger for BTC futures, but is also seen in ETH futures.

We recognize that aggregation issues may affect our analysis pri-
marily due to data availability constraints. Specifically, it is not always
possible to report all contracts traded at an identical price against an
incoming order as a single combined transaction quantity, as was done
in Andersen et al. (2020). If these data limitations were overcome,
future research could beneficially explore the MDH vs. ITIH test under
the conditions outlined above, provided sufficient data are available.

Further advances in the theory of market microstructure could be
beneficial in explaining this non-linear relationship. This could involve
a test assuming other market microstructure models, such as the Order
Flow Toxicity of Easley et al. (2012), which lies beyond the scope of
this paper.

Further research would be beneficial to associate macroeconomic
and corporate events with months linked to higher volatility and in-
creased market activity, and the effect of institutional behavior on
the microstructure of the cryptocurrency futures market. A systematic
analysis encompassing other liquid futures traded on the same platform
and on other platforms would be interesting. Finally, in order to assess
whether retail traders are more sensitive to the arrival of information,
as discussed in the previous section, further studies could test this using
the VIX index, which measures sentiment-driven trading by retail and
institutional investors.

Finally, our study focuses exclusively on data from Binance. Al-
though it is a major exchange, it would be interesting to investigate
the coherence of the identified behavior on other trading platforms
and exchanges. Cross-exchange comparisons of this type would be an
worthwhile continuation of this line of research.
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