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Abstract

We investigate the n~' biases of the maximum likelihood estimates from normal
linear regression models with unknown error covariance matrix, where 1 is the
sample size. The error covariance matrix is nonscalar and depends on a set of
unknown parameters that can be efficiently estimated by maximum likelihood. We

give a matrix formula for the n~! biases of the estimates of these parameters. The
formula is simple enough to be used algebraically to obtain several closed form
expressions in special cases. It has also advantages for numerical purposes.
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1. Introduction

Over the last twenty years, there has emerged a considerable quantity of
results concened with the finite sample properties of nonlinear maximum
likelihood estimates. The obvious difficulty with nonlinear estimates is that they
cannot be expressed as explicit functions of the data. A very important class of



models in statistics and econometrics are normal linear regression models with
unknown covariance matrix. The covariance matrix is assumed to depend on a set
of unknown nonlinear parameters.

It is well known that maximum likelihood estimates may be biased when
the sample size n or the total Fisher information is small. The bias is usually
ignored in practice, the justification being that it is negligible when compared to

the standard errors of the estimates. In fact, the bias is in general of order n",

while the asymptotic standard deviation is of order n~V2, However, for some
models, the bias terms can be appreciably larger than the corresponding standard
deviation terms. In these cases, the bias correction can be important and the
availability of formulae for calculating the biases is useful. Exploring this idea,
Cordeiro and McCullagh (1991) derived formulae for second-order biases of
maximum likelihood estimates of the parameters in generalized linear models
(McCullagh and Nelder, 1989).

The main purpose of this paper is to derive a general formula for the large-
sample biases of maximum likelihood estimates, in normal linear models with
unknown covariance matrix, that can be of direct pratical use of applied
researchers. It is possible to find closed form expressions for the second-order
biases in terms of the parameters in particular cases. This formula combined with
the use of a computer algebra system such as REDUCE (Hearn, 1984) or a
language supporting numerical linear algebra, such as APL or GAUSS, will

provide the easiest way to compute the biases of the estimates for normal linear
models with unknown covariance matrix.

The basic methodology used to derive the biases follows Cox and Snell
(1968). The discussion in this paper proceeds as follows. Section 2 presents a
formal description of the general normal linear model where the error covariance
matrix is nonscalar and unknown. In section 3, we derive a simple matrix formula

for the n™' biases of the maximum likelihood estimates of the parameters in the
covariance structure. The formula depends only on the model matrix for the mean
vector, on the covariance structure and its first and second partial derivatives with
respect to their parameters. This formula is also simple enough to obtain several
closed form bias corrections in a variety of important models. Finally, in Section 4,
we give applications to some special models.

2. Normal Linear Models

We consider the normal linear model where emor covarance matrix is
nonscalar and depends on a set of unknown parameters that can be efficiently
estimated by maximum likelihood. The model is



Y = XB+U, (1)

where Y is an n-dimensional column vector of random variables, X is a known

nx p model matrix of fixed known regressors, B is a p-dimensional column

vector of unknown regression parameters, and U is an n-dimensional column
vector of unobserved emors. As foundation for estimation by maximum likelihood
and hypothesis tests we assume that the random error vector U follows a
multivariate normal distribution with zero mean vector and a nonsingular nx N

covariance matrix V). The class of models (1) includes many of the important
models of autocorrelation and heteroscedasticity discussed in the literature as, for
instance, general ARMA models and multiplicative heteroscedastic regression
models.

It will be more convenient to work with 1 x n precision matrix V. The
elements of V=V(y) are known smooth functions of the unknown g-

dimensional parameter vector Y. Thus, we have (p+q) parameters for the
simultaneous modelling of mean vector and covariance structure. The components

of B and y are unrelated and can vary independently. The parameter space for B
is a p-dimensional Euclidean space whereas the parameter space for y is an open
set M in a g-dimensional Euclidean space. Further, we assume that p and q are

small compared to n and that XTVX is positive definite for all ¥ in I'. Let

£ = £(0) be the total log likelihood for 8 = (BT,YT)T, the (p+q) vector of
unknown parameters, given the observable data y.

We have

L= —%log(Zu)+%log|V|—%(y -Xp) V(y-XB). (2

of course, some regularity conditions must be specified on the behavior of { as the
sample size n approaches infinity. We consider that the function £ is regular (Cox

and Hinkley, 1974; Chapter 9) with respect to all B and y derivatives up to and
including thosc of third order. For every sample size, the elements of V are
assumed to possess derivatives up to the second order everywhere in the parameter
space I'. In addition, the derivatives of £ must behave nicely as n tends to infinity.



An important special case of equation (2) above is then log likelihood for

gencral ARMA models. Expressions for Vor V! for these models are given, for
instance, in Shaman (1973), Galbraith and Galbraith (1974) and Ljung and Box
(1979). Another special case corresponds to a multiplicative heteroscedastic model
in which V™' is a diagonal covariance matrix with diagonal entries Uf,...,cr:,

where o} = Var(Y,) = exp( W/Y), W being a Ixq vector of known
constants. This model is quite useful in fields including engineering, economics,
and the biological and physical sciences. The variance may also be modeled as a
function of the covariates in the expected responsc as, for instance,

0'3 =02V(XIB) for £=1,...,n, where V(.) is smooth, known and assumed
twice differentiable. This formulation leads to a dependent variable heteroscedastic
model.

Let ﬁ and ¥ be the maximum likelihood estimates of B and v,

respectively, and let 8 = (BT,7 )7 be the full maximum likelihood estimate. We
must assume that the estimate O converges to the true parameter 0 as n — 0. We

define, for R=1,...,q, the derivatives Vg =9V /dyzand VX =V~ /dy,.

The maximum likelihood equations for [Ai and ¥ can be written as

B=(XTVX)'XVy

and
tr(VVg) = (y— XB)T Ve (y - XB)

for R=1,...,q, where V=V(§) and Vi = Vi (§).These estimates [3 and ¥
can be calculated numerically by any iterative algorithm. Approximations to the

biases of ﬁ and ¥ are developed in the next section.

The emphasis in this article is on demonstrating the usefulness of bias.

correction for ¥ to improve the statistical properties of large-sampe maximum

likelihood inference procedures for the normal linear models with unknown
covariance matrix.



We define joint cumulants of the log likelihood derivatives by
k; = E(&'¢/50,09)), k; = E(8’0/09,00,09,) and
ki = E{(5°¢/00,00;)(8¢/08,)} for ij.£=1,..,p+q. Futhermore, we
define the following cumulant derivative kfj') = ok;;/ 90, forijl=1,..,p+q.
The total Fisher information matrix of order (p+q) for 6 is K = {-k;} and let
K = {~k¥) be its inverse. All k's are assumed to be O(n).

Differentiating (2) and taking expectations we can find the joint cumulants
of the derivatives of £(©) with respect to the components of 3 and y. We can
easily show that E(-8%¢/0Bdy) =0, i. ¢., the parameters B and y are globally
orthogonal (Cox and Reid, 1987). The partition 0T =(B",y") induces a
corresponding block diagonal information matrix K = diag{Kg,K,,} with
submatrices Kg g = E(~07¢/0p?) for B and K, , = E(—2%€/8y?) for y. Let

K'= diag{KE}ﬂ,K;_', } be the inverse information matrix. The estimates ﬁ and

Y are asymptotically independent due to their normality and the block diagonal
structure of the information matrix.

3. Bias of Estimate of Parameter y

In this section our attention is directed to bias correction of the estimate of
the parameter y in model (1). The goal here is to obtain a general matrix

expression for the bias of estimate of parameter y . Consider a model defined as in
Section 2. Let B,(é,) be the n~’ bias of é, for r=1,...,p+q, where 0, may
represent any component of J and y. From the general expression for the
multiparameter n~! biases of the maximum likelihood estimates given by Cox and

Snell (1968), we can write, using the notation of Section 2,

n Gy i 1
Bi(6,) = KKk - Skie). 3)



forr=1,...,p +q, where the summation ¥ is taken over all p + q parameters

Bl""’Bpl Yl:----Yq-

The interpretation of a superscript is usually clear from the context and
never refers to a power in a summation expression.

In the right-hand side of equation (3), which is of order n", consistent
estimates of the parameters B and y can be inserted to define the corrected
maximum likelihood estimates é,=é,—-f3,(é,). for r=1,...,p+q, where
ﬁ,(.) means the value of B(.) at the point 6. The comected estimates ér's

should have smaller biases than the corresponding uncorrected é, 's. The corrected
estimate O has not been used extensively, possibly because of the difficulty of
cvaluating the expectations to find B,(é). The bias term B,(é) is important

since, in most instances, a good deal of the bias of é can be accounted for (and
hence comrected for) by the second-order terms in its asymptotic expansion. The

calculation of Bl(é) in the maximum likelihood estimates of logistic regression

models have been studied by many authors, including Anderson and Richardson
(1979), McLachlan (1980), Schaefer (1983) and Copas (1988). Second-order
biases of maximum likelihood estimates of the linear parameters and fitted values

in generalized linear models were derived recently by Cordeiro and McCullagh
(1991). An important paper by Cook et al. (1988) presents these biases for normal
nonlinear regression models,

We now derive the n~! biases of the estimates ﬁ and ¥ in model (1). From

now on we reserve low indices to denote components of the 8 vector and upper
indices for components of the y vector. Since k g = k'S = 0, we have only to

take into account for calculating Bl(ﬁi) the following two sums:

i 1
§k’k""(k§:“’-5kj,m)



and

i 1
3:7 kIKk™M (kM - 5 Kiu), where

Y is the summation over the specific components of B only and ) denotes the
B B.y

summation over all combinations of the (p+q) parameters in 3 and y. We can

easily see from equation (2) and the orthogonality of B and y that
=k =kl = kg) = 0. Then, the last two sums imply that the n”" bias of
ﬁ is zero, i. €., B,(ﬁ) = 0. This is to be expected for the normal linear model but

it is not obvious that this happens for any covariance matrix V' since B is
obtained, apart from this case, from a nonlinear equation and because of the

dependence of 6 ony and V. Although the n~! bias of P cquals zcro, its higher-
order biases may be different from zero.

To evaluate the n™" bias of ¥, we can rewrite equation (3) as

. 1
B;(v,)= Zk'sk'“(kg') -=kgu)s
By 2

for any Ith. component of y, where the indices s,t,u vary in all parameters of

0" =(B",¥"). In view of the block diagonality of the information matrix for 6,

we can obtain B,(¥,) by evaluating the following two sums:

A= Tk () —%km)

and



B= ?kmks‘r(kgg = _21-kRST)'

where 3. is the summation ranging from y 1o Y,
Y

We define the derivatives, for any two components R and S of y,
Ve=0V/0rg,  VR=oV'/dy,,  Veg=V/dydys  and
VB = gyl Oy Oy and adopt the following notation:

Ve=VIV, VR=VRV =V, Vo = VIV, VRS = yRSY,

my = tr(Vy), mR =wo(VR)= Mg, Mg = tr(Vpg),mRS = tr(VRS),
mg s = tr(Vy V), mRS=tr(VRVS),

Mgsr = tr(Veg V1), mRST = tr(VRSYT),

Mg st = tr(VaVVp), mRST= gr(VRYSYT),

The m's defined above satisfy certain equations which facilitate their calculation

(see Cordeiro and Klein , 1994). For example, mRs=2mR's—-mRs.

RS.T_  RST_ RTS

mRs = 2mns - mRs, mRS‘T =m m and

Mpgx=-m">T,
We need the following results:
@) VR = -V 'V V! and V, = -VVRYV;
Slogl V]
R
(iii) E{(Y —p)T A(Y - p)} = tr(V~'A), where E(Y) = pt and
Cov(Y)= V™, for any positive defined matrix A,

(ii) =tr(Vg) =mg;



Differentiating (2) and making use of (i)-(iii), we find after some algebra

1
that kg = ‘E(Wsr.n +Mpys—Mgpr —Mrgr )

Kpq = —X) VgX,, where X, is the St column of the mamix X, and
_ 1
Kpst = "2'(mns.1 +Mgrp + Mprs— Mg ~ Mrsgr)-

We can obtain a simple expression in matrix notation for B, (7) by

inserting the cumulants k's and derivatives of cumulants above in sums A and B.
The resulting expressions follow elementary matrix calculations. They are given
by

A zkmkﬂ(k(l) _-k“)— 2pl Y 1111 a

and

B= ZKT(R - Tnsr) = g PEK; by
Y
where p; is a @ x | vector of zeros but 1 in the 1th, component, e isaqxl
vector whose Rth. typical component is tr(K[,"nt'R)) with GS'R) = X"V X
being a px p matrix, for R=1,...,q, and T, is a gx1 vector whose sth,

component is tr(K, YA§S) ), AS'S) being a q x q matrix with (U,V)th element

defined by 2mgy, y — Mgy, for S,U,V=1,...,q.

We can then write in matrix notation

B,(D=Kityp. @



1
where t,.ﬂ =z(2f.1’ +Tz¥ )

A number of remarks are worth making with respect to equation (4). First,
B,(¥) is a function of the model matrix X, the covariance matrix V™!, the

precision matrix V and the first and second partial derivatives of either V or V™"
It depends explicitly on the information matrix for ¥ . For models with closed form

information matrix for @, it is possible obtain a closed form expression for B,(Y).

Although B,(¥) is easy to compute because its expression involves only simple
operations on matrices and vectors, it is not casy to interpret. Second, equation (4)
in conjunction with a computer algebra system such as REDUCE (Hearn, 1984) or

MAPLE (Char et al., 1988) will give B, (y) with minimal effort. Furthermore, we
can calculate B,(Y) numerically via APL or GAUSS. Third, equation (4) allows

one to evaluate the influence of second-order terms on the location of estimate Y.

For special covariance structures, this term may be relatively large and one may be
interested either in estimating it (cither directly or by some resampling technique)
or at least taking it into account informally when making inferences. The right-

hand side of (4) can be estimate at 8T = (ﬁT,'?T) to define the bias corrected
vector ¥ =% — ﬁ,(f) =y- K;_‘,i,_s. The corrected estimate ¥ would be
expected to have better sampling properties than the uncorrected ¥ . The bias term

ﬁ,(f) has the effect of shrinking ¥ towards the true parameter y .

4, Illustrations

It is useful to consider a couple of simple examples which illustrate the
techniques of the previous section and permit a clarification of the notation. Some
other important special cases could also be easily obtained because of the
advantage of formula (4) which requires only simple operations on matrices.

" Equation (4) covers in particular the simplest model when Y),...,Y, are
independent and identically distributed random variables in a normal distribution

of unknown mean and unknown variance 62, N(j1,0?), say. In this case, X =1,

10



B=p,y=0" V' =y, V, =~y and V, , =2y7], where 1 is an nx1
vector of ones and I is an nx n identity matrix. The maximum likelihood

estimates from a sample Yy,,.,y, are {=y=Xy;/n and
62 =Y (y;- y)2/n. It is quitt known that J~ N(p,62/n) and
6% ~ ozxi_, /n and therefore E(R)=p and E(6%)=0?-062/n. The

information matrix for 6=(B,y)" has submatrices Kgp=n/y and
a 2 ; ) m_

K,,=n/2y" We can essily obtain G/’ = n/y” and A)’ =0 and then

Typ = -y" and T, = 0. Using (4) we find B,(¥) = —y / n. This result agrees

with the fact that E(6%) = 6® — 67 / n and represents a partial check of equation
).

As a second example, we consider the multiplicative heteroscedastic model
Y ~ N(XB,V™") introduced in Section 2, for which V™ = diag{c?,...,02}
and 03 = exp(w}y) for £=1,...,n. Cordeiro (1993) has shown thats

B,(7) = ~(WTW)'WTr’, ©)

where T =(A,+VBy)I, W=(w,,.,W,)' is an nxq matrix,
A =2WK;) WT =W(W'W)'WT and B=XK;pX" = X(XTVX)" X"

are N x N matrices, Ay and B, are diagonal matrices with the corresponding
elements of A and B, respectively, and 1 is an n x | vector of ones. The matrices

2A and B have simple interpretations as asymptotic covariance structures of Wy

and Xﬁ, respectively.

We now show that (5) comes directly from equation (4). For doing this, it is

1 y
only necessary to prove that ‘t,’ﬂ=—5WTt'. We use the notation

Dy =diag{wz,...,Wer} for R=1,...,q. For this model we have Vg = —Dp,

11



AR =—WIDW ad GP=X"V;X for R=l,..,3 Thus,

1
ty.B'_‘Z(z'l,_p"‘Tz,) has a St typical component given by
1
z{zU(KB'leTVSX)—tr(K;",WTDsW)} which may be written as

—%tr(Ds{VB+A}), for S=1,..,q. On the other hand,

] . ]
—EWT‘I =-5WT(VBd +A,)1 whose Sth component is identical to the

corresponding component of T,.p- We conclude that (4) is a generalization of (5).

Finally, we condisider a stationary AR(1) model
Y, —u=p(Y;— 1) +u, |pl<1, where u, ~N(0,0%) for t=1,...,n. Here X

reduces to an nx 1 vector of ones, B=p and y =(p,02)". The covariance

matrix V™ has a simple form

whose inverse is

12



We can find Ky g = {2—-2p+(n-2)(1-2p+p”)} and

2

p c
1 1
g Pl 2™ o™
L 1 n I

2l -——m . B
(¢} 202 P 20.4

where m, = ~2p/(1-p?) and m,,, =2{n(1-p*) +3p* - 1}/(1-p’)".

Further,

2m, ,-m 2m -m
AP — p [ P.p:p PPP p.p.ol po? p ]

PO

and



where

m,,, = —4(n_2)p/(l _pz)z,

Mypp = P{6N(1-p%)+14p -6}/ (1-p?)’,

My pot = My =={2n(1-p?)+6p” -2}/ 0’ (1-p*),
My ot o =My 2 = -2p/c(1-p?),

- 2 2
m_ o ==2(n-2)/6}(1-p?),

11—4p/0' (] p).

Mg g = 2moz'°z°: =-2n/c% We also have

G =2672{~1+(n-2)(p~1)} and

G =~6™(2(1-p) +(n-2)(1-2p +p%)}. Then,

s = {2‘2P+(ﬂ-2)(1—2p+92)}"( 2{(n-2)(p- -1}/ 0" J

-{2(1-p)+(n-2)(1-2p+p")} /o*

and
1. = 4 {n(2m,-my, p)=2mm, }/2
) = — _ )
v (nmN,—mg) {n(m,, -2m_)-2m2}/2c?
We can now obtain a simple expression B, () by inserting the K,y g
and T, After  some  algebra and  reducion we find

B,(Y)=(-2p/n -c?/ n)T. This result coincides with Tanaka's (1984)

formulae for the n™! biases of p and 6.

14
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