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Abstract 

We investigate the n-• biases of the maximum likelihood estimates from nonnal 
linear regression models with unknown error covariance matrix. where n is the 
sample size. The error covariance matrix is nonscalar and depends on a set of 
unknown parameters that can be efficiently estimated by maximum likelihood. We 

give a matrix formula for then-• biases of the estimates of these parameters. The 
formula is simple enough to be used algebraically to obtain several closed fonn 
expressions in special cases. It has also advantages for numerical purposes. 

Keywords : Bias correction; Covariance matrix; Hcteroscedastic model; 
Information matrix; Maximum lilcelihood estimate; Normal linear model. 

1. Introduction 

Over the last twenty years, there has emerged a considerable quantity of 
results concerned with the finite sample properties of nonlinear maximum 
likelihood estimates. The obvious difficulty with nonlinear estimates is that they 
cannot be expressed as explicit functions of the data. A very important class of 



models in statistics and econometrics are nonnal linear regression models with 
unknown covariance matrix. The covariance matrix is asswned to depend on a set 
of unknown nonlinear parameters. 

It is well known that maximwn likelihood estimates may be biased when 
the sample size n or the total Fisher information is small. The bias is usually 
ignored in practice, the justification being that it is negligible when compared to 
the standard errors of the estimates. In fact, the bias is in general of order n-1

, 
while the asymptotic standard deviation is of order n- 112

• However, for some 
models, the bias tenns can be appreciably larger than the corresponding standard 
deviation terms. In these cases, the bias correction can be important and the 
availability of formulae for calculating the biases is useful. Exploring this idea. 
Cordeiro and McCullagh (1991) derived fonnulae for second-order biases of 
maximum likelihood estimates of the parameters in generalized linear models 
(Mccullagh and Nelder, 1989). 

The main pwpose of this paper is lo derive a general formula for the large­
sample biases of maximum likelihood estimates, in normal linear models with 
unknown covariance matrix, that can be of direct pratical use of applied 
researchers. It is possible to find closed form expressions for the second-order 
biases in terms of the parameters in particular cases. This formula combined with 
the use of a computer algebra system such as REDUCE (Hearn, 1984) or a 
language supporting numerical linear algebra, such as APL or GAUSS, will 
provide the easiest way to compute the biases of the estimates for nonnal linear 
models with unknown covariance matrix. 

The basic methodology used to derive the biases follows Cox and Snell 
( 1968). The discussion in this paper proceeds as follows. Section 2 presents a 
formal description of the general normal linear model where the error covariance 
matrix is nonscalar and unknown. In section 3, we derive a simple matrix formula 
for the n-1 biases of the maximum likelihood estimates of the parameters in the 
covariance structure. The fonnula depends only on the model matrix for the mean 
vector, on the covariance structure and its first and second partial derivatives with 
respect to their parameters. This formula is also simple enough to obtain several 
closed form bias corrections in a variety of important models. Finally, in Section 4, 
we give applications to some special models. 

2. Normal Linear Models 

We considCJ the normal linear model where error covariance matrix is 
nonscalar and depends on a set of unknown parameters that can be efficiently 
estimated by maximum likelihood. The model is 
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Y=XJ3+U, (I) 

where Y is an n-dimensional colwnn vector of random variables, X is a known 

n x p model matrix of fixed known regressors, J3 is a p-dimensional column 

vector of unknown regression parameters, and U is an n-dimensional column 

vector of unobserved errors. As foundation for estimation by maximum likelihood 

and hypothesis tests we assume that the random error vector U follows a 

multivariate normal distribution with zero mean vector and a nonsingular n x n 

covariance matrix y-l. The class of models (1) includes many of the important 

models of autocorrelation and hctcroscedasticity discussed in the literature as, for 

instance, general ARMA models and multiplicative hetcroscedastic regression 

models. 

It will be more convenient to work with n x n precision matrix V. The 

elements of V = V ( y) are known smooth functions of the unknown q­

dimcnsional parameter vector y . Thus, we have (p+q) parameters for the 

simultaneous modelling of mean vector and covariance structure. The components 

of P and y are unrelated and can vary independently. The parameter space for P 
is a p-dimensional Euclidean space whereas the parameter space for y is an open 

set M in a q-dimensional Euclidean space. Further, we assume that p and q arc 

small compared to n and that XTVX is positive definite for all y in r. Let 

l=l(8) be the total log likelihood for 8=(13T,l)T. the (p+q) vector of 

unknown parameters, given the observable data y. 

We have 

(2) 

of course, some regularity conditions must be specified on the behavior of l as the 

sample size n approaches infinity. We consider that the function t is regular (Cox 

and Hinkley, 1974; Chapter 9) with respect to all p and y derivatives up to and 

including those of third order. For every sample size, the clements of V are 

assumed to possess derivatives up to the second order everywhere in the parameter 

space r. In addition, the derivatives oft must behave nicely as n tends to infinity. 
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An important special case of equation (2) above is then log likelihood for 
general ARMA models. Expressions for V or v-t for these models are given, for 
instance, in Shaman (1973), Galbraith and Galbraith (1974) and Ljung and Box 
(1979). Another special case corresponds to a multiplicative heteroscedastic model 

in which v - t is a diagonal covariance matrix with diagonal entries CJ~, . . . , cr!, 
where a~= Var(Y1) = exp(w;y), wI being a Ix q vector of known 
constants. This model is quite useful in fields including engineering. economics, 
and the biological and physical sciences. The variance may also be modeled as a 
function of the covariates in the expected response: as, for instance, 

a:= a2V(xf p) for t = J, ... ,n, where V( .) is smooth, known and assumed 
twice differentiable. This formulation leads to a dependent variable heteroscedastic 
model. 

A 

Let P and y be the maximum likelihood estimates of ~ and y , 

rc:spc:ctivc:ly, and let 8 ::: (PT, y T) T be the full maximum likelihood estimate. We 

must assume that the estimate 0 converges to the true parameter 9 as n ➔ oo . W c: 

define, for R= l, ... ,q, the derivatives VR = aV I oyRand yR =av-I/ O'fR• 

The maximum likelihood equations for P and y can be written as 

and 

for R= l, ... ,q, where V = V(y) and VR = VR (y) .These estimates P and y 
can be calculated numerically by any iterative algorithm. Approximations to the 

biases of P and y are developed in the next section. 

The emphasis in this article is on demonstrating the usefulness of bias. 
correction for y to improve the statistical properties of large-sampe maximum 
likelihood inference procedures for the normal linear models with unknown 
covariance matrix. 
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We define joint cwnulants of the log likelihood derivatives by 

and 

kij.l = E{(&t I 00/)()j)(of/ ae,)} for ij,l = 1, ... ,p+q . Futhermorc, we 

define the following cwnulant derivative k~f> = okij / 001 for ij,l = 1, ... , p + q. 

The total Fisher information matrix of order (p+q) for 8 is K = {-kij} and let 

K-1 = {-kij} be its inverse. All k's arc assumed to be O(n). 

Differentiating (2) and taking expectations we can find the joint cwnulants 

of the derivatives of l(8) with respect to the components of p and y. We can 

easily show that E(-&i / op&y) = 0, i.e., the parameters~ and y are globally 

orthogonal (Cox and Reid, 1987). The partition 8T =(PT,yT) induces a 

corresponding block diagonal inforrnation matrix K = diag { K11.11 , K 1 ,T } with 

submaoices Kp,p = E(-&l I ol}2 ) for p and K 1
,1 == E(-&t I cy 2 ) for y . Let 

K-1 = diag{K~~11 ,K;\} be the inverse information matrix. The estimates p and 

Y are asymptotically independent due to their norrnality and the block diagonal 

structure of the information matrix. 

3. Bias of Estimate of Parameter y 

In this section our attention is directed to bias correction of the estimate of 

the parameter y in model (1). The goal here is to obtain a general matrix 

expression for the bias of estimate of parameter y . Consider a model defined as in 

Section 2. Let B 1(9,) be the n-1 bias of 9, for r= 1, ... ,p+q, where 8, may 

represent any component of P and y . From the general expression for the 

multiparameter n-1 biases of the maximum likelihood estimates given by Cox and 

Snell (1968), we can write, using the notation of Section 2, 

(3) 
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for r= 1, ... , p + q, where the summation r is taken over all p + q parameters 

P ••... ,pp, Y1,···•Yq· 

The interpretation of a superscript is usually clear from the context and 
never refers to a power in a summation expression. 

In the right-hand side of equation (3), which is of order n-1
, consistent 

estimates of the parameters p and y can be inserted to define the corrected 

maximum likelihood estimates or = er - IJi (Or). for r=] •...• p + q. where 

Bi(.) means the value of 8 1(.) at the point 8. The corrected estimates 8/s 

should have smaller biases than the corresponding uncorrected 8, 's. The corrected 

estimate 8 has not been used extensively, possibly because of the difficulty of 

evaluating the expectations to find B1(0) . The bias term B1(0) is important 

since, in most instances, a good deal of the bias of 8 can be accounted for (and 
hence corrected for) by the second-order tenns in its asymptotic expansion. The 

calculation of 8 1 (8) in the maximum likelihood estimates of logistic regression 
models have been studied by many authors, including Anderson and Richardson 
(1979), Mclachlan (1980), Schaefer (1983) and Copas (1988). Second-order 
biases of maximum likelihood estimates of the linear parameters and fitted values 
in generalized linear models were derived recently by Cordeiro and McCullagh 
(1991). An important paper by Cook et al. (1988) presents these biases for nonnal 
nonlinear regression models. 

We now derive the n-1 biases of the estimates~ and y in model (I). From 

now on we reserve low indices to denote components of the P vector and upper 

indices for components of the y vector. Since k rs = k rs = 0, we have only to 

take into account for calculating 8 1 (Pi) the following two sums: 

6 



and 

I: is the swnmation over the specific components of p onJy and I: denotes the 
~ ~ 

summation over all combinations of the (p+q) parameters in Pandy. We can 

easily see from equation (2) and the orthogonality of P and y that 

krsT = krsT = k~l = k~~ = 0. Then, the last two swns imply that the n-1 
bias of 

A A 

P is zero, i. e., 8 1 (P) = 0. This is to be expected for the normal linear model but 

it is not obvious that this happens for any covariance matrix v-1 since J3 is 
obtained, apart from this case, from a nonlinear equation and because of the 

dependence of p on y and Y. Although the n-1 bias of p equals zero, its higher­
order biases may be different from zero. 

To evaluate the n-1 bias of y , we can rewrite equation (3) as 

for any 1th. component of y, where the indices s, t, u vary in all parameters of 

0 T = (PT, y T). In view of the block diagonality of the information matrix for 0, 

we can obtain B1 ( y 1) by evaluating the following two sums: 

and 
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where r is the summation ranging from y I to y q . ., 

We define the derivatives, for any two components R and S of y, 

VR =iN/oyR, 

VRS = &v-1 
/ O"f RO'f sand adopt the fo11owing notation: 

- -I - R R - - -1 - RS RS VR = V VR, V = V V = -Va, YRS = V YRS, V = V V, 

and 

- R - R - RS ,-rRS ma= tr(Va), m = tr(V ) = -mR. mRS = tr(Vas),m = tr( v·· ), 
ma,s = tr(Va V5 ), mR .s = tr( VRV5). 

mRS.T = tr(VRS VT), mas,T = tr(VRSVT). 

ma,s,T = tr(Va Vs Vy), mR,S,T = tr(vaysyT). 

The m's defined above satisfy certain equations which facilitate their calculation 
(sec Cordeiro and KJein , 1994). For example, mRS = 2mR.S - mRS, 

mRS = 2ma,s - mas, 

m _ ma,S,T a,s,T- - · 

m - mRS.T mR,S,T mR,T,S RS,T- - -

We need the following results: 

(i) yR = -v-1va v-1 and Va= -VVRV; 

.. aloglVI ('' ) (u) - - - = tr va = ma; 
O"( a 

and 

(iii) E{(Y - µ)1 A(Y -µ)} = tr(V- 1A), where E(Y) =µand 
Cov( Y) = v-1

, for any positive defined matrix A. 
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Differentiating (2) and making use of (i)-(iii), we find after some algebra 

that k(T)RS = _.!.(mSTR + mRT,s -ms TR - mTS a), 2 . . . . . . 

kllsl = -x~VR x1, where x1 is the sth. column of the matrix X, and 

We can obtain a simple expression in matrix notation for 81 ( Y) by 

inserting the cumulants k's and derivatives of cumulants above in sums A and B. 
The resulting expressions follow clementaiy matrix calculations. They are given 
by 

and 

where p1 is a q x I vector of zeros but J in the 1th. component. t ly ,JI is a q x ) 

vector whose Rth. typical component is tr( K~~JIG~R)) with G~R> = XTVR X 

being a p x p matrix. for R= 1, ... ,q, and t 27 is a q x 1 vector whose sth. 

component is tr(K;~1A~5>), A~S) being a q x q matrix with (U,V)th element 

defined by 2ms.u,v - ms.uv, for S,U,V= 1, ... ,q. 

We can then write in matrix notation 

(4) 
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A number of remarks are worth making with respect to equation (4). First, 
Bi('y) is I function of the model matrix X, the covariance matrix v-1

, the 
precision matrix V and the first and second partial derivatives of either V or v-1

• 
It depends explicitly on the information matrix for y . For models with closed form 
information matrix for 8, it is possible obtain a closed fonn expression for B1 ( y). 
Although Bi('y) is easy to compute because its expression involves only simple 
operations on matrices and vectors, it is not easy to interpret. Second, equation (4) 
in conjunction with a computer algebra system such as REDUCE (Heam, 1984) or 
MAPLE (Char et al., 1988) will give Bi('y) with minimal effort. Furthermore, we 
can calculate Bi("y) nwncrically via APL or GAUSS. Third, equation (4) allows 
one to evaluate the influence of second-order terms on the location of estimate y . 
For special covariance stnicturcs, this term may be relatively large and one may be 
interested either in estimating it (either directly or by some resampling technique) 
or at least taking it into account informally when making inferences. The right-

hand side of (4) can be estimate at 9T =(PT, yT) to define the bias corrected 

vector y = y - Bi('y) = y - i<.;\ i-,.~- The corrected estimate j would be 
expected to have better sampling properties than the uncorrected y . The bias term 

B1 ( y) has the effect of shrinking j towards the tnie parameter y . 

4. Illustrations 

It is useful to consider a couple of simple examples which illustrate the 
techniques of the previous section and permit a clarification of the notation. Some 
other important special cases could also be easily obtained because of the 
advantage offormuJa (4) which requires only simple operations on matrices. 

· Equation (4) covers in particular the simplest model when Y1, ... , Y11 are 
independent and identically distributed random variables in a normal distribution 

• of unknown mean and unknown variance a 2
, N (µ, <J

2
), say. In this case, X = 1, 
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p = µ, y = o1
, v-1 = yl, v., = -y-21 and v.,,., = 2y-3I, where 1 is an n x I 

vector of ones and I is an n x n identity matrix. The maximwn likelihood 

estimates from a sample y 1, ... , y n arc µ = Y = LY i / n and 

o-2 = I;(yi -y)2 / n. It is quite known that µ - N(µ,o2 
/ n) and 

o2 - o\:!-i / n and therefore E(µ) = µ and E(o-2
) = o 2 

- o 2 
/ n. The 

information matrix for 8 = (J3, y) T has submatrices Kp,p = n / y and 

K = n / 'lv 2 We can easily obtain Q<T> = -n / y2 and A (y) = 0 and then T,T ... , . T Y 

't1y,p = -y-1 and 't2y = 0. Using (4) WC find a.(y) = -y / n. This result agrees 

with the fact that E( o-2) = o2 - o 2 / n and represents a partial check of equation 
(4). 

As a second example, we consider the multiplicative hcteroscedastic model 

Y ~ N(XP, v-1
) introduced in Section 2, for which v-• = diag{o~ , ... ,o;} 

and a:= exp(w;y) for l = l, .. . ,n. Cordeiro (1993) has shown thats 

(5) 

where t"=(Ad+VBd)l, W=(w1, ... ,w0 )T is an nxq matrix, 

A=2~~,wT =W(WTwr1wT and B=XKi,1pXT =X(XTvxr1xT 

arc n >< n matrices, Ad and Bd BJe diagonal matrices with the corresponding 

elements of A and B, respectively, and 1 is an n x 1 vector of ones. The matrices 

2A and B have simple interpretations as asymptotic covariance structuJes of Wy 

and XI}, respectively. 

We now show that (5) comes directly from equation (4). For doing this, it is • 

only necessary to prove that t Y ,JI = -½ W 1 t •. We use the notation 

DR= diag{w1R,·--,wnR} for R= l, ... ,q. For this model we have VR =-DR, 
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YRS = VR Vs = DR Ds, VR Vs Vy= VRS Vy= -DRDsDT. Also, 

A(R) =-WTDRW and G(R) = xTvRx for R= l, ... ,q . Thus, 

1 -2tr(Ds{VB+A}), for S= l, ... ,q . On the other hand, 

I Y• I y th - - W t = - - W ( VBd + Ad) 1 whose S component is identical to the 2 2 
corresponding component of t 1 .P · We conclude that ( 4) is a generalization of (5). 

Finally, we condisider a stationary AR{ I) model 

Y1 -µ = p(YH -µ)+ u., IPI< 1, where U1 ~ N(O,a2
) fort= l, ... ,n. Herc X 

reduces to an n x I vector of ones, p = µ and y = (p,a2)Y. The covariance 
matrix y-l has a simple form 

2 
( I V-1 a 

= - - 2 
I - P n-1 p 

p 

n-2 p 

whose inverse is 
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and 

-p 0 0 

V=o2 -p ] + pl -p 0 

0 0 0 ... l 

We can find K 11 .11 = {2- 2p + (n - 2)(1- 2p + p2
)} and 

p 

Further, 

p 

P 
( 

2m -m 
A <P> = P,P,P PP,P 

Y o2 2m 2 -m 2 
p.p,o po ,p 

p 

P 
( 

2m -m 
A (02) = 2 PJ>,02 pp,02 

r a 2m 2 2 - m 2 2 
p,a ,a po ,o 
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where 

mP,PP = -4(n-2)p / (l-p2
)

2
, 

mP,P.P = p{6n(l-p2
) + 14p2 -6} / (I -p2 

)
3

, 

mp,p,ai =mp.pat= -{2n(l-p2)+6p2 -2} / o 2(t-p2 )2, 

m 1 1=m1 i=-2p/o4(t-p2), p,a ,a a ,pa 

mpp,a1 = -2(n - 2) I a 2 (I - p2 
), 

mp,a1a1 = 4p I o 4(1-p2
). 

2 
G~a > = -a_,. {2(1-p) +(n-2)(1-2p+ p2

)}. Then. 

{2 2 2)(1 2 2)}-•( 2{(n-2)(p-l)-l}/cr2 ) 
t 1rJI= - p+(n- - p+p -{2(1-p)+(n-2)(1-2p+p2 ))/cr~ 

and 

We can now obtain a simple expression B1(y) by inserting the Ky,y• 'tiy,p 

and 't2y. After some algebra and reducion we find 

B1(y) = (-2p/ n -o2 / n)T. This result coincides with Tanaka's (1984) 

fonnulae for the n-1 biases of p and c'.;-2. 
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