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Abstract: We construct new families of positive energy representations of affine vertex
algebras together with their free field realizations by using localization technique. We
introduce the twisting functor Tα on the category of modules over the universal affine
vertex algebra Vκ(g) of level κ for any positive root α of g, and the Wakimoto functor
from a certain category of g-modules to the category of Vκ(g)-modules. These two
functors commute (taking a proper restriction of Tα on g-modules) and the image of the
Wakimoto functor consists of relaxed Wakimoto ĝκ -modules. In particular, applying the
twisting functor Tα to the relaxed Wakimoto ĝκ -module whose top degree component
is isomorphic to the Verma g-module Mg

b (λ), we obtain the relaxed Wakimoto ĝκ -
module whose top degree component is isomorphic to the α-Gelfand–Tsetlin g-module
Wg

b (λ, α).We show that the relaxedVermamodule and relaxedWakimotomodulewhose
top degree components are suchα-Gelfand–Tsetlinmodules, are isomorphic generically.
This is an analogue of the result of E. Frenkel forWakimotomodules both for critical and
non-critical level. For a parabolic subalgebra p of g we construct a new large family of
positive energy representations of the simple affine vertex algebra Lκ(g) of admissible
level κ by means of the twisting functor applied on generalized Verma modules for the
parabolic subalgebra p.
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Introduction

Wakimoto modules and Verma modules for affine Kac–Moody algebras are the key ob-
jects in the theory of rational affine vertex algebras. Among others, Wakimoto modules
provide a free field realization of affine Kac–Moody algebras. They were constructed in
[Wak86,FF88,dBF97,Szc02]. Other free field realizations of affine Kac–Moody alge-
bras associated with nonstandard Borel subalgebras were studied in [Cox05] (imaginary
Vermamodules), [CF04] (intermediateWakimotomodules), [FKS19] (generalized imag-
inary Verma modules). Parabolic versions ofWakimoto modules (generalized Wakimoto
modules) were introduced in [Fre05].

However, there is a growing interest in the study of non-highest weight modules,
especially relaxed highest weight modules, over affine Kac–Moody algebras that play a
significant role for non-rational affine vertex algebras. Relaxed highest weight modules
were originally named in [FST98], where such modules over the affine Kac–Moody
algebra ̂sl2 were used to study the N = 2 superconformal vertex algebra. In [Ada16]
relaxed highest weightmodules over̂sl3 were used to analyse theN = 4 superconformal
vertex algebra. Simple relaxed highest weight modules over the simple affine vertex
algebraLκ (sl2)of admissible level κ were classified in [AM95]. For recent developments
in classifications of relaxed highest weightmodules we refer to [AFR17,ACR18,KR19a,
KR19b].

The goal of the current paper is to give an explicit free field construction of new
families of positive energy representations of the universal affine vertex algebras and
simple affine vertex algebras using two main technical tools: the twisting functor on
the category of modules over the (untwisted) affine Kac–Moody algebra ĝκ of level κ

assigned to an arbitrary positive root α of a semisimple Lie algebra g, and theWakimoto
functor from a certain subcategory of g-modules to the category of positive energy ĝκ -
modules. In particular, the Wakimoto functor applied to Verma g-modules gives Verma
ĝκ -modules generically.

In the finite-dimensional case the twisting functor was defined in [FK19b] following
thework of Deodhar [Deo80]. If α is a simple root of a semisimple Lie algebra g, then the
twisting functor Tα is related to the Arkhipov’s twisting functor [Ark04] on the category
O(g). By applying the twisting functor Tα for a positive rootα to the generalizedVermag-
moduleMg

p (λ) induced from the simplefinite-dimensionalp-modulewith highestweight
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λ one obtains the α-Gelfand–Tsetlin g-module Wg
p (λ, α) with finite �α-multiplicities,

where �α is the commutative subalgebra of U (g) generated by the Cartan subalgebra h
and by the center of U (sα), where sα is the Lie subalgebra of g given by the sl2-triple
for the root α. The g-modules Wg

b (λ, α) are cyclic weight modules with respect to the
Cartan subalgebra hwith infinite-dimensional weight subspaces if α is not a simple root.
On the other hand, if α is a simple root, then these modules are twisted Verma g-modules
up to conjugation of the action of g, see [AL03,KS15,Mus19].

Modifying the construction given in [FK19a,FK19b] in thefinite-dimensional setting,
we define the twisting functor Tα assigned to a real root α ∈ ̂�re of ĝκ and obtain an
endofunctor on the category of ĝκ -modules. The important properties of the twisting
functor Tα are summarized in the theorem below (cf. Theorems 4.9, 4.13, 4.14, 4.16).

Theorem A. (i) For α ∈ ̂�re, the twisting functor Tα preserves the category E (̂gκ).
Moreover, the twisting functor Tα preserves also the category E+(̂gκ) provided α ∈
�.

(ii) Let α ∈ ̂�re
+ and let M be a smooth weight g̃κ -module on which the central element

c acts as the identity. Then the g̃κ -module Tα(M) is a Gelfand–Tsetlin module with
finite �α-multiplicities if and only if the first cohomology group H1(s−α ;M) is a
weight˜h-module with finite-dimensional weight spaces.

(iii) For α ∈ � ⊂ ̂�re there exists a natural isomorphism between Tα ◦ Mκ,g and
Mκ,g ◦ T g

α , where T g
α :M(g)→M(g) is the twisting functor for g assigned to α.

In particular, we have

Tα(Mκ,g(M
g
p (λ))) �Mκ,g(W

g
p (λ, α))

for λ ∈ �+(p) and α ∈ �u
+ = {α ∈ �+; gα ⊂ u}, where p is a standard parabolic

subalgebra of gwith the nilradical u,�+(p) is the set of p-dominant integral weights.
Moreover, the twisting functor Tα commutes with tensoring by Weyl modules.

In the previous theorem, the commutative subalgebra �α ofUc (̃gκ) = U (̃gκ)/(c−1)
for α ∈ ̂�re

+ is generated by the Cartan subalgebra˜h of the extended affine Kac–Moody
algebra g̃κ and by the center Z(sα) ofU (sα), where sα is the Lie subalgebra of g̃κ given
by the sl2-triple for the root α ∈ ̂�re

+ . We denote s−α = sα∩̂�nst, where g̃κ =̂�nst⊕˜h⊕ n̂st
is the standard triangular decomposition of g̃κ . Further, E (̂gκ) and E+(̂gκ) stand for the
categories of smooth ĝκ -modules (Definition 2.1) and the category of positive energy
ĝκ -modules (Definition 2.2), respectively, on which the central element c acts as the
identity.

In particular, by applying the twisting functor Tα to the relaxed Verma module
Mκ,g(M

g
p (λ)) for λ ∈ �+(p) and α ∈ �u

+ we obtain a new class of positive energy
ĝκ -modules, relaxed Verma modules induced from the α-Gelfand–Tsetlin g-module
Wg

p (λ, α).
The Feigin–Frenkel homomorphism between the universal affine vertex algebra

Vκ(g) and the tensor product of the Weyl vertex algebraM�n with the Heisenberg vertex
algebra Vκ−κc (h) gives an explicit free field construction of Wakimoto modules, see
[Fre05]. We use the Feigin–Frenkel homomorphism to get a free field realization of
relaxed Verma modules in Theorems 5.5 and 5.12. The obtained ĝκ -modules are relaxed
Wakimoto modules, they are images of Verma modules Mg

b (λ) and α-Gelfand–Tsetlin
modules Wg

b (λ, α) under the Wakimoto functor Wκ,g. The most important properties
of the Wakimoto functor are collected in the theorem below (cf. Theorem 5.14, Corol-
laries 5.15, 5.16).
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Theorem B. Let λ ∈ h∗ and let α ∈ �+ ⊂ ̂�re
+ be a positive root.

(i) The functors Tα ◦Wκ,g and Wκ,g ◦ T g
α are naturally isomorphic. In particular, we

have

Tα(Wκ,g(M
g
b (λ))) �Wκ,g(W

g
b (λ, α)).

(ii) If κ is a non-critical level, then

Mκ,g(W
g
b (λ, α)) �Wκ,g(W

g
b (λ, α)),

provided the Verma module Mκ,g(M
g
b (λ)) is a simple ĝκ -module.

(iii) For the critical level κc, we have

Mκc,g(W
g
b (λ, α)) �Wκc,g(W

g
b (λ, α))

if λ satisfies 〈λ + ρ, γ ∨〉 /∈ −N for all γ ∈ �+, i.e. λ is a dominant weight.

We see that generically the relaxed Verma module Mκ,g(W
g
b (λ, α)) and the relaxed

Wakimoto module Wκ,g(W
g
b (λ, α)) are isomorphic. The generic condition is given by

the simplicity of the Verma ĝκ -module with highest weight λ and the non-criticality of
the level κ . On the other hand, if the level κ is critical and λ is dominant, then these
modules are always isomorphic, which is an analogue of the corresponding result of
Frenkel [Fre07] for Wakimoto modules.

Further on, in Sect. 6 we describe families of positive energy representations of the
simple affine vertex algebra Lκ(g) of admissible level κ = kκ0 associated to a simple
Lie algebra g, where κ0 is the normalized g-invariant symmetric bilinear form on g and
k ∈ C.

By a result of Zhu [Zhu96] there is a one-to-one correspondence between the set of
simple positive energy Lkκ0(g)-modules and the set of simpleU (g)/Ik-modules, where
Ik is a two-sided ideal ofU (g). The algebraU (g)/Ik is the Zhu’s algebra A(Lkκ0(g)) of
the vertex algebra Lkκ0(g). We say that a g-module E is admissible of level k if E is an
A(Lkκ0(g))-module.

Admissible highest weight g-modules of an admissible level k ∈ Q were classified
by Arakawa in [Ara16]. For λ ∈̂h∗, we denote by ̂�(λ) its integral root system. Then
Prk stands for the set of admissible weights λ ∈ ̂h∗ such that ̂�(λ) = y(̂�(k�0)) for
some element y of the extended affine Weyl group ˜W of g, and �Prk for its canonical
projection to h∗. Further, let p be a standard parabolic subalgebra of g and let k ∈ Q be
an admissible number for g. Let us denote by 
k(p) the set of weights λ ∈ �Prk ∩�+(p)
such that 〈λ + ρ, α∨〉 /∈ N for all α ∈ �u

+. For these weights the generalized Verma
module Mg

p (λ) is a simple g-module, and we have the following result.

Theorem C. Let k ∈ Q be an admissible number for g. Furthermore, let λ ∈ 
k(p) and
α ∈ �u

+ . Then the g-module Wg
p (λ, α) is admissible of level k.

The nilpotent cone of g is an irreducible closed algebraic subvariety of g. It de-
composes into the finite union of adjoint orbits. If O is such an adjoint orbit, then
O∗ denotes the corresponding coadjoint orbit of g∗ through the Cartan–Killing κg on
g. We say that a nilpotent orbit O of g is the orbit of a simple g-module E provided
V(AnnU (g)E) = �O∗, where V(AnnU (g)E) denotes the zero locus in g∗ of the associated
graded ideal gr AnnU (g)E of S(g).
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Let k ∈ Q be an admissible number for g. Nilpotent orbits of admissible g-modules
of level k were described in [Ara15a]. For a nilpotent orbit O of g, we define

�PrOk = {λ ∈ �Prk; V(Jλ) = �O∗},
where Jλ is the annihilator of the simple g-module with highest weight λ ∈ h∗ and
V(Jλ) is the associated variety. Then for the standard Borel subalgebra b of g we have
that 
k(b) = �PrOreg

k , where Oreg is the regular nilpotent orbit (cf. Proposition 6.6).
Moreover, in the case g = sln we give a more convenient description of the set 
k(p)
for any standard parabolic subalgebra p of g (cf. Theorem 6.9).

We denote by C, R, Z, N0 and N the set of complex numbers, real numbers, integers,
non-negative integers and positive integers, respectively. All algebras and modules are
considered over the field of complex numbers.

1. Preliminaries

Let g be a complex semisimple finite-dimensional Lie algebra and let h be a Cartan
subalgebra of g. We denote by � the root system of gwith respect to h, by �+ a positive
root system in � and by � ⊂ �+ the set of simple roots. For α ∈ �+, let hα ∈ h
be the corresponding coroot and let eα and fα be basis of root subspaces gα and g−α ,
respectively, defined by the requirement [eα, fα] = hα . We also set

Q =
∑

α∈�
Zα and Q+ =

∑

α∈�
N0α

together with

P =
∑

α∈�
Zωα and P+ =

∑

α∈�
N0ωα,

where ωα ∈ h∗ for α ∈ � is the fundamental weight determined by ωα(hγ ) = δα,γ for
all γ ∈ �. We call Q the root lattice and P the weight lattice. Further, we define the
Weyl vector ρ ∈ h∗ by

ρ = 1

2

∑

α∈�+

α.

The standard Borel subalgebra b of g is defined through b = h⊕ n with the nilradical n
and the opposite nilradical�n given by

n =
⊕

α∈�+

gα and �n =
⊕

α∈�+

g−α.

Besides, we have the corresponding triangular decomposition

g =�n⊕ h⊕ n

of the Lie algebra g.
Let κg be the Cartan–Killing form on g and (· , ·)g the corresponding induced bilinear

form on g∗. Whenever α ∈ h∗ satisfies (α, α)g �= 0, we define sα ∈ GL(h∗) by

sα(γ ) = γ − 2(α, γ )g

(α, α)g
α
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for γ ∈ h∗. The subgroup W of GL(h∗) given by

W = 〈sα; α ∈ �〉
is called the Weyl group of g. Let us note that W is a finite Coxeter group.

Moreover, if g is a simple Lie algebra, we denote by κ0 the g-invariant symmetric
bilinear form on g normalized in such a way that (θ, θ) = 2, where θ ∈ �+ is the highest
root of g (by definition the highest weight of the adjoint representation g) and (· , ·) is the
corresponding induced bilinear form on g∗. Further, we denote by θs the highest short
root of g. Then we have (θs, θs) = 2/r∨, where r∨ is the lacing number of g, i.e. the
maximal number of edges in the Dynkin diagram of g. We also define

P∨ =
⊕

α∈�
Zω∨α and P∨+ =

⊕

α∈�
N0ω

∨
α ,

where ω∨α ∈ h∗ for α ∈ � is the fundamental coweight defined by (ω∨α , γ ) = δα,γ for
all γ ∈ �. We call P∨ the coweight lattice.

The category of all g-modules we denote by M(g). We say that a g-module M is
a generalized weight (with respect to h) g-module, if the action of h on M is locally
finite. If the action of h is semisimple on M , then M is called a weight (with respect
to h) g-module. In particular, any simple generalized weight g-module is a weight g-
module. Further, for a Lie subalgebra a of g we denote by I(g, a) and I f (g, a) the
full subcategories of M(g) consisting of locally a-finite weight g-modules and finitely
generated locally a-finite weight g-modules, respectively.

For a commutative algebra � we denote by Hom(�, C) the set of all characters of
�, i.e. algebra homomorphisms from � to C. Let M be a �-module. For each character
χ ∈ Hom(�, C) we set

Mχ = {v ∈ M; (∃k ∈ N) (∀a ∈ �) (a − χ(a))kv = 0}. (1.1)

When Mχ �= {0}, we say that χ is a �-weight of M , the vector space Mχ is called the
�-weight subspace of M with weight χ and the elements of Mχ are �-weight vectors
with weight χ . Moreover, if a �-module M satisfies

M =
⊕

χ∈Hom(�,C)

Mχ , (1.2)

then we call M a �-weight module. The dimension of the �-weight subspace Mχ will
be called the �-multiplicity of χ in M .

Let g be a semisimple Lie algebra and let � be a commutative subalgebra of the
universal enveloping algebraU (g) of g. Then we denote byH(g, �) the full subcategory
of M(g) consisting of �-weight g-modules. Let us note that H(g, �) is closed with
respect to the operations of taking submodules and quotients. Besides, if � contains the
Cartan subalgebra h, a �-weight g-module M is called a �-Gelfand–Tsetlin g-module.

2. Affine Kac–Moody Algebras and Weyl Algebras

In this section we define smooth and induced modules for affine Kac–Moody algebras
and introduce a formalism for infinite-dimensional Weyl algebras.
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2.1. Affine Kac–Moody algebras. Let g be a semisimple (reductive) finite-dimensional
Lie algebra and κ be a g-invariant symmetric bilinear form on g. The affine Kac–Moody
algebra ĝκ associated to g of level κ is the 1-dimensional central extension ĝκ = g((t))⊕
Cc of the formal loop algebra g((t)) = g⊗C C((t)), with the commutation relations

[a ⊗ f (t), b ⊗ g(t)] = [a, b] ⊗ f (t)g(t)− κ(a, b)Rest=0( f (t)dg(t))c, (2.1)

where c is the central element of ĝκ , a, b ∈ g and f (t), g(t) ∈ C((t)). Let us note
that Lie algebras ĝκ and ĝκ ′ for g-invariant symmetric bilinear forms κ and κ ′ on g are
isomorphic if κ ′ = kκ for some k ∈ C

×. By introducing the notation an = a ⊗ tn for
a ∈ g and n ∈ Z, the commutation relations (2.1) can be simplified into the form

[am, bn] = [a, b]m+n + mκ(a, b)δm,−nc (2.2)

for m, n ∈ Z and a, b ∈ g.
As h is a Cartan subalgebra of g, we introduce a Cartan subalgebrâh of ĝκ by

̂h = h⊗C C1⊕ Cc.

While any two Borel subalgebras of g are conjugate by an automorphism of g, any two
Borel subalgebras of ĝκ may not be conjugate by an automorphism of ĝκ , see [Fut97].

Let p be a standard parabolic subalgebra of g with the nilradical u, the opposite
nilradical�u and the Levi subalgebra l. Then the standard parabolic subalgebra p̂st of ĝκ

associated to p is given through

p̂st =̂lst ⊕ ûst,

where the Levi subalgebrâlst is defined by

̂lst = l⊗C C1⊕ Cc

and the nilradical ûst and the opposite nilradical̂�ust by
ûst = u⊗C C1⊕ g⊗C tC[[t]] and ̂�ust =�u⊗C C1⊕ g⊗C t−1C[t−1].

Moreover, we have the corresponding triangular decomposition

ĝκ =̂�ust ⊕̂lst ⊕ ûst

of the Lie algebra ĝκ . If p = b then̂bst is the standard Borel subalgebra, and if p = g
then ĝst is the maximal standard parabolic subalgebra.

On the other hand, the natural parabolic subalgebra p̂nat of ĝκ associated to p is
given through

p̂nat =̂lnat ⊕ ûnat,

where the Levi subalgebrâlnat is defined by

̂lnat = l⊗C C((t))⊕ Cc

and the nilradical ûnat and the opposite nilradical̂�unat by
ûnat = u⊗C C((t)) and ̂�unat =�u⊗C C((t)).
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We have again the corresponding triangular decomposition

ĝκ =̂�unat ⊕̂lnat ⊕ ûnat

of the Lie algebra ĝκ . If p = b then̂bnat is the natural Borel subalgebra, and if p = g
then we have ĝnat = ĝκ .

For more general parabolic subalgebras of the affine Kac–Moody algebra ĝκ see
[FK18].

To describe the root structure of the affine Kac–Moody algebra ĝκ we define the
extended affine Kac–Moody algebra g̃κ as

g̃κ = g((t))⊕ Cc ⊕ Cd,

where we extend the Lie algebra structure of ĝκ on g̃κ by the commutation relations

[d, a ⊗ f (t)] = a ⊗ t∂t f (t), [d, c] = 0 (2.3)

for a ∈ g and f (t) ∈ C((t)). The corresponding Cartan subalgebra˜h of g̃κ is defined by

˜h = h⊗C C1⊕ Cc ⊕ Cd.

The dual space to˜hwe identify with h∗ ⊕C�0⊕Cδ, where�0|h⊗CC1 = 0,�0(c) = 1,
�0(d) = 0 and δ|h⊗CC1 = 0, δ(c) = 0, δ(d) = 1. The set of roots of ĝκ is then naturally
a subset of h∗ ⊕ C�0 ⊕ Cδ given by

̂� = ̂�re ∪ ̂�im, (2.4)

where

̂�re = {α + nδ; α ∈ �, n ∈ Z} and ̂�im = {nδ; n ∈ Z\{0}} (2.5)

are the sets of real and imaginary roots, respectively. Moreover, we have the following
decomposition ̂� = ̂�+ ∪ ̂�− into positive and negative roots, where

̂�+ = {α + nδ; α ∈ �+, n ∈ N0} ∪ {−α + nδ; α ∈ �+, n ∈ N} ∪ {nδ; n ∈ N}
and ̂�− = −̂�+. We also set ̂�re± = ̂�± ∩ ̂�re and ̂�im± = ̂�± ∩ ̂�im.

Let us note that the grading element d ∈ g̃κ gives g̃κ and also ĝκ the structure of Z-
graded topological Lie algebraswith the gradation defined by−d, i.e. we have deg c = 0,
deg d = 0 and deg an = −n for a ∈ g, n ∈ Z.

2.2. Smooth modules over affine Kac–Moody algebras. We denote byM(̂gκ) the cate-
gory of ĝκ -modules.However, since the objects of this categorymaybevery complicated,
we focus our attention to some nice full subcategories of M(̂gκ).

Definition 2.1. Let M be a ĝκ -module. We say that M is a smooth ĝκ -module if for each
vector v ∈ M there exists a positive integer Nv ∈ N such that

(g⊗C t NvC[[t]])v = 0,

or in other words that the Lie subalgebra g⊗C t NvC[[t]] annihilates v. The category of
smooth ĝκ -modules on which the central element c acts as the identity we will denote
by E (̂gκ).



Positive Energy Representations of Affine Vertex Algebras

Let us recall that by a graded ĝκ -module M we mean a C-graded vector space M
having the structure of a ĝκ -module compatible with the gradation of ĝκ . Let us note
that by shifting a given gradation on M by a complex number we obtain a new gradation
on M .

Definition 2.2. Let M be a graded ĝκ -module. We say that M is a positive energy ĝκ -
module if M =⊕∞

n=0 Mλ+n and Mλ �= 0, where λ ∈ C. The category of positive energy
ĝκ -modules on which the central element c acts as the identity we will denote by E+(̂gκ).

Let us note that if M is a positive energy ĝκ -module, then it follows immediately that
M is also a smooth ĝκ -module. Therefore, the category E+(̂gκ) is a full subcategory of
E (̂gκ).

Let us recall that the category M(̂gκ) coincides with the category of modules over
the universal enveloping algebra U (̂gκ). There exists an analogous associative algebra
for the category E (̂gκ) which is constructed as follows, see [Fre07]. Since the central
element c acts as the identity on all ĝκ -modules from the category E (̂gκ), the action of
U (̂gκ) factors through the quotient algebra

Uc (̂gκ) = U (̂gκ)/(c − 1).

Further, let us introduce a linear topology on Uc (̂gκ) in which the basis of open neigh-
bourhoods of 0 are the left ideals IN defined by

IN = Uc (̂gκ)(g⊗C t NC[[t]])
for N ∈ N0. Let ˜Uc (̂gκ) be the completion ofUc (̂gκ)with respect to this linear topology,
i.e. we get

˜Uc (̂gκ) = lim←−Uc (̂gκ)/IN .

Then the structure of an associative algebra on Uc (̂gκ) extends to the structure of an
associative algebra on ˜Uc (̂gκ) by continuity. Hence, we obtain that ˜Uc (̂gκ) is a complete
topological associative algebra, which we will call the completed universal enveloping
algebra of ĝκ . Moreover, the category E (̂gκ) coincides with the category of discrete
modules over the associative algebra ˜Uc (̂gκ) on which the action of ˜Uc (̂gκ) is pointwise
continuous.

Now, we construct a class of ĝκ -modules, the so called induced modules, which
belong to the category E (̂gκ). Let p̂st =̂lst⊕ ûst be the standard parabolic subalgebra of
ĝκ associated to a standard parabolic subalgebra p of g and let E be an l-module. Then
the induced ĝκ -module

Mκ,p(E) = U (̂gκ)⊗U (̂pst)E,

where E is considered as the p̂st-module on which ûst acts trivially and c acts as the
identity, has a unique maximal ĝκ -submodule Kκ,p(E) having zero intersection with the
l-submodule E of Mκ,p(E). Therefore, we may set

Lκ,p(E) =Mκ,p(E)/Kκ,p(E)

for an l-module E . Moreover, it is easy to see that if E is a simple l-module, thenLκ,p(E)

is also a simple ĝκ -module. The ĝκ -module Mκ,p(E) is called the generalized Verma
module induced from E for the standard parabolic subalgebra p̂st.
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Further, if we set F = U (�u)E ⊂ Mκ,p(E), then F is a ĝst-module such that g ⊗C

tC[[t]] acts trivially and c acts as the identity. The induced ĝκ -module Mκ,g(F) is
isomorphic to Mκ,p(E) and Lκ,g(F) � Lκ,p(E) if F is a simple g-module. We will
always consider induced ĝκ -modules as generalized Verma modules for the maximal
standard parabolic subalgebra ĝst.

Therefore, we have the induction functor

Mκ,g :M(g)→ E+(̂gκ) (2.6)

and the functor

Lκ,g :M(g)→ E+(̂gκ). (2.7)

Let us recall that if E is a simple finite-dimensional g-module, then Mκ,g(E) is usually
called theWeyl module.

In the same way as E (̂gκ)we may define the category E (̃gκ). Moreover, as ĝκ is a Lie
subalgebra of g̃κ , we have also a natural forgetful functor E (̃gκ)→ E (̂gκ). On the other
hand, for a non-critical level κ we can view on E (̂gκ) as a full subcategory of E (̃gκ). Let
M be a smooth ĝκ -module on which the central element c acts as the identity. Since κ

is a non-critical level, any smooth ĝκ -module carries an action of the Virasoro algebra
obtained by the Segal–Sugawara construction, and so in particular an action of L0 (the
nontrivial semisimple generator). Hence, the action of the grading element d of g̃κ is
then defined as the action of −L0. However, if κ is not a non-critical level, then general
smooth ĝκ -modules do not necessarily carry an action of L0.

In the rest of this section we described non-critical levels for a semisimple Lie algebra
g. Let us consider a b-invariant symmetric bilinear form on b defined by

κb
c (a, b) = −trg/b(ad(a)ad(b)) (2.8)

for a, b ∈ b.

Definition 2.3. Let κ be a g-invariant symmetric bilinear form on g. We say that κ is
non-critical if κ − κb

c is non-degenerate on h, partially critical if κ − κb
c is degenerate

on h, and critical if κ−κb
c is zero on h. The critical g-invariant symmetric bilinear form

on g we will denote by κc.

Since g is a semisimple Lie algebra, we have the direct sum decomposition

g =
r

⊕

i=1
gi

of g into the direct sum of simple Lie algebras gi for i = 1, 2, . . . , r such that these
direct summands are mutually orthogonal with respect to the Cartan–Killing form κg on
g. We denote by κ

gi
0 the normalized gi -invariant symmetric bilinear form on gi , i.e. we

have κgi = 2h∨i κ
gi
0 , where h∨i is the dual Coxeter number of gi , for i = 1, 2, . . . , r . We

have the following criterion.

Lemma 2.4. Let κ be a g-invariant symmetric bilinear form on g. Then κ is partially
critical if κ|gi = −h∨i κ

gi
0 for some i = 1, 2, . . . , r , and κ is critical if κ|gi = −h∨i κ

gi
0

for all i = 1, 2, . . . , r .
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Proof. For a, b ∈ h, we have

κb
c (a, b) = −trg/b(ad(a)ad(b)) = −

∑

α∈�+

α(a)α(b).

Further, for each i = 1, 2, . . . , r there exists ki ∈ C such that κ|gi = kiκ
gi
0 , since gi is a

simple Lie algebra. Hence, we may write

(κ − κb
c )(a, b) = (kiκ

gi
0 − κb

c )(a, b) = ki
2h∨i

κgi (a, b)− κb
c (a, b)

= ki + h∨i
h∨i

∑

α∈�gi
+

α(a)α(b)

for a, b ∈ h ∩ gi , where �
gi
+ ⊂ �+ is the set of positive roots of gi . The required

statement then follows immediately. ��

2.3. Weyl algebras. Let us consider the commutative algebra K = C((t)) with the sub-
algebra O = C[[t]]. Further, let 
K = C((t))dt and 
O = C[[t]]dt be the corre-
sponding modules of Kähler differentials. Then for a finite-dimensional complex vector
space V we introduce the infinite-dimensional vector spaces K(V ) = V ⊗C K and

K(V ) = V ⊗C 
K. Using the pairing ( · , · ) : 
K(V ∗)⊗K(V )→ C defined by

(α ⊗ f (t)dt, v ⊗ g(t)) = α(v)Rest=0(g(t) f (t)dt), (2.9)

where α ∈ V ∗, v ∈ V and f (t), g(t) ∈ K, we identify the restricted dual space toK(V )

with the vector space 
K(V ∗), and vice versa. Moreover, the pairing (2.9) gives us a
skew-symmetric non-degenerate bilinear form 〈· , ·〉 on 
K(V ∗)⊕K(V ) defined by

〈α ⊗ f (t)dt, v ⊗ g(t)〉 = −〈v ⊗ g(t), α ⊗ f (t)dt〉 = (α ⊗ f (t)dt, v ⊗ g(t))

for α ∈ V ∗, v ∈ V , f (t), g(t) ∈ K, and

〈v ⊗ f (t), w ⊗ g(t)〉 = 〈α ⊗ f (t)dt, β ⊗ g(t)dt〉 = 0

for α, β ∈ V ∗, v,w ∈ V , f (t), g(t) ∈ K. The Weyl algebras AK(V ) and A
K(V ∗) are
given by

AK(V ) = T (
K(V ∗)⊕K(V ))/IK(V ),

A
K(V ∗) = T (
K(V ∗)⊕K(V ))/I
K(V ∗),

where IK(V ) and I
K(V ∗) denote the two-sided ideals of the tensor algebra T (
K(V ∗)⊕
K(V )) generated by a ⊗ b − b ⊗ a + 〈a, b〉 · 1 for a, b ∈ 
K(V ∗) ⊕ K(V ) and by
a ⊗ b − b ⊗ a − 〈a, b〉 · 1 for a, b ∈ 
K(V ∗) ⊕ K(V ), respectively. The algebras
of polynomials on K(V ) and 
K(V ∗) are defined by PolK(V ) = S(
K(V ∗)) and
Pol
K(V ∗) = S(K(V )).

LetL andLc be complementaryLagrangian (maximal isotropic) subspaces of
K(V ∗)
⊕ K(V ), i.e. we have 
K(V ∗) ⊕ K(V ) = L ⊕ Lc. Then the symmetric algebra S(L)

is a subalgebra of AK(V ) since the elements of L commute in AK(V ). Moreover, it
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is a maximal commutative subalgebra of AK(V ). Further, let us consider the induced
AK(V )-module

Ind
AK(V )

S(L)
C � S(Lc),

where C is the trivial 1-dimensional S(L)-module. It follows immediately that the in-
duced AK(V )-module has the natural structure of a commutative algebra. We denote
by ML the commutative algebra which is the completion of S(Lc) with respect to
the linear topology on S(Lc) in which the basis of open neighbourhoods of 0 are
the subspaces In,m for n,m ∈ Z, where In,m is the ideal of S(Lc) generated by
Lc ∩ (V ∗⊗C tn
O ⊕ V⊗C tmO). In addition, we may extend the action of the Weyl
algebra AK(V ) to ML.

Our next step is to pass to a completion of theWeyl algebraAK(V ), becauseAK(V ) is
not sufficiently large for our considerations. Let us denote by FunK(V ) the completion
of the commutative algebra PolK(V ) with respect to the linear topology on PolK(V )

in which the basis of open neighbourhoods of 0 are the subspaces Jn for n ∈ Z,
where Jn is the ideal of PolK(V ) generated by V ∗⊗C tn
O. Consequently, we have
FunK(V ) = MK(V ). Then a vector field on K(V ) is by definition a continuous linear
endomorphism ξ of FunK(V ) which satisfies the Leibniz rule

ξ( f g) = ξ( f )g + f ξ(g)

for all f, g ∈ FunK(V ). In other words, a vector field onK(V ) is a linear endomorphism
ξ of FunK(V ) such that for any m ∈ Z there exists n ∈ Z, m ≤ n and a derivation

ξn,m : PolK(V )/Jn → PolK(V )/Jm

satisfying

sm(ξ( f )) = ξn,m(sn( f ))

for all f ∈ FunK(V ), where

sn : FunK(V )→ PolK(V )/Jn

is the canonical homomorphism of algebras. The vector space of all vector fields is
naturally a topological Lie algebra, which we denote by VectK(V ). There is a non-split
short exact sequence

0→ FunK(V )→ ˜AK(V ),≤1→ VectK(V )→ 0

of topological Lie algebras, see [FBZ04] for more details. This extension of the topo-
logical Lie algebra VectK(V ) by its module FunK(V ) is however different from the
standard split extension

0→ FunK(V )→ A
�

K(V ),≤1→ VectK(V )→ 0

of VectK(V ) by FunK(V ). The completed Weyl algebra ˜AK(V ) is then defined as the
associative algebra over FunK(V ) generated by the images of the homomorphisms
i : FunK(V ) → ˜AK(V ) (as associative algebras) and j : ˜AK(V ),≤1 → ˜AK(V ) (as Lie
algebras), with the relation

[ j (P), i( f )] = i(a(P)( f ))
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for f ∈ FunK(V ) and P ∈ ˜AK(V ),≤1, where a : ˜AK(V ),≤1 → VectK(V ) is the homo-
morphism of Lie algebras originated from the corresponding short exact sequence.

Now, we define a class of AK(V )-modules called induced modules. Let us consider
the vector subspaces L+, L− and L0 of 
K(V ∗)⊕K(V ) given by

L+ = V ∗⊗C C[[t]]dt ⊕ V⊗C tC[[t]],
L− = V ∗⊗C t−2C[t−1]dt ⊕ V⊗C t−1C[t−1],
L0 = V ∗⊗C Ct−1dt ⊕ V⊗C C1.

Then we have the direct sum decomposition


K(V ∗)⊕K(V ) = L− ⊕ L0 ⊕ L+

of 
K(V ∗)⊕K(V ), which induces the triangular decomposition

AK(V ) � AK(V ),− ⊗C AK(V ),0 ⊗C AK(V ),+

of the Weyl algebra AK(V ), where

AK(V ),− � S(L−), AK(V ),0 � AV , AK(V ),+ � S(L+),

and AV is the Weyl algebra of the finite-dimensional vector space V . Moreover, the
Weyl algebra AK(V ) is a Z-graded algebra with the gradation determined by

deg(v ⊗ tn) = −n, deg 1 = 0, deg(α ⊗ t−n−1dt) = n

for v ∈ V , α ∈ V ∗ and n ∈ Z.

Definition 2.5. Let M be an AK(V )-module. Then we say that M is a smooth AK(V )-
module if for each vector v ∈ M there exists a positive integer Nv ∈ N such that

(V ∗⊗C t NvC[[t]]dt ⊕ V⊗C t NvC[[t]])v = 0.

The category of smooth AK(V )-modules we will denote by E(AK(V )).

Completely analogously as for ĝκ -modules,wemay introducegradedAK(V )-modules
and positive energy AK(V )-modules. The category of positive energy AK(V )-modules
we will denote by E+(AK(V )).

Let E be an AV -module. Then the induced AK(V )-module

MK(V )(E) = AK(V ) ⊗AK(V ),0⊗CAK(V ),+ E,

where E is considered as the AK(V ),0 ⊗C AK(V ),+-module on which the Weyl algebra
AK(V ),0 acts via the canonical isomorphism AK(V ),0 � AV and AK(V ),+ acts trivially,
has a unique maximal AK(V )-submodule KK(V )(E) having zero intersection with the
AV -submodule E of MK(V )(E). Therefore, we may set

LK(V )(E) =MK(V )(E)/KK(V )(E)

for an AV -module E . Moreover, it is easy to see that if E is a simple AV -module, then
LK(V )(E) is also a simple AK(V )-module.

Therefore, we have the induction functor

MK(V ) :M(AV )→ E+(AK(V )) (2.10)
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and the functor

LK(V ) :M(AV )→ E+(AK(V )). (2.11)

Besides, it follows immediately that MK(V )(E) and LK(V )(E) are also ˜AK(V )-modules.
Let us consider a Borel subalgebra b of a semisimple Lie algebra gwith the nilradical

n, the opposite nilradical�n and the Cartan subalgebra h. Further, let { fα; α ∈ �+} be a
root basis of the opposite nilradical�n. We denote by {xα; α ∈ �+} the linear coordinate
functions on�nwith respect to the given basis of�n. Then the set { fα⊗tn; α ∈ �+, n ∈ Z}
forms a topological basis of K(�n) =�nnat, and the set {xα ⊗ t−n−1dt; α ∈ �+, n ∈ Z}
forms the dual topological basis of 
K(�n∗) � (�nnat)∗ with respect to the pairing (2.9),
i.e. we have

(xα ⊗ t−n−1dt, fβ ⊗ tm) = xα( fβ)Rest=0tm−n−1dt = δα,βδn,m

for α, β ∈ �+ and m, n ∈ Z. If we denote xα,n = xα ⊗ t−n−1dt and ∂xα,n = fα ⊗ tn for
α ∈ �+ and n ∈ Z, then the two-sided ideal IK(�n) is generated by elements
(

∑

n∈Z
anxα,n

)

⊗
(

∑

m∈Z
bm∂xβ,m

)

−
(

∑

m∈Z
bm∂xβ,m

)

⊗
(

∑

n∈Z
anxα,n

)

+ δα,β

(

∑

n∈Z
anbn

)

· 1

and it coincides with the canonical commutation relations

[xα,n, ∂xβ,m ] = −δα,βδn,m

for α, β ∈ �+ and m, n ∈ Z. Therefore, we obtain that the Weyl algebra AK(�n) is
topologically generated by the set {xα,n, ∂xα,n ; α ∈ �+, n ∈ Z} with the canonical
commutation relations.

3. Representations of Vertex Algebras

3.1. Vertex algebras. In this section we recall some notions and basic facts on vertex
algebra, for more details see [Bor86,Kac98,DLM98,FBZ04,Fre07].

Let R be an algebra over C. Then an R-valued formal power series (or formal distri-
bution) in the variables z1, . . . , zn is a series

a(z1, . . . , zn) =
∑

m1,...,mn∈Z
am1,...,mn z

m1
1 · · · zmn

n ,

where am1,...,mn ∈ R. The complex vector space of all R-valued formal power series
is denoted by R[[z±11 , . . . , z±1n ]]. For a formal power series a(z) = ∑

m∈Z amzm , the
residue is defined by

Resz=0a(z) = a−1.

A particulary important example of a C-valued formal power series in two variables z,
w is the formal delta function δ(z − w) given by

δ(z − w) =
∑

m∈Z
zmw−m−1.
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Let V be a complex vector space, so EndV is an algebra over C. We say that a formal
power series a(z) ∈ EndV [[z±1]] is a field, if a(z)v ∈ V ((z)) for all v ∈ V . We shall
write the field a(z) as

a(z) =
∑

n∈Z
a(n)z

−n−1. (3.1)

The complex vector space of all fields on V in the variable z we will be denote by
F(V )(z).

Definition 3.1. A vertex algebra consists of the following data:

(1) a complex vector space V (the space of states);
(2) a vector |0〉 ∈ V (the vacuum vector);
(3) an endomorphism T : V → V (the translation operator);
(4) a linear mapping Y ( · , z) : V → EndV[[z±1]] sending

a ∈ V �→ Y (a, z) =
∑

n∈Z
a(n)z

−n−1 ∈ F(V)(z)

(the state-field correspondence)

satisfying the subsequent axioms:

(1) Y (|0〉, z) = idV , Y (a, z)|0〉|z=0 = a (the vacuum axiom);
(2) T |0〉 = 0, [T,Y (a, z)] = ∂zY (a, z) (the translation axiom);
(3) for all a, b ∈ V , there is a non-negative integer Na,b ∈ N0 such that

(z − w)Na,b [Y (a, z),Y (b, w)] = 0

(the locality axiom).

A vertex algebra V is called Z-graded if V is a Z-graded vector space, |0〉 is a vector
of degree 0, T is an endomorphism of degree 1, and for a ∈ Vm the field Y (a, z) has
conformal dimension m, i.e. we have

deg a(n) = −n + m − 1

for all n ∈ Z.

Let us note that according to the translation axiom, the action of T on the space of
states V is completely determined by Y , since we have T (a) = a(−2)|0〉. Moreover, we
have a = a(−1)|0〉.

3.2. Positive energy representations. Let us consider aZ-graded vertex algebra V . Then
a V-module M is called graded if M is a C-graded vector space and for a ∈ Vm the field
YM (a, z) has conformal dimension m, i.e. we have

deg aM(n) = −n + m − 1

for all n ∈ Z. Let us note that by shifting a given gradation on M by a complex number
we obtain a new gradation on M .
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Definition 3.2. Let V be aZ-graded vertex algebra.We say that a graded V-module M is
a positive energy V-module if M =⊕∞

n=0 Mλ+n and Mλ �= 0, where λ ∈ C. Moreover,
we denote by Mtop the top degree component Mλ of M . The category of positive energy
V-modules we will denote by E+(V).

In [Zhu96], Zhu introduced a functorial construction which assigns to a Z-graded
vertex algebra an associative algebra known as the Zhu’s algebra. Let V be a Z-graded
vertex algebra. We define a bilinear mapping on V by

a ∗ b = Resz=0
(

Y (a, z)
(1 + z)deg a

z
b

)

=
deg a
∑

i=0

(

deg a

i

)

a(i−1)b (3.2)

for homogeneous elements a, b ∈ V and extend linearly. The Zhu’s algebra A(V) is
defined as

A(V) = V/O(V), (3.3)

where O(V) is the vector subspace of V spanned by

Resz=0
(

Y (a, z)
(1 + z)deg a

z2
b

)

=
deg a
∑

i=0

(

deg a

i

)

a(i−2)b (3.4)

for homogeneous elements a, b ∈ V .We denote byπZhu the canonical projection fromV
to A(V). The bilinearmapping (3.2) induces an associativemultiplication on the quotient
A(V). Further, we define

o(a) = a(deg a−1)
for a homogeneous elementa ∈ V . Then it easily follows that for a homogeneous element
a ∈ V the operator oM (a) = aM(deg a−1) preserves the homogeneous components of any
graded V-module M .

As the following theorem proved in [Zhu96] shows, the Zhu’s algebra A(V) plays a
prominent role in the representation theory of vertex algebras.

Theorem 3.3. Let V be a Z-graded vertex algebra and let M be a positive energy V-
module. Then the top degree component Mtop is an A(V)-module, where the action
of πZhu(a) ∈ A(V) for a ∈ V is given by oM (a). In addition, the correspondence
M �→ Mtop gives a bijection between the set of simple positive energy V-modules and
that of simple A(V)-modules.

To a Z-graded vertex algebra V we may associate a complete topological Lie algebra
U (V), first introduced by Borcherds [Bor86], by

U (V) = (V ⊗C C((t)))/im∂,

where

∂ = T ⊗ id + id ⊗ ∂t .

If we denote by a[n] for a ∈ V and n ∈ Z the projection of a ⊗ tn ∈ V ⊗C C((t)) onto
U (V), then the Lie bracket on U (V) is determined by

[a[m], b[n]] =
∞
∑

k=0

(

m

k

)

(a(k)b)[m+n−k]
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for a, b ∈ V and m, n ∈ Z.
Further, for a homogeneous element a ∈ V , we set deg a[n] = −n + deg a − 1. Then

the degree assignment to elements of U (V) gives us a triangular decomposition

U (V) = U (V)− ⊕U (V)0 ⊕U (V)+ (3.5)

of the Lie algebra U (V) together with a canonical surjective homomorphism

U (V)0 → A(V)

of Lie algebras defined by

a[deg a−1] �→ πZhu(a)

for a homogeneous element a ∈ V .
Let us consider a V-module M . Then it has also a natural structure of aU (V)-module

since we have a canonical homomorphism

U (V)→ EndV
of Lie algebras defined through

a[n] �→ a(n)

for a ∈ V and n ∈ Z. We denote by 
V (M) the vector subspace of M consisting of
lowest weight vectors, i.e. we have


V (M) = {v ∈ M; U (V)−v = 0}. (3.6)

It follows immediately using the triangular decomposition of U (V) that 
V (M) is a
U (V)0-module.Moreover, by [DLM98] we have that
V (M) is an A(V)-module, where
the action of πZhu(a) ∈ A(V) for a ∈ V is given by oM (a). It is clear that


V : E(V)→M(A(V)) (3.7)

is a functor. Let us note that if M is a positive energy V-module, then we have
V (M) ⊃
Mtop and 
V (M) = Mtop provided M is a simple V-module.

Therefore, we may consider a functor 
V : E+(V)→M(A(V)). On the other hand,
there exists also an induction functor

MV :M(A(V))→ E+(V) (3.8)

which is a left adjoint functor to 
V and has the following universal property. For a
V-module M and a morphism ϕ : E → 
V (M) of A(V)-modules, there is a unique
morphism ϕ̃ : MV (E)→ M of V-modules which extends ϕ, see [DLM98]. Moreover,
for an A(V)-module E wehaveMV (E)top � E asmodules over A(V). Besides, since the
V-module MV (E) has a unique maximal V-submodule KV (E) having zero intersection
with the A(V)-submodule E of MV (E), we may set

LV (E) =MV (E)/KV (E) (3.9)

for an A(V)-module E .
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3.3. Affine vertex algebras. Let g be a semisimple (reductive) finite-dimensional Lie
algebra and κ be a g-invariant symmetric bilinear form on g. The induced ĝκ -module
Mκ,g(C), where C is the trivial 1-dimensional g-module, is of a special importance in
the theory of vertex algebras since it is equipped with the natural structure of an N0-
graded vertex algebra, called the universal affine vertex algebra, see [Kac98], which we
will denote by Vκ(g). For an element a ∈ g, we denote by a(z) ∈ ĝκ [[z±1]] the formal
distribution defined by

a(z) =
∑

n∈Z
anz
−n−1. (3.10)

By using this formal power series we may rewrite the commutation relations (2.2) for
ĝκ into the form

[a(z), b(w)] = [a, b](w)δ(z − w) + κ(a, b)c∂wδ(z − w) (3.11)

for a, b ∈ g. The state field correspondence Y : Vκ(g)→ EndVκ(g)[[z±1]] is given by

Y (a1,−n1−1 . . . ak,−nk−1|0〉, z) =
1

n1! . . . nk ! :∂
n1
z a1(z) . . . ∂nkz ak(z):

for k ∈ N, n1, n2, . . . , nk ∈ N0 and a1, a2, . . . , ak ∈ g, where |0〉 ∈ Vκ(g) is the vacuum
vector (a highestweight vector ofMκ,g(C)). The translation operator T : Vκ(g)→ Vκ(g)
is defined by T |0〉 = 0 and [T, an] = −nan−1 for a ∈ g and n ∈ Z.

To describe positive energy representations of Vκ(g), we need to know its Zhu’s
algebra. It is easy to see that for Vκ(g) we have a canonical isomorphism

A(Vκ(g)) � U (g) (3.12)

of associative algebras determined by

a1,−n1−1a2,−n2−1 . . . ak,−nk−1|0〉 �→ (−1)n1+n2+···+nk ak . . . a2a1 (3.13)

for k ∈ N, n1, n2, . . . , nk ∈ N0 and a1, a2, . . . , ak ∈ g.
Let us note that for the universal affine vertex algebra Vκ(g) the functors MVκ (g)

and LVκ (g) coincide with the functors Mκ,g and Lκ,g, respectively. Also both categories
E(Vκ(g)) and E (̂gκ) coincide.

According to a theorem of Zhu the assignment E �→ Lκ,g(E) gives a one-to-one cor-
respondence between the isomorphism classes of simple g-modules and simple positive
energy Vκ(g)-modules. Therefore, the study of positive energy Vκ(g)-modules reduces
to the study of g-modules.

In addition, the unique simple quotient Lκ,g(C) of Mκ,g(C) has also the natural
structure of an N0-graded vertex algebra, called the simple affine vertex algebra, which
we will denote byLκ(g). The Zhu’s algebra A(Lκ(g)) is a homomorphic image ofU (g),
hence we have

A(Lκ(g)) � U (g)/Iκ (3.14)

for some two-sided ideal Iκ of U (g). Moreover, the assignment E �→ Lκ,g(E) gives
a one-to-one correspondence between isomorphism classes of simple modules over
U (g)/Iκ and simple positive energy Lκ(g)-modules.
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3.4. Weyl vertex algebras. Let V be a finite-dimensional vector space. Then the in-
duced AK(V )-module MK(V )(S(V ∗)) carries the natural structure of an N0-graded
vertex algebra, called the Weyl vertex algebra, which we will denote by MV . Let
{x1, x2, . . . , xm}, where dim V = m, be linear coordinate functions on V and let
ai (z), a∗i (z) ∈ AK(V )[[z±1]] for i = 1, 2, . . . ,m be the formal distributions defined
by

ai (z) =
∑

n∈Z
ai,nz

−n−1 and a∗i (z) =
∑

n∈Z
a∗i,nz−n, (3.15)

where ai,n = ∂xi,n and a∗i,n = xi,−n for n ∈ Z and i = 1, 2, . . . ,m. By using these
formal power series, the canonical commutation relations for AK(V ) we may write in
the form

[ai (z), a j (w)] = 0, [ai (z), a∗j (w)] = δi, jδ(z − w), [a∗i (z), a∗j (w)] = 0 (3.16)

for i, j = 1, 2, . . . ,m. The state field correspondence Y :MV → EndMV [[z±1]] is
given by

Y (ai1,−n1−1 . . . air ,−nr−1a∗j1,−m1
. . . a∗js ,−ms

|0〉, z) =
1

n1! . . . nr !
1

m1! . . .ms ! :∂
n1
z ai1(z) . . . ∂nrz air (z)∂

m1
z a∗j1(z) . . . ∂ms

z a∗js (z):

for r, s ∈ N, n1, . . . , nr ,m1, . . . ,ms ∈ N0, where |0〉 ∈MV is the vacuum vector (a
highest weight vector of MK(V )(S(V ∗))). The translation operator T :MV →MV is
defined by T |0〉 = 0, [T, ai,n] = −nai,n−1 and [T, a∗i,n] = −(n − 1)a∗i,n−1 for n ∈ Z

and i = 1, 2, . . . ,m. Moreover, we have a canonical isomorphism

A(MV ) � AV (3.17)

of associative algebras determined by

ai1,−n1−1 . . . air ,−nr−1a∗j1,−m1
. . . a∗js ,−ms

|0〉 �→
δm1,0 . . . δms ,0(−1)n1+···+nr x j1 . . . x js∂xi1 . . . ∂xir (3.18)

for r, s ∈ N, n1, . . . , nr ,m1, . . . ,ms ∈ N0.
Let us note that for the Weyl vertex algebra MV the functors MMV and LMV

coincide with the functorsMK(V ) andLK(V ), respectively. Also both categories E(MV )

and E(AK(V )) coincide.

4. Twisting Functors and Gelfand–Tsetlin Modules

We recall the definition of Gelfand–Tsetlin modules for a complex semisimple finite-
dimensional Lie algebra g and describe the construction of the twisting functor Tα

assigned to a positive root α of g.
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4.1. Twisting functors for semisimple Lie algebras. Let us consider a complex semisim-
ple Lie algebra g. For a positive root α ∈ �+ of g we denote by sα the Lie subalge-
bra of g generated by the sl2-triple (eα, hα, fα), where eα ∈ gα and fα ∈ g−α sat-
isfy [eα, fα] = hα . Further, we define the Lie subalgebras s+α = sα ∩ n = Ceα and
s−α = sα ∩�n = C fα of sα . Let cα be the quadratic Casimir element given through

cα = eα fα + fαeα + 1
2h

2
α,

which is a free generator of the center Z(sα) of U (sα). Then we denote by �α the
commutative subalgebra ofU (g) generated by the Cartan subalgebra h and by the center
Z(sα). Therefore, we have the category H(g, �α) of �α-Gelfand–Tsetlin modules, or
simply α-Gelfand–Tsetlin modules, which was studied in [FK19a,FK19b]. Let us note
that H(g, �α) contains I(g, s+α) and I(g, s−α ) as full subcategories.

Since the multiplicative set { f nα ; n ∈ N0} in the universal enveloping algebraU (g) is
a left (right) denominator set, thanks to the fact that fα is a locally ad-nilpotent regular
element in U (g), we define the twisting functor

Tα = T fα :M(g)→M(g)

by

Tα(M) = (U (g)( fα)/U (g))⊗U (g) M � M( fα)/M

for M ∈M(g). Let us note that the quotient M( fα)/M means the quotient of M( fα) by
the image of the canonical homomorphism M → M( fα) of g-modules. As fα is a locally
ad-nilpotent regular element in U (g), the functor Tα is right exact. The twisting functor
Tα for a simple root α ∈ � is well studied (see e.g. [AS03]). In this case the functor Tα

preserves the category O(g) up to a conjugation of the action of g.

Theorem 4.1 [FK19a, Theorem 3.3]. For α ∈ �+ the functor Tα induces the restricted
functor

Tα : I f (g, s
+
α)→ I f (g, s

−
α ),

where I f (g, s
±
α ) is the category of finitely generated locally s±α -finite weight g-modules.

It was shown in [FK19b] how the twisting functor Tα can be used to construct g-
modules in H(g, �α) with finite �α-multiplicities. Namely, we have the following the-
orem.

Theorem 4.2 [FK19a, Theorem 3.4]. Let α ∈ �+.

(i) For a weight g-module M, the g-module Tα(M) belongs to H(g, �α). In addi-
tion, Tα(M) has finite �α-multiplicities if and only if the first cohomology group
H1(s−α ;M) is a weight h-module with finite-dimensional weight spaces.

(ii) If M is a highest weight g-module, then Tα(M) is a cyclic weight g-module with
finite �α-multiplicities.

For a g-module M , we denote by AnnU (g)M the annihilator of M in U (g). Then we
get the following important proposition.

Proposition 4.3. Let M be a U (s−α )-free g-module for α ∈ �+. We have
AnnU (g) Tα(M) = AnnU (g)M.
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Proof. First, we observe that AnnU (g)M( fα) = AnnU (g)M . Indeed, the inclusion M ⊂
M( fα) gives us

AnnU (g)M( fα) ⊂ AnnU (g)M.

The opposite embedding is obvious since fα is a locally ad-nilpotent element in U (g).
Further, from Tα(M) = M( fα)/M we get that AnnU (g)M ⊂ AnnU (g)Tα(M). Now, we
prove the opposite inclusion. Let us consider a vector v ∈ M and let us assume that
a ∈ AnnU (g)Tα(M). Then we have a f −nα v ∈ M for all n ∈ N0. By using the fact
f nα a f

−n−m
α v ∈ M and the formula

f nα a f
−n−m
α v = f −mα

∞
∑

k=0

(

n + m + k − 1

k

)

f −kα ad( fα)k(a)v

for all n,m ∈ N0, we obtain immediately f −k−mα ad( fα)k(a)v ∈ M for all k,m ∈ N0

which gives us ad( fα)k(a)v = 0 for all k ∈ N0. We may write

a f −nα v = f −nα

∞
∑

k=0

(

n + k − 1

k

)

f −kα ad( fα)k(a)v = 0

for all n ∈ N0. Hence, we have a ∈ AnnU (g)M( fα) = AnnU (g)M and we are done.
��

If M is a g-module, then Tα(M) is a locally s−α -finite g-module for any α ∈ �+. On
the other hand, if M is a locally s−α -finite g-module, then Tα(M) = 0. Let us also note
that for any α ∈ �+ the twisting functor Tα commutes with the translation functors by
[FK19b, Theorem 3.6].

Let p = l⊕ u be the standard parabolic subalgebra of g associated to a subset � of
� with the nilradical u, the opposite nilradical�u and the Levi subalgebra l. We define
the subsets

�u
+ = {α ∈ �+; gα ⊂ u}, �l

+ = {α ∈ �+; gα ⊂ l}
of �+ and we set

�+(p) = {λ ∈ h∗; (∀α ∈ �)λ(hα) ∈ N0}.
For a weight λ ∈ �+(p), we denote by Fλ the simple finite-dimensional p-module with
highest weight λ and by Mg

p (λ) the generalized Verma g-module with highest weight λ
defined by

Mg
p (λ) = U (g)⊗U (p)Fλ.

Then for α ∈ �u
+ we define the α-Gelfand–Tsetlin g-module Wg

p (λ, α) by

Wg
p (λ, α) = Tα(Mg

p (λ)).

As a consequence of the Poincaré–Birkhoff–Witt theorem we have isomorphisms

Mg
p (λ) � U (�u)⊗C Fλ and Wg

p (λ, α) � (U (�u)( fα)/U (�u))⊗C Fλ
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ofU (�u)-modules. Moreover, since the twisting functor Tα is right exact, by applying of
Tα on a surjective homomorphism

Mg
b (λ)→ Mg

p (λ)

of generalized Verma modules, we get a surjective homomorphism

Wg
b (λ, α)→ Wg

p (λ, α)

of α-Gelfand–Tsetlin modules.
By applying Theorem 4.2 and Proposition 4.3 on Wg

p (λ, α) for λ ∈ �+(p) and
α ∈ �u

+ we obtain the following immediate corollaries.

Corollary 4.4. Let λ ∈ �+(p) and α ∈ �u
+ . Then the g-module Wg

p (λ, α) ∈ H(g, �α)

is cyclic weight with central character and finite �α-multiplicities. Moreover, Wg
p (λ, α)

belongs toH(g, �) and has finite �-multiplicities for any commutative subalgebra � of
U (g) containing �α .

Corollary 4.5. Let λ ∈ �+(p) and α ∈ �u
+ . Then we have AnnU (g)W

g
p (λ, α) =

AnnU (g)M
g
p (λ).

4.2. Affine α-Gelfand–Tsetlin modules. Let g̃κ be the extended affine Kac–Moody alge-
bra associated to a complex semisimple Lie algebra g of level κ . Then for a commutative
subalgebra � of the completed universal enveloping algebra ˜Uc (̃gκ) of g̃κ , we denote by
H(̃gκ , �) the full subcategory of E (̃gκ) consisting of smooth �-weight g̃κ -modules on
which the central element c acts as the identity. Let us note thatH(̃gκ , �) is closed with
respect to the operations of taking submodules and quotients. In addition, if � contains
the Cartan subalgebra˜h, the g̃κ -modules from H(̃gκ , �) are called �-Gelfand–Tsetlin
g̃κ -modules.

For a real positive root α ∈ ̂�re
+ , we denote by sα the Lie subalgebra of g̃κ generated

by the sl2-triple (eα, hα, fα), where

eα = eγ,n, hα = hγ,0 + nκ(eγ , fγ )c, fα = fγ,−n

if α = γ + nδ with γ ∈ �+, n ∈ N0 and

eα = fγ,n, hα = −hγ,0 + nκ(eγ , fγ )c, fα = eγ,−n

provided α = −γ + nδ with γ ∈ �+, n ∈ N. The quadratic Casimir element cα given
by

cα = eα fα + fαeα + 1
2h

2
α

is a free generator of the center Z(sα) ofU (sα). Furthermore, the commutative subalge-
bra of ˜Uc (̃gκ) generated by the Cartan subalgebra˜h and by the center Z(sα)we denote by
�α . We also define the Lie subalgebras s+α = sα ∩ n̂st = Ceα and s−α = sα ∩̂�nst = C fα
of g̃κ . The objects of H(̃gκ , �α) will be simply called α-Gelfand–Tsetlin g̃κ -modules.

Let � be a commutative subalgebra of ˜Uc (̃gκ) containing the Cartan subalgebra
˜h. Besides, let us assume that [a, s±α ] = ±χ(a)s±α for all a ∈ � and some charac-
ter χ ∈ �. Then for a �-Gelfand–Tsetlin g̃κ -module M , the Lie algebra cohomology
groups Hn(s±α ;M) are �-weight modules for all n ∈ N0. By general results we get
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H0(s±α ;M) � Ms±α , H1(s±α ;M) � M/s±α M and Hn(s±α ;M) = 0 for n > 1. More-
over, we have that Z(sα) commutes with �, which enables us to extend � by Z(sα).
Therefore, we denote by �α,ext the commutative subalgebra of ˜Uc (̃gκ) generated by �

and by Z(sα). As a mild and straightforward generalization of Theorem 2.3 in [FK19b]
we obtain the following important statement.

Theorem 4.6. Letα ∈ ̂�re
+ and let M be a�-Gelfand–Tsetlin g̃κ -module which is locally

s−α -finite. Then M is a �α,ext-Gelfand–Tsetlin g̃κ -module with finite �α,ext-multiplicities
if and only if the zeroth cohomology group H0(s−α ;M) is a �-weight module with finite
�-multiplicities.

The following result is a consequence of Theorem 4.6 and the fact that the extension
of Uc(˜h) by Z(sα) is the commutative algebra �α .

Corollary 4.7. Let α ∈ ̂�re
+ and let M be a locally s−α -finite smooth weight g̃κ -module

on which the central element c acts as the identity. Then M is a �α-Gelfand–Tsetlin
g̃κ -module with finite �α-multiplicities if and only if the zeroth cohomology group
H0(s−α ;M) is a weight˜h-module with finite-dimensional weight spaces.

By duality we can analogously prove a similar statement if we replace s−α by s+α and
H0(s−α ;M) by H0(s+α;M).

For a Lie subalgebra a of g̃κ we denote by I (̃gκ , a) and I f (̃gκ , a) the full subcat-
egories of E (̃gκ) consisting of locally a-finite and finitely generated locally a-finite,
respectively, smooth weight g̃κ -modules on which the central element c acts as the iden-
tity. Therefore, for a real positive root α ∈ ̂�re

+ we have the full subcategories I (̃gκ , s+α)

and I (̃gκ , s−α ) of E (̃gκ) assigned to the Lie subalgebras s+α and s−α of g̃κ .
The following statement is obvious, see Proposition 1.3 in [FK19a] for details.

Proposition 4.8. The categories I (̃gκ , s+α) and I (̃gκ , s−α ) are full subcategories of H
(̃gκ , �α) for α ∈ ̂�re

+ .

4.3. Twisting functors for affine Kac–Moody algebras. For a real positive root α ∈ ̂�re
+

the multiplicative sets { f nα ; n ∈ N0} and {enα; n ∈ N0} in the universal enveloping
algebra U (̂gκ) of ĝκ are left (right) denominator sets, since fα and eα are locally ad-
nilpotent regular elements. Therefore, based on the general construction we define the
twisting functor

Tα = T fα :M(̂gκ)→M(̂gκ) and T−α = Teα :M(̂gκ)→M(̂gκ)

by

Tα(M) = U (̂gκ)( fα)/U (̂gκ)⊗U (̂gκ )M, T−α(M) = U (̂gκ)(eα)/U (̂gκ)⊗U (̂gκ )M

for α ∈ ̂�re
+ and M ∈ M(̂gκ). In addition, it is easy to see that if M is a g̃κ -module,

then Tα(M) has also a natural structure of a g̃κ -module for α ∈ ̂�re.
In the next, we prove some basic characteristics of Tα for α ∈ ̂�re. Let us note that

the twisting functor Tα for α ∈ � ⊂ ̂�re is of a special importance and will be discussed
later in details.

Let us consider the subset

�α = {γ ∈ ̂�\{±α}; ĝκ,γ,α ⊂ n̂st}
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of ̂� for α ∈ ̂�re
+ , where ĝκ,γ,α for γ ∈ ̂� is the finite-dimensional sα-module given by

ĝκ,γ,α =
⊕

j∈Z
ĝκ,γ+ jα.

It easily follows that�α ⊂ ̂�+ and that�α is closed, i.e. if γ1, γ2 ∈ �α and γ1 +γ2 ∈ ̂�,
then we have γ1 + γ2 ∈ �α . Therefore, the subset �α of ̂�+ gives rise to the Lie
subalgebras t+α , t

−
α and tα of ĝκ defined through

t+α = ĝκ,α ⊕
⊕

γ∈�α

ĝκ,γ , tα =
⊕

γ∈�α

ĝκ,γ , t−α = ĝκ,−α ⊕
⊕

γ∈�α

ĝκ,γ ,

where the direct sum over the set �α is the topological direct sum. Moreover, since we
have the inclusions s+α ⊂ t+α ⊂ n̂st of Lie algebras, we get immediately the embeddings
of categories

O(̃gκ) ⊂ I f (̃gκ , t+α) ⊂ I f (̃gκ , s+α)

for α ∈ ̂�re
+ . There is also an automorphism Ad(ṙα) of g̃κ given by

Ad(ṙα) = exp(ad fα) exp(−adeα) exp(ad fα),

which satisfies

Ad(ṙα)(s±α ) = s∓α and Ad(ṙα)(t±α ) = t∓α
for α ∈ ̂�re

+ .

Theorem 4.9. For α ∈ ̂�re, the twisting functor Tα preserves the category E (̂gκ). More-
over, if α ∈ � ⊂ ̂�re, then the twisting functor Tα preserves also the category E+(̂gκ).

Proof. Let M be a smooth ĝκ -module on which the central element c acts as the identity.
Then for each v ∈ M there exists Nv ∈ N such that (g⊗C t NvC[[t]])v = 0. Further, for
α ∈ ̂�re

+ there exists kα ∈ N satisfying ad( fα)kα (a) = 0 for all a ∈ ĝκ . Hence, we may
write

a f −nα v =
kα−1
∑

k=0

(

n + k − 1

k

)

f −n−kα ad( fα)k(a)v

for a ∈ ĝκ .Moreover, since ad( fα)k(am) ∈ g⊗Ctm−kα(d)
C[[t]] for a ∈ g andm ∈ Z, we

get that (g⊗C t Nn,vC[[t]]) f −nα v = 0 for Nn,v = max{Nv + kα(d); k ∈ {0, 1, . . . , kα −
1}}. Hence, we have that Tα(M) for α ∈ ̂�re

+ is a smooth ĝκ -module on which the central
element c acts as the identity. For α ∈ ̂�re− the proof goes along the same lines.

Further, let M belong to the category E+(̂gκ). Then from the previous part we imme-
diately get that Tα(M) for α ∈ � is from the category E (̂gκ). As M is a positive energy
ĝκ -module we have M =⊕∞

n=0 Mλ+n with Mλ �= 0 for some λ ∈ C. Since fα preserves
Mλ+n for n ∈ N0, or in other words deg fα = 0 by definition of the gradation on ĝκ ,
we may set deg f −nα v = deg v for n ∈ N0 and a homogeneous vector v ∈ M . Then it
follows immediately that Tα(M) is a positive energy ĝκ -module. ��

Let us note that for α ∈ ̂�re−\�− the twisting functor Tα also preserves the category
E+(̂gκ). However, we have Tα(M) = 0 for α ∈ ̂�re−\�− and M ∈ E+(̂gκ) which follows
from Proposition 4.10 and the fact that M is a locally s+α-finite ĝκ -module.
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Proposition 4.10. Let M be a ĝκ -module. Then Tα(M) is a locally s−α -finite ĝκ -module
for any α ∈ ̂�re

+ . Moreover, if M is a locally s−α -finite ĝκ -module, then we obtain
Tα(M) = 0.

Proof. Let M be a ĝκ -module. Then by definition we have

Tα(M) = (U (̂gκ)( fα)/U (̂gκ))⊗U (̂gκ )M � M( fα)/M

for α ∈ ̂�re
+ . Since every element of M( fα) can be written in the form f −nα v for n ∈ N0

and v ∈ M , we obtain immediately that Tα(M) is locally s−α -finite. Further, let us assume
that M is a locally s−α -finite ĝκ -module. Since for each v ∈ M there exists nv ∈ N0 such
that f nv

α v = 0, we may write f −nα v = f −n−nv
α f nv

α v = 0 for n ∈ N0. This implies the
required statement. ��
Lemma 4.11. Let α ∈ ̂�re

+ . Then we have

eα f −nα = f −nα eα − n f −n−1α hα − n(n + 1) f −n−1α ,

h f −nα = f −nα h + nα(h) f −nα ,

fα f −nα = f −nα fα

in U (̂gκ)( fα) for n ∈ Z and h ∈̂h.

Proof. It follows immediately from the formula

a f −nα = f −nα

∞
∑

k=0

(

n + k − 1

k

)

f −kα ad( fα)k(a)

in U (̂gκ)( fα) for all a ∈ U (̂gκ) and n ∈ N0. ��
Theorem 4.12. We have

(i) if M ∈ I f (̃gκ , s+α), then Tα(M) ∈ I f (̃gκ , s−α );
(ii) if M ∈ I f (̃gκ , t+α), then Tα(M) ∈ I f (̃gκ , t−α )

for α ∈ ̂�re
+ . Therefore, we have the restricted functors

Tα : I f (̃gκ , s+α)→ I f (̃gκ , s−α ) and Tα : I f (̃gκ , t+α)→ I f (̃gκ , t−α )

for α ∈ ̂�re
+ .

Proof. (i) If M is a weight g̃κ -module, then it easily follows from definition that Tα(M)

is also a weight g̃κ -module. Moreover, by Theorem 4.9 and Proposition 4.10 we have
that Tα(M) belongs to the category I (̃gκ , s−α ). Hence, the rest of the proof is to show
that Tα(M) is finitely generated provided M is finitely generated and locally s+α-finite.

Let R ⊂ M be a finite set of generators of M . Then the vector subspace V =
U (s+α)〈R〉 of M is finite dimensional. Further, let us introduce a filtration {FkV }k∈N0 on
V by

FkV = {v ∈ V ; ekαv = 0}
for k ∈ N0 and let n0 ∈ N be the smallest positive integer satisfying

n0 ≥ max{−μ(hα); μ ∈˜h∗, Vμ �= {0}, μ(hα) ∈ R}.
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Let us consider a vector v ∈ FkV ∩ Vμ for μ ∈˜h∗ and k ∈ N0. Then by Lemma 4.11
we get

eα f −(n0+n)
α v = f −(n0+n)

α eαv − (n0 + n)(μ(hα) + n0 + n + 1) f −(n0+n+1)
α v

for n ∈ N0, which together with fα f −n−1α v = f −nα v for n ∈ N0 gives us

U (sα) f −n0α FkV/C[ f −1α ]Fk−1V = C[ f −1α ]FkV/C[ f −1α ]Fk−1V
for all k ∈ N. As F0V = {0} and V is a finite-dimensional vector space, we immediately
obtain U (sα) f −n0α V = C[ f −1α ]V .

Further, since for any a ∈ U (̂gκ) and n ∈ N0 there exist b ∈ U (̂gκ) and m ∈ N0
satisfying f −nα a = b f −mα , we obtain f −nα U (̂gκ) ⊂ U (̂gκ)C[ f −1α ] ⊂ U (̂gκ)( fα) for
n ∈ N0. Hence, we may write

f −nα M = f −nα U (̂gκ)V ⊂ U (̂gκ)C[ f −1α ]V,

which implies M( fα) = U (̂gκ)C[ f −1α ]V = U (̂gκ) f −n0α V . In other words, this means
that Tα(M) � M( fα)/M is finitely generated and the number of generators is bounded
by dim V .

ii) Since I f (̃gκ , t+α) is a full subcategory of I f (̃gκ , s+α), by item (i) we only need
to show that Tα(M) is locally t−α -finite if M is locally t+α-finite. As we have U (t−α ) =
U (s−α )U (tα) and Tα(M) is locally s−α -finite, the condition that Tα(M) is locally t−α -finite
is equivalent to saying that Tα(M) is locally tα-finite. Further, since Tα(M) is a smooth
ĝκ -module and the quotient tα/(tα ∩ (g⊗C t NC[[t]])) for N ∈ N is a finite-dimensional
nilpotent Lie algebra, we get that Tα(M) is locally tα-finite if the commutative Lie
algebra ĝκ,γ acts locally nilpotently on Tα(M) for all γ ∈ �α .

Let ht : Ẑ�→ Z be the Z-linear height function with ht(α) = 1 if α is a simple root.
Then we get an N0-grading U (tα) =⊕

n∈N0
U (tα)n , where

U (tα)n =
⊕

μ∈˜h∗, ht(μ)=n
U (tα)μ.

Let γ ∈ �α and let r ∈ N0 be the smallest nonnegative integer such that γ − (r + 1)α /∈
�α . Let us recall that if γ − kα ∈ ̂� for some k ∈ Z then γ − kα ∈ �α . Let us consider
a vector v ∈ M . Then from the formula

a f −nα = f −nα

∞
∑

k=0

(

n + k − 1

k

)

f −kα ad( fα)k(a)

in U (̂gκ)( fα) for a ∈ U (̂gκ) and n ∈ N0, we obtain

etγ f −nα v = f −nα

tr
∑

k=0

(

n + k − 1

k

)

f −kα ad( fα)k(etγ )v

for eγ ∈ ĝκ,γ , t ∈ N and n ∈ N0, where we used the fact that ad( fα)k(eγ ) �= 0 only for
k = 0, 1, . . . , r . Moreover, we have ad( fα)k(etγ ) ∈ U (tα)tγ−kα ⊂ U (tα)ht(tγ−kα) for
k = 0, 1, . . . , tr . Since M is locally t+α-finite, there exists an integer nv ∈ N0 such that
U (tα)nv = {0} for n > nv . Therefore, it is enough to show that ht(tγ − kα) > nv for
k = 0, 1, . . . , tr .
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As we may write

ht(tγ − kα) ≥ ht(tγ − trα) = tht(γ − rα) ≥ t

for k = 0, 1, . . . , tr , since γ − rα ∈ �α and hence ht(γ − rα) ≥ 1, we obtain that
etγ f −nα v = 0 for n ∈ N0 provided t > nv . Hence, the element eγ acts locally nilpotently
on Tα(M) for γ ∈ �α . ��

The following shows how the twisting functor Tα can be used to constructα-Gelfand–
Tsetlin modules with finite �α-multiplicities for α ∈ ̂�re

+ .

Theorem 4.13. Let α ∈ ̂�re
+ and let M be a smooth weight g̃κ -module on which the

central element c acts as the identity.

(i) The g̃κ -module Tα(M) is an α-Gelfand–Tsetlin module with finite �α-multiplicities
if and only if the first cohomology group H1(s−α ;M) is a weight ˜h-module with
finite-dimensional weight spaces.

(ii) If M is a highest weight g̃κ -module, then Tα(M) is a locally t−α -finite smooth cyclic
weight g̃κ -module with finite �α-multiplicities.

Proof. (i) Let M be a smooth weight g̃κ -module. Then by Proposition 4.10 and The-
orem 4.9 we obtain that Tα(M) is a locally s−α -finite smooth weight g̃κ -module for
α ∈ ̂�re

+ . Hence, we may apply Corollary 4.7 on Tα(M) and we get that Tα(M) is an
α-Gelfand–Tsetlin module with finite �α-multiplicities if and only if H0(s−α ; Tα(M)) is
a weight˜h-module with finite-dimensional weight spaces. Further, the linear mapping
ϕα : M → Tα(M) defined by

ϕα(v) = f −1α v

for v ∈ M gives rise to the linear mapping

ϕ̃α : H1(s−α ;M)→ H0(s−α ; Tα(M))

for α ∈ ̂�re
+ , which is in fact an isomorphism. Therefore, we obtain an isomorphism

H1(s−α ;M) � H0(s−α ; Tα(M))⊗C C−α of˜h-modules, where C−α is the 1-dimensional
˜h-module determined by the character −α of˜h, which implies the first statement.

(ii) If M is a highest weight g̃κ -module, then it belongs to the category O(̃gκ).
Hence, using Theorem 4.12 we obtain that Tα(M) is a locally t−α -finite smooth weight
g̃κ -module. In fact, from the proof of Theorem 4.12 (i) it follows that Tα(M) is not only
finitely generated by also cyclic. To finish the proof, we need to show by Theorem 4.13
that H1(s−α ;M) is a weight ˜h-module with finite-dimensional weight spaces. Since
H1(s−α ;M) � M/s−α M and M is a weight ˜h-module with finite-dimensional weight
spaces, we immediately obtain that also M/s−α M is a weight ˜h-module with finite-
dimensional weight spaces. This gives us the required statement. ��

If we denote by �α : M(̃gκ) → M(̃gκ) the functor sending a g̃κ -module to the
same g̃κ -module with the action twisted by the automorphism Ad(ṙα) : g̃κ → g̃κ , then
we obtain the endofunctor

�α ◦ Tα : I f (̃gκ , t+α)→ I f (̃gκ , t+α).

Besides, for α ∈ ̂� we have t+α = n̂st which implies I f (̃gκ , t+α) = O(̃gκ) and in this
case the functor coincides with the Arkhipov’s twisting functor, see [Ark97,Ark04].
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4.4. Tensoring with Weyl modules. In this subsection we show that the twisting functors
behave well with respect to tensoring with certain ĝκ -modules. In the finite-dimensional
setting this was considered in [FK19b,AS03].

Let us recall that the universal enveloping algebra U (̂gκ) is a Hopf algebra with the
comultiplication � : U (̂gκ) → U (̂gκ) ⊗C U (̂gκ), the counit ε : U (̂gκ) → C and the
antipode S : U (̂gκ)→ U (̂gκ) given by

�(a) = a ⊗ 1 + 1⊗ a, ε(a) = 0, S(a) = −a

for a ∈ ĝκ . For α ∈ ̂�re
+ , the localization U (̂gκ)( fα) has the structure of a left C[ f −1α ]-

module, hence also U (̂gκ)( fα)⊗C U (̂gκ)( fα) is a left C[ f −1α ]-module and we denote by
U (̂gκ)( fα) ̂⊗CU (̂gκ)( fα) its extension to a left C[[ f −1α ]]-module, i.e. we set

U (̂gκ)( fα) ̂⊗CU (̂gκ)( fα) = C[[ f −1α ]] ⊗C[ f −1α ] U (̂gκ)( fα) ⊗C U (̂gκ)( fα).

There is an obvious extension of the algebra structure onU (̂gκ)( fα)⊗CU (̂gκ)( fα) to the
completion U (̂gκ)( fα) ̂⊗CU (̂gκ)( fα). Then the linear mapping

˜� : U (̂gκ)( fα) → U (̂gκ)( fα) ̂⊗CU (̂gκ)( fα)

given through

˜�( f −nα u) =
( ∞

∑

k=0
(−1)k

(

n + k − 1

k

)

f −n−kα ⊗ f kα

)

�(u)

for n ∈ N0 and u ∈ U (̂gκ) defines an algebra homomorphism, see [AS03]. The following
theorem is analogous to [AS03, Theorem 3.2].

Theorem 4.14. Let α ∈ ̂�re
+ . Then there exists a family {ηE }E∈M(̂gκ ,s−α ) of natural

isomorphisms

ηE : Tα ◦ ( • ⊗C E)→ ( • ⊗C E) ◦ Tα

of functors, where M(̂gκ , s−α ) is the category of locally s−α -finite ĝκ -modules. In other
words, the twisting functor Tα forα ∈ ̂�re

+ commutes with tensoring by a locally s−α -finite
ĝκ -module E.

Remark 4.15. The previous theorem has a natural justification following from the fact
that Tα(E) = 0 for α ∈ ̂�re

+ and a locally s−α -finite ĝκ -module E by Proposition 4.10.
By dualitywe have a similar statement if we replacê�re

+ bŷ�re− and s−α by s+α . Besides,
sinceWeylmodules are locally s+α-finite and s

−
α -finite ĝκ -modules, Theorem4.14 implies

that for a root α ∈ � ⊂ ̂�re the twisting functor Tα commutes with tensoring by Weyl
modules.
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4.5. Relaxed Verma modules. Let us recall that we have the induction functor

Mκ,g :M(g)→ E+(̂gκ) (4.1)

introduced in Sect. 2.2 by Mκ,g(E) = U (̂gκ) ⊗U (̂gst) E for a g-module E , where E is
considered as ĝst-module on which g⊗C tC[[t]] acts trivially and c acts as the identity.

The link between the twisting functor Tα for α ∈ � ⊂ ̂�re and the induction functor
Mκ,g is given in the following theorem.

Theorem 4.16. Let α ∈ � ⊂ ̂�re. Then there exists a natural isomorphism

ηα : Tα ◦Mκ,g→Mκ,g ◦ T g
α

of functors, where T g
α :M(g) →M(g) is the twisting functor for g assigned to α. In

particular, we have

Tα(Mκ,g(M
g
p (λ))) �Mκ,g(W

g
p (λ, α))

for λ ∈ �+(p) and α ∈ �u
+ .

Proof. We prove the statement only for α ∈ �+, since for α ∈ �− the proof goes along
the same lines. By using the triangular decomposition ĝκ = ĝκ,− ⊕ ĝκ,0 ⊕ ĝκ,+, where

ĝκ,− = g⊗C t−1C[t−1], ĝκ,0 = g⊗C C1⊕ Cc, ĝκ,+ = g⊗C tC[[t]],
and the Poincaré–Birkhoff–Witt theorem we get an isomorphism

U (̂gκ)( fα) � U (̂gκ,−)( fα) ⊗C U (̂gst)

of U (̂gκ,−)-modules for α ∈ �+. Hence, we may write

U (̂gκ)( fα) ⊗U (̂gκ ) Mκ,g(E) � U (̂gκ)( fα) ⊗U (̂gκ ) U (̂gκ)⊗U (̂gst)E � U (̂gκ,−)( fα) ⊗C E

for a g-module E and α ∈ �+, which gives us an isomorphism

(Tα ◦Mκ,g)(E) � (U (̂gκ,−)( fα)/U (̂gκ,−))⊗C E

ofU (̂gκ,−)-modules.On the other hand, forα ∈ �+ wehave an isomorphismofU (̂gκ,−)-
modules

(Mκ,g ◦ T g
α )(E) � U (̂gκ,−)⊗C T g

α (E).

Therefore, we define the isomorphism ηα,E of U (̂gκ,−)-modules by

f −nα u ⊗ v �→
∞
∑

k=0
(−1)k

(

n + k − 1

k

)

ad( fα)k(u)⊗ f −n−kα v

with the inverse

u ⊗ f −nα v �→
∞
∑

k=0

(

n + k − 1

k

)

f −n−kα ad( fα)k(u)⊗ v

for u ∈ U (̂gκ,−), v ∈ E and n ∈ N. It is straightforward to check that ηα,E is an
isomorphism of U (̂gκ)-modules.

The rest of the statement follows from the fact that Wg
p (λ, α) = T g

α (Mg
p (λ)) for

λ ∈ �+(p) and α ∈ �u
+ by definition. ��
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5. Relaxed Wakimoto Modules

We introduce a class of positive energy ĝκ -modules whichwewill call relaxedWakimoto
modules and also give a free field realization of relaxed Verma modules.

5.1. Feigin–Frenkel homomorphism. Let g be a semisimple finite-dimensional Lie al-
gebra. Let us consider a Borel subalgebra b of g with the nilradical n, the opposite
nilradical�n and the Cartan subalgebra h. Let { fα; α ∈ �+} be a root basis of the op-
posite nilradical �n. We denote by {xα; α ∈ �+} the linear coordinate functions on �n
with respect to the given basis of�n. Then the Weyl algebra A�n of the vector space �n
is generated by {xα, ∂xα ; α ∈ �+} together with the canonical commutation relations.
Further, by [KS17] there exists a homomorphism

πg : U (g)→ A�n ⊗C U (h) (5.1)

of associative algebras uniquely determined by

πg(a) = −
∑

α∈�+

[

ad(u(x))ead(u(x))

ead(u(x)) − id
(e−ad(u(x))a)�n

]

α

∂xα + (e−ad(u(x))a)h (5.2)

for a ∈ g, where [a]α denotes the α-th coordinate of a ∈ �n with respect to the basis
{ fα; α ∈ �+} of �n, a�n and ah are the �n-part and h-part of a ∈ g with respect to the
triangular decomposition g =�n⊕ h⊕ n, and the element u(x) ∈ C[�n] ⊗C g is given by

u(x) =
∑

α∈�+

xα fα.

Let us note that C[�n] ⊗C g has the natural structure of a Lie algebra. Hence, we have a
well-defined linear mapping ad(u(x)) : C[�n] ⊗C g→ C[�n] ⊗C g.

Let us recall that by Sect. 3.4 we may assign to the vector space�n the Weyl vertex
algebra M�n generated by the fields

aα(z) =
∑

n∈Z
∂xα,n z

−n−1 and a∗α(z) =
∑

n∈Z
xα,−nz−n

for α ∈ �+.
The following theorem can be deduced from [Fre05, Theorem 5.1].

Theorem 5.1. Let κ be a g-invariant symmetric bilinear form on g. Then there exists a
homomorphism

wκ,g : Vκ(g)→M�n ⊗C Vκ−κc (h)

of N0-graded vertex algebras such that

wκ,g(eγ (z)) = −
∑

α∈�+

:qγ
α (a∗β(z))aα(z): − (cγ + (κ − κc)(eγ , fγ ))∂za

∗
γ (z)

+ a∗γ (z)hγ (z),

wκ,g(hγ (z)) =
∑

α∈�+

α(hγ ):a∗α(z)aα(z): + hγ (z),
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wκ,g( fγ (z)) = −aγ (z)−
∑

α∈�+

:pγ
α (a∗β(z))aα(z):

for γ ∈ �, where cγ ∈ C are constants and the polynomials pγ
α , qγ

α ∈ C[�n] are given
by

pγ
α (xβ) =

[(

ad(u(x))

ead(u(x)) − id
− id

)

fγ

]

α

, qγ
α (xβ) =

[

ad(u(x))ead(u(x))

ead(u(x)) − id
(e−ad(u(x))eγ )�n

]

α

for γ ∈ � and α ∈ �+.

The link between the Feigin–Frenkel homomorphismwκ,g of vertex algebras and the
homomorphism πg of associative algebras is given by the following theorem.

Theorem 5.2. Let κ be a g-invariant symmetric bilinear form on g. Then the diagram

(5.3)

is commutative.

Proof. As wκ,g : Vκ(g)→M�n ⊗C Vκ−κc (h) is a homomorphism of N0-graded vertex
algebras by Theorem 5.1, we obtain a homomorphism �wκ,g : U (g) → A�n ⊗C U (h)
of the corresponding Zhu’s algebras, since we have A(Vκ(g)) � U (g) and A(M�n ⊗C

Vκ−κc (h)) � A�n ⊗C U (h). Moreover, we have πZhu ◦ wκ,g = �wκ,g ◦ πZhu. Therefore,
we need only to show that �wκ,g = πg. We may write

�wκ,g(eγ ) = �wκ,g(πZhu(eγ,−1|0〉)) = πZhu(wκ,g(eγ,−1|0〉))
= πZhu

(

−
∑

α∈�+

qγ
α (xβ,0)∂xα,−1 |0〉 − (cγ + (κ − κc)(eγ , fγ ))xγ,1|0〉 + xγ,0hγ,−1|0〉

)

= −
∑

α∈�+

qγ
α (xβ)∂xα + xγ hγ = πg(eγ )

and

w̄κ,g( fγ ) = w̄κ,g(πZhu( fγ,−1|0〉)) = πZhu(wκ,g( fγ,−1|0〉))
= πZhu

(

− ∂xγ,−1 |0〉 −
∑

α∈�+

pγ
α (xβ,0)∂xα,−1 |0〉

)

= −∂xγ −
∑

α∈�+

pγ
α (xβ)∂xα = πg( fγ )

for γ ∈ �, which immediately implies that �wκ,g = πg. ��
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Let us note that an explicit form of the homomorphism wκ,g in Theorem 5.1 is given
only for the generators of the vertex algebra. An alternative approach based on the
Hamiltonian reduction of the WZNW model was considered in [dBF97]. However, we
will need explicit formulas for all elements of the opposite nilradical�n which will be
established in the next theorem.

Let us denote by P
g,b
loc (z) the vector space of all polynomials in a∗α(z) for α ∈ �+

and by Fg,b
loc (z) the vector space of all differential polynomials in a∗α(z) for α ∈ �+. We

define a formal power series u(z) ∈ g⊗C P
g,b
loc (z) by

u(z) =
∑

α∈�+

a∗α(z) fα. (5.4)

Besides, the vector space g⊗C F
g,b
loc (z) has the natural structure of a Lie algebra.

We recall the following statement from [FKS19].

Proposition 5.3 [FKS19, Proposition 3.8]. We have the identities

(1)
(

d

dt |t=0
ead(u(z)+t x(z))

)

e−ad(u(z)) = ad

(

ead(u(z)) − id

ad(u(z))
x(z)

)

for x(z) ∈ g⊗C F
g,b
loc (z),

(2)
[

ead(u(z)) − id

ad(u(z))
x(z),

ead(u(z)) − id

ad(u(z))
y(z)

]

= d

dt |t=0
ead(u(z)+t x(z)) − id

ad(u(z) + t x(z))
y(z)− d

dt |t=0
ead(u(z)+t y(z)) − id

ad(u(z) + t y(z))
x(z)

for x(z), y(z) ∈ g⊗C F
g,b
loc (z).

Let us introduce an element of�n⊗ P
g,b
loc (z) by

T (a, z) = ad(u(z))

ead(u(z)) − id
a

for a ∈�n. Then we may write

T (a, z) =
∑

α∈�+

Tα(a, z) fα,

where Tα(a, z) = [T (a, z)]α for α ∈ �+. Further, we define the linear mapping

dT (a, z) : �n⊗C F
g,b
loc (z)→�n⊗C F

g,b
loc (z)

by

dT (a, z)(x(z)) = d

dt |t=0
ad(u(z) + t x(z))

ead(u(z)+t x(z)) − id
a

for x(z) ∈�n⊗C F
g,b
loc (z). We have also

dT (a, z) =
∑

α∈�+

dTα(a, z) fα,

where dTα(a, z) = [dT (a, z)]α for α ∈ �+.



Positive Energy Representations of Affine Vertex Algebras

Lemma 5.4. We have

[aα(z), u(w)] = fαδ(z − w)

and

[aα(z), T (a, w)] = dT (a, w)( fα)δ(z − w)

for α ∈ �+ and a ∈�n.
Proof. By definition of u(w) we have

[aα(z), u(w)] =
∑

β∈�+

[aα(z), a∗β(w)] fβ =
∑

β∈�+

δα,β fβδ(z − w) = fαδ(z − w).

for α ∈ �+. Further, we may write

[aα(z), T (a, w)] = d

dt |t=0
ad(u(w) + t fα)

ead(u(w)+t fα) − id
a δ(z − w) = dT (a, w)( fα)δ(z − w)

for α ∈ �+ and a ∈�n. ��
Theorem 5.5. Let κ be a g-invariant symmetric bilinear form on g. Then we have

wκ,g(a(z)) = −
∑

α∈�+

:
[

ad(u(z))

ead(u(z)) − id
a

]

α

aα(z): (5.5)

for a ∈�n and

wκ,g(a(z)) =
∑

α∈�+

:[ad(u(z))(a)]αaα(z): + a(z) (5.6)

for a ∈ h.

Proof. From Theorem 5.1 we know that the statement holds for all a ∈ h and for the
root vectors fγ ∈ �n for γ ∈ �. Hence, it is enough to show that wκ,g given by (5.5)
gives rise to a homomorphism of vertex algebras from Vκ(�n) toM�n ⊗C Vκ−κc(h).

By using the relation (3.11), we have

wκ,g([a(z), b(w)]) = wκ,g([a, b](w))δ(z − w) + κ(a, b)∂wδ(z − w)

= wκ,g([a, b](w))δ(z − w)

= −
∑

α∈�+

:Tα([a, b], w)aα(w):δ(z − w)

for a, b ∈�n. On the other hand, we get

[wκ,g(a(z)), wκ,g(b(w))] =
∑

α,β∈�+

[:Tα(a, z)aα(z):, :Tβ(b, w)aβ(w):]

=
∑

α,β∈�+

:dTβ(b, w)( fα)Tα(a, z)aβ(w):δ(z − w)

−
∑

α,β∈�+

:dTα(a, z)( fβ)Tβ(b, w)aα(z):δ(z − w)
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−
∑

α,β∈�+

dTβ(b, w)( fα)dTα(a, z)( fβ)∂wδ(z − w)

=
∑

α∈�+

:dTα(b, w)(T (a, w))aα(w):δ(z − w)

−
∑

α∈�+

:dTα(a, w)(T (b, w))aα(w):δ(z − w)

−
∑

α,β∈�+

dTβ(b, w)( fα)dTα(a, w)( fβ)∂wδ(z − w)

−
∑

α,β∈�+

dTβ(b, w)( fα)∂wdTα(a, w)( fβ)δ(z − w),

where we used the Wick theorem and Lemma 5.4. Further, for a, b ∈�n we may write
∑

α,β∈�+

dTβ(b, w)( fα)dTα(a, w)( fβ) =
∑

β∈�+

dTβ(b, w)(dT (a, w)( fβ))

= tr�n(dT (b, w) ◦ dT (a, w))

and
∑

α,β∈�+

dTβ(b, w)( fα)∂wdTα(a, w)( fβ) =
∑

β∈�+

dTβ(b, w)(∂wdT (a, w)( fβ))

= tr�n(dT (b, w) ◦ ∂wdT (a, w)).

Hence, we obtain

[wκ,g(a(z)), wκ,g(b(w))] =
∑

α∈�+

:dTα(b, w)(T (a, w))aα(w):δ(z − w)

−
∑

α∈�+

:dTα(a, w)(T (b, w))aα(w):δ(z − w)

− trn̄(dT (b, w) ◦ dT (a, w))∂wδ(z − w)

− trn̄(dT (b, w) ◦ ∂wdT (a, w))δ(z − w)

for a, b ∈�n. Therefore, it is enough to show that

Tα([a, b], w) = dTα(a, w)(T (b, w))− dTα(b, w)(T (a, w))

for α ∈ �+ and a, b ∈�n, or equivalently
T ([a, b], w) = dT (a, w)(T (b, w))− dT (b, w)(T (a, w))

for a, b ∈�n, and that

tr�n(dT (b, w) ◦ dT (a, w)) = 0, tr�n(dT (b, w) ◦ ∂wdT (a, w)) = 0

for a, b ∈�n.
A proof of the previous system of equations is a subject of the following lemmas,

which then completes the proof of the present theorem. ��
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Lemma 5.6. We have

tr�n(dT (b, z) ◦ dT (a, z)) = 0 and tr�n(dT (b, z) ◦ ∂zdT (a, z)) = 0

for a, b ∈�n.
Proof. Since�n is a nilpotent Lie algebra, we have a canonical filtration

�n =�n0 ⊃�n1 ⊃ · · · ⊃�nn ⊃�nn+1 = 0

on�n given by the lower central series of�n, i.e.�nk = [�n,�nk−1] for k ∈ N with�n0 =�n.
Moreover, we have

dT (a, z) : �nk ⊗C F
g,b
loc (z)→�nk+1 ⊗C F

g,b
loc (z)

and

∂zdT (a, z) : �nk ⊗C F
g,b
loc (z)→�nk+1 ⊗C F

g,b
loc (z)

for a ∈�n, which implies immediately that

tr�n(dT (b, z) ◦ dT (a, z)) = 0 and tr�n(dT (b, z) ◦ ∂zdT (a, z)) = 0

for all a, b ∈�n. ��
Lemma 5.7. We have

T ([a, b], z) = dT (a, z)(T (b, z))− dT (b, z)(T (a, z))

for a, b ∈�n.
Proof. For a, b ∈�n, we may write

dT (a, z)(T (b, z)) = d

dt |t=0
ad(u(z) + tT (b, z))

ead(u(z)+tT (b,z)) − id
a

= d

dt |t=0
ad(u(z) + tT (b, z))

ead(u(z)+tT (b,z)) − id

ead(u(z)) − id

ad(u(z))

ad(u(z))

ead(u(z)) − id
a

= − ad(u(z))

ead(u(z)) − id

d

dt |t=0
ead(u(z)+tT (b,z)) − id

ad(u(z) + tT (b, z))
T (a, z),

which gives us

dT (a, z)(T (b, z))− dT (b, z)(T (a, z))

= − ad(u(z))

ead(u(z)) − id

d

dt |t=0
ead(u(z)+tT (b,z)) − id

ad(u(z) + tT (b, z))
T (a, z)

+
ad(u(z))

ead(u(z)) − id

d

dt |t=0
ead(u(z)+tT (a,z)) − id

ad(u(z) + tT (b, z))
T (b, z).

By using Proposition 5.3, we obtain immediately

dT (a, z)(T (b, z))− dT (b, z)(T (a, z))

= ad(u(z))

ead(u(z)) − id

[

ead(u(z)) − id

ad(u(z))
T (a, z),

ead(u(z)) − id

ad(u(z))
T (b, z)

]

= ad(u(z))

ead(u(z)) − id
[a, b] = T ([a, b], z)

for a, b ∈�n. ��
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5.2. Wakimoto functor. We introduce a functor Wκ,g from a certain subcategory of
M(g) to the category E+(̂gκ). For a generic level κ this functor provides a free field
realization of the induction functor Mκ,g.

A straightforward reformulation of Theorems 5.1 and 5.5 by using the completed
Weyl algebra ˜AK(�n) and the universal enveloping algebras U (̂gκ), U (̂hκ−κc ) gives us
the following statement.

Theorem 5.8. Let κ be a g-invariant symmetric bilinear form on g. Then there exists a
homomorphism

πκ,g : U (̂gκ)→ ˜AK(�n)̂⊗CU (̂hκ−κc )

of associative Z-graded algebras such that

πκ,g(eγ (z))=−
∑

α∈�+

:qγ
α (a∗β(z))aα(z): − (cγ +(κ−κc)(eγ , fγ ))∂za

∗
γ (z)+a∗γ (z)hγ (z)

(5.7)

for γ ∈ �, where cγ ∈ C are constants and the polynomials qγ
α ∈ C[�n] are given by

qγ
α (xβ) =

[

ad(u(x))ead(u(x))

ead(u(x)) − id
(e−ad(u(x))eγ )�n

]

α

for γ ∈ � and α ∈ �+. Further, we have

πκ,g(a(z)) = −
∑

α∈�+

:
[

ad(u(z))

ead(u(z)) − id
a

]

α

aα(z): (5.8)

for a ∈�n and

πκ,g(a(z)) =
∑

α∈�+

:[ad(u(z))(a)]αaα(z): + a(z) (5.9)

for a ∈ h.

Definition 5.9. Let N be an A�n-module and E be an h-module. Then the smooth ĝκ -
module

Wκ,g(N ⊗C E) =MK(�n)(N )⊗C Mκ−κc,h(E)

is called the relaxed Wakimoto module induced from the g-module N ⊗C E .

Let us note that it is easy to see that MK(�n)(N ) � LK(�n)(N ) for any A�n-module N
and that Mκ−κc,h(E) � Lκ−κc,h(E) for any h-module E provided κ is a non-critical
level.

Theorem 5.10. Let N be an A�n-module and E be an h-module. Then Wκ,g(N ⊗C E)

is a positive energy ĝκ -module and the top degree component of Wκ,g(N ⊗C E) is
isomorphic to N ⊗C E as a g-module. Moreover, there is a non-trivial homomorphism

Mκ,g(N ⊗C E)→Wκ,g(N ⊗C E)

of ĝκ -modules. If both Mκ,g(N ⊗C E) and Wκ,g(N ⊗C E) are simple ĝκ -modules, then
the latter homomorphism is in fact an isomorphism.
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Proof. By definition we have that MK(�n)(N ) and Mκ−κc,h(E) are a positive energy
AK(�n)-module and a positive energŷhκ−κc -module, respectively. Hence, we have

MK(�n)(N ) =
∞

⊕

n=0
MK(�n)(N )n and Mκ−κc,h(E) =

∞
⊕

n=0
Mκ−κc,h(E)n

with MK(�n)(N )0 � N as A�n-modules and Mκ−κc,h(E)0 � E as h-modules, which
gives us the gradation on Wκ,g(N ⊗C E) defined by

Wκ,g(N ⊗C E)n =
n

⊕

k=0
MK(�n)(N )n−k ⊗C Mκ−κc,h(E)k

for n ∈ N0. Further, from Theorem 5.8 we obtain that the gradation on Wκ,g(N ⊗C E)

is compatible with the grading of ĝκ , which implies that Wκ,g(N ⊗C E) is a positive
energy ĝκ -module whose top degree component is isomorphic to N⊗C E as a g-module.
Hence, we have a homomorphism N ⊗C E → Wκ,g(N ⊗C E) of g-modules which
gives rise to a homomorphism

Mκ,g(N ⊗C E)→Wκ,g(N ⊗C E)

of ĝκ -modules by the universal property of the generalized Verma module Mκ,g(N ⊗C

E). ��
The homomorphism πg of associative algebras gives rise to a bifunctor

�g :M(A�n)×M(h)→M(g)

defined by

�g(N , E) = N ⊗C E

for anA�n-module N and h-module E , where the g-module structure on N⊗C E is given
by πg. This enable us to consider Wκ,g as a functor from the categoryM(A�n)×M(h)
to the category E+(̂gκ). We will call Wκ,g theWakimoto functor.

Since the image of �g need not be a subcategory of M(g), we denote by C(g) the
full subcategory ofM(g) consisting of g-modules isomorphic to N⊗C E and their finite
direct sums, where N is anA�n-module, E is a semisimple finite-dimensional h-module
and the g-module structure on N ⊗C E is given through the homomorphism πg. In the
next, we will consider the Wakimoto functor Wκ,g as a functor from the category C(g)
(there is a unique extension of Wκ,g from im�g) to the category E+(̂gκ).

Proposition 5.11. For α ∈ �+ the twisting functor T g
α preserves the category C(g).

Proof. Let M be a g-module belonging to the category C(g). Then we have M �
∑n

i=1Ni ⊗C Ei , where Ni is an A�n-module and Ei is a semisimple finite-dimensional
h-module for i = 1, 2, . . . , n, which gives us Tα(M) �∑n

i=1Tα(Ni ⊗C Ei ). Therefore,
we need to show that Tα(N ⊗C E) is also from the category C(g) for an A�n-module N
and a semisimple finite-dimensional h-module E .

Since fα and pα = πg( fα) for α ∈ �+ are locally ad-nilpotent regular elements in
U (g) and A�n, respectively, we obtain that

(N ⊗C E)( fα) � N(pα) ⊗C E

as g-modules, where the g-module structure on N(pα) ⊗C E is defined through the
homomorphism πg. Hence, we get Tα(N ⊗C E) � (N(pα)/N )⊗C E for α ∈ �+, which
implies immediately that Tα(N ⊗C E) is an object of the category C(g). ��
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Now, we may apply the Wakimoto functor Wκ,g on Verma modules and Gelfand–
Tsetlin modules to obtain a free field realization of the corresponding relaxed Verma
modules.

Let Cλ be the 1-dimensional h-module given by a weight λ ∈ h∗ and let α ∈ �+ be
a positive root. Then by [KS17,FK19b] there are isomorphisms

Mg
b (λ) � A�n/IV ⊗C Cλ+2ρ and Wg

b (λ, α) � A�n/IGT,α ⊗C Cλ+2ρ (5.10)

of g-modules, where IV and IGT,α are left ideals of A�n defined by

IV = (xγ ; γ ∈ �+) and IGT,α = (∂xα , xγ ; γ ∈ �+\{α}),
which implies that the Verma module Mg

b (λ) and α-Gelfand–Tsetlin module Wg
b (λ, α)

belong to the category C(g). Hence, we may apply the Wakimoto functor Wκ,g on
these g-modules and get the corresponding relaxed Wakimoto modules together with
the canonical homomorphisms

ϕλ
V :Mκ,g(M

g
b (λ))→Wκ,g(M

g
b (λ)), ϕλ

GT,α :Mκ,g(W
g
b (λ, α))→Wκ,g(W

g
b (λ, α))

of ĝκ -modules given by Theorem 5.10. Let us note also that Wκ,g(M
g
b (λ)) and Wκ,g

(Wg
b (λ, α)) are positive energy ĝκ -modules with the top degree component isomorphic

to Mg
b (λ) and Wg

b (λ, α), respectively.
Further, we introduce vector spaces

F�n = C[∂xγ , γ ∈ �+] and F�n,α = C[xα, ∂xγ , γ ∈ �+\{α}] (5.11)

and endow them with the structure of A�n-modules by means of the canonical isomor-
phisms

A�n/IV � F�n and A�n/IGT,α � F�n,α (5.12)

of vector spaces. For a bilinear form κ on h and λ ∈ h∗, we define a smootĥhκ -module

πκ
λ = C[yγ,n, n ∈ N, γ ∈ �]

by the formula

hγ,n =
⎧

⎨

⎩

κ(h, h)n∂yγ,n if n ∈ N,

λ(h) if n = 0,
yγ,−n if n ∈ −N

for γ ∈ �. In addition, we introduce smooth AK(�n)-modules

W�n = C[∂xγ,−n , xγ,n, n ∈ N, γ ∈ �+; ∂xγ,0 , γ ∈ �+],
W�n,α = C[∂xγ,−n , xγ,n, n ∈ N, γ ∈ �+; xα,0, ∂xγ,0 , γ ∈ �+\{α}]

for α ∈ �+. Then it is easy to verify that

Mκ,h(Cλ) � πκ
λ (5.13)

aŝhκ -modules and that

MK(�n)(F�n) �W�n, MK(�n)(F�n,α) �W�n,α (5.14)

as AK(�n)-modules.
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Theorem 5.12. Let κ be a g-invariant symmetric bilinear form on g. Then we have

Wκ,g(M
g
b (λ)) �W�n ⊗C π

κ−κc
λ+2ρ and Wκ,g(W

g
b (λ, α)) �W�n,α ⊗C π

κ−κc
λ+2ρ

for λ ∈ h∗ and α ∈ �+.

Proof. By definition of the Wakimoto functor Wκ,g we have that

Wκ,g(M
g
b (λ)) �MK(�n)(F�n)⊗C Mκ−κc,h(Cλ+2ρ),

Wκ,g(W
g
b (λ, α)) �MK(�n)(F�n,α)⊗C Mκ−κc,h(Cλ+2ρ)

for λ ∈ h∗ and α ∈ �+, where we used (5.10) and (5.12). Moreover, by using the
isomorphisms (5.13) and (5.14) we get

Wκ,g(M
g
b (λ)) �W�n ⊗C π

κ−κc
λ+2ρ and Wκ,g(W

g
b (λ, α)) �W�n,α ⊗C π

κ−κc
λ+2ρ

for λ ∈ h∗ and α ∈ �+. ��
The link between the twisting functor Tα for α ∈ �+ ⊂ ̂�re

+ and the Wakimoto
functor Wκ,g is given in the following theorem.

Let us introduce a smooth AK(�n)-module

E�n = C[∂xγ,−n , xγ,n, n ∈ N, γ ∈ �+; xγ,0, γ ∈ �+]
which is isomorphic toMK(�n)(C[�n]). The commutative algebra E�n has the natural struc-
ture of a ̂Q-graded algebra, where ̂Q is the affine root lattice. The gradation is uniquely
determined by

deg xγ,n = γ + nδ and deg ∂xγ,n = −γ − nδ

for γ ∈ �+ and n ∈ Z. Hence, we have a direct sum decomposition

E�n =
⊕

γ∈̂Q

E�n,γ .

We say that a differential operator P ∈ ˜AK(�n) has degree ω ∈ ̂Q if P(E�n,γ ) ⊂ E�n,γ+ω

for all γ ∈ ̂Q. Further, for α ∈ �+ we define a differential operator pα ∈ ˜AK(�n) by

pα = πκ,g( fα,0) = Resz=0πκ,g( fα(z)) = −Resz=0
∑

γ∈�+

:
[

ad(u(z))

ead(u(z)) − id
fα

]

γ

aγ (z):.

Then we may write

pα = pα,0 + pα,1,

where pα,0 = πg( fα,0). The differential operators pα,0, pα,1 and pα have degree
−α for α ∈ �+. We denote by Nα the Lie subalgebra of ˜AK(�n) generated by the
set {ad(pα,0)

n(pα,1); n ∈ N0} and by Uα the subalgebra of ˜AK(�n) generated by Nα .
Moreover, we have the decompositions

Nα =
⊕

n∈N0

Nα,−nα and Uα =
⊕

n∈N0

Uα,−nα
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given by the degree of differential operators, where Nα,0 = 0 and Uα,0 = C.
Let us consider an A�n-module N . Then the smooth AK(�n)-module MK(�n)(N ) has

the canonical grading

MK(�n)(N ) =
∞

⊕

n=0
MK(�n)(N )n,

where MK(�n)(N )0 � N as A�n-modules. Moreover, by definition of pα we get immedi-
ately that the differential operator pα,0, pα,1 and pα preserve the subspaces MK(�n)(N )n
for n ∈ N0. Besides, we have

MK(�n)(N ) � E−�n ⊗C N ,

where

E−�n = C[∂xγ,−n , xγ,n, n ∈ N, γ ∈ �+],
which gives us

MK(�n)(N )n � E−�n,n ⊗C N

for n ∈ N0. Since the Lie algebra Nα preserves MK(�n)(N )n for n ∈ N0, we have

q(E−�n,n,γ ⊗C N ) ⊂ E−�n,n,γ− jα⊗C N

for q ∈ Nα,− jα , where E
−
�n,n,γ = E−�n,n ∩ E�n,γ . However, the vector space E

−
�n,n is finite

dimensional, which implies that there exists jn,γ ∈ N0 such that E−�n,n,γ− jα = 0 for
j > jn,γ . Therefore, for each vector v ∈ MK(�n)(N ) there exists an integer nv ∈ N0
such that Uα,−nαv = 0 for all n > nv .

Since pα and pα,0 for α ∈ �+ are locally ad-nilpotent regular elements of the
completedWeyl algebra ˜AK(�n), we may construct localized modulesMK(�n)(N )(pα) and
MK(�n)(N )(pα,0). By a completely similar way as in [FK19b, Lemma 4.6], we can show
that the element pα,1 p

−1
α,0 ∈ ˜AK(�n) acts locally nilpotently on MK(�n)(N )(pα,0).

Proposition 5.13. Let α ∈ �+ and let N be an A�n-module. Then the linear mapping

�α : MK(�n)(N )(pα) →MK(�n)(N )(pα,0)

defined by

�α(p−nα v) = ϕn
α(v)

for n ∈ N0 and v ∈ MK(�n)(N ), where the linear mapping ϕα : MK(�n)(N )(pα,0) →
MK(�n)(N )(pα,0) is given through

ϕα(v) = p−1α,0

∞
∑

k=0
(−1)k(pα,1 p

−1
α,0)

kv

for v ∈MK(�n)(N ), is an isomorphism of (˜AK(�n))(pα)-modules.
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Proof. Since the element pα,1 p
−1
α,0 acts locally nilpotently on MK(�n)(N )(pα,0), the linear

mappingϕα iswell defined.By an analogousway as in [FK19b, Lemma4.7, Lemma4.8],
we can show that�α is a homomorphism of (˜AK(�n))(pα)-modules. Hence, we only need
to prove that the linear mapping �α is injective and surjective. Since we may write

�α(qp−nα v) = qϕn
α(v) = qp−nα,0v

for n ∈ N0, v ∈ N and q ∈ E−�n , we have the surjectivity of �α . To prove the injectivity
of �α let us assume that �α(v) = 0 for some v ∈ MK(�n)(N )(pα). Then there exists an
integer n ∈ N0 such that pnαv ∈MK(�n)(N ) ⊂MK(�n)(N )(pα). Hence, we have

0 = pnα�α(v) = �α(pnαv) = pnαv ∈MK(�n)(N ) ⊂MK(�n)(N )(pα,0),

which gives us v = 0. Therefore, the linear mapping �α is an isomorphism. ��
Theorem 5.14. Let α ∈ �+ ⊂ ̂�re

+ . Then there exists a natural isomorphism

ηα : Tα ◦Wκ,g→Wκ,g ◦ T g
α

of functors, where T g
α : C(g) → C(g) is the twisting functor for g assigned to α. In

particular, we have

Tα(Wκ,g(M
g
b (λ))) �Wκ,g(W

g
b (λ, α))

for λ ∈ h∗ and α ∈ �+.

Proof. Let N be an A�n-module and E be a semisimple finite-dimensional h-module.
Then by using the definition of the Wakimoto functor Wκ,g we obtain an isomorphism

Wκ,g(N ⊗C E)( fα,0) �MK(�n)(N )(pα) ⊗C Mκ−κc,h(E)

ofU (̂gκ)-modules,where theU (̂gκ)-module structure onMK(�n)(N )(pα)⊗CMκ−κc,h(E)

is given via the homomorphism πκ,g. Further, from Proposition 5.13 we have that

MK(�n)(N )(pα) �MK(�n)(N )(pα,0) �MK(�n)(N(pα,0))

as ˜AK(�n)-modules, which gives us

Wκ,g(N ⊗C E)( fα,0) �MK(�n)(N(pα,0))⊗C Mκ−κc,h(E) �Wκ,g(N(pα,0) ⊗C E)

�Wκ,g((N ⊗C E)( fα))

as U (̂gκ)-modules. Hence, by definition of Tα and T g
α we get

Tα(Wκ,g(N ⊗C E)) �Wκ,g(T
g
α (N ⊗C E))

for α ∈ �+. Moreover, it is obvious that this isomorphism is natural. The rest of the
statement follows immediately. ��

With the help of Theorem 5.14 we can establish a relation between the relaxed Verma
module Mκ,g(W

g
b (λ, α)) and the relaxed Wakimoto module Wκ,g(W

g
b (λ, α)).

Corollary 5.15. Let λ ∈ h∗ and let us assume that the Verma module Mκ,g(M
g
b (λ)),

or equivalently the Wakimoto module Wκ,g(M
g
b (λ)), is a simple ĝκ -module. Then the

relaxed Verma module Mκ,g(W
g
b (λ, α)) is isomorphic to the relaxed Wakimoto module

Wκ,g(W
g
b (λ, α)) for α ∈ �+.
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Proof. If the Verma module Mκ,g(M
g
b (λ)), or equivalently the Wakimoto module

Wκ,g(M
g
b (λ)), is a simple ĝκ -module, then Mκ,g(M

g
b (λ)) � Wκ,g(M

g
b (λ)). By ap-

plying the twisting functor Tα for α ∈ �+ on both sides of the isomorphism, we obtain

Mκ,g(W
g
b (λ, α)) � Tα(Mκ,g(M

g
b (λ))) � Tα(Wκ,g(M

g
b (λ))) �Wκ,g(W

g
b (λ, α)),

where the first isomorphism follow from Theorem 4.16 and the last isomorphism is a
consequence of Theorem 5.14. ��

Let us note that Corollary 5.15 provides a free field realization of the relaxed Verma
module Mκ,g(W

g
b (λ, α)) whenever Mκ,g(M

g
b (λ)), or equivalently Wκ,g(M

g
b (λ)), is

a simple ĝκ -module. On the other hand, this does not give any information for the
critical level κc, since Mκc,g(M

g
b (λ)) is never a simple ĝκc -module. However, applying

[Fre07, Proposition 9.5.1] to the longest element of theWeyl group of gwe have that the
VermamoduleMκc,g(M

g
b (λ)) and theWakimotomoduleWκc,g(M

g
b (λ)) are isomorphic

if 〈λ + ρ, α∨〉 /∈ −N for all α ∈ �+. Hence, we have the following extension of
Corollary 5.15 in the case of the critical level.

Corollary 5.16. Let λ ∈ h∗ satisfy 〈λ + ρ, α∨〉 /∈ −N for all α ∈ �+, i.e. λ is dominant
weight. Then the relaxed Verma module Mκc,g(W

g
b (λ, α)) is isomorphic to the relaxed

Wakimoto module Wκc,g(W
g
b (λ, α)) for α ∈ �+.

6. Positive Energy Representations of Lκ (g)

In this sectionwe describe families of positive energy representations of the simple affine
vertex algebra Lκ(g) of an admissible level κ associated to a simple Lie algebra g.

6.1. Admissible representations. Let g be a complex simple Lie algebra and let κ be
a g-invariant symmetric bilinear form on g. Since g is a simple Lie algebra, we have
κ = kκ0 for k ∈ C, where κ0 is the normalized g-invariant symmetric bilinear form on
g satisfying

κg = 2h∨κ0.

Let ĝκ be the affine Kac–Moody algebra associated to the Lie algebra g of level κ . For
λ ∈̂h∗, we define its integral root system ̂�(λ) by

̂�(λ) = {α ∈ ̂�re; 〈λ + ρ̂, α∨〉 ∈ Z},
where ρ̂ = ρ + h∨�0. Further, let ̂�(λ)+ = ̂�(λ) ∩ ̂�re

+ be the set of positive roots of
̂�(λ) and ̂�(λ) ⊂ ̂�(λ)+ be the set of simple roots. Then we say that a weight λ ∈̂h∗
is admissible ( [KW89]) provided

i) λ is regular dominant, that is 〈λ + ρ̂, α∨〉 /∈ −N0 for all α ∈ ̂�re
+ ;

ii) the Q-span of ̂�(λ) contains ̂�re.

In particular, if λ = k�0 is an admissible weight for k ∈ C, then k is called an admissible
number. The admissible numbers were described in [KW89,KW08] as follows. The
complex number k ∈ C is admissible if and only if

k + h∨ = p

q
with p, q ∈ N, (p, q) = 1, p ≥

{

h∨ if (r∨, q) = 1,
h if (r∨, q) = r∨,
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where r∨ is the lacing number of g, i.e. the maximal number of edges in the Dynkin
diagram of the Lie algebra g. Since admissibility of a number k ∈ C depends only on g,
we shall say that k is an admissible number for g.

Further, let us assume that k ∈ Q is an admissible number for g. We say that a g-
module E is admissible of level k ifLkκ0,g(E) is anLkκ0(g)-module, or equivalently if E
is an A(Lkκ0(g))-module. In particular, the simple highest weight g-module Lg

b(0) with
zero highest weight is an admissible g-module of level k. Moreover, since A(Lkκ0(g)) �
U (g)/Ik , where Ik is a two-sided ideal ofU (g), we obtain that a g-module E is admissible
of level k if and only if the ideal Ik is contained in the annihilator AnnU (g)E .

Admissible highest weight g-modules of level k were classified in [Ara16] as follows.
Let Prk be the set of admissible weights λ ∈̂h∗ of level k such that there is an element
y ∈ ˜W of the extended affineWeyl group ˜W of g satisfyinĝ�(λ) = y(̂�(k�0)). Further,
let us define the subset

�Prk = {�λ; λ ∈ Prk}

of h∗, where�λ ∈ h∗ denotes the canonical projection of λ ∈̂h∗ to h∗.

Theorem 6.1 [Ara16].Let k ∈ Q be an admissible number for g. Then the simple highest
weight g-module Lg

b(λ) with highest weight λ ∈ h∗ is admissible of level k if and only
if λ ∈ �Prk .

For λ ∈ h∗, let Lg
b(λ) be the simple g-module with highest weight λ and

Jλ = AnnU (g)L
g
b(λ) (6.1)

the corresponding primitive ideal of U (g). A theorem of Duflo [Duf77] states that for
any primitive ideal I of U (g) there exists λ ∈ h∗ such that I = Jλ. This implies that a
simple weight g-module E is admissible of level k if and only if AnnU (g)E = Jλ for
some λ ∈ �Prk . Besides, for λ,μ ∈ �Prk we have Jλ = Jμ if and only if there exists
w ∈ W such that μ = w · λ (see Proposition 2.4 in [AFR17]). Hence, we may define an
equivalence relation on �Prk by

λ ∼ μ⇐⇒ there exits w ∈ W such that μ = w · λ
and set

[�Prk] = �Prk/ ∼
for an admissible number k of g.

Let p = l ⊕ u be a standard parabolic subalgebra of g, where u is the nilradical of
p and l is the Levi subalgebra of p, and let k ∈ Q be an admissible number for g. We
denote by 
k(p) the set of those weights λ ∈ �Prk ∩ �+(p) for which the generalized
Verma module Mg

p (λ) is simple, i.e. Mg
p (λ) � Lg

b(λ) as g-modules. For λ ∈ 
k(p), we
obtain immediately that λ is a regular weight, which by [Jan77] gives us that Mg

p (λ) is
a simple g-module if and only if 〈λ + ρ, α∨〉 /∈ N for all α ∈ �u

+.

Theorem 6.2. Let p be a standard parabolic subalgebra of g and let k ∈ Q be an
admissible number for g. Then the g-module Wg

p (λ, α) is admissible of level k for
λ ∈ 
k(p) and α ∈ �u

+ .
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Fig. 1. Hasse diagram of nilpotent orbits

Proof. Indeed, the Zhu’s algebra A(Lkκ0(g)) is isomorphic to U (g)/Ik , where Ik is a
two-sided ideal ofU (g). Let us consider the simple highest weight g-module Lg

b(λ)with
highest weight λ ∈ h∗. For λ ∈ 
k(p), the g-module Lg

b(λ) is admissible of level k by
Theorem 6.1. Hence, we get Ik ⊂ Jλ, where Jλ = AnnU (g)L

g
b(λ). Further, we need to

show that the g-module Wg
p (λ, α) for α ∈ �u

+ is admissible of level k, or equivalently
that Ik ⊂ AnnU (g)W

g
p (λ, α). Since Wg

p (λ, α) is obtained from Mg
p (λ) � Lg

b(λ) by the
twisting functor Tα , the statement follows from Corollary 4.5. Hence, Wg

p (λ, α) is a
module over U (g)/Ik , which implies the required statement. ��

6.2. Richardsonorbits andassociated varieties. LetG be a complex connected semisim-
ple algebraic group with its Lie algebra g. We denote by N (g) the nilpotent cone of g,
i.e. the set of nilpotent elements of g. It is an irreducible closed algebraic subvariety of
g and a finite union of G-orbits. There is a unique nilpotent orbit of g, denoted by Oreg
and called the regular nilpotent orbit of g, which is a dense open subset ofN (g). Next,
since g is simple, there exists a unique nilpotent orbit of g that is a dense open subset of
N (g)\Oreg, denoted by Osubreg and called the subregular nilpotent orbit of g. Besides,
there is a unique nonzero nilpotent orbit of g of minimal dimension, denoted by Omin
and called the minimal nilpotent orbit of g, such that it is contained in the closure of all
nonzero nilpotent orbits of g. By Ozero we denote the zero nilpotent orbit of g. For the
dimension of these distinguished nilpotent orbits of g see Fig. 1.

Let us consider the PBW filtration on the universal enveloping algebraU (g) of g and
the associated graded algebra grU (g) � S(g) � C[g∗]. The associated variety V(I ) of
a left ideal I ofU (g) is defined as the zero locus in g∗ of the associated graded ideal gr I
of S(g). Moreover, if I is a two-sided ideal of g, then I and gr I are invariant under the
adjoint action of G. Consequently, the associated variety is a union of G-orbits of g∗.
Obviously, we have

V(I ) = Specm(S(g)/gr I ) = Specm(S(g)/
√

gr I ), (6.2)

where
√
gr I denotes the radical of gr I . Since the Cartan–Killing form κg is a g-invariant

symmetric bilinear form on g, it provides a one-to-one correspondence between adjoint
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orbits of g and coadjoint orbits of g∗. For an adjoint orbit O of g we denote by O∗
the corresponding coadjoint orbit of g∗. In addition, for a primitive ideal I of U (g) the
associated variety V(I ) is the closure ofO∗ for some nilpotent orbitO of g, see [Jos85].
If E is a simple g-module and V(AnnU (g)E) = �O∗ for a nilpotent orbit O of g, we say
that E belongs to O. For a description of nilpotent orbits of admissible g-modules we
refer to [Ara15a].

Theorem 6.3 [Ara15b]. Let k ∈ Q be an admissible number for g with denominator
q ∈ N. Then there exists a nilpotent orbit Oq of g such that

V(Ik) = �O∗q
and we have

�Oq =
{

{x ∈ g; (adx)2q = 0} if (r∨, q) = 1,
{x ∈ g; πθs(x)

2q/r∨ = 0} if (r∨, q) = r∨,

where πθs : g → EndLg
b(θs) is the simple finite-dimensional g-module with highest

weight θs .

Let O be a nilpotent orbit of g and let k ∈ Q be an admissible number for g with
denominator q ∈ N. We define the subset

�PrOk = {λ ∈ �Prk; V(Jλ) = �O∗} (6.3)

of h∗. Then a simple g-module E in the nilpotent orbit O is admissible of level k if and

only if AnnU (g)E = Jλ for some λ ∈ �PrOk . Further, as Ik ⊂ Jλ for λ ∈ �Prk , we have
V(Jλ) ⊂ V(Ik) = �O∗q by Theorem 6.3, which gives us

�Prk =
⊔

O⊂ �Oq

�PrOk . (6.4)

Therefore, we need to describe the subset �PrOk of �Prk for a nilpotent orbit O of g.
For x ∈ g, we denote by gx the centralizer of x in g. Furthermore, for a subset X of

g we define the set

X reg = {x ∈ X; dim gx = miny∈X dim gy}
and call it the set of regular elements in X .

Theorem 6.4 [BB82].Letpbea standardparabolic subalgebraofg. Then forλ ∈ �+(p)
the associated variety V(AnnU (g)M

g
p (λ)) is the closure of O∗p, where

Op = (G.p⊥)reg

and p⊥ is the orthogonal complement of p with respect to the Cartan-Killing form. In
particular, we have

�Op = G.p⊥

and the associated varietyV(AnnU (g)M
g
p (λ)) is irreducible. The orbitOp is theRichard-

son orbit determined by p.
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Now,wefind the standardparabolic subalgebras forwhich the correspondingRichard-
son orbits are the distinguished nilpotent orbits Ozero, Omin, Osubreg and Oreg. Let us
recall that while the regular orbit Oreg and the subregular orbit Osubreg are Richardson
orbits for any g, the minimal orbit Omin is a Richardson orbit only for sln , n ≥ 2.
Since all these nilpotent orbits are uniquely determined by their dimensions and since
dimOp = 2 dim u for a parabolic subalgebra p = l ⊕ u of g with the nilradical u, we
obtain easily by comparison of the dimensions that

(i) Ozero = Og,
(ii) Omin = Opmax

α
for α ∈ {α1, αn−1} and g = sln , n ≥ 2,

(iii) Osubreg = Opmin
α

for α ∈ �,
(iv) Oreg = Ob,

where pmax
α for α ∈ � is the parabolic subalgebra of g associated to the subset � =

�\{α}, and pmin
α for α ∈ � is the parabolic subalgebra of g associated to the subset

� = {α}.
Lemma 6.5. Let p1, p2 be standard parabolic subalgebras of g and let k ∈ Q be an
admissible number for g. Then we have 
k(p1) ∩
k(p2) �= ∅ if and only if p1 = p2.

Proof. Let p be a standard parabolic subalgebra of g. If λ ∈ 
k(p)we have 〈λ+ρ, α∨〉 /∈
N for all α ∈ �u

+ and 〈λ + ρ, α∨〉 ∈ N for all α ∈ �l
+, which immediately implies that


k(p1) ∩
k(p2) �= ∅ if and only if p1 = p2. ��
LetO be a Richardson orbit of g and let k ∈ Q be an admissible number for g. Further,

let us consider a standard parabolic subalgebra p of g satisfying Op = O. Then for
λ ∈ 
k(p) we obtain V(AnnU (g)L

g
b(λ)) = �O∗ by Theorem 6.4, since Mg

p (λ) � Lg
b(λ)

for any λ ∈ 
k(p), which gives us


k(p) ⊂ �PrOk .

Hence, by Lemma 6.5 we get

⊔

�⊂�
Op�

=O


k(p�) ⊂ �PrOk , (6.5)

where p� is the standard parabolic subalgebra of g associated to a subset � of �.

Proposition 6.6. Let k ∈ Q be an admissible number for g. Then we have 
k(b) =�PrOreg
k .

Proof. Since the regular nilpotent orbit Oreg of g is a Richardson orbit and Oreg = Ob,
we obtain 
k(b) ⊂ �PrOreg

k . On the other hand, for λ ∈ �PrOreg
k we have V(Jλ) = �O∗reg

by definition, where Jλ = AnnU (g)L
g
b(λ), and V(Iλ) = �O∗reg by Theorem 6.4, where

Iλ = AnnU (g)M
g
b (λ). Hence, we get

√
grJλ = √gr Iλ. Since gr Iλ is a prime ideal of

S(g) by [BB82, Theorem 5.6], we have grJλ ⊂ gr Iλ which gives us Jλ ⊂ Iλ. Moreover,
the primitive ideal Jλ is the unique maximal two-sided ideal of U (g) containing Iλ by
[AFR17, Proposition 2.4]. Therefore, we get Iλ = Jλ for λ ∈ �PrOreg

k . As λ is regular
dominant, we have Mg

b (λ) � Mg
b (λ)/IλM

g
b (λ) and Lg

b(λ) � Mg
b (λ)/JλL

g
b(λ), which

implies Mg
b (λ) � Lg

b(λ) and thus λ ∈ 
k(b). ��
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Besides, from the decomposition (6.4) is follows that the set �PrOreg
k is non-empty if

and only if Oreg = Oq , where q is the denominator of k, or equivalently if and only if

q ≥
{

h if (r∨, q) = 1,
Lh∨r∨ if (r∨, q) = r∨,

where h is the Coxeter number of g and Lh∨ is the dual Coxeter number of the Langlands
dual Lie algebra Lg of g (see [AFR17]).

Proposition 6.7. Let k ∈ Q be an admissible number for g. Then we have 
k(g) =�PrOzero
k .

Proof. For the zero nilpotent orbit Ozero of g, we have Ozero = Og, which gives us

k(g) ⊂ �PrOzero

k .On the other hand, forλ ∈ �PrOzero
k wehaveV(Jλ) = �O∗zero by definition,

where Jλ = AnnU (g)L
g
b(λ), which implies

√
(g) = √grJλ. Hence, for α ∈ �+ there

exists a positive integer nα ∈ N such that f nα
α ∈ grJλ. Therefore, we get immediately

that the g-module Lg
b(λ) is finite dimensional implying λ ∈ 
k(g). ��

6.3. Admissible representations for sln. In this subsection we will consider the simple
Lie algebra g = sln for n ≥ 2. Let us note that all nilpotent orbits of g are Richardson
orbits.

Let k ∈ Q be an admissible number for gwith denominator q ∈ N. Then the nilpotent
orbit Oq from Theorem 6.3 is given by

Oq = Oλq ,

where λq is the partition of n defined through λq = [qr , s], where n = qr + s with
r, s ∈ N0 and 0 ≤ s ≤ q − 1. Hence, we immediately get that

Oq =

⎧

⎪

⎨

⎪

⎩

Oreg if q ≥ n,

Osubreg if q = n − 1,
Ozero if q = 1

for n ≥ 2. For details about nilpotent orbits in semisimple Lie algebras see [CM93]
(Fig. 2).

Let us introduce the subset

Prk,Z = {λ ∈ Prk; 〈λ, α∨〉 ∈ Z for α ∈ �}
of admissible weights of level k. Then by [KW89] we have

Prk,Z = {λ ∈̂h∗; λ(c) = k, 〈λ, α∨〉 ∈ N0 for α ∈ �, 〈λ, θ∨〉 ≤ p − h∨},
where p = (k + h∨)q. Further, from [KW89] we obtain

Prk =
⋃

y∈˜W
y(̂�(k�0)+)⊂̂�re

+

Prk,y, Prk,y = {y · λ; λ ∈ Prk,Z},

where the extended affine Weyl group ˜W of g is defined as

˜W = W � P∨.
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(a) (b) (c)

Fig. 2. Richardson orbits for sln

For μ ∈ P∨, we denote by tμ the corresponding element of ˜W . The action of tμ on˜h∗
for μ ∈ P∨ is given by

tμ(γ ) = γ + (γ, δ)μ−
(

(μ,μ)

2
(γ, δ) + (γ, μ)

)

δ

forγ ∈˜h∗.Moreover, for y, y′ ∈ ˜W satisfying y(̂�(k�0)+) ⊂ ̂�re
+ , y

′(̂�(k�0)+) ⊂ ̂�re
+

we have

Prk,y ∩ Prk,y′ �= ∅ ⇐⇒ Prk,y = Prk,y′ ⇐⇒ y′ = ytqω j w j (6.6)

for some j ∈ {1, 2, . . . , n− 1}, where w j is the unique element of the Weyl groupW of
g which preserves the set {α1, α2, . . . , αn−1,−θ} and w j (−θ) = α j . The set of simple
roots of g is � = {α1, α2, . . . , αn−1}. Let us recall that by [AFR17, Proposition 2.8] we
have

[�Prk] =
⋃

η∈P∨+
(η,θ)≤q−1

[�Prk,t−η ],

where P∨+ is the set of dominant coweights of g.

Lemma 6.8. If �y ∈ W is not the unit element, then there exists j ∈ {0, 1, . . . , n − 1}
such that�yw j (θ) ∈ �+.

Proof. For a proof, see [AFR17, Lemma 2.7]. ��
Theorem 6.9. Let k ∈ Q be an admissible number for g with denominator q ∈ N. Then
we have


k(p�) =
⋃

�y∈W, η∈P∨+ ,

(η,θ)≤q−1,�y(θ)∈�+, �y(�η
0)=��,

�
η
0∩�+⊂�y−1(�+)∩�+

�Prk,�yt−η

for � ⊂ �, where �� is the subroot system of � generated by � and �
η
0 = {α ∈

�; (η, α) = 0} for η ∈ P∨.
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Proof. Let y = �yt−η with�y ∈ W and η ∈ P∨. Then the condition y(̂�(k�0)+) ⊂ ̂�re
+

is equivalent to

0 ≤ (η, α) ≤ q − 1 if�y(α) ∈ �+ and 1 ≤ (η, α) ≤ q if�y(α) ∈ �−

for all α ∈ �+. In particular, for η ∈ P∨ and �y ∈ W such that �y(θ) ∈ �+ we
obtain easily that �yt−η(̂�(k�0)+) ⊂ ̂�re

+ if and only if η ∈ P∨+ , (η, θ) ≤ q − 1 and
�

η
0 ∩�+ ⊂ �y−1(�+) ∩�+.
For λ ∈ h∗, we define the subset �(λ) = {α ∈ �; 〈λ + ρ, α∨〉 ∈ Z} of �. Then

we immediately get �(λ) = ̂�(λ + k�0) ∩�. Further, let us assume that λ ∈ �Prk,�yt−η

with �y ∈ W , η ∈ P∨+ , (η, θ) ≤ q − 1, �y(θ) ∈ �+, �
η
0 ∩ �+ ⊂ �y−1(�+) ∩ �+ and

�y(�η
0) = �� for a fixed subset � of �. Then we may write

�(λ) = ̂�(λ + k�0) ∩� = �yt−η(̂�(k�0)) ∩�

= {�y(α) + (mq + (η, α))δ; α ∈ �, m ∈ Z} ∩�

= {�y(α); α ∈ �, (η, α) = 0} = �y(�η
0) = ��.

Hence, by [Jan77] we have that Mg
p�

(λ) � Lg
b(λ) since λ is regular dominant, i.e.

〈λ + ρ, α∨〉 /∈ −N0 for α ∈ �+, which gives us �Prk,�yt−η ⊂ 
k(p�).
On the other hand, if λ ∈ 
k(p�), then it is easy to see that �(λ) = �� . Since

we also have λ ∈ �Prk , there exists y ∈ ˜W such that ̂�(λ + k�0) = y(̂�(k�0)),
y(̂�(k�0)+) ⊂ ̂�re

+ and λ ∈ �Prk,y . Let y = �yt−η with �y ∈ W and η ∈ P∨. We may
assume that�y(θ) ∈ �+. Indeed, we have

�Prk,�yt−η = �Prk,�yt−ηtqω j w j = �Prk,�yw jw
−1
j tqω j−ηw j

= �Prk,�yw j t−η j

by (6.6) for j ∈ {0, 1, . . . , n − 1}, where η j = w−1j (η − qω j ). Further, if �y(θ) ∈ �−,
then there exists j ∈ {0, 1, . . . , n − 1} satisfying�yw j (θ) ∈ �+ by Lemma 6.8.

Hence, by using the assumption �y(θ) ∈ �+, we get that λ ∈ �Prk,�yt−η with η ∈ P∨+ ,
(η, θ) ≤ q − 1, �η

0 ∩�+ ⊂ �y−1(�+) ∩�+ and�y(�η
0) = �(λ) = �� . ��

Corollary 6.10. Let k ∈ Q be an admissible number for g with denominator q ∈ N.
Then we have

(i) 
k(b) =⋃

�y∈W, η∈P∨+ ,

(η,θ)≤q−1,�y(θ)∈�+,�
η
0=∅
�Prk,�yt−η ;

(ii) 
k(g) = �Prk,e.
Let us note that as an immediate consequence of Corollary 6.10we have that
k(b) �=

∅ if and only if q ≥ n.
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