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Abstract: We construct new families of positive energy representations of affine vertex
algebras together with their free field realizations by using localization technique. We
introduce the twisting functor T, on the category of modules over the universal affine
vertex algebra V,(g) of level k for any positive root « of g, and the Wakimoto functor
from a certain category of g-modules to the category of V. (g)-modules. These two
functors commute (taking a proper restriction of 7, on g-modules) and the image of the
Wakimoto functor consists of relaxed Wakimoto g, -modules. In particular, applying the
twisting functor Ty, to the relaxed Wakimoto g, -module whose top degree component
is isomorphic to the Verma g-module M g (L), we obtain the relaxed Wakimoto -
module whose top degree component is isomorphic to the a-Gelfand—Tsetlin g-module
Wg (A, o). We show that the relaxed Verma module and relaxed Wakimoto module whose
top degree components are such o-Gelfand—Tsetlin modules, are isomorphic generically.
This is an analogue of the result of E. Frenkel for Wakimoto modules both for critical and
non-critical level. For a parabolic subalgebra p of g we construct a new large family of
positive energy representations of the simple affine vertex algebra £, (g) of admissible
level k by means of the twisting functor applied on generalized Verma modules for the
parabolic subalgebra p.
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Introduction

Wakimoto modules and Verma modules for affine Kac-Moody algebras are the key ob-
jects in the theory of rational affine vertex algebras. Among others, Wakimoto modules
provide a free field realization of affine Kac—Moody algebras. They were constructed in
[Wak86,FF88,dBF97,Szc02]. Other free field realizations of affine Kac—Moody alge-
bras associated with nonstandard Borel subalgebras were studied in [Cox05] (imaginary
Verma modules), [CF04] (intermediate Wakimoto modules), [FKS19] (generalized imag-
inary Verma modules). Parabolic versions of Wakimoto modules (generalized Wakimoto
modules) were introduced in [Fre05].

However, there is a growing interest in the study of non-highest weight modules,
especially relaxed highest weight modules, over affine Kac-Moody algebras that play a
significant role for non-rational affine vertex algebras. Relaxed highest weight modules
were originally named in [FST98], where such modules over the affine Kac-Moody
algebra sl were used to study the N/ = 2 superconformal vertex algebra. In [Adal6]
relaxed highest weight modules over sl3 were used to analyse the N = 4 superconformal
vertex algebra. Simple relaxed highest weight modules over the simple affine vertex
algebra L, (slp) of admissible level k were classified in [AM95]. For recent developments
in classifications of relaxed highest weight modules we refer to [AFR17, ACR18,KR19a,
KR19b].

The goal of the current paper is to give an explicit free field construction of new
families of positive energy representations of the universal affine vertex algebras and
simple affine vertex algebras using two main technical tools: the twisting functor on
the category of modules over the (untwisted) affine Kac-Moody algebra g, of level «
assigned to an arbitrary positive root « of a semisimple Lie algebra g, and the Wakimoto
functor from a certain subcategory of g-modules to the category of positive energy g -
modules. In particular, the Wakimoto functor applied to Verma g-modules gives Verma
G-modules generically.

In the finite-dimensional case the twisting functor was defined in [FK19b] following
the work of Deodhar [Deo80]. If « is a simple root of a semisimple Lie algebra g, then the
twisting functor 7, is related to the Arkhipov’s twisting functor [Ark04] on the category
O(g). By applying the twisting functor T, for a positive root « to the generalized Verma g-
module M, 3 (1) induced from the simple finite-dimensional p-module with highest weight
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A one obtains the «-Gelfand—Tsetlin g-module W,f’ (A, o) with finite ', -multiplicities,
where [',, is the commutative subalgebra of U (g) generated by the Cartan subalgebra f
and by the center of U (sy), where s, is the Lie subalgebra of g given by the sl-triple
for the root «. The g-modules W[f’ (X, @) are cyclic weight modules with respect to the
Cartan subalgebra h with infinite-dimensional weight subspaces if « is not a simple root.
On the other hand, if « is a simple root, then these modules are twisted Verma g-modules
up to conjugation of the action of g, see [AL03,KS15,Mus19].

Modifying the construction given in [FK19a,FK19b] in the finite-dimensional setting,
we define the twisting functor 7, assigned to a real root « € A of G, g and obtain an
endofunctor on the category of g,-modules. The important properties of the twisting
functor T, are summarized in the theorem below (cf. Theorems 4.9, 4.13, 4.14, 4.16).

Theorem A. (i) For o« € A™, the twisting functor T, preserves the category & (g).
Moreover; the twisting functor T, preserves also the category E4(g,) provided a €
A.

(i) Let o € /A\Ef and let M be a smooth weight §,.-module on which the central element
c acts as the identity. Then the §,.-module T, (M) is a Gelfand-Tsetlin module with
finite Uy -multiplicities if and only if the first cohomology group Hl(s(;; M) is a
weight h module with finite-dimensional weight spaces.

(iii) For o € A C A™ there exists a natural isomorphism between Ty o M 4 and
M g 0 T, where T : M(g) — M(g) is the twisting functor for g assigned to .
In particular, we have

Ty (M, g (Mg (1)) 2= My g (W (A, @)

forx € At(p) and o € AY = {a € Ay; go C u}, where p is a standard parabolic
subalgebra of g with the nilradical u, A* (p) is the set of p-dominant integral weights.
Moreover, the twisting functor T, commutes with tensoring by Weyl modules.

In the previous theorem, the commutative subalgebra I'y of U, @) =U@)/(c—=1)
for o € AL is generated by the Cartan subalgebra b of the extended affine Kac-Moody
algebra g, and by the center Z (8¢) of U (sq), where s, is the Lie subalgebra of ﬁ,bgiven
by the sl,-triple for the root . € A’F. We denote s, = s, Mg, Where g = N @ h i
is the standard triangular decomposition of g,. Further, £(g,) and £,(g,) stand for the
categories of smooth g, -modules (Definition 2.1) and the category of positive energy
Bi-modules (Definition 2.2), respectively, on which the central element ¢ acts as the
identity.

In partlcular by applying the twisting functor 7, to the relaxed Verma module

M., g(M () for . € A*(p) and @ € A we obtain a new class of positive energy
G-modules, relaxed Verma modules 1nduced from the «-Gelfand-Tsetlin g-module
W]J X, a).

The Feigin—Frenkel homomorphism between the universal affine vertex algebra
Vi (g) and the tensor product of the Weyl vertex algebra Mz with the Heisenberg vertex
algebra V,_, (h) gives an explicit free field construction of Wakimoto modules, see
[Fre05]. We use the Feigin—Frenkel homomorphism to get a free field realization of
relaxed Verma modules in Theorems 5.5 and 5.12. The obtained g, -modules are relaxed
Wakimoto modules, they are images of Verma modules M g (1) and a-Gelfand—Tsetlin
modules Wf (A, o) under the Wakimoto functor W, 4. The most important properties

of the Wakimoto functor are collected in the theorem below (cf. Theorem 5.14, Corol-
laries 5.15, 5.16).
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Theorem B. Let A € h* and letx € Ay C Kﬂf be a positive root.

(i) The functors To, o W, g and W, 4 o T8 are naturally isomorphic. In particular, we
have

Toa(Wye g (Mg (M) = W, (W (1, @)).
(i1) If k is a non-critical level, then

MK)Q(WS A, ) WK,Q(W[? (A, @),

provided the Verma module M. g (M g (V) is a simple G, -module.
(iii) For the critical level k., we have

M. g(Wg (h, @) 2= Wi, g(Wg (1, @))
if A satisfies (L +p,yV) ¢ =N forall y € A, i.e. A is a dominant weight.

We see that generically the relaxed Verma module M 4( Wg (A, @)) and the relaxed

Wakimoto module W, g(W (A, )) are isomorphic. The generic condition is given by
the simplicity of the Verma g, -module with highest weight A and the non-criticality of
the level k. On the other hand, if the level « is critical and A is dominant, then these
modules are always isomorphic, which is an analogue of the corresponding result of
Frenkel [Fre07] for Wakimoto modules.

Further on, in Sect. 6 we describe families of positive energy representations of the
simple affine vertex algebra £, (g) of admissible level k = kk¢ associated to a simple
Lie algebra g, where «q is the normalized g-invariant symmetric bilinear form on g and
k e C.

By a result of Zhu [Zhu96] there is a one-to-one correspondence between the set of
simple positive energy Ly, (g)-modules and the set of simple U (g)/Ix-modules, where
I is a two-sided ideal of U (g). The algebra U (g)/Ix is the Zhu’s algebra A (L, (g)) of
the vertex algebra Ly, (g). We say that a g-module E is admissible of level k if E is an
A(Li,(g))-module.

Admissible highest weight g-modules of an admissible level k¢ € Q were classified
by Arakawa in [Aral6]. For A € [)* we denote by A(A) its integral root system. Then
Pry stands for the set of admissible weights A € b* such that A(A) = y(A(kAy)) for
some element y of the extended affine Weyl group W of g, and Pry for its canonical
projection to h*. Further, let p be a standard parabolic subalgebra of g and let k € QQ be
an admissible number for g. Let us denote by € (p) the set of weights A € Pry N A*(p)
such that (A + p, ") ¢ N for all @ € AY. For these weights the generalized Verma
module MS (1) is a simple g-module, and we have the following result.

Theorem C. Let k € Q be an admissible number for g. Furthermore, let A € Qi (p) and
a € AY. Then the g-module W'f (X, a) is admissible of level k.

The nilpotent cone of g is an irreducible closed algebraic subvariety of g. It de-
composes into the finite union of adjoint orbits. If O is such an adjoint orbit, then
O* denotes the corresponding coadjoint orbit of g* through the Cartan—Killing x4 on
g. We say that a nilpotent orbit O of g is the orbit of a simple g-module E provided
V(Anny g)E) = O*, where V(Anny 4 E) denotes the zero locus in g* of the associated
graded ideal gr Anny (g) E of S(g).
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Let k € QQ be an admissible number for g. Nilpotent orbits of admissible g-modules
of level k were described in [Aral5a]. For a nilpotent orbit O of g, we define

Pry = {x € Pr; V(J) = 0¥},

where J), is the annihilator of the simple g-module with highest weight A € h* and
V(J,) is the assg%ated variety. Then for the standard Borel subalgebra b of g we have
that Qi (b) = Pr;™*, where Oy, is the regular nilpotent orbit (cf. Proposition 6.6).
Moreover, in the case g = sl, we give a more convenient description of the set 2 (p)
for any standard parabolic subalgebra p of g (cf. Theorem 6.9).

We denote by C, R, Z, Ng and N the set of complex numbers, real numbers, integers,
non-negative integers and positive integers, respectively. All algebras and modules are
considered over the field of complex numbers.

1. Preliminaries

Let g be a complex semisimple finite-dimensional Lie algebra and let f) be a Cartan
subalgebra of g. We denote by A the root system of g with respect to h, by Ay a positive
root system in A and by IT C Ay the set of simple roots. For « € Ay, let hy, € b
be the corresponding coroot and let e, and f, be basis of root subspaces g, and g_q,
respectively, defined by the requirement [ey, fo] = hy. We also set

Q:ZZO{ and Q+:ZN0a
aell aell
together with
P = Z Ly, and P, = Z Nowy,
aell aell

where w, € h* for o € Il is the fundamental weight determined by wg (k) ) = 8., for
all y € I1. We call Q the root lattice and P the weight lattice. Further, we define the
Weyl vector p € h* by

1
p== o.

The standard Borel subalgebra b of g is defined through b = b @ n with the nilradical n
and the opposite nilradical n given by

n= @ga and n= @g_a.
aeAL aeA;

Besides, we have the corresponding triangular decomposition
g=ndhdn

of the Lie algebra g.
Let k¢ be the Cartan—Killing form on g and (-, -) 4 the corresponding induced bilinear
form on g*. Whenever o € h* satisfies («, @)y # 0, we define s, € GL(h*) by

2(ct, ¥)g o

sa(y) =y — (o, @)
’ g
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for y € h*. The subgroup W of GL(h*) given by
W = (sq; a € IT)

is called the Weyl group of g. Let us note that W is a finite Coxeter group.

Moreover, if g is a simple Lie algebra, we denote by g the g-invariant symmetric
bilinear form on g normalized in such a way that (6, 6) = 2, where 6§ € A, is the highest
root of g (by definition the highest weight of the adjoint representation g) and (-, -) is the
corresponding induced bilinear form on g*. Further, we denote by 6, the highest short
root of g. Then we have (0;, 05) = 2/rY, where rV is the lacing number of g, i.e. the
maximal number of edges in the Dynkin diagram of g. We also define

PV = @ Zo, and P/ = @ Now, »

aell aell

where w; € b* for o € IT is the fundamental coweight defined by (v, , ¥) = 8, for
all y € I1. We call P the coweight lattice.

The category of all g-modules we denote by M(g). We say that a g-module M is
a generalized weight (with respect to ) g-module, if the action of h on M is locally
finite. If the action of b is semisimple on M, then M is called a weight (with respect
to h) g-module. In particular, any simple generalized weight g-module is a weight g-
module. Further, for a Lie subalgebra a of g we denote by Z(g, a) and Z7(g, a) the
full subcategories of M (g) consisting of locally a-finite weight g-modules and finitely
generated locally a-finite weight g-modules, respectively.

For a commutative algebra I' we denote by Hom(T", C) the set of all characters of
I", i.e. algebra homomorphisms from I" to C. Let M be a I'-module. For each character
x € Hom(T", C) we set

M, ={veM; @FkeN)(VaeT)(@a— x(@)v=0}. (1.1)

When M, # {0}, we say that x is a I'-weight of M, the vector space M, is called the
I"-weight subspace of M with weight x and the elements of M, are I'-weight vectors
with weight x. Moreover, if a I'-module M satisfies

M = @ My, (1.2)

x €Hom(T",C)

then we call M a I'-weight module. The dimension of the I"-weight subspace M, will
be called the I"-multiplicity of x in M.

Let g be a semisimple Lie algebra and let I' be a commutative subalgebra of the
universal enveloping algebra U (g) of g. Then we denote by H (g, I') the full subcategory
of M(g) consisting of I'-weight g-modules. Let us note that H(g, I') is closed with
respect to the operations of taking submodules and quotients. Besides, if I" contains the
Cartan subalgebra b, a I'-weight g-module M is called a I'-Gelfand-Tsetlin g-module.

2. Affine Kac-Moody Algebras and Weyl Algebras

In this section we define smooth and induced modules for affine Kac—Moody algebras
and introduce a formalism for infinite-dimensional Weyl algebras.
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2.1. Affine Kac—Moody algebras. Let g be a semisimple (reductive) finite-dimensional
Lie algebra and « be a g-invariant symmetric bilinear form on g. The affine Kac—Moody
algebra g, associated to g of level « is the 1-dimensional central extension g, = g((?)) ®
Cc of the formal loop algebra g((¢)) = g ®c C((#)), with the commutation relations

[a® f(1),b®g)] =l[a,b]® f(1)g(t) — «(a, b)Res;—o(f()dg(t))c,  (2.1)

where c is the central element of Gy, a,b € g and f(¢), g(t) € C(2)). Let us note
that Lie algebras g, and g, for g-invariant symmetric bilinear forms « and «’ on g are
isomorphic if ¥ = kk for some k € C*. By introducing the notation a, = a ® t" for
a € g and n € 7Z, the commutation relations (2.1) can be simplified into the form

lam, bp] = la, blpsn + mk(a, b)(gm,—nc (2.2)

form,n € Zanda, b € g. N
As b is a Cartan subalgebra of g, we introduce a Cartan subalgebra b of g, by

h=h®cClaCe.

While any two Borel subalgebras of g are conjugate by an automorphism of g, any two
Borel subalgebras of g, may not be conjugate by an automorphism of g, see [Fut97].

Let p be a standard parabolic subalgebra of g with the nilradical u, the opposite
nilradical ¥ and the Levi subalgebra [. Then the standard parabolic subalgebra Py of gy
associated to p is given through

Pst =Ty @1y,
where the Levi subalgebra’[\st is defined by
Tu=1®cCl®Ce
and the nilradical 1l and the opposite nilradical ﬁst by
iy =u®cCleg®c!Cllr]] and Uy=u® Cl®gact 'Clr'].
Moreover, we have the corresponding triangular decomposition
B = Uy & Ty BTy

of the Lie algebra g,. If p = b then /b\st is the standard Borel subalgebra, and if p = g
then gy, is the maximal standard parabolic subalgebra.

On the other hand, the natural parabolic subalgebra Ppa; of 9« associated to p is
given through

Enat = Tnat @ ﬁnat»
where the Levi subalgebraTnat is defined by
T = 1®c C(1) ® Ce

and the nilradical 1i,,,; and the opposite nilradical ﬁnat by

T =u®c C(7) and  Tpy = U ®c C(1).
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We have again the corresponding triangular decomposition
/g\K = Unat D lnat @ﬁnat

of the Lie algebra g,. If p = b then ﬁnat is the natural Borel subalgebra, and if p = g
then we have gnar = 9.

For more general parabolic subalgebras of the affine Kac-Moody algebra g, see
[FK18].

To describe the root structure of the affine Kac-Moody algebra g, we define the
extended affine Kac-Moody algebra g, as

G =0()®CcoCd,
where we extend the Lie algebra structure of g, on g, by the commutation relations
[dia® f(t)] =a®td f(1), [d,c]=0 (2.3)
fora € gand f(¢t) € C((¢)). The corresponding Cartan subalgebra E of g, is defined by
5 =bocCleCedCd.

The dual space toEwe identify with h* @ CAo @ C8, where Aglpg.c1 = 0, Ao(c) =1,
Ao(d) = 0and 8|pg-c1 = 0,8(c) = 0,8(d) = 1. The set of roots of gy is then naturally
a subset of h* @ CAp & C§ given by

A=A UAM, (2.4)
where

A ={a+ns;a e A, neZ and A™={ns; neZ\{0})} (2.5)

are the sets of real and imaginary roots, respectively. Moreover, we have the following
decomposition A = A; U A_ into positive and negative roots, where

Ay ={a+n8; a€ Ay, ne Ng}U{—a +n8; @ € Ay, n e NJU {n8; n € N}

and A_ = —/A\Jr. We also set AT = Zi N A™ and Kin = Ki N AIm,

Let us note that the grading element d € §, gives g, and also g, the structure of Z-
graded topological Lie algebras with the gradation defined by —d, i.e. we havedeg ¢ = 0,
degd =0and dega, = —nfora e g,n € Z.

2.2. Smooth modules over affine Kac—Moody algebras. We denote by M (g, ) the cate-
gory of g, -modules. However, since the objects of this category may be very complicated,
we focus our attention to some nice full subcategories of M (g, ).

Definition 2.1. Let M be ag,-module. We say that M is a smooth g, -module if for each
vector v € M there exists a positive integer N, € N such that

(g ®c N Cl[t1v = 0,

or in other words that the Lie subalgebra g ®c ¢"*C[[¢]] annihilates v. The category of
smooth g,.-modules on which the central element c acts as the identity we will denote

by 5@<)
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Let us recall that by a graded g,-module M we mean a C-graded vector space M
having the structure of a g,-module compatible with the gradation of g,. Let us note
that by shifting a given gradation on M by a complex number we obtain a new gradation
on M.

Definition 2.2. Let M be a graded g, -module. We say that M is a positive energy g-
module if M = @72 ) My+n and M, # 0, where & € C. The category of positive energy
‘9,.-modules on which the central element ¢ acts as the identity we will denote by £4(g;).

Let us note that if M is a positive energy g, -module, then it follows immediately that
M is also a smooth g,-module. Therefore, the category £4(g,) is a full subcategory of
E@o)-

Let us recall that the category M (g, ) coincides with the category of modules over
the universal enveloping algebra U (g, ). There exists an analogous associative algebra
for the category £(g,) which is constructed as follows, see [Fre07]. Since the central
element c acts as the identity on all §,-modules from the category £ (g, ), the action of
U (g,) factors through the quotient algebra

Uc@/() = U@()/(C —1).

Further, let us introduce a linear topology on U, (g, ) in which the basis of open neigh-
bourhoods of 0 are the left ideals I defined by

In = Uc@e) (g @c tNCl[]])

for N € Ny. Let l~]C (@) be the completion of U, (g, ) with respect to this linear topology,
i.e. we get

Ue@) = lim U @)/ Iy
«—

Then the structure of an associative algebra on U, (@¢) extends to_the structure of an
associative algebra on Uc (@,) by continuity. Hence, we obtain that UC (@«) is a complete
topological associative algebra, which we will call the completed universal enveloping
algebra of g,. Moreover, the category £(g,) coincides with the category of discrete
modules over the associative algebra U, (g, ) on which the action of U, (g, ) is pointwise
continuous.

Now, we construct a class of g, G- modules the so called induced modules, which
belong to the category £ (g ). Let Py = [s; @ Uy be the standard parabolic subalgebra of
B« associated to a standard parabolic subalgebra p of g and let E be an [-module. Then
the induced g, -module

Mk,p(E) = U@K) ®U(ﬁst)Ey

where E is considered as the py-module on which Ty acts trivially and c acts as the
identity, has a unique maximal g, -submodule K, , (E) having zero intersection with the
[-submodule E of M (E). Therefore, we may set

Lk,p(E) = Mk,p(E)/KK,p(E)

for an [-module E. Moreover, it is easy to see that if £ is a simple [-module, then L , (E)
is also a simple §,-module. The g, -module My ,(E) is called the generalized Verma
module induced from E for the standard parabolic subalgebra Py.
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Further, if we set F = UWE C My ,(E), then F is a gg-module such that g ®¢
tC[[]] acts trivially and c acts as the identity. The induced G, -module M o (F) is
isomorphic to Ml ,(E) and Ly o(F) =~ L, ,(E) if F is a simple g-module. We will
always consider induced g,-modules as generalized Verma modules for the maximal
standard parabolic subalgebra gg;.

Therefore, we have the induction functor

Mg : M(g) = E4(@) (2.6)
and the functor
Li.g: M(g) — E@r)- (2.7)

Let us recall that if £ is a simple finite-dimensional g-module, then M, 4(E) is usually
called the Weyl module.

In the same way as £ (g, ) we may define the category £ (g, ). Moreover, as g, is a Lie
subalgebra of g, we have also a natural forgetful functor £(g,) — £ (@ ). On the other
hand, for a non-critical level k we can view on £ (g, ) as a full subcategory of £(g,). Let
M be a smooth g,-module on which the central element c acts as the identity. Since «
is a non-critical level, any smooth @,-module carries an action of the Virasoro algebra
obtained by the Segal-Sugawara construction, and so in particular an action of L (the
nontrivial semisimple generator). Hence, the action of the grading element d of g, is
then defined as the action of — L. However, if « is not a non-critical level, then general
smooth g, -modules do not necessarily carry an action of L.

In the rest of this section we described non-critical levels for a semisimple Lie algebra
g. Let us consider a b-invariant symmetric bilinear form on b defined by

k2 (a, b) = —try)p(ad(@)ad (b)) 2.8)

fora,b € b.

Definition 2.3. Let « be a g-invariant symmetric bilinear form on g. We say that « is
non-critical if k — KC[’ is non-degenerate on b, partially critical if k — /ccb is degenerate
on 0, and critical if k — Kf is zero on h. The critical g-invariant symmetric bilinear form
on g we will denote by «..

Since g is a semisimple Lie algebra, we have the direct sum decomposition

-
g= @gi
i=1

of g into the direct sum of simple Lie algebras g; for i = 1,2, ..., r such that these
direct summands are mutually orthogonal with respect to the Cartan—Killing form «4 on
g. We denote by Kgi the normalized g;-invariant symmetric bilinear form on g;, i.e. we
have kg, = Zl’llngi, where h;” is the dual Coxeter number of g;, fori =1,2,...,r. We
have the following criterion.

Lemma 2.4. Let « be a g-invariant symmetric bilinear form on g. Then « is partially
critical if kg, = —h}k§" for some i = 1,2,...,r, and k is critical if kg, = —hYk{’
foralli =1,2,...,r.
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Proof. Fora, b € ), we have

k2 (a.b) = —trg s (ad(@)ad(h)) = — Y a(@a(b).

aeAy

Further, foreachi = 1,2, ..., r there exists k; € C such that k|4, = ki/cog", since g; is a
simple Lie algebra. Hence, we may write

. ki
(k= k)@, b) = (kikg' — k)@, b) = 25 kg, (@, b) — k[ (a, b)
i
. k,’ + /’llv
hil

> a(@a(b)

aeAd

for a,b € hNg;, where AY C A, is the set of positive roots of g;. The required
statement then follows immediately. O

2.3. Weyl algebras. Let us consider the commutative algebra IC = C((¢)) with the sub-
algebra O = C[[¢]]. Further, let Q. = C(#)dt and Qp = C[[t]]dt be the corre-
sponding modules of Kéhler differentials. Then for a finite-dimensional complex vector
space V we introduce the infinite-dimensional vector spaces IC(V) = V ®¢ K and
Qi (V) =V ®c Q. Using the pairing (-, -): Q(V*) & K(V) — C defined by

(@ ® f(t)dt,v® g(r)) = a(v)Res;—o(g(1) f(1)dr), (2.9)

wherea € V*, v € V and f(¢), g(¢t) € K, we identify the restricted dual space to (V)
with the vector space Qjc(V*), and vice versa. Moreover, the pairing (2.9) gives us a
skew-symmetric non-degenerate bilinear form (-, -) on Qi (V*) @ (V) defined by

(@® f(Ndt,v@g) =—(v®gW),a® f(1)dt) = (¢ ® f(1)dt,v® g(1))
forc e V¥,v eV, f(t),g() € K, and
(W (1), w®g) = (a® f()dt, & g(r)dt) =0

fora, B € V¥, v,w eV, f(t), g(t) € K. The Weyl algebras Ay (y) and Agq, (v+) are
given by

Aoy =T Qic(VH) @ K(V)/Ixw),
Agrvs =T Q (V) @ K(V)/Iak v+,

where Iic(y) and I, (v+) denote the two-sided ideals of the tensor algebra T (Qic(V*) @
K(V)) generated by a @ b — b ® a + {(a,b) - 1 fora,b € Qi (V*) & K(V) and by
a®b—-—b®a—{a,b)-1fora,b € Qc(V*) @& K(V), respectively. The algebras
of polynomials on /C(V) and Qx(V*) are defined by Pol K(V) = S(Q(V*)) and
Pol Qi (V*) = S(KC(V)).

Let £ and £° be complementary Lagrangian (maximal isotropic) subspaces of Q2 (V*)
@ K(V), i.e. we have Qi (V*) @ (V) = L & LC. Then the symmetric algebra S(L)
is a subalgebra of A (y) since the elements of £ commute in Ax(y). Moreover, it



V. Futorny, L. Kfizka

is a maximal commutative subalgebra of Ay (). Further, let us consider the induced
Axcvy-module

Ind5"'C = S(L9),
where C is the trivial 1-dimensional S(£)-module. It follows immediately that the in-
duced Ax(vy-module has the natural structure of a commutative algebra. We denote
by M, the commutative algebra which is the completion of S(L¢) with respect to
the linear topology on S(L£°) in which the basis of open neighbourhoods of 0 are
the subspaces 7, ,, for n,m € Z, where Z, ,, is the ideal of S(L®) generated by
LN (V*Rc t"Qo & V@c t"O). In addition, we may extend the action of the Weyl
algebra Ay vy to M.

Our next step is to pass to a completion of the Weyl algebra Ay (v), because Ax (v is
not sufficiently large for our considerations. Let us denote by Fun (V') the completion
of the commutative algebra Pol K (V') with respect to the linear topology on Pol IC(V)
in which the basis of open neighbourhoods of 0 are the subspaces J, for n € Z,
where 7, is the ideal of Pol (V) generated by V*®c 1"Q». Consequently, we have
Fun K(V) = My y). Then a vector field on (V) is by definition a continuous linear
endomorphism & of Fun IC(V') which satisfies the Leibniz rule

§(fe) =E&(f)g+ fE(8)

forall f, g € Fun [C(V). In other words, a vector field on C(V) is a linear endomorphism
& of Fun IC(V) such that for any m € Z there exists n € Z, m < n and a derivation

En,m: POLK(V)/ Ty — POLK(V)/ T
satisfying
Sm(E(f)) = Enm (52 ()
for all f € Fun KC(V), where
spt Fun IC(V) — Pol K(V) /Ty

is the canonical homomorphism of algebras. The vector space of all vector fields is
naturally a topological Lie algebra, which we denote by Vect IC(V). There is a non-split
short exact sequence

0 — Fun (V) — .ZLJ;C(V)’Sl — Vect K(V) - 0

of topological Lie algebras, see [FBZ04] for more details. This extension of the topo-
logical Lie algebra Vect (V) by its module Fun KC(V) is however different from the
standard split extension

0 — Fun (V) — ‘AIIiC(V) a4~ Vect (V) — 0

of Vect IC(V) by Fun KC(V). The completed Weyl algebra JZ[IC(V) is then defined as the
associative algebra over Fun IC(V) generated by the images of the homomorphisms
i: Fun (V) — Axv) (as associative algebras) and j: Ax(v).<1 — Axv) (as Lie
algebras), with the relation

L (P), i(H]=i@a(P)(f))
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for f e FunK(V)and P € -ZIC(V),SI, where a : JNMC(V)’SI — Vect (V) is the homo-
morphism of Lie algebras originated from the corresponding short exact sequence.

Now, we define a class of A y)-modules called induced modules. Let us consider
the vector subspaces L4, £_ and L of Qi (V*) @& K (V) given by

+ = V*®c Cl[[t]ldt ® V& tC[[t]],
Lo =V*®ct2Clt dt @ Vec~'Clt™1,
Lo=V*®c Ct~'dt & V¢ Cl.

Then we have the direct sum decomposition
Qe(VHSKWV)=L_ DLo® L,
of Qi (V*) @ K(V), which induces the triangular decomposition
Ay = Akw),— ®c Akv),0 ®c Ak v).+
of the Weyl algebra Ay, where
Ay, - =S(Lo),  Axwyo=Av,  Agw)+ = S(Ly),

and Ay is the Weyl algebra of the finite-dimensional vector space V. Moreover, the
Weyl algebra A (v is a Z-graded algebra with the gradation determined by

degv®1") = —n, degl=0, degl@a®t™" 'dt)=n
forve V,a e V*andn € Z.

Definition 2.5. Let M be an A y)-module. Then we say that M is a smooth A v)-
module if for each vector v € M there exists a positive integer N, € N such that

(V*@c M Cll1]ldt & Vec " Cllt])v = 0.
The category of smooth A (y)-modules we will denote by £ (Axc(v))-

Completely analogously as for g, -modules, we may introduce graded A jc(y-modules
and positive energy Ax(y)-modules. The category of positive energy Aj(y)-modules
we will denote by E(Ax(v)).

Let E be an Ay-module. Then the induced Ax(y)-module

My (E) = Axv) B Axw)0®c Ak v+ E,

where E is considered as the Ax(vy,0 ®c Ak (v),+-module on which the Weyl algebra
Ak (vy,0 acts via the canonical isomorphism Ay (v),0 = Ay and Ay (y) 4+ acts trivially,
has a unique maximal Aj(y)-submodule Ky (y)(E) having zero intersection with the
Ay-submodule E of My (y)(E). Therefore, we may set

Licovy(E) = Micvy (BE) /Kievy (E)

for an Ay-module E. Moreover, it is easy to see that if E is a simple Ay-module, then
Lic(vy(E) is also a simple A (yy-module.
Therefore, we have the induction functor

Mycvy: M(Ay) = EfAxvy) (2.10)
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and the functor
Licwy: M(Ay) = ELAkwv))- (2.11)

Besides, it follows immediately that Mix(y)(E) and L (y)(E) are also ﬁ:;c(v)—modules.

Let us consider a Borel subalgebra b of a semisimple Lie algebra g with the nilradical
n, the opposite nilradical n and the Cartan subalgebra §y. Further, let { fy; « € Ay} be a
root basis of the opposite nilradical n. We denote by {x,; o« € A} the linear coordinate
functions onn with respect to the given basis of m. Then the set { f, ®1"; @ € Ay, n € Z}
forms a topological basis of (1) = Ty, and the set {x, ® " dt e Ay, n e Z)
forms the dual topological basis of Q2 (") >~ (e )* with respect to the pairing (2.9),
i.e. we have

(xq @ 1771, fp @ 1) = xa(fp)Res;—ot" "~ dt = 84 pSn.m

fora, B € Ayandm,n € Z. If we denote xy , = xo @ " 1dt and Oxyn = foa @ 1" for
a € Ay and n € Z, then the two-sided ideal /i) is generated by elements

<Zanxa,n>®< > bmaxﬂ,m> - ( > bmaxﬁ,,,,)@(Zanxa,n) +8a.p ( Zanbn> '

nez meZ mez nez nez

and it coincides with the canonical commutation relations

[xa,nv ax,g,m] = _8a,ﬁ8n,m

for o, B € Ay and m,n € Z. Therefore, we obtain that the Weyl algebra Ax ) is
topologically generated by the set {xy.,, 0 o € A4, n € 7} with the canonical
commutation relations.

Xo,n ®

3. Representations of Vertex Algebras

3.1. Vertex algebras. In this section we recall some notions and basic facts on vertex
algebra, for more details see [Bor86,Kac98, DLM98,FBZ04,Fre07].
Let R be an algebra over C. Then an R-valued formal power series (or formal distri-

bution) in the variables z, ..., z, is a series
mi m
a(zi, ..., 20) = E Ay, ] s
1seees Mg €L

where a;,,....m, € R.The complex vector space of all R-valued formal power series

is denoted by R[[zfl, cee, z,jf]]]. For a formal power series a(z) = ZmeZ am7™, the
residue is defined by

Res;—pa(z) = a_1.

A particulary important example of a C-valued formal power series in two variables z,
w is the formal delta function §(z — w) given by

Sz —w) = Z M

meZ
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Let V be a complex vector space, so EndV is an algebra over C. We say that a formal
power series a(z) € EndV[[z*!]] is a field, if a(z)v € V((2)) for all v € V. We shall
write the field a(z) as

a@)=Y amz""". 3.1)
nez

The complex vector space of all fields on V in the variable z we will be denote by
F(V)(2).

Definition 3.1. A vertex algebra consists of the following data:

(1) a complex vector space V (the space of states);

(2) a vector |0) € V (the vacuum vector);

(3) an endomorphism 7': ¥V — V (the translation operator);
(4) a linear mapping Y (-, z): V — EndV[[z*!]] sending

aeV Y@=y amnz " e FOV))
nez
(the state-field correspondence)
satisfying the subsequent axioms:

(1) Y(10), 2) =idy, Y(a, 2)|0)|;=0 = a (the vacuum axiom);
2)T10) =0,[T, Y(a,z)] = 0,Y(a, z) (the translation axiom);
(3) forall a, b € V, there is a non-negative integer N, , € Ng such that

(z — w)Neb[Y (a, 2), Y (b, w)] = 0

(the locality axiom).

A vertex algebra V is called Z-graded if V is a Z-graded vector space, |0) is a vector
of degree 0, T is an endomorphism of degree 1, and for @ € V), the field Y (a, z) has
conformal dimension m, i.e. we have

degagy =-n+m—1
forall n € Z.

Let us note that according to the translation axiom, the action of 7" on the space of
states )V is completely determined by Y, since we have T (a) = a(—2)|0). Moreover, we
have a = a(_1)|0).

3.2. Positive energy representations. Let us consider a Z-graded vertex algebra V. Then
a V-module M is called graded if M is a C-graded vector space and for a € V), the field
Yu(a, z) has conformal dimension m, i.e. we have

dega% =—-n+m-—1

for all n € Z. Let us note that by shifting a given gradation on M by a complex number
we obtain a new gradation on M.



V. Futorny, L. Kfizka

Definition 3.2. Let V be a Z-graded vertex algebra. We say that a graded V-module M is
a positive energy V-module it M = @Zo:o M.+, and M, # 0, where A € C. Moreover,
we denote by Mo the top degree component M;, of M. The category of positive energy
V-modules we will denote by E4(V).

In [Zhu96], Zhu introduced a functorial construction which assigns to a Z-graded
vertex algebra an associative algebra known as the Zhu’s algebra. Let V be a Z-graded
vertex algebra. We define a bilinear mapping on )V by

1 dega d
axbh= Resz=o<Y(a, a9 b) ) ( e$a>a(i_1)b (3.2)
Z 1

i=0

for homogeneous elements a,b € V and extend linearly. The Zhu’s algebra A(V) is
defined as

AV) =V/00), (3.3)
where O (V) is the vector subspace of V' spanned by
dega
(1 + z)dega dega
Reszz()(Y(a, z)z—2b> -y ( f >a(,-_2)b (3.4)
i=0

for homogeneous elements a, b € V. We denote by 7zy, the canonical projection from V
to A(V). The bilinear mapping (3.2) induces an associative multiplication on the quotient
A(V). Further, we define

o(a) = a(dega—1)

forahomogeneous elementa € V. Theniteasily follows that for ahomogeneous element
a €V the operator oy (a) = aé‘g eoa—1) Preserves the homogeneous components of any
graded V-module M.

As the following theorem proved in [Zhu96] shows, the Zhu’s algebra A()) plays a
prominent role in the representation theory of vertex algebras.

Theorem 3.3. Let V be a 7Z-graded vertex algebra and let M be a positive energy V-
module. Then the top degree component My, is an A(V)-module, where the action
of mznu(a) € A(V) for a € V is given by oy (a). In addition, the correspondence
M — Moy gives a bijection between the set of simple positive energy V-modules and
that of simple A(V)-modules.

To a Z-graded vertex algebra )V we may associate a complete topological Lie algebra
U (V), first introduced by Borcherds [Bor86], by

UWV) =V ®c C(1))/ima,
where
0=T ®id+id ® 0,.

If we denote by ap,) fora € V and n € Z the projection of a ® " € V @c C((¢)) onto
U (V), then the Lie bracket on U (V) is determined by

o
m
[apm), bny] = Z (k)(a(k)b)[m+n—k]

k=0
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fora,b e Vandm,n € Z.
Further, for a homogeneous element a € V, we set deg aj,) = —n +dega — 1. Then
the degree assignment to elements of U ()) gives us a triangular decomposition

vV =UWV)-aUWV)oadUWV). (3.5)
of the Lie algebra U (V) together with a canonical surjective homomorphism
U)o — A(V)
of Lie algebras defined by
Aldega—1] +> Tzhu(@)

for a homogeneous elementa € V.
Let us consider a V-module M. Then it has also a natural structure of a U ()))-module
since we have a canonical homomorphism

U(V) — EndV
of Lie algebras defined through
A[n) 7> A(n)

fora € V and n € Z. We denote by Q) (M) the vector subspace of M consisting of
lowest weight vectors, i.e. we have

QyM)={veM; UV)_v =0} (3.6)

It follows immediately using the triangular decomposition of U ()) that Qy (M) is a
U (V)op-module. Moreover, by [DLM98] we have that 2y)(M) is an A())-module, where
the action of mzn,(a) € A(V) fora € V is given by oy (a). It is clear that

Qp: EV) — MAV)) 3.7

is a functor. Let us note that if M is a positive energy V-module, then we have 2y, (M) D
Miop and y)(M) = Myop provided M is a simple V-module.

Therefore, we may consider a functor Qy,: £(V) — M(A(V)). On the other hand,
there exists also an induction functor

My : M(A(V)) — V) (3.8)

which is a left adjoint functor to €2y, and has the following universal property. For a
V-module M and a morphism ¢: E — Qy (M) of A(V)-modules, there is a unique
morphism @: My,(E) — M of V-modules which extends ¢, see [DLM98]. Moreover,
foran A())-module E we have My, (E)op = E as modules over A()). Besides, since the
V-module My, (E) has a unique maximal V-submodule Ky, (E) having zero intersection
with the A())-submodule E of My,(E), we may set

Ly(E) = My(E) /Ky (E) 3.9)

for an A(V)-module E.
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3.3. Affine vertex algebras. Let g be a semisimple (reductive) finite-dimensional Lie
algebra and « be a g-invariant symmetric bilinear form on g. The induced g,-module
MK,Q((C), where C is the trivial 1-dimensional g-module, is of a special importance in
the theory of vertex algebras since it is equipped with the natural structure of an Ny-
graded vertex algebra, called the universal affine vertex algebra, see [Kac98], which we
will denote by V, (g). For an element a € g, we denote by a(z) € g [[z*!]] the formal
distribution defined by

a@@) =Y az" " (3.10)

nez

By using this formal power series we may rewrite the commutation relations (2.2) for
G into the form

la(z), b(w)] = [a, b](w)§(z — w) + k(a, b)cdyd(z — w) (3.11)

for a, b € g. The state field correspondence Y : V,(g) — EndV @[z s given by

Y(ai,—n;—1---ak,—n—110), 2) = — 0May(z) ... 0% ar(2):
niy....ng:
fork e N,ny,np,...,ny € Nganday, as, ..., ar € g, where |0) € V,(g) is the vacuum
vector (a highest weight vector of M, 4(C)). The translation operator 7' : V. (g) — Vi (9)
is defined by T'|0) = 0 and [T, a,,] = —na,— fora € gand n € Z.
To describe positive energy representations of Vi (g), we need to know its Zhu’s
algebra. It is easy to see that for V, (g) we have a canonical isomorphism

A(Vc(9)) = U(g) (3.12)
of associative algebras determined by
al,—n;—102,—py—1 - - - Ak, —n;—110) (=D)m¥mtteg L aray 3.13)

fOI‘kEN,nl,nz,...,nk ENoandal,az,...,ak cg.

Let us note that for the universal affine vertex algebra V, (g) the functors My, (g
and Ly, () coincide with the functors M, ¢ and IL, g, respectively. Also both categories
EV(9)) and £(g,) coincide.

According to a theorem of Zhu the assignment E +> L, 4(E) gives a one-to-one cor-
respondence between the isomorphism classes of simple g-modules and simple positive
energy V (g)-modules. Therefore, the study of positive energy V, (g)-modules reduces
to the study of g-modules.

In addition, the unique simple quotient L, 4(C) of M 4(C) has also the natural
structure of an Ny-graded vertex algebra, called the simple affine vertex algebra, which
we will denote by L, (g). The Zhu’s algebra A (L, (g)) is a homomorphic image of U (g),
hence we have

A(Lc(9) = U()/ Ik (3.14)

for some two-sided ideal I, of U(g). Moreover, the assignment E + L, 4(E) gives
a one-to-one correspondence between isomorphism classes of simple modules over
U (g)/I, and simple positive energy L, (g)-modules.
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3.4. Weyl vertex algebras. Let V be a finite-dimensional vector space. Then the in-
duced Ay (yy-module My (S(V*)) carries the natural structure of an Ny-graded
vertex algebra, called the Weyl vertex algebra, which we will denote by My. Let

{x1,x2,...,xy}, where dimV = m, be linear coordinate functions on V and let
a; (2), af(z) € A;C(V)[[zil]] fori = 1,2,...,m be the formal distributions defined
by
ai(z) = Zai,nz_"_l and  a](z) = Zainz_", (3.15)
nez nez
where a; , = 0y, and ai’fn =xj_pforn € Zandi = 1,2,..., m. By using these

formal power series, the canonical commutation relations for Ay we may write in
the form

lai(2), a;(w)] =0, [ai(2),a;(w)] =38 ;8(z—w), [a/@),a;w)]=0 (3.16)

fori, j = 1,2,...,m. The state field correspondence Y : My — End My [[zF!]] is
given by

Y(ail,—nl—l .- ~ai,,—n,—la;%],fm1 .- -a};,fmxl()), )=
1 1

ny!...n'mq!. . mg

! 0Ma; (2)... 0" aj, (z)Bgnla;‘] 2)... Bgnsa; (2):

forr,s e N,ny,...,n,,my,...,my; € Ny, where |0) € My is the vacuum vector (a
highest weight vector of M (y)(S(V*))). The translation operator 7: My — My is
defined by T'10) = 0, [T, a;.n] = —na; ,—1 and [T, a?jn] =—(n— l)a;fn_l forn € Z
andi = 1,2,..., m. Moreover, we have a canonical isomorphism

AMy) ~ Ay (3.17)

of associative algebras determined by

* *
ajy,—ny—1 - - 'airs_”r_lajl,—ml . .ajx’_mx|0) =
oo
8mi0 - Sm, 0(—1)" "’le C X 8Xi| .. 3)6;, (3.18)
forr,s e N,ny,...,n,,my,...,mg; € Np.

Let us note that for the Weyl vertex algebra My the functors Mg, and Ly,
coincide with the functors Mix(yy and Ly, respectively. Also both categories £(My)
and £(Ax(v)) coincide.

4. Twisting Functors and Gelfand-Tsetlin Modules

We recall the definition of Gelfand—Tsetlin modules for a complex semisimple finite-
dimensional Lie algebra g and describe the construction of the twisting functor T
assigned to a positive root « of g.
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4.1. Twisting functors for semisimple Lie algebras. Letus consider a complex semisim-
ple Lie algebra g. For a positive root « € A, of g we denote by s, the Lie subalge-
bra of g generated by the sly-triple (ey, hy, fu), Where e, € g4 and fy, € g_q sat-
isfy [eq, fu]l = hq. Further, we define the Lie subalgebras s = s, Nn = Ce, and
5, = 5o N = Cfy of 5. Let ¢, be the quadratic Casimir element given through

Co = ey fou + fula + %hi»

which is a free generator of the center Z(s,) of U(sy). Then we denote by I'y, the
commutative subalgebra of U (g) generated by the Cartan subalgebra b and by the center
Z(s4). Therefore, we have the category H(g, I'y) of I'y-Gelfand—Tsetlin modules, or
simply a-Gelfand-Tsetlin modules, which was studied in [FK19a,FK19b]. Let us note
that H (g, ['y) contains Z(g, s%) and Z(g, s;) as full subcategories.

Since the multiplicative set { f'; n € Np} in the universal enveloping algebra U (g) is
a left (right) denominator set, thanks to the fact that f, is a locally ad-nilpotent regular
element in U (g), we define the rwisting functor

Ty =Ty, : M(g) — M(g)
by
Tu (M) = (U(9)(£,)/U@) ®ugy M =~ Mz /M

for M € M(g). Let us note that the quotient M(,)/M means the quotient of My, by
the image of the canonical homomorphism M — M, of g-modules. As f, is alocally
ad-nilpotent regular element in U (g), the functor Ty, is right exact. The twisting functor
T, for a simple root & € IT is well studied (see e.g. [AS03]). In this case the functor Ty
preserves the category O(g) up to a conjugation of the action of g.

Theorem 4.1 [FK19a, Theorem 3.3]. For o € Ay the functor T, induces the restricted
functor

Toa: Zr(9,54) — Zr(8,5,),
where Ly(g, 5&'5) is the category of finitely generated locally sf -finite weight g-modules.

It was shown in [FK19b] how the twisting functor 7, can be used to construct g-
modules in H(g, I'y) with finite I'y,-multiplicities. Namely, we have the following the-
orem.

Theorem 4.2 [FK19a, Theorem 3.4]. Let ¢ € A,.

(i) For a weight g-module M, the g-module Ty, (M) belongs to H(g, I'y). In addi-
tion, To(M) has finite T -multiplicities if and only if the first cohomology group
H! (843 M) is a weight h-module with finite-dimensional weight spaces.

(i) If M is a highest weight g-module, then T, (M) is a cyclic weight g-module with
finite T -multiplicities.

For a g-module M, we denote by Anny (5)M the annihilator of M in U(g). Then we
get the following important proposition.

Proposition4.3. Let M be a U(sy)-free g-module for o € A, We have
Annyg) Ty (M) = Anny gy M.
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Proof. First, we observe that Anny g)M(s,) = Annyg) M. Indeed, the inclusion M C
My, gives us

Anngg)M(y,) C Annyg)M.

The opposite embedding is obvious since f, is a locally ad-nilpotent element in U (g).
Further, from T, (M) = M(y,)/M we get that Anny gy M C Anng g T (M). Now, we
prove the opposite inclusion. Let us consider a vector v € M and let us assume that
a € Annyg Ty (M). Then we have af,"v € M for all n € Ny. By using the fact
fyaf, " ™v e M and the formula

n+m+k—1

flafy "o ="y ( X >fo,"‘ad(fa)"(a)v
k=0

for all n, m € Ny, we obtain immediately f,;*~"ad(f,)*(a)v € M for all k,m € Ny
which gives us ad(fa)k(a)v = 0 for all k € Ny. We may write

afy"v=f;"y" (" * ’,Z - l)fakad(fa)k(a)v =0
k=0

for all n € Ny. Hence, we have a € Anny g)M(s,) = Annyg)M and we are done.
o

If M is a g-module, then T,, (M) is a locally s, -finite g-module for any « € A,. On
the other hand, if M is a locally s, -finite g-module, then 7, (M) = 0. Let us also note
that for any « € A, the twisting functor 7;, commutes with the translation functors by
[FK19b, Theorem 3.6].

Let p = [ & u be the standard parabolic subalgebra of g associated to a subset X of
[T with the nilradical u, the opposite nilradical 1 and the Levi subalgebra [. We define
the subsets

Af={aeA;geCul, Al={reAigaCl
of A, and we set
AT(p) = {r € b"; (Ya € 2) A(hq) € No}.

For a weight A € A*(p), we denote by I, the simple finite-dimensional p-module with
highest weight A and by Mg (1) the generalized Verma g-module with highest weight A
defined by

Mg () = U(9) ®up)Fi-
Then for « € A} we define the o-Gelfand-Tsetlin g-module ng (A, @) by

WE(h, @) = Tu(ME(L)).
As a consequence of the Poincaré—Birkhoff—Witt theorem we have isomorphisms

MiW) ~U@cF, and Wi, )~ U@, /UMW) &c Fi
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of U (u)-modules. Moreover, since the twisting functor 7, is right exact, by applying of
T, on a surjective homomorphism

MZ(O) — Mg(h)
of generalized Verma modules, we get a surjective homomorphism
WE(h, @) > Wg (L, )

of a-Gelfand—Tsetlin modules.
By applying Theorem 4.2 and Proposition 4.3 on ng (A, ) for A € A*(p) and
o € Al we obtain the following immediate corollaries.

Corollary 4.4. Let .. € A*(p) and o € AY. Then the g-module Wy (A, @) € H(g, T'a)

is cyclic weight with central character and finite T -multiplicities. Moreover, Wg A, @)
belongs to H(g, I') and has finite U -multiplicities for any commutative subalgebra I of
U(g) containing T'y,.

Corollary 4.5. Let . € A*(p) and o € AY. Then we have AnnU(g)Wé’()\,oz) =
Anng gy Mg (%).

4.2. Affine a-Gelfand-Tsetlin modules. Let g, be the extended affine Kac-Moody alge-
bra associated to a complex semisimple Lie algebra g of level . Then for a commutative
subalgebra I' of the completed universal enveloping algebra U, (g,) of g, we denote by
H (g, T') the full subcategory of £(g,) consisting of smooth I'-weight g,-modules on
which the central element ¢ acts as the identity. Let us note that H(g,, I') is closed with
respect to the operations of taking submodules and quotients. In addition, if I' contains
the Cartan subalgebra b, the g,-modules from H(g,, I') are called I'-Gelfand-Tsetlin
-modules. R

For a real positive root @ € AY, we denote by s,, the Lie subalgebra of g, generated
by the sl-triple (eq, hqy, fo), Where

ey =€y, he = hy o +nk(ey, fyc, Jo = fy,—n

ifa =y +ndwithy € Ay, n € Ny and

ex = fyn ha = —hy,0 +nk(ey, fy)c, Ja=eyn

provided « = —y +né with y € A,, n € N. The quadratic Casimir element ¢, given
by

172
Ca = €q fa + fala + 5hy

is a free generator of the center Z(s,) of U (5¢). Furthermore, the commutative subalge-
bra of U, (g, ) generated by the Cartan subalgebra h and by the center Z (s,) we denote by
I'y. We also define the Lie subalgebras s} = s, N1y = Cey and s, = 54 N1y = C fy
of g, The objects of H (g, I'y) will be simply called a-Gelfand-Tsetlin §,.-modules.

_ Let I' be a commutative subalgebra of U.(g,) containing the Cartan subalgebra
bh. Besides, let us assume that [a, 53] = +y (a)ﬁglt for all a € T" and some charac-
ter x € I'. Then for a I'-Gelfand-Tsetlin g,-module M, the Lie algebra cohomology
groups H" (5§; M) are I'-weight modules for all n € Ny. By general results we get
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HO(s: M) ~ M®, H'(s¥; M) ~ M/s=M and H"(st; M) = 0 for n > 1. More-
over, we have that Z(s,) commutes with I', which enables us to extend I' by Z(sy).
Therefore, we denote by T'y ex the commutative subalgebra of U, (g, ) generated by T
and by Z(sy). As a mild and straightforward generalization of Theorem 2.3 in [FK19b]
we obtain the following important statement.

Theorem 4.6. Let o € Eﬁf and let M be a T -Gelfand-Tsetlin g, -module which is locally
s, finite. Then M is a I'y exi-Gelfand—Tsetlin G« -module with finite Ty exi-multiplicities
if and only if the zeroth cohomology group Ho(sg; M) is a I"-weight module with finite
I-multiplicities.

The following result is a consequence of Theorem 4.6 and the fact that the extension
of U.(h) by Z(s,) is the commutative algebra Iy .

Corollary 4.7. Let « € Aﬂf and let M be a locally s, -finite smooth weight G, -module
on which the central element c acts as the identity. Then M is a Ty-Gelfand-Tsetlin
Gc-module with finite Ty-multiplicities if and only if the zeroth cohomology group
H 0(5 M) is a weight b module with finite-dimensional weight spaces.

By duality we can analogously prove a similar statement if we replace s, by s} and
HO(s;; M) by HO(st; M).

For a Lie subalgebra a of g, we denote by Z(g,, a) and Z(gy, a) the full subcat-
egories of £(gy) consisting of locally a-finite and finitely generated locally a-finite,
respectively, smooth weight g,.-modules on which the central element ¢ acts as the iden-
tity. Therefore, for a real positive root o € Are we have the full subcategones Z(g, s3)
and Z(§y, s,) of £(gy) assigned to the Lie subalgebras 5% and s, of Gy.

The following statement is obvious, see Proposition 1.3 in [FK19a] for details.

Proposition 4.8. The categories I(gy, s;,) and L(gy, s;) are full subcategories of H
(G, To) fora € A

4.3. Twisting functors for affine Kac—Moody algebras. For a real positive root o € Zﬂf
the multiplicative sets {f); n € No} and {e}; n € Np} in the universal enveloping
algebra U (g,) of g, are left (right) denominator sets, since f, and e, are locally ad-
nilpotent regular elements. Therefore, based on the general construction we define the

twisting functor
Ty =Tp: M@ —> M@ and T_q =T, : M(@) — M(@@c)
by
To(M) =U@)(1/U @) Qugao M.  T-oM) = U@ (en)/ U @) QugoM

fora € Are and M € M(g,). In addition, it is easy to see that if M is a §,-module,
then T, (M ) has also a natural structure of a g,-module for « € Are

In the next, we prove some basic characteristics of T, for o € A, Let us note that
the twisting functor 7y, fore € A C A®isofa special importance and will be discussed
later in details.

Let us consider the subset

Oy ={y e ’A\\{ﬂ:ah /g\l(,y,a Cﬁst}
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of A fora € er, where Gy« fory € A is the finite-dimensional s,-module given by

Gy = @ Gic,y+ja-

JEZ

It easily follows that ®, C Z+ and that @, is closed, i.e. if yy, 72 € @q andy|+y € K,
then we have y; + y» € ®,. Therefore, the subset &, of A, gives rise to the Lie
subalgebras t}, t; and ty of g, defined through

t; Z/Q\K,a 5] @ ﬁx,yy ty = @ ﬁ/c‘y, t; Z/Q\K,foz 2] @ ﬁk,y,

yed, yed, y ey

where the direct sum over the set @, is the topological direct sum. Moreover, since we
have the inclusions s}, C t} C Ty of Lie algebras, we get immediately the embeddings
of categories

O@) CZr(@Ge.ty) CZr(Ge.5s)
forua € Kﬂf. There is also an automorphism Ad(#) of g, given by
Ad(ry) = exp(ad fy) exp(—ade,) exp(ad fy),
which satisfies
Ad(o)(sy) =57 and  AdG)(t) =t
foruo € Ere

Theorem 4.9. Fora € A the twisting functor Ty, preserves the category E (g, ). More-
over, ifa € A C A, then the twisting functor T, preserves also the category E(gy).

Proof. Let M be a smooth g, -module on which the central element ¢ acts as the identity.
Then for each v € M there exists N, € N such that (g ®c tN"(C[[t]])v = 0. Further, for
o€ Are there exists k, € N satisfying ad(fa)k (a) = 0 forall a € g,. Hence, we may
write

kol ik —1
afy"v="y" ( )fa‘"‘kad(fa)"(a)v

k=0 k

fora € g,. Moreover, since ad(fa) (am) € g®ct’"—k°‘(d)(C[[t]]fora € gandm € Z,we
get that (g ®c t"C[[1]]) f,, "v = 0 for Ny, = max{N, +ka(d); k € {0, 1, ... ko —
1}}. Hence, we have that T, (M) for o € ¢ Are is a smooth g, -module on which the central
element c acts as the identity. For o € Are the proof goes along the same lines.

Further, let M belong to the category £,(g; ). Then from the previous part we imme-
diately get that T, (M) for @ € A is from the category £(g,). As M is a positive energy
G-module we have M = @Zo:o M, with M, # 0 for some A € C. Since f,, preserves
M, for n € Ny, or in other words deg f, = 0 by definition of the gradation on g,
we may set deg f,"v = degv for n € Ny and a homogeneous vector v € M. Then it
follows immediately that T,, (M) is a positive energy @,-module. O

Let us note that for o € Are\A_ the twisting functor 7, also preserves the category
E4(g,). However, we have T, (M) = 0 fora € A™\A_ and M € £,(g,) which follows
from Proposition 4.10 and the fact that M is a locally s} -finite g, -module.
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Proposition 4.10. Let M be a g,.-module. Then To, (M) is a locally s, -finite §,.-module
for any a € AY¥. Moreover, if M is a locally s, -finite §,-module, then we obtain
Ta (M) = 0.

Proof. Let M be ag,-module. Then by definition we have
To(M) = (U@ (f)/U @) ®ugoM = My, /M

fora € /A\Ef Since every element of My, can be written in the form f, v forn € Ny
and v € M, we obtain immediately that 7, (M) is locally s, -finite. Further, let us assume
that M is a locally 5;—ﬁnite§,(—module. Since for each v € M there exists n, € Ny such

that f,"v = 0, we may write f,"v = fo " "' fo'v = 0 for n € Ny. This implies the
required statement. o

Lemma 4.11. Let o € Kﬁf Then we have
e fi" = fi"eq —nfy " hy —nm+ D f
hfa_" = fa_"h + noz(h)fa_",
” a—n — fa_nfa
inU@o) (s, forn € Zand h €.

Proof. 1t follows immediately from the formula

> k—1
afy" = f;" Y (” * . )fakad(fa)k(a)
k=0

in U(gc)(y,) foralla € U(g,) and n € N. |
Theorem 4.12. We have

(l) l.fM eIf@Kv5E), then TOl(M) eIf@K?‘E;);
(i) if M € T (G, t}), then T, (M) € T5 (g, ty)

fora € Kﬁf Therefore, we have the restricted functors
To:Zr(@c. 55) = Lr(@c,5,) and  Ty: L@, t)) — L@, ty)
foro e A,

Proof. (1) If M is a weight g,.-module, then it easily follows from definition that T, (M)
is also a weight g,-module. Moreover, by Theorem 4.9 and Proposition 4.10 we have
that 7, (M) belongs to the category Z(gy, s, ). Hence, the rest of the proof is to show
that 7, (M) is finitely generated provided M is finitely generated and locally s} -finite.

Let R C M be a finite set of generators of M. Then the vector subspace V =
U (s})(R) of M is finite dimensional. Further, let us introduce a filtration { F; V }xen, on
V by

F.V ={veV, e]o‘[v =0}
for k € Ny and let np € N be the smallest positive integer satisfying

no > max{—pu(he); w € §*, Vy # {0}, u(he) € R).
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Let us consider a vector v € FiV NV, for u € E* and k € Np. Then by Lemma 4.11
we get

eafy "0 = fo "M eqv = (0 +n)(ulha) + o+ 0+ 1) f 0Dy
for n € Ny, which together with fO{fa’"’l v = f,"vforn e Ny gives us
Ul(sa) f " FcV/CLEy '1Fe V = CLE, RV /CLE, TFe Vv

forallk € N. As FyV = {0} and V is a finite-dimensional vector space, we immediately
obtain U (sq) fo "'V = C[f,']V.

Further, since for any a € U(g,) and n € Ny there exist b € U(g,) and m € Ny
satisfying f,"a = bf, ™, we obtain f,"U (@) C U@)CLf, 1 C U@ (s, for
n € Np. Hence, we may write

"M = f7"UGOV C UGICL TV,

which implies M,y = U(G,)C[ £V = U@e) f2 " V. In other words, this means
that T, (M) >~ M(y,)/M is finitely generated and the number of generators is bounded
by dim V.

ii) Since Zy(gy, t}) is a full subcategory of Zy (g, s;), by item (i) we only need
to show that T, (M) is locally t, -finite if M is locally t}-finite. As we have U () =
U(s,)U (ty) and T, (M) is locally s, -finite, the condition that T, (M) is locally t, -finite
is equivalent to saying that T,, (M) is locally t,-finite. Further, since T, (M) is a smooth
G-module and the quotient t, /(t, N (g Q¢ tNC[[£]]) for N € N is a finite-dimensional
nilpotent Lie algebra, we get that 7,,(M) is locally t,-finite if the commutative Lie
algebra g , acts locally nilpotently on T, (M) for all y € ®y.

Letht: ZA — Z be the Z-linear height function with ht(«) = 1 if « is a simple root.
Then we get an Ny-grading U (ty) = @”ENO U (ty)n, where

U= P Ul
peh* ht(u)=n
Lety € &, and let r € Ny be the smallest nonnegative integer such that y — (r + )« ¢

®,. Letusrecall thatif y — ko € A for some k € Z then y —ka € ®,. Let us consider
a vector v € M. Then from the formula

> k—1
af" = fa" Y (" * . >fakad(fa)k(a)
k=0

in U(gc)(f,) fora € U(g,) and n € Ny, we obtain

tr
_ _ n+k—1\ _
e fv=f"Yy ( L )fa Fad(fu) (e} )v
k=0
fore, € gy, t € Nand n € Ny, where we used the fact that ad(fa)k(ey) # 0 only for
k =0,1,...,r. Moreover, we have ad(fa)k(e;) € U(ta)ry—ke C Uta)nt(ry—ka) for
k=0,1,...,tr.Since M is locally tg-ﬁnite, there exists an integer n, € Ny such that

U (ty)pv = {0} for n > n,. Therefore, it is enough to show that ht(ry — ka) > n, for
k=0,1,...,tr.
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As we may write

ht(ty — ka) > ht(ty — tra) = tht(y —ra) >t

fork =0,1,...,tr,since y —ra € ®, and hence ht(y — rar) > 1, we obtain that
e!, f,"v=0forn € Ny provided r > n,. Hence, the element e,, acts locally nilpotently
on Ty (M) for y € ®. |

The following shows how the twisting functor 7;, can be used to construct «-Gelfand—
Tsetlin modules with finite ', -multiplicities for o € Are

Theorem 4.13. Let o € Aﬁf and let M be a smooth weight G, -module on which the
central element c acts as the identity.

(i) The §,-module T, (M) is an o-Gelfand— Tsetlm module with finite Iy -multiplicities
if and only if the first cohomology group H' (543 M) is a weight Hh-module with
finite-dimensional weight spaces.

(i) If M is a highest weight §,.-module, then T, (M) is a locally t, -finite smooth cyclic
weight §,.-module with finite T, -multiplicities.

Proof. (i) Let M be a smooth weight §,-module. Then by Proposition 4.10 and The-
orem 4.9 we obtain that T, (M) is a locally s, -finite smooth weight gK—module for
o € Are Hence, we may apply Corollary 4.7 on 7,,(M) and we get that 7,,(M) is an
a-Gelfand—Tsetlin module with finite I, -multiplicities if and only if H 0 (553 T (M)) is
a weight h-module with finite-dimensional weight spaces. Further, the linear mapping
Yo M — Ty (M) defined by

Ga(v) = fo v
for v € M gives rise to the linear mapping
Gt H' (555 M) — H (55 Ty (M)

for o € Zﬁf, which is in fact an isomorphism. Therefore, we obtain an isomorphism
51(507; M) ~ HO(E(;; T,(M))®cC_, ofE-Igodules, where C_,, is the 1-dimensional
h-module determined by the character —« of h, which implies the first statement.

(ii) If M is a highest weight g,-module, then it belongs to the category O(gy).
Hence, using Theorem 4.12 we obtain that T, (M) is a locally t -finite smooth weight
d.-module. In fact, from the proof of Theorem 4.12 (i) it follows that T, (M) is not only
finitely generated by also cyclic. To finish the proof, we need to show by Theorem 4.13
that H' (s4: M) is a weight h-module with finite-dimensional weight spaces. Since
H! (555 M) ~ M/s,;M and M is a weight h-module with finite-dimensional weight
spaces, we immediately obtain that also M /s, M is a weight h-module with finite-
dimensional weight spaces. This gives us the required statement. O

If we denote by O : M(g,) — M(G,) the functor sending a g, -module to the
same g,-module with the action twisted by the automorphism Ad(ry): g« — @, then
we obtain the endofunctor

Oy o0 Ty,: If(ﬁ,(, t;) — Zf(al(’ t;).

Besides, for @ € I1 we have t' = My which implies Z¢ (g, t}) = O(gc) and in this
case the functor coincides with the Arkhipov’s twisting functor, see [Ark97, Ark04].
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4.4. Tensoring with Weyl modules. In this subsection we show that the twisting functors
behave well with respect to tensoring with certain g, -modules. In the finite-dimensional
setting this was considered in [FK19b, AS03].

Let us recall that the universal enveloping algebra U (g, ) is a Hopf algebra with the
comultiplication A: U(g,) — U (@) ®c U (@), the counit ¢: U(g,) — C and the
antipode S: U(g,) — U (g,) given by

Ala)=a®1+1®a, ela) =0, S(a) = —

for a € Ge. For @ € A, the localization U (§i)(f,) has the structure of a left C[ £, ']-
module, hence also U (G )(1,) ®c U @) f,) is a left C[ £, ']-module and we denote by
U@ s Rc U (@c)(f,) its extension to a left CI[f; '1]-module, i.e. we set

U@e) (s ®c U@ (1) = ClLy N @yt U@ () O UG (f)-

There is an obvious extension of the algebra structure on U @) () ®c U@e)(f,) to the
completion U (i) (£, c UG, «)(f,)- Then the linear mapping

A U@ () = U@ () Oc U@ (1)

given through

Bortn = (Lo (" ) e st )aw
k=0

forn € Ngandu € U (g, ) defines an algebra homomorphism, see [AS03]. The following
theorem is analogous to [ASO3, Theorem 3.2].

Theorem 4.14. Let o € zf Then there exists a family {”E}Ee/\/l(’g},s;) of natural
isomorphisms

Ng: Tyo(e®c E) — (e®c E)o T,

of functors, where M@, s,) is the category of locally s, -finite B -modules. In other
words, the twisting functor Ty for a € A'F commutes with tensoring by a locally s, -finite
Gic-module E.

Remark 4.15. The previous theorem has a natural ]ustlﬁcatlon following from the fact
that 7, (E) = O fora € Are and a locally s, -finite g,-module E by Proposition 4.10.

By duality we have a similar statement if we replace Af by A™ and s, by s}. Besides,
since Weyl modules are locally s, -finite and 5, -finite g, -modules, Theorem 4.14 implies
that for aroot @ € A C A" the twisting functor 7, commutes with tensoring by Weyl
modules.
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4.5. Relaxed Verma modules. Let us recall that we have the induction functor

MK,g: M(g) — g+(§l() 4.1)

introduced in Sect. 2.2 by Ml 4(E) = U (@) ®u gy E for a g-module E, where E is
considered as gg-module on which g ®c tC[[¢]] acts trivially and c acts as the identity.

The link between the twisting functor T, for@ € A C A'™ and the induction functor
M, 4 is given in the following theorem.

Theorem 4.16. Let € A C A™. Then there exists a natural isomorphism
Na: TuoM,g > M, go T2

of functors, where Ty : M(g) — M(q) is the twisting functor for g assigned to a. In
particular, we have

To (Mg (Mg (1)) =~ M g(Wi (A, @)
forx € A*(p) and a € AX.

Proof. We prove the statement only for ¢ € A, since for « € A_ the proof goes along
the same lines. By using the triangular decomposition g, = gx.— D Gx.0 D Gx.+> Where

Be-=0®ct 'Clt'l,  Teo=08cCl@®Ce,  Fer = g @c CIIH],
and the Poincaré-Birkhoff—Witt theorem we get an isomorphism
U@ () = U@k, -)(f) Oc U@st)
of U (gx,—)-modules for & € A,. Hence, we may write
U@ (f) BU G Mic.g(B) = U@ (1) ®U@o) U@k) ®ug E = U@ )s) ®C E
for a g-module E and o € A, which gives us an isomorphism
(To o M ) (E) == (U (@e,-) )/ U@k,-)) ®c E

of U (g, —)-modules. On the other hand, fora € A, we have anisomorphism of U (’g\,(, _)-
modules

My, o TI)(E) = U(Ge.-) ®c T (E).

Therefore, we define the isomorphism 1, g of U (§,.—)-modules by

o —1
@ v Z(—l)"(n " )ad%)k(u) ® [t

k=0

with the inverse

o
n+k—1
U@ fi"vi Y ( >fa_”_kad(fa)k(u) ®v
k
k=0

foru € U(ge—), v € E and n € N. It is straightforward to check that ny g is an
isomorphism of U (g, )-modules.

The rest of the statement follows from the fact that W (A, «) = Ty (Mg (1)) for
A € A*(p) and @ € AY by definition. |
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5. Relaxed Wakimoto Modules

We introduce a class of positive energy g, -modules which we will call relaxed Wakimoto
modules and also give a free field realization of relaxed Verma modules.

5.1. Feigin—Frenkel homomorphism. Let g be a semisimple finite-dimensional Lie al-
gebra. Let us consider a Borel subalgebra b of g with the nilradical n, the opposite
nilradical m and the Cartan subalgebra f). Let {f,; o € AL} be a root basis of the op-
posite nilradical . We denote by {x,; o € A.} the linear coordinate functions on n
with respect to the given basis of n. Then the Weyl algebra Ay of the vector space
is generated by {xy, dy,; o € A} together with the canonical commutation relations.
Further, by [KS17] there exists a homomorphism

mg: U(g) = Az ®c U(h) (5.1)

of associative algebras uniquely determined by

ad (u(x))e* ) _
mgla)=— Y [ e g WD gy | By, + (4@ (5.2)
aeAy o

for a € g, where [a], denotes the a-th coordinate of a € m with respect to the basis
{fo; @ € Ay} of m, ay and ay are the m-part and h-part of a € g with respect to the
triangular decomposition g =1 @ h @ n, and the element u(x) € C[n] ®c g is given by

u() =Y Xofa-

aeA,

Let us note that C[n] ®c g has the natural structure of a Lie algebra. Hence, we have a
well-defined linear mapping ad(u(x)): C[n] ®c g — C[n] Q¢ g¢.

Let us recall that by Sect. 3.4 we may assign to the vector space n the Weyl vertex
algebra M7 generated by the fields

aq(z) = Z axa,nzinil and Cl; (z) = Z-xa,—nzin
nez nez

fora € A;.
The following theorem can be deduced from [Fre05, Theorem 5.1].

Theorem 5.1. Let « be a g-invariant symmetric bilinear form on g. Then there exists a
homomorphism

Wy, g - Ve (g) = Mz Qc VK—KC (H)

of No-graded vertex algebras such that

Wy g(ey (2)) = — Z 1q) (ag(2))an (2): — (cy + (K — k) ey, f,))d.a5(2)

aeAy

+ay (2)hy (2),

Wi g(hy () = Y alhy):a}(2)aa(2): +hy (2),

aeAL
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Weg(fy () = —ay(2) — Y :pl(a}(2)ae(2):

aeAL

fory € I1, where ¢, € C are constants and the polynomials Pl ql € Cm] are given
by

ad(u(x))
p};(xﬂ) = [(M — 1d> fyi| , qg(xﬁ) = [% (e —ad(u(x)) )ﬁi|

ead(u(x)) —1d

fory e lland a € A,

The link between the Feigin—Frenkel homomorphism w4 of vertex algebras and the
homomorphism 74 of associative algebras is given by the following theorem.

Theorem 5.2. Let « be a g-invariant symmetric bilinear form on g. Then the diagram

Wg, g

Vi(g) ——— Mz &c Vi—r.(h)

TZhu TZhu

Ulg) Az ®c U(h)

(5.3)

is commutative.

Proof. As wy g: Vi(9) = Mz ®c Vi« (h) isa homomorphism of Np-graded vertex
algebras by Theorem 5.1, we obtain a homomorphism wy 4: U(g) — Aw ®c U(h)
of the corresponding Zhu’s algebras, since we have A(V,(g)) >~ U(g) and A(Mz Q¢

Vi—«.(h)) = Ax ®c U (h). Moreover, we have mzny © Wy, g = Wy, g 0 Tzh. Therefore,
we need only to show that w, g = my. We may write

EK,g(ey) = EK,g(T[Zhu(ey,—l 10))) = ﬂZhu(wx,g(ey.—l 10)))

= ”Zhu( Z 9o (xﬁ 0)8xa 1 [0) — (Cy + (kK — Kc)(eyv f]/))x)/,l |0) + xy,Ohy,—l |O)>

aeAL

=- Z q (xp) 3z, + Xy hy = Tg(ey)

aeAL

and
J)K,g(fy) = U_)K,g(ﬂZhu(fy,f”O))) = T[Zhu(wl(,g(f}/,*ll())))

- nZhu<— B, 110) = " pL(p0)ds, |0>)

aeAL

= > PLxp)O, = mg(fy)

aEAL

for y € I, which immediately implies that w; g = 7. O
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Let us note that an explicit form of the homomorphism w4 in Theorem 5.1 is given
only for the generators of the vertex algebra. An alternative approach based on the
Hamiltonian reduction of the WZNW model was considered in [dBF97]. However, we
will need explicit formulas for all elements of the opposite nilradical n which will be
established in the next theorem.

Let us denote by fP?O’Cb (z) the vector space of all polynomials in a}(z) for @ € A,

and by ffﬁ)’cb (z) the vector space of all differential polynomials in a(z) fora € A,. We

define a formal power series u(z) € g ®c Tf’o’cb (z) by
w(@) =Y a2 fa- (5.4)
aeA,

Besides, the vector space g Q¢ S"ﬁ)’cb (z) has the natural structure of a Lie algebra.

We recall the following statement from [FKS19].
Proposition 5.3 [FKS19, Proposition 3.8]. We have the identities

M
d , .
<i ead(u(z)+tx(z))>e—ad(u(z)) _ ad("’a e —id x(z)>

dt j1=0 ad(u(z))
forx(2) € g®c T (2),
()
@) _ g @) _ iq
[ Wdw@ D ad@) (Z)}
d e @+1x(2)) _ iq d e @+1y(2) _ jq

Y@ - E\t:o ad(u(z) +ty(2)) *@)

- Epzo ad(u(z) +tx(2))
for x(2), y(z) € g ®c Ty (2).
Let us introduce an element of T ® U’f’o'cb (z) by

ad(u(z))

T@.d) =gy —1a @

for a € m. Then we may write
T@2) =) Tu@2)fa,
aEAL
where Ty (a, z) = [T (a, 7))y for o € A.. Further, we define the linear mapping
dT(a,z): " Q¢ 3"15:)’0[’ (z) > nQ®c ffﬁ,’cb ()
by

d ad(u(z) +tx(2))

dT(a, @) = 50 Cdumm@ —ig ¢

for x(z) e M Q¢ ?g’b(z). We have also

loc
dT(a,2) = Y dTy(a,2) fa,

aEAL

where dTy(a,z) = [dT (a, )]y fora € A,.
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Lemma 5.4. We have

l[aa(2), u(w)] = fad(z —w)
and
laa(2), T (a, w)] = dT (a, w)(fa)d(z — w)
fora € Ay anda en.
Proof. By definition of u(w) we have
[aa (), u)] = Y [aa(2), agw)lfp = Y Sapfpd(z—w) = fud(z — w).
BeA. BeA.

for @ € A.. Further, we may write

[ay(2), T (a, w)] = i ad(u(w) +1f4)

dt ‘tzom a8(z — IU) = dT((l, LU)(fa)S(Z — w)

fora € Ay anda €. |
Theorem 5.5. Let k be a g-invariant symmetric bilinear form on g. Then we have

weg@@) =— ) :[M a] i 2): 5.5)

ad(u(z)) —
ol e id
fora e wand

Wi,g(a(z)) = Z lad(u(2))(@)]ata (2): +a(z) (5.6)

aeNy
fora €.

Proof. From Theorem 5.1 we know that the statement holds for all a € b and for the
root vectors f, € nfor y € II. Hence, it is enough to show that w, 4 given by (5.5)
gives rise to a homomorphism of vertex algebras from V, () to Mz ®c Vie—« (h).

By using the relation (3.11), we have

we,g([a(2), b)) = wieg(la, bw)8(z — w) +k(a, b)ayd(z — w)
= weg(la, W))3(z — w)
=— ) Tu(la, bl wag(w):8(z — w)

aeAy
for a, b € m. On the other hand, we get

[We.g(@(2), wegb)l= Y [To(a, 2)an(2):, :Tp(b, wiagw):]

a,BeAy

= Y dTp(b. w)(fo) Tula, Dag(w):d(z — w)

a,BeAy

— Y dTu(a, D(fp)Tp(b, w)ag(2):8(z — w)

a,BfeAy
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- Z dTg(b, w)(fa)dTu(a, 2)(fp)dwd(z — w)

a,BeEA,

= Z :[d Ty (b, w)(T (a, w))ay(w):8(z — w)

aeA;

— Z :dTy(a, w)(T (b, w))ay(w):8(z — w)

aeAL

— Y dTpb, w)(fa)dTo(a, w)(fp)duwd(z — w)

a,BeA,

— Y dTg(b, w)(fu)dwdTu(a, w)(fp)8(z — w),

o,BeEAL
where we used the Wick theorem and Lemma 5.4. Further, for a, b € n we may write

> dTpb, w)(fa)dTyu(a, w)(fp) = Y dTp(b, w)dT (a, w)(fp))

ao,feAL BeAL
=trg(dT (b, w) odT (a, w))

and

> dTp(b, w)(fu)dwdTula, w)(fp) = Y dTp(b, w)(dudT (@, w)(fp))

a,BEAL BeAL
=trg(dT (b, w) o 3,dT (a, w)).

Hence, we obtain

[We.q(@(2)), we g(B)] =Y :dTy(b, w)(T (a, w))aa(w):8(z — w)

aeA,

— Z dTy(a, w)(T (b, w))ay(w):8(z —w)

aeAL
—tra(dT (b, w) o dT (a, w))d,d(z — w)
—tra(dT (b, w) 0 3, dT (a, w))§(z — w)

for a, b € n. Therefore, it is enough to show that
Ty ([a, b], w) = dTy(a, w)(T (b, w)) — dTy (b, w)(T (a, w))
fora € A; and a, b € 1, or equivalently
T ([a,b],w) =dT (a, w)(T (b, w)) —dT (b, w)(T (a, w))
for a, b € m, and that
trg(dT (b, w) odT (a,w)) =0, trg(dT (b, w) 0 d,dT (a,w)) =0

fora, b e n.
A proof of the previous system of equations is a subject of the following lemmas,
which then completes the proof of the present theorem. O
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Lemma 5.6. We have

trg(dT (b, z) 0dT(a,z)) =0 and trg(dT(b,z)038,dT(a,z)) =0
fora,b en.
Proof. Since m'is a nilpotent Lie algebra, we have a canonical filtration

nm=myDOn;D---DON; DNy =0
on n given by the lower central series of m, i.e. ny = [n, nx_1] for k € N withng =n.
Moreover, we have
dT(a,2): W% ®c FEL(2) = T ®c FLL(2)
and
3.dT (@, 2): T ®c FEL(2) = Tt ®c FLL(2)

for a € n, which implies immediately that

trg(dT(b,z) 0dT(a,z)) =0 and trg(dT(b,z) 0 3.dT(a,z)) =0
forall a, b e n. O
Lemma 5.7. We have

T([a,bl,z) =dT(a,z)(T(b,z)) —dT (b, 2)(T (a, z))

fora,b en.
Proof. For a, b € n, we may write

_d ad(u(z) +tT (b, 2))
dT(a, 2)(T (b, 2)) = A1 120 W@ TG.2) —iq ¢
_d o ad(u(z) +1T (b, 2)) €@ —id  ad(u(z))
T At =0 e9@@HTBD) _id  ad(u(z)) ed@@) —id ¢
ad(u(z)) d 2@+ T(b,2) _ iq

__ z) ¢ T
edd(@) —id df |r=0 ad(u(z) +tT (b, 2))

(a,z),

which gives us

dT(a,z)(T(b,z)) —dT (b, 2)(T (a, 2))
ad(u(z)) d ead(u(Z)HT(b,Z)) —id
T T adw®) _iddr T@,2)
e3du@) —id dt 1=0 ad(u(z) +tT (b, 2))
ad(u(z)) d ead(Ll(Z)HT(a,Z)) —id
+—_
e2d@) —id df 1=0 ad(u(z) +tT (b, 7))
By using Proposition 5.3, we obtain immediately
dT(a,z)(T'(b,z)) —dT (b, z)(T (a, 2))
ad(u(z)) [ead@f(z» —id e2d@) _iq

" e —id| adwe) O Taaey Z)}
ad(u(z))

= 0@ —iq [a,b] = T([a,b], 2)

T, z).

fora,b en. m|
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5.2. Wakimoto functor. We introduce a functor W, 4 from a certain subcategory of
M(g) to the category £,(g). For a generic level « this functor provides a free field
realization of the induction functor M, 4.

A straightforward reformulation of Theorems 5.1 and 5.5 by using the completed
Weyl algebra A and the universal enveloping algebras U (i), U (hc—,) gives us
the following statement.

Theorem 5.8. Let k be a g-invariant symmetric bilinear form on g. Then there exists a
homomorphism

Ty, g - U@K) - Z}C@®C U(EK—K(-)
of associative Z-graded algebras such that
Tegley @)= — 3 L (@5(2)aa(2): — () +c—kc) ey )3 (@)+ak @y (2)

aEAL

(5.7)
fory €I, where ¢, € C are constants and the polynomials gl € C[n] are given by

ad(u(x))e® )
ql (xp) = [—eadw(x)) — (e )y

o

fory € and o € Ay. Further, we have

ad(u(z2))
T, g(a(z)) = —a§ 3|:m a:|aaa(z): (5.8)
fora e nwand
Te,g(a(z)) = Z [ad(u(z))(@)]ata (2): +a(z) (5.9)
aeAL

fora eh.

Definition 5.9. Let N be an Ax-module and E be an h-module. Then the smooth g, -
module

WK,Q(N ®c k) = MIC@(N) &®c MK*KC,U(E)
is called the relaxed Wakimoto module induced from the g-module N Q¢ E.

Let us note that it is easy to see that M) (N) =~ L) (N) for any Az-module N
and that M, y(E) >~ Ly p(E) for any h-module E provided « is a non-critical
level.

Theorem 5.10. Let N be an Agx-module and E be an h-module. Then W, 4(N ®c E)
is a positive energy §.-module and the top degree component of W (N ®c E) is
isomorphic to N @c E as a g-module. Moreover, there is a non-trivial homomorphism

M/{,g(N Qc E) — WK,Q(N ®c E)

of G-modules. If both M g (N Q@c E) and W, g(N Qc E) are simple g-modules, then
the latter homomorphism is in fact an isomorphism.
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Proof. By definition we have that M) (N) and M, (E) are a positive energy
Axa-module and a positive energy b, ..-module, respectively. Hence, we have

o0
Mim(N) = P MmN, and My, 4 (E) = EBMK ey (EDn
n=0

with M@ (N)o =~ N as Agx-modules and M _,, y(E)o >~ E as h-modules, which
gives us the gradation on W, 4 (N ®c E) defined by

n

WK,Q(N ®c E)y = @MIC(F) (N)n—k ®c MK—KC,P)(E)]C
k=0

for n € Ny. Further, from Theorem 5.8 we obtain that the gradation on W, (N ®c E)
is compatible with the grading of g, which implies that W, 4(N ®c E) is a positive
energy g,-module whose top degree component is isomorphic to N ®c E as a g-module.
Hence, we have a homomorphism N @c £ — W, 4(N ®c E) of g-modules which
gives rise to a homomorphism

M, g(N ®c E) — W, (N ®c E)

of g.-modules by the universal property of the generalized Verma module M, 4(N ®c
E). O

The homomorphism 74 of associative algebras gives rise to a bifunctor
Dg: M(Ax) x M(h) — M(g)
defined by
®y(N,E)=N®cE

for an Ax-module N and h-module E, where the g-module structure on N ®c E is given
by m4. This enable us to consider W, ¢ as a functor from the category M (Ax) x M(h)
to the category E4(@). We will call W, 4 the Wakimoto functor.

Since the image of ®; need not be a subcategory of M (g), we denote by C(g) the
full subcategory of M (g) consisting of g-modules isomorphic to N ®c E and their finite
direct sums, where N is an Az-module, E is a semisimple finite-dimensional -module
and the g-module structure on N ®c E is given through the homomorphism 7. In the
next, we will consider the Wakimoto functor W, 4 as a functor from the category C(g)
(there is a unique extension of W, 4 from im®g) to the category E,(gi).

Proposition 5.11. For a € A, the twisting functor Ty preserves the category C(g).

Proof. Let M be a g-module belonging to the category C(g). Then we have M =~
Z?:l N; ®c E;, where N; is an Ax-module and E; is a semisimple finite-dimensional
h-module fori = 1,2, ..., n, which gives us T, (M) =~ Z:’:l T+ (N; ®c E;). Therefore,
we need to show that 7Ty, (N ®c E) is also from the category C(g) for an Az-module N
and a semisimple finite-dimensional h-module E.

Since fy and py = my(fy) for @ € A, are locally ad-nilpotent regular elements in
U (g) and Ax, respectively, we obtain that

(N ®c E)(f,) = Np,) ® E

as g-modules, where the g-module structure on N(,,) ®c E is defined through the
homomorphism 7 4. Hence, we get Ty (N ®c E) = (N(p,)/N) ®c E fora € Ay, which
implies immediately that T, (N ®c E) is an object of the category C(g). |
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Now, we may apply the Wakimoto functor W, 4 on Verma modules and Gelfand—
Tsetlin modules to obtain a free field realization of the corresponding relaxed Verma
modules.

Let C;, be the 1-dimensional h-module given by a weight A € h* and let @ € A, be
a positive root. Then by [KS17,FK19b] there are isomorphisms

ME(\) ~ Ax/Iv ®c Ciszp  and  WE(L, @) ~ An/JoT.e ®C Crszp  (5.10)
of g-modules, where Jy and Jgt o are left ideals of Ay defined by
Iv==(y;yeAy) and  Jgre = (0y,, Xy; ¥ € Ax\{a}),

which implies that the Verma module M g (A) and a-Gelfand—Tsetlin module Wg A, @)
belong to the category C(g). Hence, we may apply the Wakimoto functor W, 4 on
these g-modules and get the corresponding relaxed Wakimoto modules together with
the canonical homomorphisms

Ot Mg (Mg (W) > Wi g (MM, @614 : Mieg(We (h, @) — Wi g(We (A, @)

of ge-modules given by Theorem 5.10. Let us note also that W, 5 (M g (A) and W, 4
( W[f‘ (A, @)) are positive energy g,-modules with the top degree component isomorphic
to M g (A) and Wg (A, @), respectively.

Further, we introduce vector spaces

Fr=Cloy,y € Al and  Fyg =Clig, . v € A\l (.11

and endow them with the structure of Ax-modules by means of the canonical isomor-
phisms

Aw/Iv ~Fw and  Ax/Jor.e = Fne (5.12)
of vector spaces. For a bilinear form « on h and A € h*, we define a smooth EK -module
7y = Clyyn, n €N,y e ]

by the formula

t(h, h)ndy, , ifneN,
hyn =1 Ah) iftn =0,
Yy, —n ifn e =N

for y € II. In addition, we introduce smooth A g -modules

Wﬁ = (C[ax%_ns xy,nv ne Nv )/ € A+9 ax%o’ )/ € A+:|1
Wﬁ,a = (C[axy‘,na Xyn, N € N,y e Ay Xa,05 ava()ﬂ y € A\{a}]

for @ € A;. Then it is easy to verify that
M,y (Cy) =~ 7y (5.13)
as EK -modules and that
Mxm (Fn) = Wa,  Mim ne) X Wae (5.14)

as Ay -modules.
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Theorem 5.12. Let k be a g-invariant symmetric bilinear form on g. Then we have
Wi g(Mg(h) =~ Wg @c 7y and Wy g(W (A, @) = Wr o ®c 75 5
forx e b*anda € A,.
Proof. By definition of the Wakimoto functor W, 4 we have that
We,g(Mg (1) =~ M) (Fr) @c Mi—r..5 (Cri2p).
We,g(We (&, ) =~ Mk (Fra) ®c Mc—r,.5(Ciszp)

for A € h* and @ € A, where we used (5.10) and (5.12). Moreover, by using the
isomorphisms (5.13) and (5.14) we get

Wi g(Mg(0) =Wy ®c 7y s and W, g(Wg (h, @) = Wr o ®c 755
fork € h* and @ € A,. O

The link between the twisting functor 7, for ¢ € Ay C Zf’ and the Wakimoto
functor W, 4 is given in the following theorem.
Let us introduce a smooth A )-module

& =Cla Xyns n €Ny € Ays Xy 0, ¥ € Ayl

Xy, —n>

which is isomorphic to Mk, ((CH) The commutative algebra E has the natural struc-
ture of a Q -graded algebra, where Q is the affine root lattice. The gradation is uniquely
determined by

degxy, =y +nd and  degdy, 6 =—y —nd
for y € Ay and n € Z. Hence, we have a direct sum decomposition
&n =P Eny-
ye0

We say that a differential operator P € ﬁ;c@ has degree w € @ if P(Ex,y) C &xyto
forall y € Q. Further, for o € A, we define a differential operator p, € Ax ) by

d
Po = ﬂk,g(foc,O) = Resz:()”x,g(fa(z)) = —Res;— Z :[% fd] aV(Z):'
Y

VEA,

Then we may write

Pa = Pa,0t Pa,l,

where pg 0 = 7g(fs,0). The differential operators pu0, pey and p, have degree
—a for @ € A;. We denote by N, the Lie subalgebra of Axm) generated by the
set {ad(pa,0)" (Pa,1); n € No} and by U, the subalgebra of Ajc) generated by No.
Moreover, we have the decompositions

Ny = @ Not,—na and Uy = @ uot,—mx

nENO nENo
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given by the degree of differential operators, where Ny o = 0 and Uy, 0 = C.
Let us consider an Ar-module N. Then the smooth A m)-module M) (V) has
the canonical grading

[ee)
M (V) = @) M (N,

n=0
where Mixcq) (NV)o = N as Ax-modules. Moreover, by definition of p, we get immedi-
ately that the differential operator py 0, pe,1 and p preserve the subspaces M) (V)
for n € Ny. Besides, we have

Mim(N) ~ &5 ®&c N,
where
8% = C[axy.,,,» Xy, N € N,y € A4

which gives us

M (N)p = S%)n ®c N

for n € Ny. Since the Lie algebra N, preserves M) (N), for n € Ng, we have

q(€5,,®cN) CEé;, ., ®N
for g € Ny, — jo, where En ny = 8; . 1 &,y . However, the vector space 8: is finite
d1mens1onal which implies that there exists j,, € No such that En ny—ju = = 0 for

J > Jjn,y. Therefore, for each vector v € M) (V) there exists an integer n, € Ny
such that Uy, _pev = 0 for all n > n,,.

Since py and pyo for o € A, are locally ad-nilpotent regular elements of the
completed Weyl algebra A ), we may construct localized modules M) (V) (p,) and
M) (N) (py.o)- By a completely similar way as in [FK19b, Lemma 4.6], we can show
that the element py,1p, o € Ak acts locally nilpotently on Micm) (N) (p, ¢)-

Proposition 5.13. Let « € A, and let N be an Aw-module. Then the linear mapping
Dot Mican (N p) = Mica (V) (pa.0)
defined by
Da(py"v) = @y (v)

forn € Ng and v € M) (N), where the linear mapping ¢o: M) (N) (pg.0) —
M) (N) (po.0) i given through

0u (V) = pUOZ( DX (Pa,1 Py ) v

k=0

forv € M) (N), is an isomorphism of (.ANK@)(pa)-modules.
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Proof. Since the element py 1 p;}) acts locally nilpotently on M) (N)(p, o) the linear
mapping ¢, is well defined. By an analogous way as in [FK19b, Lemma 4.7, Lemma 4.8],
we can show that @, is a homomorphism of (Axa))(p,)-modules. Hence, we only need
to prove that the linear mapping ®,, is injective and surjective. Since we may write

Do (gpy"v) = gl (v) = qpg v

forn € No, v € N and g € &=, we have the surjectivity of ®,. To prove the injectivity
of @, let us assume that 4 (v) = 0 for some v € M) (N)(p,)- Then there exists an
integer n € Ny such that pjv € M (N) C M) (V) (p,)- Hence, we have

0= qu%z(v) = q’a(ng) = PZU € MIC(F)(N) C MIC(F)(N)([)(,.O),
which gives us v = 0. Therefore, the linear mapping ®,, is an isomorphism. O
Theorem 5.14. Let @ € Ay C A'S. Then there exists a natural isomorphism

Na: To o We g = W g0 T

of functors, where Ty : C(g) — C(g) is the twisting functor for g assigned to a. In
particular, we have

To (Wi g(M7 (1)) = W g (W2 (X, )
forx e b*anda € A,.

Proof. Let N be an Az-module and E be a semisimple finite-dimensional h-module.
Then by using the definition of the Wakimoto functor W 4 we obtain an isomorphism

Wi g(N ®c E)(f,0) = Mra) (N)(py) ®C Mi—,,p(E)

of U (g, )-modules, where the U (g, )-module structure on Mixc i) (V) (pe) @C Ml i, 5 (E)
is given via the homomorphism 7, 4. Further, from Proposition 5.13 we have that

Mic@ (N (po) = M@ (N (pa0) = Mica (Vipe.)
as A K@ -modules, which gives us

Wi g(N ®c E)(f,0) = Micam) (N(py,0) ®C M 5 (E) = Wi g(Nip, o) ®cC E)
>~ We g((N®c E)r,)

as U (g, )-modules. Hence, by definition of T, and T2 we get
Ty (Wi g(N ®c E)) = W, o(TF(N ®c E))

for « € A4. Moreover, it is obvious that this isomorphism is natural. The rest of the
statement follows immediately. O

With the help of Theorem 5.14 we can establish a relation between the relaxed Verma
module M, g (W2 (1, @)) and the relaxed Wakimoto module W, o (W¢ (A, @)).

Corollary 5.15. Let A € b* and let us assume that the Verma module I\/[[,(,Q(Mf,l 1)),
or equivalently the Wakimoto module WK,Q(MS (L)), is a simple g,.-module. Then the
relaxed Verma module M, g(Wg (A, a)) is isomorphic to the relaxed Wakimoto module
We,g(WE (L, @) fora € Ay
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Proof. If the Verma module MK‘Q(M[? (X)), or equivalently the Wakimoto module
WK,Q(MS()\)), is a simple g,-module, then MK,Q(ME()\)) ~ WK,Q(MS(A)). By ap-
plying the twisting functor 7, for « € A, on both sides of the isomorphism, we obtain

M, g (Wg (0, @) = Ty (M, g (M (1)) = Ty (Wi, g (Mg (3))) = W, g(WE(, @),

where the first isomorphism follow from Theorem 4.16 and the last isomorphism is a
consequence of Theorem 5.14. O

Let us note that Corollary 5.15 provides a free field realization of the relaxed Verma
module M g(W¢ (A, &) whenever M, g(M{ (1)), or equivalently W, o(Mg (1)), is
a simple @,-module. On the other hand, this does not give any information for the
critical level k., since M, (M g (1)) is never a simple §,.-module. However, applying
[Fre07, Proposition 9.5.1] to the longest element of the Weyl group of g we have that the
Verma module M, 4(M g (1)) and the Wakimoto module W 4(M g (A)) are isomorphic
if (\+p,aY) ¢ —N for all « € A,. Hence, we have the following extension of
Corollary 5.15 in the case of the critical level.

Corollary 5.16. Let A € b* satisfy (A + p,a") ¢ =N foralla € Ay, i.e. ) is dominant
weight. Then the relaxed Verma module M, 4 (Wg (A, @)) is isomorphic to the relaxed

Wakimoto module WKC,Q(W[? (A, o)) fora € As.

6. Positive Energy Representations of £, (g)

In this section we describe families of positive energy representations of the simple affine
vertex algebra L, (g) of an admissible level x associated to a simple Lie algebra g.

6.1. Admissible representations. Let g be a complex simple Lie algebra and let x be
a g-invariant symmetric bilinear form on g. Since g is a simple Lie algebra, we have
k = kkg for k € C, where kg is the normalized g-invariant symmetric bilinear form on
g satisfying

kg = 2h" ko.
Let g be the affine Kac-Moody algebra associated to the Lie algebra g of level «. For
A € b*, we define its integral root system A by
AV ={a e A®; (A +75.aY) € Z},

Where p=p+ hVAo Further, let A(k)+ = A(A) N A“” be the set of positive roots of
A(A) and H(A) - A(A)+ be the set of simple roots. Then we say that a weight A € b*
is admissible ( [KW89]) provided

i) A is regular dominant, thatis (A + p,aY) ¢ —Ng foralla € Kf;
ii) the Q-span of A(A) contains A™.

In particular, if . = kA is an admissible weight for k € C, then k is called an admissible
number. The admissible numbers were described in [KW89,KWO08] as follows. The
complex number k € C is admissible if and only if

hY it (rV,q) =1,

P
k+h' ==withp,geN, (p,g) =1, p> .
g hpa el (p ) P20 iV q) =V,
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where rV is the lacing number of g, i.e. the maximal number of edges in the Dynkin
diagram of the Lie algebra g. Since admissibility of a number k € C depends only on g,
we shall say that k is an admissible number for g.

Further, let us assume that k € Q is an admissible number for g. We say that a g-
module E is admissible of level k if Ly, 4(E) is an L,,(g)-module, or equivalently if E
is an A(Li«(g))-module. In particular, the simple highest weight g-module Lg (0) with
zero highest weight is an admissible g-module of level k. Moreover, since A (L (g)) ==
U (g)/ I, where I} is atwo-sided ideal of U (g), we obtain that a g-module E is admissible
of level k if and only if the ideal I; is contained in the annihilator Anny (g)E.

Admissible highest weight g-modules of level k were classified in [Aral6] as follows.
Let Pry be the set of admissible weights A € lj* of level k such that there is an element
y € W of the extended affine Weyl group W of g satisfying A(A) = y(A(kAo)) Further,
let us define the subset

Pry = {A; A € Pry}

of b*, where A € h* denotes the canonical projection of A € E* to h*.

Theorem 6.1 [Aral6]. Letk € Q be an admissible number for g. Then the simple highest
weight g-module Lg(k) with highest weight A € b* is admissible of level k if and only

if » € Pry.

For A € h*, let Lg (1) be the simple g-module with highest weight A and
J,, = Anny g LE (1) (6.1)

the corresponding primitive ideal of U(g). A theorem of Duflo [Duf77] states that for
any primitive ideal I of U (g) there exists A € h* such that I = J,. This implies that a
simple weight g-module E is admissible of level k if and only if Annyg)E = Jj for
some A € Pry. Besides, for A, JTRS Pry we have J, = Jy, if and only if there exists
w € W such that u = w - A (see Proposition 2.4 in [AFR17]). Hence, we may define an
equivalence relation on Pry by

A ~ i <= there exits w € W such that © = w - A
and set
[Pr] = Pry/ ~

for an admissible number & of g.

Let p = [ & u be a standard parabolic subalgebra of g, where u is the nilradical of
p and [ is the Levi subalgebra of p, and let k € Q be an admissible number for g. We
denote by € (p) the set of those weights A € Pry N A*(p) for which the generalized
Verma module My (1) is simple, i.e. M (1) ~ Ly (1) as g-modules. For A € Qi (p), we
obtain immediately that A is a regular weight, which by [Jan77] gives us that Mg 1) is
a simple g-module if and only if (A + p, @) ¢ Nforalla € AY.

Theorem 6.2. Let p be a standard parabolic subalgebra of g and let k € Q be an
admissible number for g. Then the g-module Wg (A, ) is admissible of level k for
A€ Q(p) and o € AY.
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nilpotent orbit dimension
Oreg dimg — rankg
Osubreg dimg — rankg — 2
|
|
Omin 2hY —2
OZerO 0

Fig. 1. Hasse diagram of nilpotent orbits

Proof. Indeed, the Zhu’s algebra A(Ly,(g)) is isomorphic to U(g)/Ii, where I is a
two-sided ideal of U (g). Let us consider the simple highest weight g-module Lg (A) with
highest weight A € h*. For A € Qx(p), the g-module Lg(k) is admissible of level k by
Theorem 6.1. Hence, we get Iy C J,, where J, = AnnU(g)Lg(A). Further, we need to
show that the g-module Wg (A, @) for @ € AY is admissible of level k, or equivalently
that I C Anny g W, (A, @). Since Wy (A, @) is obtained from Mg (1) =~ L{ (%) by the
twisting functor 7, the statement follows from Corollary 4.5. Hence, Wé’ (A, @) is a
module over U (g)/ I, which implies the required statement. O

6.2. Richardson orbits and associated varieties. Let G be acomplex connected semisim-
ple algebraic group with its Lie algebra g. We denote by A/ (g) the nilpotent cone of g,
i.e. the set of nilpotent elements of g. It is an irreducible closed algebraic subvariety of
g and a finite union of G-orbits. There is a unique nilpotent orbit of g, denoted by Ore,
and called the regular nilpotent orbit of g, which is a dense open subset of A/ (g). Next,
since g is simple, there exists a unique nilpotent orbit of g that is a dense open subset of
N (9)\Oreg, denoted by Ogypreg and called the subregular nilpotent orbit of g. Besides,
there is a unique nonzero nilpotent orbit of g of minimal dimension, denoted by Onjin
and called the minimal nilpotent orbit of g, such that it is contained in the closure of all
nonzero nilpotent orbits of g. By O,ero we denote the zero nilpotent orbit of g. For the
dimension of these distinguished nilpotent orbits of g see Fig. 1.

Let us consider the PBW filtration on the universal enveloping algebra U (g) of g and
the associated graded algebra grU (g) >~ S(g) >~ C[g*]. The associated variety V(I) of
aleftideal I of U (g) is defined as the zero locus in g* of the associated graded ideal gr/
of S(g). Moreover, if I is a two-sided ideal of g, then I and gr/ are invariant under the
adjoint action of G. Consequently, the associated variety is a union of G-orbits of g*.
Obviously, we have

V(I) = Specm(S(g)/grl) = Specm(S(g)/v/ grl), (6.2)

where /grl denotes the radical of gr/. Since the Cartan—Killing form « is a g-invariant
symmetric bilinear form on g, it provides a one-to-one correspondence between adjoint
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orbits of g and coadjoint orbits of g*. For an adjoint orbit O of g we denote by O*
the corresponding coadjoint orbit of g*. In addition, for a primitive ideal I of U(g) the
associated variety V([) is the closure of O* for some nilpotent orbit O of g, see [Jos85].
If E is a simple g-module and V(Anny g) E) = O* for a nilpotent orbit O of g, we say
that E belongs to O. For a description of nilpotent orbits of admissible g-modules we
refer to [Aral5a].

Theorem 6.3 [Aral5Sb]. Let k € Q be an admissible number for g with denominator
q € N. Then there exists a nilpotent orbit O, of g such that

V() = O
and we have

_ {{x cg (ad)2 =0}  if(V,q) =1,
O, =

T |t e g @™/ =0} i oV, g)=r,
where o 1 g — EndLg(Gs) is the simple finite-dimensional g-module with highest
weight 0.

Let O be a nilpotent orbit of g and let k € Q be an admissible number for g with
denominator ¢ € N. We define the subset

Pry = (n € Pri; V(Jy) = 0%} (6.3)

of h*. Then a simple g-module E in the nilpotent orbit O is admissible of level  if and

only if Annyg)E = J; for some A € ITr,?. Further, as Iy C J; for A € Pry, we have
V() C V) = O; by Theorem 6.3, which gives us

Pro= | | Pry. (6.4)

0co,

Therefore, we need to describe the subset I?rli9 of Pry, for a nilpotent orbit O of g.
For x € g, we denote by g* the centralizer of x in g. Furthermore, for a subset X of
g we define the set

X" = {x € X; dimg* = min,cx dim g’}
and call it the set of regular elements in X.

Theorem 6.4 [BB82]. Let p be a standard parabolic subalgebra of g. Thenfor » € A*(p)
the associated variety V(Anny(g)Mgl (1)) is the closure of Of, where

Op = (G.p)ree

and p is the orthogonal complement of p with respect to the Cartan-Killing form. In
particular, we have

Op = Gp*

and the associated variety V(Anny )M, g (A)) is irreducible. The orbit Oy, is the Richard-
son orbit determined by p.
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Now, we find the standard parabolic subalgebras for which the corresponding Richard-
son orbits are the distinguished nilpotent orbits Ozero, Omins Osubreg and Oreg. Let us
recall that while the regular orbit Oy, and the subregular orbit Ogypreg are Richardson
orbits for any g, the minimal orbit Op, is a Richardson orbit only for sl,,, n > 2.
Since all these nilpotent orbits are uniquely determined by their dimensions and since
dim Op = 2dimu for a parabolic subalgebra p = [ @ u of g with the nilradical u, we
obtain easily by comparison of the dimensions that

(1) Ogero = Og,

(i) Omin = Opmax for o € {1, a1} and g = sl,, n > 2,
(iii) Osubrcg = Opgﬂn for o € I,
(iv) Oreg = Oy,

where pi®* for o € I is the parabolic subalgebra of g associated to the subset ¥ =

IM\{«}, and pg‘in for o € TII is the parabolic subalgebra of g associated to the subset
Y = {a}.

Lemma 6.5. Let p1, py be standard parabolic subalgebras of g and let k € Q be an
admissible number for g. Then we have Qi (p1) N Qi (Pp2) # @ if and only if p1 = po.

Proof. Letp be a standard parabolic subalgebra of g. If A € Qi (p) we have (A+p, &) ¢
N forall@ € A¥ and (A + p,@") € Nforall @ € Al, which immediately implies that
Qi (p1) N QL (p2) # P if and only if p; = py. O

Let O be aRichardson orbit of g and let k € Q be an admissible number for g. Further,
let us consider a standard parabolic subalgebra p of g satisfying O, = O. Then for
A € Q(p) we obtain V(Anny )L g (1)) = O* by Theorem 6.4, since My (1) ~ L{ (1)
for any A € Q(p), which gives us

Qu(p) C Pry .

Hence, by Lemma 6.5 we get

|| s cPri. (6.5)
YCIl
Py =

where py is the standard parabolic subalgebra of g associated to a subset X of IT.

Ilrgposition 6.6. Let k € Q be an admissible number for g. Then we have Qi (b) =
Pr, ™.

Proof. Since the regular nilpotent orbit Oyeg of g is a Richardson orbit and Orey = Oy,
we obtain Q(b) C P_r,?reg. On the other hand, for A € ITr,?’eg we have V(J,) = O

%

Ie
by definition, where J;, = AnnU(g)Lg(A), and V(I) = O?eg by Theorem 6.4, Wheri
I, = Anny(g)Mg(A). Hence, we get v/grJ, = /grl,. Since grl, is a prime ideal of
S(g) by [BB82, Theorem 5.6], we have grJ, C grl, which gives us J, C I,. Moreover,
the primitive ideal J;, is the unique maximal two-sided ideal of U @) containing I, by
[AFR17, Proposition 2.4]. Therefore, we get I, = J, for A € Pr; "®. As A is regular
dominant, we have M{ (1) ~ MZ(A)/L,MZ(A) and L{(A) ~ MJ()/J, L (0), which

implies M (1) = L (}) and thus A € Q(b). m



Positive Energy Representations of Affine Vertex Algebras

Teg

Besides, from the decomposition (6.4) is follows that the set l?r,? is non-empty if
and only if Oreg = O, Where ¢ is the denominator of k, or equivalently if and only if

g 1" if (Y, q) =1,
| EnvrY it Y =1,

where  is the Coxeter number of g and © /" is the dual Coxeter number of the Langlands
dual Lie algebra g of g (see [AFR17]).

llrgposition 6.7. Let k € Q be an admissible number for g. Then we have Qi (g) =
Prk ZEFO.

Proof. For the zero nilpotent orbit Oyero of g, we have Ozero = Oy, which gives us

Qi(g) C ITr,?’e“’. On the other hand, for » € Pr; " wehave V(J;) = O%,,, by definition,
where J;, = AnnU(g)Lg(k), which implies «/(g) = +/grJ,. Hence, for @ € A, there
exists a positive integer n, € N such that f;* € grJ;. Therefore, we get immediately

that the g-module Lg(k) is finite dimensional implying A € Qi (g). |

6.3. Admissible representations for sl,. In this subsection we will consider the simple
Lie algebra g = s(,, for n > 2. Let us note that all nilpotent orbits of g are Richardson
orbits.

Letk € QQbe an admissible number for g with denominator ¢ € N. Then the nilpotent
orbit O, from Theorem 6.3 is given by

0, =0,

q°

where A, is the partition of n defined through A, = [q", s], where n = gr + s with
r,s € Npand 0 < s < g — 1. Hence, we immediately get that

Oreg ifqg > n,
Oq = Osubreg ifg=n-—1,
Oero ifg=1

for n > 2. For details about nilpotent orbits in semisimple Lie algebras see [CM93]
(Fig. 2).
Let us introduce the subset

Priz = {A € Pry; (A, a”) € Zfora € T}
of admissible weights of level k. Then by [KW89] we have
Priz={re€b*s AMc) =k, (A,a¥) e Nofora € TI, (1,0Y) < p—h"},
where p = (k + h")q. Further, from [KW89] we obtain

Pr, = U Priy, Priy={y-A; A €Pryz},

_yeW
Y(A(kAg)+)CALY

where the extended affine Weyl group W of g is defined as
W=Wx PV
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O dim Pz
0[3’1] 10 »—o—x
0[3] 6 *—x 0[22] 8 o—*—0
Op 2 x Opy 4 = Opi2 6 o=
0[12] 0 o O[ls] 0 o—o 0[14] 0 o—o0—o0
(@) g=sb (b) g =5l (€) g=sL

Fig. 2. Richardson orbits for sl

For u € PV, we denote by #, the corresponding element of W. The action of t, on E*
for uw € PV is given by

(e, )
2

)=y +@,H)u— ( (¥, 8) + (. M))5

fory € E*.Moreover, fory,y € Wsatisfyingy(z(kAo)Jr) - Zﬁf,y/(/A\(kAo)Jr) C /A\Ef
we have

PryyNPryy #0 < Py =Py = Y =ytow; (6.6)

for some j € {1, 2, ...,n — 1}, where w; is the unique element of the Weyl group W of
g which preserves the set {a1, a2, ..., ay—1, —0} and w;(—60) = «;. The set of simple
roots of gis I1 = {1, 2, ..., ®,—1}. Let us recall that by [AFR17, Proposition 2.8] we
have

Pl = |J [Pres,l,
nepry
(,0)=q—1

where P’ is the set of dominant coweights of g.

Lemma 6.8. Ify € W is not the unit element, then there exists j € {0,1,...,n — 1}
such that yw;(0) € A..
Proof. For a proof, see [AFR17, Lemma 2.7]. m]

Theorem 6.9. Let k € Q be an admissible number for g with denominator g € N. Then
we have

Qi(px) = U Pri5i_,
yeW,nepr/,
1.0)<q—1,7(0)eA,, T(A)=Ax,
AgNALCY HAaNAL

for £ C TI, where Ay is the subroot system of A generated by ¥ and A = {a €
A; (n,a) =0} forn e PY.
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Proof. Lety = yt_, withy € W and 5y € PV. Then the condition y(A(kAg)s) C A%
is equivalent to

0<(a)<g—lify(@eA; and 1< a) <qgifylax)e A_

for all « € A,. In particular, for n € PYandy € W such that y(0) € Ay we
obtain easily that yt_n(A(kAo)Jr) C Are ifand only if n € P, (n,0) < g — 1 and
AJN AL CY I (AD N AL

Fork € b*, we define the subset A(A) = {x € A; (A +p, vy € Z} of A. Then
we immediately get A(L) = A(k +kAg) N A. Further, let us assume that A € Pry .
withy € W,n e PY, (n,0) < q—1,50) € A4, AO NA; ¢y (AN AL and
Y(A{) = Ax for a fixed subset  of T1. Then we may write

ALY = AGh+kAg) N A =Fi_(A(kAg)) N A
= {y(a) +(mg+(n,a))d; ¢ € A, m EZ}HA
=@ aeA, (na)=0}=3(A) =

Hence, by [Jan77] we have that My (1) ~ L (1) since A is regular dominant, i.e.
(L+p,a") ¢ —Ng fora € Ay, which gives us Pr 3, C Qi (px).

On the other hand, if & € Q(px), then it is easy to see that A(A) = Ay. Since
we also have A € Pry, there exists y € W such that A(A + kAg) = y(A(kAo))
y(AkAo)s) C Are and ) € Pryy. Lety = 31—, withy € W and n € P¥. We may
assume that y(0) € A,. Indeed, we have

Priyi, =Preye, Pry 51 .

ttlw_j wj = Prk,?ijjfltqwj_nw]
by (6.6) for j € {0, 1, .. — 1}, where n; = w (n — gw;j). Further, if y(0) € A_,
then there exists j € {0, 1, ..., n — 1} satisfying y: yw] (0) € A4 by Lemma 6.8.

Hence, by using the assumption y(6) € A,, we get that A € ITrk,y,fn withn € P
1,60) <q—1, A NA CY ' (A) N AL and T(Ag) = A() = Ax. O

Corollary 6.10. Let k € Q be an admissible number for g with denominator g € N.
Then we have

(i) 2 (b) = U YeW,nepy, fTrk,yz_n,
_ (n,0)=q—1,5()cA, AJ=0
(i1) Qi (g) = Pre.

Let us note that as an immediate consequence of Corollary 6.10 we have that €24 (b) #
¢ if and only if ¢ > n.
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