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1 - INTRODUCTION

An aggregate time series is a linear combination of
the observations of one or more time series. We may aggregate
over time (temporal aggregation), or over series {(contemporal
aggregation), or both. In this paper we refer to a general ag
gregate time series as a linear combination of k time series
over a period of H time intervals. Temporal aggregation (uni-
variate case) and series aggregation are treated as special
cases where k=1 and H=1, respectively.

In econometric literature, there are two cases of
temporal aggregation referred to as flow and stock problems:
the flow case considers non-overlaping sums of observations;
the stock case considers a systematic sample of the observa-
tions. In practical situations the user needs to decide on

the time unit to be used for the basic observations and he
often has to forecast aggregates of the original or basic
time series. If, as it is often the case, monthly observa-
tions are available but yearly forecasts are needed, there

are two possible approaches: a) to aggregate monthly data in-
to yearly data and then model the latter to obtain yearly
forecasts direcp]y;'b) to model and forecast monthly data and
then aggregate to obtain yearly forecasts. There are at least
three reasons for using the latter approach: a) when the num-
ber of observations is too small (in fact, some procedures
require a reasonable number of observations in order to pro-
duce good parameter estimates); b) when both levels (e.g.,
monthly and yearly) are interesting to the user; c) when year
ly forecasts obtained from monthly data are more precise than
those obtained directly from yearly data.



Temporal aggregation has been well discussed in sta
tistical and econometric literature.It was first investigated
in econometrics by Theil(1954), Mundlak(1961), Orcutt, Watts
and Edwards(1968), Moriguchi(1970), Zellner and Montmarquette
(1971), Aigner and Goldfeld(1973 and 1974), Dunn,Williams and
DeChaine(1976), Tiao and Wei(1976), Geweke(1978) ,Hsiao(1979),
Palm and Nijman(1981) and others. Geweke(1979) derived proce-
dures for optimal seasonal adjustment and aggregation.

Derivations of the resulting model for the aggre-

gate series given the model for the original series were pres
ented by Amemiya and Wu(1972), in the flow case for AR model,
by Brewer(1973), in the flow and stock cases for ARMA and
ARMAX models, by Wei(1979), in the flow case for seasonal and
nonseasonal ARIMA models, by Granger and Morris(1976),for the
sum of independent ARMA processes and by Rose(1977), for lin-
ear combinations of independent ARIMA processes.
. The effect of aggregation on parameter estimation
was considered by Tiao(1972), Tiao and Wei(1976),Wei(1978 and
1979) and Hsiao(1979). The effect of aggregation on  fore-
casting was studied by Tiao0(1972), Amemiya and Wu(1972), Tiao
and Wei(1976), Granger and Morris(1976), Rose(1977), Tiao and
Guttman(1980), Wei and Abraham(1981), Abraham(1982), Abraham
and Ledolter(1982), and Kohn(1982).

Temporal aggregation is related to missing observa-
tion problem when time series observations may be divided in-
to two periods: one with data in aggregate form and another
with data in disaggregate form (see Harvey and Pierse, 1984).



In this paper some of the available results are ex-
tended to more general situations.We consider two approaches:

a) first model and then aggregate (I). Here the k
original time series are considered to be a k-dimensional vec
tor time series. Forecasts for the original time series are
obtained from a vector ARMA model and then aggregated to ob-
tain forecasts for the aggregate time series.

b)first aggregate and then model (II). Here the o-
riginal time series are aggregated over time and over series
to obtain the univariate aggregate time series. Forecasts for
the aggregate time series are obtained from anunivariate ARMA
model.

Obtaining forecasts from individual models for each
of the k series and then aggregating them to obtain forecasts
for the aggregate time series should be a third approach (see
Wei and Abraham, 1981), but it is not considered in this pa-
per.

The variance of the forecast error (which should be
used for confidence intervals) for the general aggregate time
series, in approach I, is derived in part 2 of this paper.The
resulting model for the aggregate time series, when the basic
time series follows an univariate seasonal ARIMA model is de-
rived in part 3. Efficiency of forecasting in approach I rela
tively to approach II for the general aggregate time series
is given in part 4.
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2 - FORECASTING LINEAR COMBINATIONS
2.1 - Univariate Time Series

Let {Zt’
time series observed at equally spaced time intervals. Let

t =0, +1, #2, ...} be the basic wunivariate

{YT, T =0, 1, ...} be the temporally aggregated time series
defined as a non-overlaping linear combination of the basic
time series observations:

(2.1)

where t = TH, B is the backward shift operator such that
Bz, =z, 4 and wpy, w,, ..., wy , are real known weights.

The following lemma is a well known result (see Box
and Jenkins, 1976).

Lemma 2.1 -

Suppose {zt, t =0, #1, ...} follows a stationary
and invertible ARMA (autoregressive-moving average) model,

written as

Zt = Z /R at_j, (2.2)

where yg = 1, | ¥ < = and {a;, t =0, #1, ...} is a white
noise process J=0with variance 0;. Then,



(i) the unbiased minimum mean square error (MMSE) forecast of

Zeom? at origin t, is given by

it(m) = Z v ay_j (2.3)

m=1

et(m) = Zim zt(m) = jzo wJ 8t em-j’ (2.4)
(iii) the variance of the forecast error is
: m-1

= 2 2
Vie (m)1 = o 1 V5. (2.5)

j=0
The forecasts for YT in approach I are given in

the following theorem.

Theorem 2.1 -

Suppose z, satisfies the conditions of Lemma 2.1
and Yq is given by (2.1). Then,

(i) the unbiased MMSE forecast of YT+M’ at origin T, is given
by

-



Vo(M) = w Zo,(MH-h); - (2.6)

(ii) the forecast error is

( ) Hi1 MH-E-1
e-(H,M,1 = W p. a ) (2.7)
T heo h 320 j " TH+MH-h-]
(iii) the variance of the forecast error is
( ) H-1 MH-E-1 min{H-%,j+h}
Vier(H,M,1)] = o2 W, W, V. Uy . .
T a 2o 520 i=0 h "1 ") Th+j-i
(2.8)
Proof.
(2.6) is given by Box and Jenkins(1976, p.128). Now,
H-1 _
eT(H,M,1) = hzo Wh [Z(T+M)H-h - ZTH(MH-h)]
Hi1 : )
= w, e MH-h
heo h “TH

wich produces (2.7); (2.8) follows from (2.7). O



Corolary 2.1.1 - (Special cases)

a) Aggregation. If wp=1s for all h, then (2.1) is reduced to
the case presented by Abraham(1982);

O=1 and wh=0 for hzt, then (2.1)

is reduced to the case presented by Abraham and Ledolter

(1982).

b) Systematic sampling. If w

2.2 - Vector Time Series

Let {z, = (Z1t’ cees zkt)', t =0, £t1, ...} be the
basic time series observed at equally spaced time intervals.
Let {YT, T =0, +1, ...} be the aggregate time series defined
as a non-overlaping linear combination of the basic time se-

ries
e hy (5 B (2.9)
Y = w,_. B Z. = w' B Zam, 2.9
T .i=1 h=0 h1 ]t h=0 “‘h "'t
where t = TH and Wi is a k x 1 wvector of real known
weights.
The following lemma is a well known result ( see

Tiao and Box, 1981).

Lemma 2.2 -

Suppose {gt, t =0, #1, ...} follows a vector ARMA
model, stationary and invertible, written as

-



(2.10)

1N
+
n
ne-18

Y. a sy
sho 3 Rt

where gj are k x k matrices with EO =1 and ay is a
k x 1 vector of random shocks with covariance matrix Z. Then,

(i) the unbiased MMSE forecast vector of Ziem? at origin t ,
is given by

¥ (2.11)

o ~m+d ay_j3

ne~-18

2 (m) =
=t J

(ii) the forecast error vector is

gt(m) = (2.12)

z ¥y, a .3
~t+m 520 ~3 ~t+m-]

(iii) the covariance matrix of the forecast error is
Vle (m)1 = ) ¥. I ¥:. (2.13)

The forecasts of YT in approach I are given in the
following theorem.
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Theorem 2.2 -

Suppose Zz, satisfies the conditions of Lemma 2.2

and Y. is given by (2.9). Then,

-
(i) the unbiased MMSE forecast of Yi us at origin T, is given
by

H-1
Vi (M) = hzo Wy Zpy(MH-h); (2.14)

(i1) the forecast error is

( ) Hi1 MH-§-1 ( )
e-(H,M,k = w! VY. a 5 g 2.15
T hio ko b S 3 TH+MH-h-j
(iii) the variance of the forecast error is
( Hi1 MH-E—1 min{H-E,j+h}
Vie-(H,M,k)] = "ir'l y. I g'. oW
J h=0 =0 ) J = ~j+h Lo

Proof.
Analogous to theorem 2.1, 0
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3 - MODEL FOR THE AGGREGATE TIME SERIES

Let zy and YT be as in (2.1) and let X4 be an over-

laping linear combination of the basic time series observa-

tions:
(5w e
X = w, B z (3.1)
Therefore Y; o= Xy (systematic sample).
Assuming Wy # 0, let r be an integer,! < r 5 H,
defined by
r = max {h € {0, 1, ..., H-1) : Wy # 0} + 1 (3.2)

The model for YT’ when z, follows a nonseasonal
ARIMA model, is given in the following theorem.

Theorem 3.1 -

Suppose {z,, t = 0, #1, ...} follows an ARIMA(p,d,q)
model and Vs is as in (2.1). Then, Y; follows an ARIMA(p,d,q*)
model with

[ (H-1)(P+d)H+ q+r -1 1, (3.3)

q*

where [m] denotes the largest integer contained in m.

|
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Proof.
d d
Let Zt = (1 - B) zy and Xt = (1 - B) X4 Then,
we may write
z % Z % -d
= b .+ 0: A, . an
t e i "t-1 j=0 J t-J
(3w 8
X E w, B VA
t hio h t
= ¢ w, B Z + W 8. a, .
joy T hZo h t-1 heo h 520 J t-j-h
) "
= 6. X + 6% a¥
sEq T t-1 jso t-J
J
where 93 = iZO 85 Wi_j / Wg» af = wya, and af ~ (0,wgo2).

Therefore X, follows an ARMA(p,q+r-1) model and x; follows an
ARIMA(p,d,q+r-1) model.

Now, whereas YT is a systematic sample of Xy s
follows (see Brewer, 1973) that Yq follows an ARIMA(p.,d,q*)
model with

it

q+r-1-p-4d j
H

q* = [ p + d +

and (3.3) holds O
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Remark - Under the conditions of theorem 3.1 it is easily seen
that

limg* = p +d + 1im r/H, with 1im r/H = 0 or 1.

H-»>o H-+w Hse

The following theorem extends the result to the sea
sonal case.

Theorem 3.2 -

Suppose {zt, t =0, #1, ...} follows an
ARIMA (p,d,q) x (P,D,Q)s model, S is an integer such that
SH = s, and YT is as in (2.1). Then, YT follows an
ARIMA (p,d,q*) x (P,D,Q)S model, with q* given by (3.3).

Proof.
By hypothesis,

0p(85) ¢, (8) (1 - 8" (1 - B)T zp = 0q(B%) 0 (B) ay,

where ©.(B%) and ¢_(B) are autoregressive operators,
eQ(BS) and ed(B) are moving average operators and a, is a
white noise process. Then,

0p(8%) (1 - 8%)% 2, = 0, (B%) by, (3.4)

~

d
where ¢p(B) (1 - B) bt = eq(B) ay,
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that is, b, follows an ARIMA(p,d,q) model. Defining

( H-1 h)
W = w, B b
hoo h TH»

by theorem 3.1, WT follows an ARIMA(p,d,q*) model, with q*
given by (3.3), that is,

o5(8) (1 - ) W = ex.(s) a1, (3.5)

H’ BS - B

B SH
operator, ea*(s) is a moving average operator and a$ is a

where B = = BS, ¢;(B) is an autoregressive

white noise process. Now,

H-1
(9 B") 0q(8°) a

S
0q(B7) Wy Wh TH

0
H-1

C 1wy 87 ey (8%) (1 - 8%)0 2py, (3.6)

by (3.4). From (2.1) and (3.6),

¢P(BS) (1 - BS)D Yo o= eQ(BS) Wy
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Multiplying both sides of the latter equality by
¢;(B) (1 - 8)¢  and using (3.5) we obtain

S * S,D d _ S % d
op(87) ¢p(8) (1 - 87)7 (1 - 8)" Yp = eo(87) ¢5(8) (1 - 8)
Sy g% *
= eQ(B ) eq*(B) a%
and the theorem is proved. O

Corolary 3.2.1 - (Special cases)

Consider the special cases given in corolary 2.1.1,
'namely, aggregation (r=H) and systematic sampling (r=1). The
models for YT’ given several models for 2., are presented in
Table 1.
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Table 1 - Models for 2z

.16.

t and YT in the cases of aggregation

(flow) and systematic sampling (stock).

MODEL FOR Y

MODEL FOR z, i - -
AGGREGATION SYSTEMATIC SAMPLING
ARMA(p ,q*) () | ARMA(p,q*)
AR(p)
q*=[(H-1)(p-1)/H] q*=[ (H-1)p/H]
MA(q*) MA(q*)
MA(q) ,
*=[1+(q-1)/H] | q*=[q/H]
ARMA(p ,q*) (2) | ARMA(p,q*) (2)
ARMA(p,q) .
q*=[(H 1)ép+1)+q] ‘q [(H ‘I)p+q:|
ARIMA(p,d,g*) ARIMA(p,d,q*) ()
ARIMA(p,d,q) qr-p U (prdi gy SCENCHEIN

|

ARIMA(p,d,q)x(P,D,Q)¢

= SH

ARIMA(,d,q*)x(P,D,Q)g (*) | ARTMA(p,d,q*)x(P,D,Q)g

Q*=[(H-1)(E+d+1)+q]

o=l

(H-1)(p+d)+q,
H

q*=p, if Hzp+1. .

These results were obtained by Brewer(1973).

This result was obtained by Abraham and Ledo]ter(1982)
This result was obtained by Wei(1979).

nN

+

L T W e
w
A R i

(') This result was obtained by Brewer(1973).
(1972) obtained

Amemiya and Wu

q*=[ {(H-1)(p+1)+1}/H], if H<p+1, and
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4 - EFFICIENCY OF FORECASTING LINEAR COMBINATIONS

Now we shall compare tne forecasts obtained in the
two approaches we referred to in the introduction of this pa-
per: a) first model and then aggregate(l); b) first aggregate
and then model (II). Such comparison is made in theorems 4.1
and 4.2.

Theorem 4.1 -

Suppose  Z, and Y. defined as in (2.9). Let

= L(gu: ust) and Ly = L{Yy: Us<T) be the Hilbert spaces
‘spanned by the processes z, and YT up to times t=TH and T,
respectively. Let VT(M) and VT(M) be the orthogonal projec-

.tions of YT+M onto LZ and LY’ respectively. Then,

E[Y,q - YT(M)]Z s E[Yq,m -YT(M)JZ. (4.1)

Proof.
Immediate, since LY CZLZ. ]

wei and Abraham (1982) presented a similar result
when wh=1 for all h = 0, ..., H-1. This result implies that
forecasts obtained in approach I are equally or more precise
that those obtained in approach II.Theil(1954) also discussed
some advantages of approach I. However, Aigner and Goldfeld
(1974) poinfed out that disaggregate data are scarce and usu-
ally have larger observation error than aggregate data.
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Efficiency of approach I relatively to approach 11
may be measured comparing the respective forecast errors or,
alternatively, relating their variances:

E(H:Mak) = V[eT(HsM:k)] / V[‘E?(H,M,k)], (4-2)

where eT(H,M,k) states for approach I and e?(H,M,k) for ap-
proach Il. Theorem 4.2 shows how to evaluate this efficiency
measure.

For the next theorem and corolaries define

H-1  (2+1)H-h-1 G

A, = Y ) Y ow! v, I v! . W., and (4.3)
L h=o jed ico ~h ~j = ~j+h-i1 =1
Hi1 (2+1)g-h-1 % : )
A* = W, W. V. V. . 4.4
h=0 e j=p M1 Td Teh-d
for 2 =0, 1, , with

G = min{H-1,j+h}, and J = max{0,gH-h}.



Theorem 4.2 -

Let Y. be as in (2.9) and suppose

where y,=1, ZO vi < = and  {b,,
M=

white noise process with variance GE. Then,
measure given in (4.2) may be evaluated by

j T
v2 A.
Lo Tm AN
E(H,M,k) = —m=0 =0 ,
5 j
Yo A
m=0 " j=0

where Aj is given in (4.3).

Proof.
Hi1
Y, = w, 2z
T h=0 ~h "‘t'h
H-1 o
= hz ZO ¥n X5 3ton-j

0 3

T =10, #1,

.19,

(4.5)

e |} is a

the efficiency

(4.6)

(4.7)



From (4.5) and

o
=R

m

1t
o~

I
m
—~
-
—f
—~—
N

(4.7).

From (2.5) and (4.8),

VLe3(H,M,k)]

1}
Q
N

From (2.16),

V[eT(H,M,k)] =

and (4:6) holds.

.20,

(4.8)
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Note that eT(H,M,k) = e?(H,M,k) implies E(H,M,k)= 1
and that E(H,M,k) = 1 if and only if V[eT(H,M,k)]=V[e?(H,M,kL
Corolaries 4.2.1 and 4.2.2 give necessary and sufficient con-
ditions for these situations.

Corolary 4.2.1 - (Conditions for V[eT(H,M,k)]=V[e$(H,M,k)])

a) Vep(H,M,k)] = V[ey(H,M,k)]1, for all T=0,1,..., if and
only if

of = 1 Ay Yooy (4.9)

b) V[eT(H,M,k)] = V[e?(H,M,k)], for all T=0,+1,..., and for
all Mz1, if and only if

Az = y; Ag» for all a21. (4.10)

Proof.

(4.9) follows from (4.6) and (4.8).

V[eT(H,M,k)] = V[e?(H,M,k)], for all Mz1, if and
only if (4.9) holds for all Mz1. For M=1 and M=2,

o = Ag/vg = Ry = (A + Ay LU+ yg)

~

and hence A1 = y% Ry- Therefore, (4.10) holds for g=1.
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Suppose (4.10) holds for 2=M-1. Then, it holds for

L=M,
M-2
A1 jgo A
- =v_ - 2
A0 = e— ¥ , and hence AM_1 YMoq AO‘
MEZ
Y2 .Y2
M-1 mep M

Therefore, (4.10) holds for all 2>1. []
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Corolary 4.2.2 - (Conditions for eT(H,M,k)=e?(H,M,k))

a) eT(H,M,k) = e?(H,M,k), for all T=0,#1,..., if and only
if
H-1 MH-h-1 M-1
'y, , . b . .
oo jZO "h 25 2THeMH-h- ] jZO Y5 Prem-; (4.11)
for al1 T =0, #1,...;
b) eT(H,M,k) = e?(H,M,k), for all T=0,+1,..., and for all
Mz1, if and only if
H-1 MH—2-1 M-1 H-1 H-%-1
W, Y. a .= Yy W, ¥. a B
heo 350 =h =j “TH+MH-h-j m=0 h=0 j=0 m ~h ~j <{(T+M-m)H-h-j
for all Mzt. (4.12)
Proof.
(4.11) follows from (2.4), (2.15) and (4.5).
Putting M=1 in (4.11) we obtain
Hi1 H—E-l
b = w' o ¥y. a ., for all T=0,2%1,...
T h=0 J-=0 “'h “'J "'TH"h"J

and substituting in (4.11) we obtain (4.12). O
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The special case where H=1 is presented in the fol-
lowing corolary.

Corolary 4.2.3 - (Contemporal aggregates)

Efficiency of contemporal aggregates may be meas-

ured by
Y W' V. T VY. W
m=0 j=0 =~ "3 77~
E(1,M,k) = . : (4.13)
M-1 of
Y W'y Dol oW
m=0 " j=o = 9 77

In this case,

a) V[et(1,M,k)] = V[e{(1,M,k)] if and only if

wl/ i Y23 (4.14)

W'¥y T oyy W o= ygw' zwo o,forall Mzl (4.15)

()
~
m.

o+

—~
—
-
=
-
-~
—

"

e¥(1,M,k), for all t = 0, %1, ..., if and
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M-1 M-1

- _20 Y byem_j> TOF all t=0,+1,... (4.16)
J:

n e~
E3

o ¥t Btem-g

d) et(1,M,k) = e€(1,M,k), for all t=0,+1,..., and for all

Mz1, if and only if

3 w', for all jz0, (4.17)

that is, w is an eigenvector for each gj and i is the corre-

sponding eigenvalue.

Remark -

Kohn (1982, theorem 1 and corolary 6) showed  part
(d) of corolary 4.2.3 for M=1 and showed that (4.17) is a neC
essary condition for et(1,M,k) = e;(1,M,k).

The special case where k=1 is presented in the fol-
lowing corolary.

Corolary 4.2.4 - (Univariate case)

Efficiency in the univariate case considered in
theorem 2.1 may be measured by



E MS1
Y2 A*
- m = J
E(Ha, 1) = =220 =0 C
Mi1 E
.YZ A*
m=0 j=0 I

In this case,

a) V[eT(H,M,1)] = V[e;(H,M,1)J, for all T=0,%1,...
only if
Mi1 Mi1
g2 = o2 Ax / v2;
b j=0 jop M

b) V[eT(H,M,1)] = V[e?‘(HaM:‘I)]s
all M21, if and only if

Az = yz AX¥, for all

0° 221;

¢) ep(H,M,1) = eX(H,M,1), for all T=0,%1,...,
H-1 MH-h-1 M- 1

. . b
hZO ko h Vs (T H-h- mZO Ym °T+M-m

d) eT(H,M,1) = e?(H,M,1), for all T=0,+1,..., and for all

if and only if

H-1 MH-E-1 Hi1 H-§-1
w,_y. a . =Y

h=0 j=\] h J (T+M)H-h-J M‘1 h=0 J'=0

for all T=0,%1,..., and for all Mz1.

~

for all T=0,*1,...

.26.

(4.18)

, if and

, and for

if and only if

(4.21)
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