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as gravitational waves resulting from tensor modes during inflation, may be detectable in
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1 Introduction

According to the inflationary paradigm, the large-scale structure of our universe originated in
vacuum fluctuations during inflation [1–5]. Quantum field fluctuations that were stretched
beyond the horizon by the expansion were transformed into classical stochastic fluctuations.
After the end of inflation, they re-entered the horizon at successive times depending on
their wavelengths, and generated the observed structure through the process of gravitational
collapse of overdense regions.

A rather obscure point in the above scenario is the quantum to classical transition
upon horizon exit. In inflationary cosmology a field fluctuation can be expressed in terms
of momentum modes whose mode function involves a growing and a decaying term. After
horizon exit, the mode function becomes dominated by the first term and loses its oscillatory
form (it freezes) [6]. Moreover, the dominance of the growing contribution causes the field
and its conjugate momentum to commute. As a result, the field after horizon crossing is
viewed as a classical stochastic field, and its quantum expectation value is considered as
the classical stochastic average.

Despite the simplicity of the above picture, it is important to keep in mind that the
full quantum field and its conjugate momentum always obey the canonical commutation
relation. This is guaranteed by the presence of the decaying term in the mode function. In
this sense, the field never loses its quantum nature. It has been argued that the observation
of quantum properties of the field that may survive until today is very difficult because of
the enormous difference in the amplitudes of the growing and the decaying term, which
would require a precision of 90 orders of magnitude in the measurement of the momentum [7].
Devising experiments that could look for a violation of Bell’s inequalities in the cosmological
context seems like a formidable task [7–9].
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At the conceptual level, the question persists as to whether the quantum origin of the
fluctuations can be mirrored in certain quantities that probe beyond the classical level. A
very interesting example of such a quantity is the entanglement entropy. In the simplest
approach, one may consider the momentum-space entanglement between high and low-
momentum modes, such as between modes with physical momenta below and above the
Hubble scale H [10–13]. However, this would vanish for a free field, as long as the initial
state can be written as a tensor product of states, one for each momentum mode, as in the
Minkowski vacuum. Since each mode evolves independently, the reduced density matrix,
resulting from some modes being traced over, would be that of a pure state. A nontrivial
result is obtained only in the presence of an effective coupling between different momentum
modes, as in [14].

The entropy associated with the entanglement between degrees of freedom localized within
two spatial regions separated by an entangling surface is more promising. The calculation
is more difficult, as one now has to trace over the degrees of freedom in the interior or
the exterior. On the other hand, the reduced density matrix would not correspond to a
pure state and the entanglement entropy would be nonvanishing even in free field theory.
Explicit calculations of real-space entanglement entropy in flat space have been carried
out for non-interacting or highly symmetric quantum field theories, and mostly in lower
dimensions [15–33]. The entropy has interesting properties, such as a dependence on the area
of the entangling surface, which indicates a similarity with black hole entropy [15, 16].

There are few results on the behaviour of real-space entanglement entropy in a cosmological
setting [27, 34, 35]. The explicit calculation of [27] focused on the subleading logarithmic term,
whose coefficient is universal. We are interested instead in the leading term, for which we seek
a physical interpretation. Our approach follows closely the calculation of the entanglement
entropy in flat (3+1)-dimensional spacetime in the seminal work by Srednicki [16]. The
original calculation focused on the leading term in the entropy, while the logarithmic correction
was computed in [24]. The basic formalism for the generalization of the calculation to the
case of a Friedmann-Robertson-Walker (FRW) background was developed in [35, 36] and
was applied to a toy (1+1)-dimensional model. In this work we carry out the analysis for a
(3+1)-dimensional cosmological background that undergoes a transition from an inflationary
era to a period of radiation domination.

It must be mentioned also that the entanglement entropy can be derived through the
Ryu-Takayanagi proposal [37–39] in the context of the AdS/CFT correspondence [40–42], and
results have been obtained in time-dependent backgrounds for theories that have gravitational
duals [43, 44]. Our aim here is to look directly at the details of the mechanism of entanglement
in a cosmological setting for fields minimally coupled to gravity. For this, we perform an
explicit calculation of the reduced density matrix in the case of a single massless scalar
field, from which we deduce the entropy. The effect of a non-minimal coupling has been
explored in [45, 46].

The main effect of the expansion on the quantum mechanics of the scalar field is that
the field modes evolve from a simple oscillator ground state to a squeezed state [47]. There is
a long history of studies on the connection between squeezing and entropy [48–55]. As we
discussed above, the dominance of the growing term usually leads to the conclusion that the
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quantum properties of the field are not visible in late-time observations that focus on classical
local quantities [56–61]. However, the entanglement entropy may provide an exception, as
it is a purely quantum, non-local quantity that does not have a classical analogue. More
specifically, the squeezing of canonical modes generically increases the entanglement between
local degrees of freedom and is expected to also increase the entropy.

A conceptual question that arises when trying to interpret the entanglement entropy is
how to control the ultraviolet (UV) divergence that it displays. In flat (3+1)-dimensional
spacetime the entropy scales ∼ 1/ϵ2, with ϵ a short-distance cutoff. For the vacuum state this
cutoff is intrinsically connected with the radius of the entangling surface R, as they appear
together in the leading term ∼ R2/ϵ2 that realizes the area law. The standard interpretation
is that this term quantifies the very strong entanglement between the short-distance modes
on either side of the entangling surface.

It is difficult to remove the divergent term through some kind of renormalization procedure.
On the other hand, if it is viewed as physical there is an ambiguity in the identification
of the length scale ϵ. In a theory that includes gravity, one may adopt the logic that ϵ

must be of the order of the Planck length. However, there are fundamental difficulties with
such an assumption. The huge difference between the Planck scale and macroscopic scales
of interest would mean that the entanglement entropy would always be dominated by the
UV and would not carry any interesting information about the long-distance physics. For
an expanding background the situation is more problematic. The continuous stretching of
physical length scales and the corresponding redshifting of frequencies imply that the UV
is continuously replenished by new modes that emerge from sub-Planckian distances. One
can only make arbitrary assumptions about the state that such modes occupy, as well as
their entanglement with the longer ones.

The quantum to classical transition upon horizon crossing during inflation can give a
natural way to bypass the above fundamental issues. There is a certain mode of comoving
wavenumber ks which crossed the horizon at the end of inflation and immediately re-entered.
Modes with wavenumbers k > ks remained subhorizon at all times and never went through
the process of freezing and the dominance of the growing term in the mode function. In
this sense, they have always constituted vacuum fluctuations. Of course, the value of ks is
not fixed precisely, but the freezing of adiabatic modes occurs sufficiently fast for ks to be
determined up to a factor of order 1. The modes with k < ks are the ones directly accessible
to experiment and constitute the observable universe. Even though they appear mostly
classical, their quantum nature may still be visible in quantities such as the entanglement
entropy. The advantage of this logic is that the entanglement of interest is due to modes
with wavelengths above a UV cutoff ϵ ∼ 1/ks.

The absence of modes with k > ks can be justified only for very weakly interacting
fields, for which mode-mode coupling can be ignored. For interacting fields, all modes are
eventually excited. This does not result in an additional limitation on the type of fields
that are possibly entangled today, as interacting fields are expected to thermalize and lose
quantum coherence anyway. Our analysis is relevant for very weakly interacting fields as,
for example, gravitational waves resulting from tensor modes during inflation. We treat
them as freely evolving fields on the cosmological background, and we make the underlying
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assumption throughout the paper that their quantum coherence is not lost through some
secondary process during the whole evolution of the universe until today.

In order to obtain a feeling of the magnitude of ks, we may use the fact that a gravi-
tational wave generated N e-foldings before the end of inflation, with frequency set by the
approximately constant Hubble parameter H, is redshifted to a frequency f today [62]

ln
(

f

10−18 Hz

)
≃ NCMB − N, (1.1)

where NCMB ≃ 60 indicates the number of e-foldings at which the modes of the cosmic
microwave background (CMB) exit the horizon. Modes that exit the horizon at the end
of inflation (N ≃ 0) would have a frequency today f ∼ 108Hz, which sets the cutoff in the
spectrum of gravitational waves generated by inflation [62]. The corresponding wavelength
is λs ∼ 1m. This is a scale much longer than any conceivable fundamental UV cutoff, but
still much shorter than the Hubble radius today.

It is interesting also to note that a possible infrared cutoff kl may exist for the modes
contributing to the entanglement entropy. Let us assume that inflation started at some initial
time, after some unspecified pre-inflationary era. Even if modes that were superhorizon at
that time went through the process of freezing later on, their enhancement will be smaller than
if they had grown throughout inflation starting from below the horizon. The power spectrum
for such modes will be suppressed relatively to its value in the scale-invariant range. It is
then natural to expect that these modes do not contribute significantly to the entanglement
entropy. This, admittedly rather speculative, argument suggests that kl can be identified
with the wavenumber of the mode that exited the horizon at the beginning of inflation.

In the following we focus on the scenario in which the UV cutoff is identified with the
last mode that crossed the horizon during inflation. Its wavenumber satisfies ks/at ≃ H,
where H is the constant value of the Hubble parameter during inflation, and at is the value
of the scale factor at the transition from inflation to the era of radiation domination. The UV
regularization is implemented by considering a discretized version of the free scalar theory
on a lattice of comoving spacing ϵ. The highest mode has a comoving wavenumber ∼ 1/ϵ.
Without loss of generality we can set at = 1. This results in the condition ks ≃ H, or
ϵ ∼ 1/H, where H is the constant value of the Hubble parameter during inflation. With these
assumptions, the physical lattice spacing ϵa never exceeds the physical Hubble radius during
the whole evolution from the de Sitter (dS) phase to the era of radiation domination (RD).

The paper is organized as follows: In section 2 we summarize the formalism that is
needed in order to compute the entanglement entropy in a time-dependent background. We
describe the discretized version of the theory of a massless scalar field and the form of the
wave function of the canonical modes. We also provide a concise summary of the method
developed in refs. [35, 36] for the calculation of the reduced density matrix and its eigenvalues,
from which the entanglement entropy is deduced. In section 3 we present the results of a
numerical calculation of the entanglement entropy in a time-dependent background that
evolves from an inflationary era to radiation domination. In section 4 we give our conclusions.
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2 Formalism

In this section we summarize the formalism that we employ for the calculation of the
entanglement entropy. We follow the approach of Srednicki [16], which was generalized to
the case of an expanding background in [35, 36]. We refer the reader to these publications
for the details.

2.1 The discretized Hamiltonian

We consider a free real scalar field in a FRW background, described by the metric

ds2 = a2(τ)
(
dτ2 − dr2 − r2dΩ2

)
(2.1)

in terms of the conformal time τ . Through the definition ϕ(τ, x) = f(τ, x)/a(τ), the action
of the field can be written as

S = 1
2

∫
dτ d3x

(
f ′2 − (∇f)2 + a′′

a
f2
)

, (2.2)

where the prime denotes differentiation with respect to the conformal time τ . The field f(τ, x)
has a canonically normalized kinetic term. As we consider spherical entangling surfaces, it is
convenient to define the spherical moments of the field and its momentum as

flm (r) = r

∫
dΩ Ylm (θ, φ) f (x), πlm (r) = r

∫
dΩ Ylm (θ, φ) π (x), (2.3)

where Ylm are real spherical harmonics. The radial coordinate can be discretized by introducing
a lattice of concentric spherical shells with radii rj = jϵ, where j is an integer obeying
1 ≤ j ≤ N . The radial distance between successive shells introduces an UV cutoff equal to
1/ϵ, while the total size of the lattice L = Nϵ sets an IR cutoff equal to 1/L. By defining
the discretized degrees of freedom as

flm (jϵ) → flm,j , πlm (jϵ) → πlm,j

ϵ
, (2.4)

so they are canonically commuting, we arrive at the Hamiltonian

H = 1
2ϵ

∑
l,m

N∑
j=1

[
π2

lm,j +
(

j + 1
2

)2(flm,j+1
j + 1 − flm,j

j

)2
+
(

l (l + 1)
j2 − ϵ2 a′′

a

)
f2

lm,j

]
. (2.5)

All dimensionful quantities in the problem can be expressed in units of the comoving lattice
spacing ϵ. This is also the case for the time parameter τ , as the combination Hτ that
determines the time evolution becomes a function of τ/ϵ, as is apparent from eq. (2.5).
This normalization corresponds to setting ϵ = 1. There is a correspondence between ϵ and
the comoving scale ks we discussed in the introduction, i.e. ϵ ∼ 1/ks. Similarly, we have
that L = Nϵ ∼ 1/kl.

We shall analyze the scenario in which the evolution of the field starts during inflation in a
de Sitter (dS) phase and continues in the era of radiation domination (RD). We approximate
the transition as instantaneous, neglecting the complications of reheating. It is also possible
to consider the transition to an era of matter domination (MD), either directly from the
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dS phase [35] or from the RD era. We have considered such scenarios as well, but they
lead to results that are very similar to the scenario we discuss in detail, albeit with much
more complicated analytical expressions. Assuming that a transition from a dS to a RD
background takes place at τ = 0, the scale factor takes the form

a(τ) =

(1 − Hτ)−1, τ < 0, dS,

1 + Hτ, τ > 0, RD,
(2.6)

so that

adS(0) = aRD(0) = 1. (2.7)

The Hubble parameter is continuous through τ = 0. However, the effective mass term −a′′/a

in eq. (2.5) is discontinuous.
The entanglement entropy between the interior and exterior of a sphere of radius R

can be obtained from the density matrix of the harmonic system that corresponds to the
discretized field theory, via tracing out the oscillators with jϵ < R in order to compute the
reduced density matrix for the degrees of freedom outside the entangling surface (or vice
versa). For the vacuum of the theory, the state of the system of oscillators is the product
of the ‘ground states’ of the modes that diagonalize the Hamiltonian. The assumption of a
Bunch-Davies vacuum implies that as ‘ground state’ of a mode we must define the solution
of the time-dependent Schrödinger equation for this mode that reduces to the usual simple
harmonic oscillator ground state as τ → −∞. The wave function of each mode depends on a
linear combination of the various flm,j , i.e. the corresponding canonical coordinate. Since
modes with different l and m indices do not mix, each eigenfunction actually involves one
set of (l, m). The effect of the expanding background is encoded in the term ∼ (a′′/a)f2

lm,j ,
which is identical for all (l, m). For a background that evolves from a dS to a RD era, the
discretized Hamiltonian for the free field takes the form

H = 1
2ϵ

∑
l,m

N∑
j=1

[
π̃2

lm,j +
(

ω2
lm,j − 2κ

(
τ

ϵ
− 1

Hϵ

)−2
)

f̃2
lm,j

]
, (2.8)

where f̃lm,j are the canonical coordinates (linear combinations of flm,j), ωlm,j the correspond-
ing eigenfrequencies when the time dependence is neglected, and

κ =

1, τ < 0, dS,

0, τ > 0, RD.
(2.9)

At this point, we need to mention a subtle issue concerning the cutoff imposed on the
eigenfrequencies of the canonical modes of the above Hamiltonian. In the original calculation
by Srednicki [16], all discrete values of l = 0, . . . , ∞ were taken into account. For a given
value of ϵ, the sum over m and l appearing in eq. (2.8) converges in the calculation of the
entanglement entropy, so that the UV divergence is well controlled by ϵ. In our approach,
however, the fundamental issue is not simply one of regularization, but of the exclusion of
all physical modes that remain subhorizon during the whole evolution. Allowing l to take
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arbitrarily large values incorporates fluctuations in the tangential directions that should have
been excluded. In order to resolve this issue we have adopted the following strategy: We first
determine the maximal eigenfrequency ωmax in the l = 0 sector, which is of order 1/ϵ. In
all other l sectors, we exclude the eigenfrequencies that exceed ωmax, and the corresponding
canonical modes. The resulting entanglement entropy still has a UV cutoff set by ϵ, but
a difference may appear in non-universal contributions. In particular, the leading term
∼ R2/ϵ2 for a static background will have a different coefficient than the one computed in [16].
Actually, the coefficient turns out to be smaller than in [16], as an infinite number of modes
are excluded. The procedure may be viewed as a different regularization of the entanglement
entropy. However, our interpretation is that it provides a result that incorporates only the
modes that went through the physical process of freezing upon horizon exit.

The cutoff procedure is also related to the presence of a new scale in the calculation of the
entropy, set by the Hubble constant H during inflation. In the introduction we argued that
the relevant scale of highest frequency for the problem is the one with comoving wavenumber
ks, such that the mode exits the horizon at the end of inflation and immediately re-enters
in the RD era. For this mode ks/at = H, where at is the value of the scale factor at the
transition from the dS to the RD era. We have set at = 1 without loss of generality, while
the shortest mode that we keep in the calculation has an eigenfrequency set by ϵ. This leads
to the identification ϵ ∼ 1/H, which we employ in the next section.

Of course, one could ignore the issue of mode freezing and treat Hϵ as a free parameter.
In this case, the scale 1/ϵ can be viewed as a coarse-graining scale in a Wilsonian procedure
of integrating out high-energy modes. As the momentum modes of a free field are decoupled,
the integration would result again in a free theory, albeit with fewer modes. Even though
this logic seems appealing in momentum space, it is less transparent in real space. The
degrees of freedom in this case are the field values at every point in the discretized space (the
lattice), which are coupled through the kinetic term. Varying the lattice spacing essentially
defines a new entropy that depends on an arbitrary UV scale. Moreover, Hϵ ≫ 1 results
in a discretized version of the field theory such that the characteristic length scale of the
gravitational background can become smaller than the physical lattice spacing during part of
the evolution. On the other hand, Hϵ ≪ 1 results in the dominance of the UV fluctuations
and a result for the entanglement entropy identical to that in static space at all times. The
natural choice Hϵ ∼ 1 that we advocate avoids the above complications.

2.2 The wave function of the canonical modes

The quantization procedure treats the field as a collection of quantum harmonic oscillators.
In order to make the analogy with the language of quantum mechanics clearer, we follow the
notation of previous work [16, 35, 36] and use the variable x instead of f . It must be kept in
mind that it is the field value that is treated as a harmonic oscillator. In this section the
variable x has nothing to do with spatial coordinates. The Hamiltonian (2.8) becomes diagonal
when expressed in terms of canonical modes, which must be put at their ‘ground state’ in the
vacuum of the theory. The form of the Hamiltonian implies that we need the ‘ground state’
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eigenfunction of the harmonic oscillator with a time-dependent frequency of the form

ω2(τ) = ω2
0 − 2κ

(τ − 1/H)2 . (2.10)

We set ϵ = 1 for simplicity in the expressions. Since the Hamiltonian has explicit time
dependence, this ‘ground state’ is not an eigenstate of the Hamiltonian, but rather a solution
of the time-dependent Schrödinger equation that reduces to the ground state of the simple
harmonic oscillator with constant frequency ω0, as τ → −∞.

A solution of the time-dependent Schrödinger equation for an oscillator with frequency
given by eq. (2.10) can be obtained in several steps [63], following the Lewis-Riesenfeld
method [64, 65]. First one must find a solution b(τ) of the Ermakov equation

b′′(τ) + ω2(τ)b(τ) = ω2
0

b3(τ) , (2.11)

with boundary conditions appropriate to the problem at hand. In terms of b(τ), the solution
of the time-dependent Schrödinger equation is given by

F (τ, x) = 1√
b(τ)

exp
(

i

2
b′(τ)
b(τ) x2

)
F 0
(∫

dτ

b2(τ) ,
x

b(τ)

)
, (2.12)

where F 0(τ, x) is a solution of the standard simple harmonic oscillator with constant frequency
ω0, namely a linear combination of the wave functions

F 0
n(τ, x) = 1√

2nn!

(
ω0
π

)1/4
exp

(
−1

2ω0x2
)

Hn (
√

ω0x) exp
(

−i

(
n + 1

2

)
ω0τ

)
, (2.13)

with Hn(x), n = 0, 1, 2, . . . the Hermite polynomials.
The solutions (2.12) are not energy eigenstates, as the problem has an explicit time

dependence. The ‘ground state’ must be selected through appropriate boundary conditions.
We require that the solutions are reduced to the standard wave functions of the harmonic
oscillator for τ → −∞, consistently with the selection of the Bunch-Davies vacuum for the
field theory. For the ‘ground state’, we have F 0(τ, x) = F 0

0 (τ, x), while the function b(τ)
must satisfy b(τ) → 1 for τ → −∞. At the time τ = 0 corresponding to the transition to the
RD era, we impose the continuity of the wave function. This fixes both b(0) and b′(0) and
determines uniquely the form of b(τ) for τ > 0. We refer the reader to [35] for the details
of this straightforward calculation. We list here the expressions for the function b(τ) in the
dS and RD eras, which determine the ‘ground state’ for our problem:

b2
dS(τ) = 1 + 1

ω2
0

(
τ − 1

H

)2 , τ < 0, (2.14)

b2
RD(τ) = 1 + H4

2ω4
0

+
(

H2

ω2
0

− H4

2ω4
0

)
cos(2ω0τ) + H3

ω3
0

sin(2ω0τ), τ > 0. (2.15)

It can be seen easily that bdS tends to 1 for τ → −∞, while bdS and bRD, as well as their
derivatives, are continuous at τ = 0.
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2.3 The calculation of the entanglement entropy

In this work we calculate the entanglement entropy following the original approach by
Srednicki [16]. A huge advantage of this approach is that it provides the reduced density
matrix as an intermediate result. This matrix contains all the information about entanglement,
and the entropy can be derived from its spectrum. It must be kept in mind that the inverse
process is not possible, since the entanglement entropy provides only partial information
about entanglement.

Srednicki’s method treats the field as a collection of coupled harmonic oscillators. When
the state of these oscillators is specified, the determination of the density matrix is straight-
forward. The next step is to trace out some of the degrees of freedom, corresponding to
the field values on one side of an entangling surface, in order to derive the reduced density
matrix. The difficulty of this task depends on the state in which the overall system lies. The
diagonalization of the Hamiltonian decouples this system by describing it in terms of the
field canonical modes. In the original calculation [16] the field is considered in flat spacetime
and is assumed to be at its ground state, i.e. each decoupled canonical mode is at its ground
state. This greatly simplifies the calculation, as the ground state is Gaussian, and tracing out
degrees of freedom can be carried out via the evaluation of Gaussian integrals. In our case the
field theory is considered in an expanding background. There is an effective time-dependent
mass term, which deforms the ground state of canonical modes so that it corresponds to the
Bunch-Davis vacuum during the dS phase. The continuity of the wave function uniquely
determines the state during the subsequent RD phase as well. The state is Gaussian at all
times, as is evident from eq. (2.12), even though the coefficient of the quadratic term in the
exponent is complex. This implies that the tracing out of degrees of freedom can be carried
out via the evaluation of Gaussian integrals, as in the original calculation.

The state of the overall system reads

Ψ (x) ∼ exp
(

−1
2xT W x

)
, (2.16)

where the vector x denotes collectively the field values flm,j , following the notation of [16,
35, 36], as we explained in the previous subsection. The matrix W is given by

W = Ω
b2(τ, Ω) − i

b′(τ, Ω)
b(τ, Ω) . (2.17)

The matrix Ω is the eigenfrequency matrix that corresponds to the time-independent part
of the Hamiltonian of the overall system. It is the positive square root of the matrix of
couplings K between the degrees of freedom. In other words, if xi are the coordinates and πi

the conjugate momenta, the time-independent part of the Hamiltonian reads

H = 1
2
∑

i

π2
i + 1

2
∑

i

∑
j

xiKijxj . (2.18)

As is evident by equation (2.5), the Hamiltonian can be divided into angular momentum
sectors that do not interact, allowing for the writing of the matrix K as K =

⊗
l,m

Kl, where

(Kl)ij =
(

2 + l (l + 1) + 1/2
i2

)
δij −

(
i + 1

2

)2

i (i + 1) δi+1,j −

(
j + 1

2

)2

j (j + 1) δi,j+1. (2.19)
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The matrices Kl have positive eigenvalues kli. Each N × N matrix Kl has 2N square roots,
that have eigenvalues ±

√
kli. As positive square root Ωl of the matrix Kl we define its square

root that has only positive eigenvalues. Then, the matrix Ω reads Ω =
⊗
l,m

Ωl. In eq. (2.17)

we have indicated explicitly the dependence of the function b(τ) of the previous subsection
on the eigenvalues of this matrix. The matrix W is in general a complex symmetric matrix.
The overall system is described by the density matrix

ρ
(
x; x′) ∼ exp

[
−1

2
(
xT W x + x′T W ∗ x′

)]
, (2.20)

which is Gaussian.
We consider as subsystem 1 the set of n degrees of freedom described by the coordinates

xj , where j ≤ n. The rest of the degrees of freedom comprise the complementary subsystem
2. We trace out subsystem 2. It is convenient to introduce the block notation

W =
(

A B

BT C

)
, x =

(
x1
x2

)
, (2.21)

where, in an obvious manner, the matrix A is an n × n matrix, the vector x1 is an n-
dimensional vector, and so on. The matrices A and C are complex symmetric matrices like
W , whereas the matrix B has no specific symmetry property and is not even a square matrix.
It is a matter of simple algebra with Gaussian integrals to show that the reduced density
matrix describing subsystem 1 assumes the form

ρ1(x1, x′
1) ∼ exp

(
−1

2xT
1 γ x1 − 1

2x′T
1 γ x′

1 + x′T
1 β x1 + i

2xT
1 δ x1 − i

2x′T
1 δ x′

1

)
, (2.22)

where

γ − iδ = A − 1
2BRe (C)−1 BT , (2.23)

β = 1
2B∗Re (C)−1 BT . (2.24)

In order to calculate the entanglement entropy, one needs to specify the eigenvalues of
the above reduced density matrix. In order to do so, we must solve for its eigenfunctions,
which satisfy ∫

dn x′
1 ρ1

(
x1; x′

1
)

f
(
x′

1
)

= λf (x1) . (2.25)

There are two differences between our case and the simpler case of a field theory at its ground
state in flat space [16]. The first one is that the matrix δ does not vanish. This is a very
innocent change, as it can be shown that the matrix δ does not alter the eigenvalues of
the reduced density matrix, but only its eigenfunctions [35, 36]. Therefore, for the purpose
of the specification of the spectrum of the reduced density matrix, the matrix δ can be
set to zero by hand.

The second difference induces several complications. The matrix β is a complex Hermitian
matrix, whereas in the original calculation [16] it is real and symmetric. If these properties
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persisted in our case, the matrices γ and β would be simultaneously diagonalizable via an
appropriate coordinate transformation, resulting in a reduced density matrix that could be
factored into the tensor product of density matrices describing a single degree of freedom
each. Each of these density matrices would describe a simple harmonic oscillator mode at a
thermal state, with temperatures given as functions of the eigenvalues of the matrix γ−1β.
In our case this is not possible and the calculation is more complicated. Nevertheless, it can
be shown that the general structure of the eigenfunctions remains identical. There is still
a ‘ground’ eigenstate, n ‘first excited’ eigenstates and so on. However, the reduced density
matrix cannot be factored into density matrices of a single degree of freedom each.

The complete analysis of the problem is presented in refs. [35, 36], to which the reader is
referred for the details. As it turns out, the eigenvalues of the reduced density matrix can be
specified in terms of the matrix W that satisfies the quadratic matrix equation

W = I − β̃T (I + W)−1 β̃, (2.26)

where
β̃ = γ− 1

2 βγ− 1
2 . (2.27)

This matrix appears in the exponent of the Gaussian part of the eigenfunctions of the reduced
density matrix. For example, the ‘ground’ Gaussian eigenstate reads

Ψ0 (x) ∼ exp
(

−1
2xT Wx

)
. (2.28)

Then, the eigenvalues of the reduced density matrix assume the form

λ{m1,m2,...,mn} = (1 − ξ1) (1 − ξ2) . . . (1 − ξn) ξm1
1 ξm2

2 . . . ξmn
n , (2.29)

where mi, i = 1, 2, . . . , n, take any non-negative integer value and the parameters ξi are
the eigenvalues of the matrix

Ξ = β̃T (I + W)−1 . (2.30)

Notice that the matrix Ξ is neither real or Hermitian, yet it turns out that it possesses real
eigenvalues. The reason is that it is similar to a Hermitian matrix, as shown in section 4.4.2
of ref. [36].

A complication that appears in this calculation is that the matrix equation (2.26) has
more than one solutions. Only one of them gives rise to normalizable eigenfunctions of the
reduced density matrix. This is the only one which, through eq. (2.30), corresponds to a
matrix Ξ that has no eigenvalues larger than 1, and thus to an appropriately normalized
spectrum of the reduced density matrix (2.29). The problem of selecting the correct solution
of eq. (2.26) can be bypassed by upgrading it to the eigenvalue problem of a matrix of higher
dimension. More specifically, it can be shown that the eigenvalues of the matrix Ξ are a
subset of the eigenvalues of the matrix

M =
(

2β̂−1 −β̂−1β̂T

I 0

)
. (2.31)
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These eigenvalues λ are the roots of the characteristic polynomial

det
(

2I − λβ̂ − 1
λ

β̂T
)

= 0. (2.32)

Because of its structure, the eigenvalues come in pairs, with one element being the inverse of
the other. Thus, half of the eigenvalues are smaller than 1 and the rest are larger than 1. The
eigenvalues of the matrix Ξ that corresponds to the correct W are exactly the eigenvalues
of M that are smaller than 1. This allows the specification of the spectrum of the reduced
density matrix in a way that is amenable to a numerical calculation. The entanglement
entropy is directly given by the formula

SEE = −
∑

i

(
ln (1 − ξi) + ξi

1 − ξi
ln ξi

)
. (2.33)

The reader is referred to [35, 36] for the proof of the above statements and more details.

3 Numerical results

3.1 General expectations

The formalism presented in the previous section provides the basis for the numerical calculation
of the entanglement entropy associated with a massless free field in an expanding background.
As we discussed in the introduction, we assume the presence of an UV cutoff ks for the
wavenumbers of the modes that contribute to the entropy. For a discretized theory on a
lattice, this cutoff is set by the lattice spacing ϵ, so that ks ∼ 1/ϵ. An IR cutoff kl may
also be present, even though we find that it does not have an effect on the entropy. For the
discretized theory, the value of kl is set by the total size of the lattice. The structure of the
theory implies that the result for the entropy depends on the combination Hϵ, with H the
constant value of the Hubble parameter during the dS era, which also sets the initial value of
this parameter in the subsequent RD era. Our assumption that the relevant physical degrees
of freedom are the ones that exit the horizon during inflation and re-enter during the RD era
implies that Hϵ ∼ 1 (for a scale factor set equal to 1 at the dS-RD transition).

Before presenting the numerical results, it is instructive to consider the expected form of
the entanglement entropy and its dependence on the various scales of the theory. In the dS
phase the leading contributions to the entropy, apart from a constant, are expected to be

S = c1
Ap

ϵ2
p

+ c2
2 log

(
Ap

ϵ2
p

)
+ c4 log(Hϵp)H2Ap + c5H2Ap + c6

2 log(H2Ap). (3.1)

We have used physical parameters and followed the notation of [27], neglecting a term
involving the mass of the field. Here Ap = 4πa2(τ)R2 is the proper area of the entangling
surface and ϵp = a(τ)ϵ the physical UV cutoff. The terms proportional to c1 and c2 are
present in a flat background as well. The coefficient c1 is regularization-scheme dependent
and was first computed in the seminal work of Srednicki [16], while the universal constant
c2 = −1/90 was computed in [23, 24]. The term proportional to c4 is an additional UV
divergence appearing in a curved background. The terms proportional to c5 and c6 are
genuine IR effects related to the expansion. The value c6 = 1/90 was found in [27].
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Figure 1. The entanglement entropy for a spherical region as a function of the radius of the entangling
surface and time for Hϵ = 1. The radius of the total spherical lattice is L = Nϵ, and we depict the
results for N = 200 (brown surface), N = 100 (red surface), and N = 50 (green surface). We also
indicate the entropy at the dS to RD transition (black curve) and the location of the comoving horizon
(dashed, red curve).

The numerical accuracy of our calculation allows the precise determination of only the
leading area terms. The logarithmic terms proportional to c2 and c6 cannot be reliably
specified within the accuracy of our numerical calculations. The logarithmic dependence
of the term proportional to c4 affects the coefficient of the area law and is tractable. We
postpone its precise analysis for a future publication. It must be pointed out that no volume
term is expected to develop in the dS phase, despite the fact that the modes lie in squeezed
states. The technical reasons in the context of our approach are explained in section 5 of [35].

The form of the entanglement entropy in the RD phase is more complicated. Several
curvature invariants may contribute, which are reduced to the terms involving H in the dS
phase. Similarly to before, an area term is present. However, as we shall see, a new feature
appears: a volume term develops and becomes the dominant contribution to the entropy.
A particular question, which we address in subsection 3.3, is whether this term arises from
UV contributions, or it is a low-energy effect.

3.2 The evolution of the entropy

In figure 1 we depict the entanglement entropy for a spherical region as a function of the
radius of the entangling surface and time for Hϵ = 1. The entropy and radius axes are
logarithmic. The discretization of the theory and the implementation of the UV cutoff were
described in subsection 2.1. The radius of the total spherical lattice is L = Nϵ, and we depict
the results for N = 200 (brown surface), N = 100 (red surface), N = 50 (green surface). We
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have displaced slightly the three surfaces in the vertical direction in order to make them
more visible. The radius of the entangling surface is R = nϵ, with n = 1, . . . , 25, so that it is
always smaller that half of the radius of the overall lattice and the interior region contains
manifestly fewer degrees of freedom than the exterior. The transition from the dS to the RD
era takes place at τ = 0, in a region characterized by a strong increase of the entanglement
entropy. The thick black line depicts the entropy as a function of n at τ = 0. We have also
indicated the location of the comoving horizon at various times through a dashed, red line.
For τ < 0 in the dS era, the comoving horizon shrinks and a diminishing part of the total
system remains subhorizon. For τ > 0 in the RD era, the comoving horizon grows and the
subhorizon part of the system grows. At the dS to RD transition only a small part, with
size of the order of the lattice spacing, is subhorizon.

We observe that, for τ → −∞, the entropy becomes independent of time. In the logarith-
mic plot, ln S is a linear function of ln n with slope equal to 2 to a very good approximation,
apart from expected deviations for small n, resulting from subleading contributions to the
entropy (constant and logarithmic terms). We have ignored such corrections, as the precision
of our calculation is not sufficient to determine them reliably, and we have focused on large
values of n for which terms of quadratic or of higher order dominate. For τ → −∞, we have
performed a fit of the entropy with a quadratic function in the region n ≥ 15 in order to
determine the coefficient s of the quadratic term. We obtain s ≃ 0.09 for all three values of
N . This is to be compared with the value s ≃ 0.3 quoted by Srednicki [16]. The difference
arises from the different regularization scheme that we use, as we discussed in detail in
subsection 2.1. In order to confirm the reliability of our numerics, we have also computed
the entropy using the regularization of [16], reproducing the value s ≃ 0.3. The form of
the entropy is consistent with the expectation that it should coincide with the entropy in a
static background when the physical radius of the entangling surface is much smaller than
the Hubble radius. This is the case for τ → −∞, when the scale factor approaches zero
and the term proportional to c1 in eq. (3.1) dominates. This result is also consistent with
the assumption of a Bunch-Davies vacuum.

When the time approaches τ = 0, there is a strong increase of the entanglement entropy
while the background is still in the dS phase. The dependence on n remains strictly quadratic
until the transition to the RD era. This feature is expected for a free theory, as was discussed
in [35]. The increase of the entropy arises because the terms proportional to c4 and c5 in
eq. (3.1) become dominant. In particular, we have verified that the entropy grows ∼ a2(τ),
following the growth of the physical radius of the entangling surface when the comoving
radius is kept fixed, as in our calculation. The transition to the RD phase is followed by a
further increase of the entropy, associated with the additional squeezing of the wave function
of the canonical modes. For τ → +∞ the entanglement entropy develops an almost constant
form, with a profile that indicates deviations from a purely quadratic dependence on n.
We investigate this form in more detail below. What is apparent in figure 1 is a weak
oscillatory behaviour that depends on N . In particular, the wavelength of the oscillatory
pattern is comparable to that of the longest mode allowed by the finite lattice. This pattern
is a finite-size effect that would be absent in an infinite system. It is also apparent that
the oscillations decay with time, with the resulting asymptotic form of the entropy being
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Figure 2. The entropy as a function of the radius of the entangling surface and time for Hϵ = 0.1
(green surface), Hϵ = 1 (red surface) and Hϵ = 10 (brown surface). The size of the lattice is N = 100.

independent of N . We have analyzed numerically the behaviour of the entropy at late times,
but we have not identified a significant residual effect associated with an IR cutoff kl ∼ 1/L.
If such an effect exists, it is not visible with the numerical precision of our calculation.

The next issue that we would like to analyze is the dependence of the entanglement
entropy on the Hubble scale H during inflation. As we have already mentioned, the relevant
dimensionless parameter is the product Hϵ. The value of s we quoted corresponds to the
coefficient of the term n2 = R2/ϵ2 = (aR)2/(aϵ)2 that involves the ratio of the physical radius
to the physical UV cutoff. In figure 2 we depict the form of the entropy as a function of the
radius and time for Hϵ = 0.1 (green surface), Hϵ = 1 (red surface) and Hϵ = 10 (brown
surface). The size of the lattice is N = 100.

During the dS era, if the UV cutoff ϵ is much shorter than the Hubble radius 1/H, as in
the case Hϵ = 0.1, the entropy is dominated by the short-distance entanglement between
degrees of freedom on either side of the entangling surface. The expansion of the background
induces only a subleading effect even when the physical entangling surface is larger than the
horizon. During the subsequent RD era, the physical cutoff shrinks even further relatively
to the Hubble radius, so that the entropy continues to be dominated by the UV, similarly
to the situation in static space.

For larger values of Hϵ during inflation, the asymptotic entanglement entropy of the
discretized theory at late times becomes larger than that for a static background. As we
discussed in the introduction, we focus on the case Hϵ = 1, for which modes that did not
cross the horizon during inflation and never froze are not taken into account in the calculation
of the entropy. For this choice of UV cutoff, the enhancement of the entropy due to the
expansion of the background can be significant relatively to the static-space case, as can be
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Figure 3. The entanglement entropy as a function of n = R/ϵ at an early time τ/ϵ = −100 in the dS
era and a late time τ/ϵ = +200 in the RD era. The size of the lattice is L = Nϵ with N = 100. The
red, dashed curve and the blue, dotted one correspond to fits with only a quadratic or cubic term.

seen in figure 2, in which the vertical axis is logarithmic. Notice that the physical UV cutoff
today, which is of the order of 1m as we discussed in the introduction, is much shorter than
the Hubble radius today. However, the effect of the squeezing of the wave function during
inflation and the transition to the RD era results in an increase of the entropy by at least two
orders of magnitude relatively to what one would expect for a static background. Since the
determination of the shortest wavelength that froze at the end of inflation is rather imprecise,
we have also considered the case Hϵ = 10, for which the enhancement of the entropy relatively
to the static case is higher by an additional two orders of magnitude.

3.3 The volume term

Apart from the enhancement of the entanglement entropy, a very interesting feature that is
apparent in figures 1 and 2 is the dependence of the entropy on the radius of the entangling
surface at late times. As long as the background is in the dS phase, the entropy is dominated
by a quadratic term. However, after the transition to the RD era, a different pattern emerges.
In figure 3 we depict the entanglement entropy as a function of n = R/ϵ at an early time
τ/ϵ = −100 in the dS era and a late time τ/ϵ = +200 in the RD era. The size of the lattice
is L = Nϵ with N = 100. We fit the shape of the curve for n ≥ 15 with a polynomial that
includes a quadratic and a cubic term. The assumed form of the entropy is

S = s
R2

ϵ2 + c
R3

ϵ3 , (3.2)

where we have indicated explicitly the use of the UV cutoff in the parameterization. The
coefficients s and c are in general functions of τ/ϵ. Their values at specific times are given
within the inset. At early times c vanishes, while at late times a good fit is obtained only if
it takes a nonvanishing value. The red, dashed curve and the blue, dotted one correspond
to fits with only a quadratic or cubic term, respectively. It is clear that at late times they
both are unsatisfactory.

In figure 4 we depict the coefficents s (left plot) and c (right plot) of the quadratic and
the cubic term, respectively, as a function of time. At early times we have s ≃ 0.09 and
c = 0. While the background is still in the dS phase, s grows, whereas c remains zero. The
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Figure 4. The coefficients s (left plot) and c (right plot) of the quadratic and the cubic term,
respectively, as a function of time, for the theory of figure 3.

cubic term emerges only after the time τ = 0 of the dS to RD transition. The oscillatory
patterns arise because of the finite-size effect that we discussed earlier in this section, which
is associated with the longest mode that can exist within the finite lattice. The oscillations
decay with time and the two parameters asymptotically settle to constant values: s ≃ 2.5 and
c ≃ 0.13. The growth of the cubic term is a very interesting, novel feature. It indicates that
strong entanglement is not confined only to narrow regions on either side of the entangling
surface, but spreads throughout the whole bulk of the system. We discuss the implications
of this result in the following section.

An important question is whether the appearance of the volume term is an effect related
to the UV modes of the system. The parameterization (3.2) gives the impression that the
dependence on the UV cutoff is strong. However, adopting the logic that led to eq. (3.1)
suggests a parameterization of the form

S = s̃H2R2
p + c̃H3R3

p, (3.3)

with Rp = a(τ)R the physical radius. Apart from the effects related to the expansion, the
area term receives contributions from the UV range. However, this is not necessarily true
for the cubic term. Comparison of eqs. (3.2), (3.3) gives

c̃ = c

(Hϵ)3a3(τ) . (3.4)

The explicit UV dependence has now been shifted into the definition of c̃. However, this could
be counterbalanced by the dependence of c on Hϵ. In figure 5 we depict c and c/(Hϵ)3 for
Hϵ = 0.1 (blue curve), Hϵ = 0.5 (orange curve), and Hϵ = 1 (green curve). Notice that the
size of the lattice is L = Nϵ with N = 200, i.e. twice that in figure 4. This explains the larger
period of the oscillations associated with the longest mode of the system (a finite-size effect
discussed in the previous subsection). The slightly negative values of c within a short time
interval are caused by the limitations of the numerically calculation and the fit to the results.

The important conclusion that can be drawn from figure 5 is that the UV dependence of
c is such that c̃ is largely independent of ϵ. Even though c varies by 3 orders of magnitude
for the values of Hϵ we considered, the average value of c/(Hϵ)3 varies by less than a factor
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Figure 5. The coefficients c (left plot) and c/(Hϵ)3 (right plot) of the cubic term, as a function of
time, for Hϵ = 0.1 (blue curve), Hϵ = 0.5 (orange curve), and Hϵ = 1 (green curve). The size of the
lattice is L = Nϵ with N = 200. We have set ϵ = 1.

of 2. The other important point is that the volume term is determined by the comoving
radius R = Rp/a(τ). When this term dominates, the entanglement entropy within a spherical
region that follows the expansion is roughly constant.

The qualitative picture that emerges is that the entanglement entropy within a spherical
region of fixed comoving radius R grows during the dS era, even for a constant comoving
UV cutoff ϵ. This growth is caused by the squeezing of the wave function of the various field
modes by the expansion, and is additive to the standard entanglement entropy in a static
background. However, the dependence on the radius is quadratic, so that the effect satisfies
an area law. The transition to the RD phase induces the emergence of a volume term in
the entropy. The most plausible interpretation is that the entanglement is spread by the
expansion over larger distances, until it encompasses the degrees of freedom of the whole
system. The volume contribution to the entropy is roughly constant for a fixed comoving
radius. In this sense, the expansion during the RD phase does not generate additional entropy,
but redistributes over the whole system the entropy produced during the dS phase.

4 Conclusions

We have followed the evolution of the entanglement entropy of a real, massless, scalar field
throughout the inflationary period and the subsequent era of radiation domination. We have
assumed that during inflation the field is in the Bunch-Davies vacuum. As a result, the
entanglement of the short-distance modes is very similar to that at the ground state in a static
background. For longer modes, the transition towards a squeezed state upon horizon exit of
each mode during inflation and the additional squeezing when radiation domination sets in
enhance the entanglement entropy. Even though we did not analyse it explicitly, a similar
behaviour is expected during matter domination, as has been verified in a previous study [35].

The entanglement entropy, even in a static background, is an UV-divergent quantity that
requires the introduction of an UV cutoff. We have identified this cutoff with the wavelength
λs of the last mode that exited the horizon at the end of inflation and re-entered immediately
in the RD era. Modes with shorter wavelengths did not go through the process of freezing
and the dominance of the growing term in the mode function. We have adopted the view
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that they can be considered as vacuum fluctuations even today, while we focused on the
entanglement due to modes that are directly accessible to observations.

A question of particular interest concerns the dependence of the entropy on the size of
the system. The characteristic pattern in a static (3 + 1)-dimensional background is that
the entropy is proportional to the area of the entangling surface, similarly to the black hole
entropy [16]. This feature is attributed to the strong entanglement of short-distance modes on
the two sides of the entangling surface. One would expect that the rapid expansion during the
dS era would stretch the entangled modes sufficiently far from the entangling surface, so that
a volume effect might appear. However, this expectation is not realized. The subtle technical
reasons are explained in section 5 of [35]. On the other hand, the expansion during the
RD era induces a drastic modification. A volume term develops and becomes the dominant
contribution to the entropy at late times. It must be noted that the presence of a volume
term is not unexpected for systems lying in squeezed states, such as those developing through
the expansion of the background [36]. It is rather a peculiarity of the cosmological evolution
that the volume term appears only after the universe has evolved into the RD era.

The behaviour that we outlined above must be contrasted with the standard picture of
quantum to classical transition upon horizon exit for the cosmological fluctuations produced
during inflation. In our analysis we have fully accounted for the quantum properties of the
field, without discarding the decaying mode, no matter how smaller it may become than
the growing one. In this sense, the entropy that we have computed should be attributed
to the quantum entanglement of the degrees of freedom. For the short-distance modes it
coincides with the entanglement entropy in a static background.

At late times during the RD era, the volume contribution to the entanglement entropy
within a fixed comoving radius approaches a constant value. A similar behaviour is expected
during matter domination. The possibility that the quantum properties of a massless field
can be traced even today seems very exciting. Even though we studied a free scalar field, our
analysis could be relevant for all very weakly interacting fields as, for example, gravitational
waves resulting from tensor modes during inflation, under the assumption that they evolve
almost freely and their quantum coherence is not lost during the whole evolution of the
universe until today through some secondary process. Finding appropriate experimental
signatures of the quantum origin of such fields seems a difficult task [7–9]. However, the
question is of fundamental importance [66, 67].

Even though the picture outlined above seems the most natural, the final form of the
entropy, and in particular the appearance of a volume term, points towards a possibly different
interpretation. It is known that the effective decoherence underlying the quantum to classical
transition is achieved only if the decaying mode is neglected. On the other hand, it has also
been pointed out that even an exponentially small decaying mode may be important for the
calculation of the entropy of the perturbations [57]. Moreover, there is no clear criterion that
can characterize the system as classical when the decaying mode is not neglected and the
state remains pure [68–70]. It is then possible that the smallness of the decaying term results
in a system with significant entropy that must be interpreted in classical terms. Our result
emerges through the non-trivial form of the density matrix induced by a rapidly expanding
background that contains a horizon. A possible interpretation would attribute thermal
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characteristics to the reduced density matrix resulting from tracing out degrees of freedom
beyond a certain radius, which are classically inaccessible to an observer. The regions beyond
the horizon provide the typical example for such a situation. The presence of the volume term
would then support the interpretation of the entropy of the observable universe as thermal,
even though its origin would lie in the presence of the horizon.

Let us recall the simple example of two coupled harmonic oscillators lying at their ground
state [16]. The reduced density matrix that describes either of the two is the density matrix
of a single harmonic oscillator,1 lying at a mixed state, which is thermal with a temperature
that depends on the coupling between the two oscillators. An observer with knowledge of the
existence of both oscillators concludes that the form of this reduced density matrix results
from the entanglement between them and the corresponding entropy is entanglement entropy.
However, an observer who has access only to one of the two oscillators cannot reach such a
conclusion. According to this observer, the only way to interpret the entropy is as thermal.

In our study we calculated the entanglement entropy in the expanding universe splitting
the system into two through a spherical entangling surface. A realization of this surface is
provided by the cosmological horizon, which physically prohibits an observer from measuring
the observables associated to the degrees of freedom in the exterior. A hypothetical observer
with knowledge of the entire universe would attribute the entropy to the entanglement between
the interior and the exterior. However, an observer confined within the horizon can only
perceive the entropy as thermal. The presence of the volume term that we deduced implies
that this constrained observer does not just see entropy emanating from the cosmological
horizon, similarly to a black hole, but concludes that the bulk of the interior has been heated.
This conclusion is reached despite the fact that the whole system still lies at a pure state.

One must bear in mind that in our case the reduced density matrix does not correspond
to a system in exact thermal equilibrium. When a subsystem of a harmonic system contains
many degrees of freedom, the reduced density matrix is organized through effective canonical
modes, each of which lies at a different temperature. When squeezing is present this picture
is not exact, since these canonical modes cannot be associated with a real combination of
the local degrees of freedom. However, the appearance of many temperatures (as many as
the degrees of freedom of the subsystem) is still valid. This fact is a consequence of the
integrability of our toy model, which is a free field theory. The thermalization hypothesis
suggests that in a realistic theory the reduced density matrix would actually be thermal.

We note that there is no distinct point in the evolution that we observed which can
be associated with a qualitative change in the nature of the entropy. The evolution is
smooth, as can be seen in figures 1 and 2. The structure of the reduced density matrix is
complicated and does not provide any hints for a qualitative transition. On the other hand,
the thermodynamic interpretation is appealing because it is consistent with the quantum
to classical transition. The quantum effects are tied to the decaying mode, which can be
many orders of magnitude smaller than the growing one for realistic scenarios of inflation.
A thermal entropy is consistent with the picture of a stochastic classical field, as a result
of the dominance of the growing mode.

1The eigenfrequency of this effective oscillator is equal to the geometric mean of the eigenfrequencies of the
two canonical modes.
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The thermodynamic interpretation could provide a quantum-mechanical realization of
reheating after inflation. In our analysis the background is introduced by hand and not as a
solution of the Einstein equations for an appropriate equation of state. In this sense, the RD
era does not arise as a result of the field properties. On the other hand, it is intriguing that
the appearance of a volume term, a characteristic feature of thermal entropy, is connected
to the transition to the RD era.

It is usually assumed that the reheating occurs through the strong interactions between
the products of the inflaton decay. Interpreting our result as thermal entropy would imply
that all fields (interacting or not) that exist at the end of inflation can be treated in the
same way, since they would all become part of the thermal environment during reheating.
Of course, there is no indication of a common temperature for all the constituents of the
universe. However, our understanding of the situation is still very incomplete.

Our numerical results indicate that the magnitude of the entropy can be significant. If
we estimate it through the volume term that develops during the era of radiation domination,
we get a value for the observable universe ∼ (Hλs)−3, with a cutoff λs ∼ 1m, as we discussed
in the introduction, while the current value of the Hubble radius is 1/H ∼ 1026m. This gives
a value ∼ 1078 for the entropy, which is to be compared with the standard thermal entropy
∼ 1088 associated with the plasma in the early universe, transferred to the photons and
neutrinos today. There is a discrepancy of 10 orders of magnitude, which can be understood
if we recall that the typical wavelength of the cosmic background photons is ∼ 10−3m. The
origin of the difference lies in that the scale of the standard thermal entropy is connected to
the energy density of the inflaton background, while the scale of the entropy we computed
for a massless field is set by the last mode that exited the horizon at the end of inflation.
The two would be comparable if the energy scale of inflation was close to the Planck scale.
However, the observations indicate an energy scale roughly three orders of magnitude lower.
Despite the quantitative discrepancy, the interpretation of the entropy as thermal does not
seem completely off the mark.

The basic conclusion that can be reached through our analysis is that the rapid expansion
of the background during inflation and the transition to the RD era generate a significant
amount of entropy even for a system of a non-interacting field. This entropy is carried
by the long-distance modes that go through the process of horizon exit during inflation
and are accessible to experiments today. It can be defined and computed as entanglement
entropy, and is intrinsically linked to the presence of a horizon. It seems unlikely that the
possible loss of quantum coherence, which we did not address in this work, will result in the
suppression of the entropy. It seems more likely that the reduced density matrix, employed
by an observer with no access to the regions beyond the horizon, will remain nontrivial, with
a thermodynamic interpretation. This speculation is consistent with the standard picture of
the quantum to classical transition during inflation. More work is needed in order to obtain
a deeper understanding of these issues. The notion that the entropy of the universe can be
attributed to the presence of the cosmological horizon merits further exploration.
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