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Abstract
Ion temperature gradient (ITG) and trapped electron modes (TEM) are two important micro-
instabilities in the plasma core region of fusion devices (r/a <0.9). They usually coexist in
the same range of spatial scale (around 0.1 < k; p; < 1), which makes their discrimination
difficult. To investigate them, one can perform gyrokinetic simulations, transport analysis
and phase velocity estimations. In Tore Supra, the identification of trapped electron modes
(TEM) is made possible due to measured frequency fluctuation spectra. Indeed, turbulent
spectra generally expected to be broad-band, can become narrow in case of TEM turbulence,
inducing ‘quasi-coherent’ (QC) modes named QC-TEM. Therefore the analysis of frequency
fluctuation spectra becomes a possible tool to differentiate TEM from ITG. We have found
indications that the TEM can have a QC signature by comparing frequency fluctuation spectra
from reflectometry measurements, gyrokinetic simulations and synthetic diagnostic results.
Then the scope of the analysis of QC-TEM are discussed and an application is shown, namely
transitions between TEM turbulence and MHD fluctuations.

Keywords: turbulence, micro-instabilities, trapped electron mode, MHD, reflectometry,
LOC-SOC, ohmic confinement

1. Introduction temperature gradient (ITG) modes, trapped electron modes

(TEM), and the electron temperature gradient (ETG) modes
Plasma turbulence is responsible for the anomalous transport — are the most important micro-instabilities in the plasma core
observed in magnetic fusion devices [1]. It is driven by insta-  region. Usually the ETG modes have a rather distinct scale
bilities whose perpendicular wave numbers k; normalized to  around k; p,~ 10 while the ITG/TEM branches overlap at
the ion gyroradius p; range between 0.1 and a few tens. Ion 0.1 <k p; <1 [2]. This makes the distinction of TEM and
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Figure 1. Main parameters of the Tore Supra discharge #48102 (B; = 3.82). I, is the plasma current, T; is the central temperature and 7, is
the central line averaged density and 7. the energy confinement time. The dotted line indicates the LOC-SOC transition and the two vertical

black dashes show the two times investigated.

ITG-dominated regimes complicated. However, discrimi-
nating them enables to study their respective effects on rota-
tion, impurity transport, etc.

To achieve this goal, gyrokinetic simulations can be per-
formed to determine which of TEM and ITG growth rate is
dominant [3]. It is also possible to investigate them experi-
mentally, for instance by estimating their phase velocity as
TEM and ITG rotate in opposite directions in the plasma
frame [4]. This is difficult since the rotation components must
be measured with high accuracy [5]. Thanks to the modula-
tions of radio-frequency heating or to the injection of a par-
ticle pulse, the estimation of the transport coefficients can also
help to discriminate ITG from TEM dominated regimes. For
instance, transition between the dominant instabilities can
be inferred from the parametric dependency of the diffusion
[6, 7] or by a reversal of the convection velocity direction [8,
9]. However, both phase velocity and transport coefficient
estimations currently used to investigate ITG and TEM are
complex and not always feasible as they require advanced
diagnostics or specific perturbation experiments scenario.

We show in this paper that a rather simple experimental
indication can be provided by frequency fluctuation spectra.
Indeed, TEM-dominated regimes can induce ‘quasi-coherent’
(QC) modes named QC-TEM, instead of showing a broad-
band spectra as it is usually the case for turbulence. Therefore
the analysis of frequency fluctuation spectra may become an
additional tool to address the issue of TEM/ITG differentiation.

The indications of the QC signature of TEM are first shown
in section 2 which compare frequency fluctuation spectra
obtained from experimental data, gyrokinetic simulations
and reflectometry synthetic diagnostic computations. Then,
the scope and the limitation of the QC signature of TEM are
discussed in section 3 and an example of an application is pre-
sented in section 4.

2. Evidences of the TEM signature of the core QC
modes

All the data presented in this section come from the Tore
Supra tokamak with a major and a minor radius Ry = 2.38 m
and a = 0.72 m respectively. To investigate the nature of the
QC modes, we focus on a density scan performed in an Ohmic

plasma. This type of discharge shows two distinct Ohmic
regimes: at low density the confinement time increases lin-
early with the density in the linear Ohmic confinement (LOC)
while it saturates at higher density in the saturated Ohmic con-
finement (SOC). Such plasma configuration is investigated
because TEM and ITG are expected to dominate in the LOC
and the SOC regimes respectively [4, 10-14]. This study com-
pares frequency fluctuation spectra from reflectometry mea-
surements, nonlinear gyrokinetic simulations and a synthetic
reflectometer using the nonlinear runs as input.

2.1. Spectra from reflectometry measurements

Previous analysis of Tore Supra and TEXTOR spectra mea-
sured by reflectometry have shown that QC modes are mea-
sured in the LOC regime and disappear at the LOC-SOC
transition during n. ramp-up or I, ramp-down [14]. The
decrease of QC modes during such ramps has also been
reported in JET. A qualitative agreement has been found with
the Tore Supra and the TEXTOR observations [15].

Figure 1 shows the main plasma parameters of the Tore
Supra Ohmic discharge #48102 in which a density ramp-
up is performed. As indicated, two times are considered for
this analysis: i~ 3 s in the LOC regime and 5~ 6 s in the
SOC regime. The LOC-SOC transition occurs at around
ne~3.45 - 10" m~2 which corresponds to t ~ 4.85 s.

Datausedforfigures2(a)—(d) wereobtained withtwo X-mode
reflectometers. Figures 2(a) and (c) show fluctuation spectra
obtained at r/a~0.18 with a fixed-frequency reflectometer
[16]. As the density increases, the selected probing frequency
of the reflectometer is changed between ¢, (f; = 110.9 GHz)
and 1, (f, = 122.6 GHz) to ensure a constant measurement
location. In figures 2(b) and (d), an ultra-fast-swept reflec-
tometer [17] is used to provide a radial range of fluctuation
spectra (0.65 < r/a < 0.85). These reflectometry spectra are
obtained with a Fourier transform of the measured complex
signal A(¢)e'?®, with A(f) and ¢(¢) the amplitude and the phase
respectively. Here, the positive and negative frequencies do
not correspond to any diamagnetic direction of the turbulence
as reflectometry does not allow to distinguish between them.
The positive frequencies translate phase increments whereas
the negative frequencies show the phase decrements. The
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Figure 2. Fluctuation spectra from Tore Supra discharge #48102 which show ((a), (c)) fixed-frequency reflectometry measured at
rla = 0.18, ((b), (d)) ultra-fast-swept reflectometry measured for 0.65 < r/a < 0.85. ((a)—(b)) correspond to the LOC regime and ((c)—(d)) to
the SOC regime. They have been measured at ¢, and 7, respectively, except (d) which has been measured at r = 5.25 s.

Table 1. Electron and ion heat fluxes from the GENE simulations
and from the power balance.

Power balance GENE
q; qe q; S
LOC regime 4541 6.7+1 3+1 1243
SOC regime 14+3 —1+£3 144+2 9+2

small spectral asymmetry observed can be due to various phe-
nomena such as nonlinear response of the reflectometer or
Doppler shift induced by rotation combined to vertical plasma
shift, sawteeth, misalignment of the antenna [18, 19].

As previously shown [19, 20], QC modes are observed in
the LOC case at f~50kHz in figure 2(a) and for r/a < 0.75
in figure 2(b). In the SOC case, only broad-band fluctuation
spectra are seen (see figures 2(c)—(d)). The link between these
differences in the spectral shape (QC modes, broad-band) and
the dominant instabilities in the LOC and the SOC regimes
(TEM, ITG) is investigated in the following section.

2.2. Spectra from nonlinear gyrokinetic simulations

Nonlinear simulations based on the Tore Supra discharge
#48102 have been performed with the GENE code [21] at the
times #; and #, indicated in figure 1 and corresponding to the
measurements shown in section 2.1. Table 1 compares the heat
flux for the electrons ¢, and the ions g; of the GENE simula-
tions to those of the experimental values. As one can see the
fluxes are low in the LOC regime where the QC modes are
observed. An agreement is found between the GENE simula-
tion and the experimental values, apart from ¢, in the SOC
regime.

The input parameters used are available in [14], where the
output from the linear runs performed at the same location
and times are discussed. This plasma region has been chosen

because 7; measured by charge exchange recombination spec-
troscopy diagnostic has a higher resolution in this plasma
region. Fluctuation measurements are not available at this
radius (see previous section) but one can note that QC modes
can be observed at many different radii in the LOC regime
[14, 15, 22].

Figures 3(a) and (b) show for r/a = 0.36 the frequency
fluctuation spectra from the nonlinear gyrokinetic simula-
tions at #; and #, respectively. Simulated frequency spectra
of 7, can be compared qualitatively to the frequency spectra
from reflectometry (sensitive to 7z.). Contrary to reflectometry
spectra, the diamagnetic direction of the phase velocity (ion/
electron) can be distinguished by looking at the sign of the
frequency (4/—). Thus figure 3 spectra show that the SOC
and the LOC regimes are dominated by ITG (f> 0) and
TEM (f< 0) instabilities respectively, the latter being a
VTi-driven TEM. This supports the linear runs previously car-
ried out [14] and the hypothesis on the link between the LOC/
SOC regimes and the TEM/ITG instabilities.

One should note that intermediate hybrid regimes where
ITG modes can rotate in the electron diamagnetic direction
exist [23]. However, in the present study the linear sensitivity
analysis [14, 24] indicates that the turbulence is dominated by
TEM in the LOC case and by ITG modes in the SOC case.

Additional significant information provided by the non-
linear runs is the difference in the spectral shape. In figure 3(b),
the ITG-dominated case shows a single broad-band spectrum
which includes the turbulence and the density zonal flows
(ZFs) i.e. k, = 0, w = 0. The nonlinear frequency broadening
of TEM is smaller and shows a sharp peak, separated from
ZFs (see figure 3(a)). As TEM instabilities coalesce in few
wavenumbers, they induce a narrow frequency spetrum which
can explain the QC modes measured in the TEM dominated
regimes. The broad ITG spectra can explain the broad-band
spectra measured in the SOC regime.
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Figure 3. Fluctuation spectra from Tore Supra discharge #48102
provided by nonlinear gyrokinetic simulations computed at
rla~0.37 in (a) the LOC regime at ¢, and (b) to the SOC regime
at 1.

The frequency of the TEM peak (=~12kHz) is significantly
lower than the frequency measured for QC modes (~50kHz).
It comes from the fact that the GENE simulations do not take
into account the rotation due to the mean E x B drift vg g but
only the rotation due to the averaged phase velocity of the
mode in the plasma frame vppase. As the density fluctuations
rotate with a total velocity Vit = VExp + Vphase, they are meas-
ured at higher frequency (see figures 2(a)—(d)) than the one
shown in the GENE spectra (figures 3(a)—(b)). vgxp is taken
into account in the spectra from a synthetic reflectometer
shown in the next section.

2.3. Spectra from a synthetic reflectometer diagnostic

The experimental fluctuation spectra were simulated with a
synthetic reflectometry diagnostic using GENE nonlinear
density fluctuations. This synthetic reflectometer relies on
a 2D full-wave code solving the O-mode wave equation by
means of a 2nd order Finite Difference Time Domain (FDTD)
scheme [25]. Although the reflectometry measurements were
obtained with the X-mode polarization, it was shown that
both O-mode and X-mode simulations qualitatively produce
the same signal spectra [26]. The maps of density fluctuations
for 1024 successive time slots inferred from the GENE non-
linear gyrokinetic simulations were used as input in the 2D
full-wave computations. For each map of density fluctuations
the FDTD code was run over a number of time iterations large
enough to reach the stationary regime and compute properly
the reflected complex signal.

To ensure accurate comparison with the reflectometry
measurements, the drift velocity vgxp = (E, X B)/B? is taken

into account in the total fluctuation velocity. It is inferred
using the radial electric field constrained by thermal ripple
losses: E, = T;(Vni/n; + 3.37VT/T;)/e [27]. As shown in the
fluctuation spectra of figures 4(a)—(b), QC modes appear in
the LOC regime at around ~75kHz while the SOC regime
shows only a broad-band spectrum. Even though there is a
discrepancy with the QC modes observed in the measured
spectra (shown in figure 4 as a reminder) at around ~50kHz,
a qualitative agreement is found. This confirms the previous
comparison between simulated and measured fluctuation
spectra, indicating that the ITG modes can have a broad-band
spectrum while the TEM can induce QC modes. The present
results indicate that QC modes measured in the plasma core
region can be due to VT.-driven TEM instability in case of low
flux. We will now refer to them as QC-TEM.

3. Scope of the QC-TEM analysis

The comparison of frequency spectra from nonlinear
simulations, reflectometry measurements and a synthetic
diagnostic indicates that TEM instability can have a QC
signature in fluctuation spectra. This finding can then be
used as a new technique to study TEM, besides gyrokinetic
simulations, transport analysis and phase velocity estima-
tions. However, it has to be used cautiously because (i) the
lack of QC-TEM does not necessarily imply that the TEM
are stable and (ii) there exist edge phenomena presently not
attributed to TEM which can have a rather similar QC sig-
nature. This is discussed in the following sections together
with the diagnostics and the devices for which this tech-
nique could be applied.

3.1. Fusion devices and diagnostics

QC-TEM have been observed in Tore Supra, TEXTOR and
JET [14, 15] and first indications have been recently obtained
in ASDEX-Upgrade (AUG) [28] (see section 3.4). The onset
of QC-TEM in fluctuation spectra measured in the plasma core
seems also possible in other fusion devices. Recent measure-
ments made in the Madison symmetric torus (MST) reversed
field pinch have shown a similar QC signature whereas gyroki-
netic simulations predicted turbulence to be TEM-dominated
[29]. These findings on QC-TEM may also help to investigate
whether TEM can play a role in stellarators [30] and if they
are stabilized in optimized stellarators [31].

The diagnostics able to perform such a study require a
sensitivity to low wavenumbers in the order of the ITG/
TEM instabilities scale (kgp; < 1) and a capability to measure
in the plasma core region. Apart from reflectometry [14,
32-34], structures possibly similar to QC-TEM may have
been observed in TEM-dominated regimes with phase con-
trast imaging (PCI), far infrared interferometry (FIR), beam
emission spectroscopy (BES), Doppler backscattering (DBS)
reflectometry, and correlation electron cyclotron emission
(CECE) systems [29, 35-38].

These studies have reported modifications of fluctuation
spectra in TEM dominated regimes, without interpreting
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QUALITATIVE COMPARISON BETWEEN:
SYNTHETIC REFLECTOMETER (a—b) at r/a=0.37 and REFLECTOMETRY MEASUREMENTS (c—d) at r/a=0.18
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Figure 4. Fluctuation spectra from Tore Supra discharge #48102 provided by a synthetic reflectometer diagnostic using the nonlinear
gyrokinetic simulations as an input. They are computed at r/a = 0.37 in (a) the LOC regime at #; and (b) to the SOC regime at ;. On the
right-hand side the spectra previously shown in figure 2 are plotted for a qualitative comparison.

a mode as being the signature of TEM. The present results
suggest that the spectral modifications reported in TEM-
dominated regimes by BES, CECE, PCI, DBS and FIR may
translate the same QC-TEM phenomena.

3.2. Quasi-coherent fluctuations at the very edge of the
plasma

Phenomena presenting a QC signature have been observed at
the very edge of the plasma during H-mode [39, 40], enhanced
D, H-modes [41, 42] and I-mode [43]. At the moment, there
is no unified explanation for these modes which present
rather similar QC spectral signatures. Several instabili-
ties have been suggested to cause them, as for example the
kinetic ballooning mode which limits the pedestal growth
in H-mode [39]. Presently, none of these modes have been
linked to TEM. Therefore, the observation of QC modes can
be taken as an indication of TEM in the plasma core region
only (0.1 < r/a < 0.95), where no other QC fluctuations phe-
nomena have been reported.

3.3. Fully developed TEM turbulence

The QC signature of TEM may disappear in case of fully
developed TEM turbulence. Experimentally, the disappear-
ance of QC-TEM has been observed while increasing ECRH
power at high values [44]. In gyrokinetic simulations, an artifi-
cial increase of the electron temperature and density gradients
R/Ly, and R/L,, by a factor 1.4 while maintaining constant
the gradient parameter 1, = L, /Ly, has been done in the
LOC regime. It shows that the double peak structure of TEM-
dominated spectra (QC-TEM and ZFs) observed in figure 3(a)
becomes unobservable [24]. In these two cases, TEM would
not remain oscillating at a rather well-defined frequency (i.e.
with a narrow spectrum) but would become broad-band (such
as ITG) as expected generally for a turbulent phenomenon.

3.4. E x B rotation

We have seen in section 2 that the QC-TEM frequency
depends on vg . If vgyp is too low, the QC-TEM peak may
be closer to the zero frequency. In that case QC-TEM could
not be distinguishable even if TEM are driven unstable.

To highlight this effect, we analyze the Ohmic discharge
#31427 from AUG (Ry = 1.65 and 0.5 < a < 0.8) in the LOC
regime (f~ 1.4 s). Figure 5(a) shows neoclassical estima-
tions of vg.p performed with the NEOART code [45] which
use measurements of the toroidal velocity measured with
charge exchange recombination spectroscopy [46]. The error
bars of the vg,p provided are of the order of 0.5-1 km s
Figure 5(b) displays the radial evolution of the fluctuation
spectra obtained by ultra-fast-swept reflectometry [17, 47, 48].
QC modes reminiscent of QC-TEM are observed around
0.25 < p < 0.4 in a region where we expect vgxp> 1km s~ L.
For p>0.4, QC modes cannot be properly observed in
figure 5(b) and NEOART estimations indicate vg g < 1 km s
One can note that from p = 0.4 toward p = 0.25 the increase
of the QC modes frequency (up to ~75kHz) is in qualitative
agreement with the increase of vg g observed (up to ~3 km s7h.

Figure 5 shows for p a2 0.73 spectra of the complex signal
(c) and coherence (d) estimated with a poloidal correlation
reflectometer (PCR) [28, 32, 33]. As previously reported in
[28], coherence shows clear QC modes wheras they are not/
barely observable in the spectra of the complex signal shown
in figures 5(b)/(c) respectively. Therefore, in case of low vg g,
PCR can be used to investigate QC-TEM.

4. Application: transitions between TEM and MHD
instabilities

An application of the identification of QC-TEM described so
far is presented in this section. The analysis focuses on the
Tore Supra discharge #40806 where 250 kW of ECRH power
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Figure 5. Data from the AUG discharge #31427 measured in the LOC regime (¢ ~ 1.4 s). In (a) the neoclassically predicted Vg g provided
by the NEOART code [45]. The negative/positive directions correspond to the electron/ion diamagnetic direction. Fluctuation spectra
from an ultra-fast swept reflectometer are shown in (b) for 0.2 < p < 0.95 and from two antennas of a PCR (c) at p = 0.73. The coherence

between the two antennas of the PCR is displayed in (d).
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Figure 6. Data from the Tore Supra discharge #40806 measured at r/a ~ 0.17: evolution of the temperature (top), spectrogram from
reflectometry data (middle) and normalized integrated spectral power for the QC-TEM (70-120kHz) the MHD mode (10-25kHz) and and
intermediate frequency (40-55kHz) (bottom). The main transitions between QC-TEM and the MHD mode are shown by the vertical dotted

lines.

is deposited on the High Field Side (HFS) by two gyrotrons
at r/a = 0.58 and r/a = 0.35. The safety factor is maintained
above unity to avoid sawteeth (B; = 3.8 T and [, = 0.5 MA).
As previously shown [14, 15], reflectometry measurements
performed at r/a =2 0.17 show QC-TEM in a region predicted
to be TEM-dominated by linear gyrokinetic simulations and
Nickel transport analysis [6, 7].

The ECRH power starts to be deposited atz = 9.5 s, and an
interesting observation is made when the QC-TEM (f~ 70
—120kHz) are suddenly stabilized while a coherent MHD
mode (f~ 15kHz) appears att =~ 11.58 s (see figure 6). After
this clear transition, the MHD mode is progressively damped
during 300 ms while the QC-TEM amplitude recovers rather
linearly. Such a transition appears to be a cycle which
starts again at t= 11.89 s (no fluctuation measurements are

available later). Before these cycles start, one can note that
small precursors are first observed, the main one being at
t~11.13s.

When QC-TEM are damped, T; rises by a few percent,
suggesting that the local confinement may be improved. The
spectral power of the intermediate frequency range selected
40 < f[kHz] < 55 shows no dramatic change in time. This
highlights the fact that the transition occurs between the
QC-TEM and the MHD mode. The nature of such a transi-
tion is of specific interest because it implies turbulent and
MHD modes. The identification of the underlying mecha-
nisms of the MHD modes is out of the main scope of the
present paper. However, one of the possible candidate is dis-
cussed in the following paragraphs: the electron fishbones
(e-fishbones).
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Figure 7. (a) magnetic shear estimated at r/a =~ 0.16 with polarimetry for the Tore Supra discharge #40805 (similar conditions to
#40806), (b) shows the MHD modes observed in the reflectometry fluctuation spectra for #40806.

E-fishbones [49-53] require fast electrons which can be
generated by ECRH and trapped electrons with a toroidal pre-
cession velocity vprc oriented in the ion diamagnetic direc-
tion. Usually, the trapped electrons rotate in the electron
diamagnetic direction (such as the ones which resonate with
drift-waves in the case of TEM instability). However, at low
magnetic shear s = r[dg/dr] /g, a reversal of vprec can occur in
the ion diamagnetic direction for the barely trapped electrons
[54].

Estimations of s made with polarimetry [55] at r/a ~ 0.16
show that it decreases progressively during the ECRH deposi-
tion (see figure 7(a)). As the MHD mode appears after ~2 s of
ECRH, it can be explained by an excitation of e-fishbone when
s is low enough due to barely trapped supra-thermal electrons
with a reversed vprec in the ion diamagnetic direction. One can
note that the frequency chirping-down shown in figure 7(b) is
characteristic of e-fishbones and that the deposition region on
the HFS is in favor of e-fishbone destabilization [50]. The lack
of trapped electrons with a vy in the electron diamagnetic
direction may contribute to the stabilization of TEM.

5. Conclusion

The observation of QC modes in reflectometry fluctuation
spectra measured in the plasma core region of AUG and Tore
Supra LOC regime discharges has been reported.

Frequency spectra deduced from nonlinear simulations
performed with the GENE core have been analyzed. They
indicate that TEM can induce a narrow frequency spectra
being responsible of the QC mode observed in the measured
frequency spectra in the LOC regime. Fluctuation spectra
from a synthetic diagnostic using the nonlinear simulations
support this interpretation. Therefore these results suggest that
core QC modes are a signature of TEM instabilities at least in
case of low flux and VT;-driven TEM. Conversely, TEM do
not lead systematically to QC modes. Indeed QC modes and
low frequency fluctuations can overlap in case of low vg,p.
Furthermore, TEM frequency spectrum becomes broadband
in gyrokinetic simulations performed at that larger R/L7, and
R/L,, drives and there exist edge phenomena not attributed to
TEM which can have a rather similar QC signature [39—43].

The identification with reflectometry of the QC modes
signature of TEM can then be used to study turbulence besides

gyrokinetic simulations, transport analysis and phase velocity
estimations. Such analysis may be done with other diagnos-
tics (PCI, BES, CECE, FIR, DBS) and may be valid in other
fusion devices (RFP [29], stellarators). An example of a study
using this knowledge on QC-TEM has been presented. It
shows a transition between TEM turbulence and MHD modes,
the latter being possibly due to e-fishbones.

The theoretical mechanism of the narrow TEM spectra fre-
quency width (compared to the broader ITG spectra) is cur-
rently investigated [24, 56].
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