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Diagonalização e sua geometria
Demonstraremos por M,, o espaço vetorial real das matrizes n. por

n com entradas reais, qUe tem dimensão nº.
Mª o espaço vetorial real das matrizes n por n simétricas com en-

tradas reais, que tem dimensão 2(n(n+ 1)).
M: o espaço vetorial real das matrizes nvpor n anti simétricas com

entradas reais, que tem dimensão %(n(n —- 1)).
D,, o espaço vetorial real das matrizes n por n diagonais com en-

tradas reais, que tem dimensão n.
Observemos que
(1) am — 1» + n =Mn + 1»
(2) am — 1» + à(nm + 1» = nº
(3) M,,= M5

EE Mª
Para (iii) veja que vale a igualdade, (para A EM,)

'A=%(A+At)+%(A-At)
o primeiro 'fator de M; e o segundo de M:

Dotemos M,, do produto interno:

(A, B) : tr(ABº)
Das propriedades

.

tr(AB) = tr(BA) e

tr(Xt) = tr(X)
e linearidade de tr decorre que (A, B) é de fato um produto interno. ,

Se Hxarmos uma ordem linear para as entradas das matrizes de M,,
(porlexemplo, a ordem do dicionario nos índices (i, j) de a,,, estamos
fixando seuisomorfismo linear)

ga:M,,———>IR"2

Tal'isomorfismo é uma isometria'quando tomamos em lR"2 o pro—'
duto interno euclidiano, poisse A tem a linha i (ama,-2,1- —

, ªi,.) sua
transposta At terá para coluna i o mesmo vetor e 2pOrtanto na posição
i da diagonal de AAt aparecera o número que é a,2 + a,?2 + —2+ a,?" e
o traço de AA: será finalmente a soma de todos os quadrados (131. das
entradas de A1 ou seja <p preserva a norma.

(<P(A),<P(A)) = <A,A>

'

e portanto é uma isometria linear,
Vale que

(XA,'B> = <A,XºB>
(Ax, B) = <A, BX»
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(XA, B)= tr (XABt) = tr(ABt«X)—— tr(A(XtB) ) = (A,XtB) e
(AX, B)—-_ tr(AXBt)—— tr(A(BXt)t)-— (A, BXt)

Dai Vem que seXe do grupo or'tógonal X E O(n), iSto é XXi—]l
identidade temos

(XAXt, XBXt) =- (A, B)-risªto-»ér

a conjugaçao em M" por matriZes do grupo ortogonal'e isometria linear,
já que

, .

A' H XAX t 'é linear em 'A

Taisuconjugações preservam a decomposição

Mn= Mª 69 Mª
já que A simétrica (antissimétrica) nos dá, para X E O(n), que '

XAX t é simétrica (antissimétrica)
A conjugação por qualquer X inversível preserva o traço pois

tr(X,AX"1 = tr(AX"1X) = tr(A)
Assim sendo a conjugação preserva os hiper planos de traço cons—

tante a
= trA(c )

Seja õ : M,, —> D,, a
aleíccação

que usa cada matriz A E M" na
matriz 6 (A) que é a diagonal de A.

.

Vejamos que 6 é uma projeção ortogonal de MT,-sobre 51)". E claro
que 66(A) = 6(A).

Vamos agora mostrar que (D, (A — õA)) e nulo, ou seja mostrar que
tr(D(A — JAY) = O

masºobserve que'DA't e 19621 tem a mesma diagonal, logo 'tr(DAt'4
DõA) = 0 como *quere'rnª'OS.

,

Os'hiperplanos H.; de traço constante c São ortogonais ao subes-
paço um dimensional das matrizes escalares, gerado pela identidade ][

vejamos Hc n (][)= (ª 11) a matriz escalar de diagonal constante igual'
ª ; _ ,

1

Agora se Y E Ha, Y — 511 é paralelo a HC. "Como tr(Y) = c temos
que tr(Y — 511) = 0 logo

'

<11,Y —> ªn> = 0 como qUeriamOs.

Portanto cada hiperespaço afim Hc tem a reta (11) como comple-
mento ortogonal.

As matrizes anti simétrica tem diagonais nulas, logo

M: C Ho

Vamos nos restringir ao espaço M;“; das-matrizes simétricas
dimM; : n(n + 1)í/2
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Pornos H: = Hc n M:, que são as simétricas deitraço constante c.
Hc e H: são subespaços afim, para c = 0 são subeSpaços-vetoriais

'

dimHj=n(n+1)/2—1
Hj é um hiperplano'de M:.
O subespaço das diagonais Dn está em M:.
Consideremos O(n) C GL(n) C M,, = M: 63 M:.

,

O(n) é subva'riedade de M,, e a fibra tangente a O(n) na identidade
1 é

O(n) =
Observamos que M;“, é ortogonal- a M:, pois (A, B) = (At,Bt) =

(A, ——B) = — (A, B) que implica em (A, B) = 0 para A e M; e B E
M:.

Como sabemos, as matrizes simétricas são diagonalizáveis pelo gru-
po ortogonal, ou seja a ação de O(n) 'em'M; por conjugação

O(n) x M,”, ——à»M,ª,

.

(X, A) n—-—) XAX t

tem cada orbita F'(A) = [XAX t | X E O(n)] encontrando o subespaço
das diagonais '

F (A) n Dn # 0

Para termos uma descrição das orbitas vamos examinar o grupo de
isotrOpia de um ponto da mesma. Podemos tomar aquele ponto que é
matriz diagonal-17 GD". Digamos

D = dl&g()x1, Ag, . . . , An)

Vamos incluir a multiplicidades A, com multiplicidade ni
Al ”1
Ag nz

A9 na
com nl +n2+- « -+n_., : n. Temos assim que D determina uma partição
de n.

[Designando por [n,] a matriz identidade ni. por n,, temos que, agru-
pando as multiplicidades.

D= All'fh] GB Ãzlnzl 69 GB A__,[m]
,

Se uma matriz A tem para linhas os vetores vi, w,. .,vn podemos
denota-la por

'

'Ul -

_
_ 'Uz ,

,
..

, A = _ .
; sea mesmatem colunas u1,u2,v..r.,,un :

.
'Ún

_

pomos a notação 'A = (ul, uz, . . . , un).
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Um elementoX de O(n) esta no grupo de isotropia de D, OD—_
[X& O(n) | XDX“1=D:') se

XDX*1 = D ou XD = DXisto é

X E OD se e só se X comuta com D exammemes cada membro da
igualdade

»

XD=DX
Se Dzdiªg(A1a--7An) eX: (Xij)
XD',.(Aij) isto é XD temsua coluna ªi multiplicadaporA
DX=_(AXi!) isto é, DX é obtida de X multiplicando a linha 1),

por Aí. A igualdade então nos diz que ,

Aim“- = Aja?“

o que nos da duas possibilidades, ou Ai —- Aj .ou mij = 0 caso contrario.
Levando em conta as multiplicidades n; de)”. concluímos que: se cv

comuta com D então se é formado por blocos na diagonal dos subgrupos
ortogonais O(nl), O(ng),.. ”O(ns), ou seja a: é do grupo _deisotropia
de D se e só se a: está no subgrupo

o(m) >< O(n2)x -><O(ns) cO'Gz)

Assim sendo identiHCamos a orbita de D como sendo homeomorfa

(0 (n) é compacto) a

O(n)”D) : O(n1)>< O(nz) >; x O(ns) : F(n1,nz,...,n3)

mas esta é exatamente a variedade bandeira real determinada pela
partição de n = nl + ng + ... + nã. .

Como a ação-deO(n) em M:; é diferenciável, nós temos faixum
rriergruªllidª'da variedade'bandeirªa F(n17, 17.2, . . . ,nª) no espaço-vetóriatl
euclidiano M;.

' Fixadªoªo'natural'n > 2, para cada'partíção (n,). deste n, temos
o mergulho da respectiva variedade bandeira em M;. M; esta assim
folheado (com singularidade) pelas variedades bandeiras que vem das
partições de n. Nos vamos chamar esta folheação de Mª de n—pacote
de flagse chamaremºs avariedade bandeira deBag.

Cada flag então corta Dn em algum ponto D'. Na verdade, se'a'pli—
carmos 'à diagonal de D uma permutação a obteremos outra matriz dia—

gonal D,, que é de fato-uma conjugada de D. A matriz ”de O(n) que faz
este serviço'é a matriz P obtida a' partir da identidade 1 aplicando-se
a mesma permutação a nas suas colunas Quand© multiplicamos PD
a matriz resultante é a obtida de D onde permutamos suas colunas
segundo a.



DIAGON-ALIZÁÇÃO E SUA GEOMETRIA 5

Vejamos no caso n—_ 3 e pomos a como uma involução (1, 2, 3) ——>

(3, 2, 1)

O 1 0 0 & 0 = 0. A2 "O

1 O "0 0 0 A3 A1 -0 0

Ao completarmos PDP 1—_PDPjá que P= P 1 permutamos as
linhas de PD perfazendo involução nas (A1, A2, A3) —+ (A3, A2, A1)

O 0 A3 'O O 1 A3 O
'

0
.

0 A2 0 O 1 0 = 0 A2 0,
A1 0 0 1 0 0 O 0 XI”

Assim sendo, cada permutação a aplicada na diagonal de D, produz
a novamatriz diagonal D,, que continua a estar na orbita de D. Isto nos
diz que a orbita de D encontra a de D;; nos pontos D.;on'de a varia no
grupo isométrico Sn. Se D tem todos seus autovalores A,- distintos 2 a
2 então o número de pontos em FD O'Dn é n! . Havendo multiplicidades
”1,712, . . . ,na o número de pontos passa a ser

'

n!

nl !) ”2 !:“ 7 na!

Para facilitar a representação geométrica vamos nos deter no hiper-
plano das matrizes de traço 1.

Sendo nossa ação de O(n) um M,, por isometrias temos que se
"A" = IIXAXDH para X E O(n ) e portanto a conjugação preserva
as esferas com centro na origem. Com a conjugação preserva também
o traço da matriz, os hiperplanos de traço constante HC também são
preservados.

Se Sr é a esfera de M;: de centro 0 e R > 0, vamos ver quanto tll
está nesta esfera.

Devemos ter nan= tllllll—- [tw—rou seJª ltl—— — .coNesteas
||t11|| =?“ e tll & S.

Agora, quando é que tll tem traço c.
tr(t]l)= t tr(]l) = t n = 0. Portanto, para termos uma matriz

escalar da reta < 11 > que pertence a Hc devemºs ter t—_ ". Para que
esta matriz escalar esteja também na esfera de raio r devemos ter

L_H
JE— n

donder=JºL.
|cCºncluímos então que dado Hc se tomarmos r =, 7ª temos que

cil estará no hiperplano Hc e na esfera S e este é o único ponto em
Comum, pois Hc é ortogonal a < 11 >. '

,

Daí sabemos que para r > % temos numa esfera como a intersecção
chS,
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Assimísendose:—HA" = r então aaiiafg F(-A) esta" nessa esfera-menor.
De início tínhamos que cada flag vinda de uma partição de n mer—

gulhara em um espaço euclidiano de dimensão 2(n(n+ 1)) Com o
raciocínio logo acimatemos que a dimensão pode ser reduzida de dois,
isto é, cada flag no caso, mergulha em uma esfera ,de dimensão

%Mn+ 1))— 2
Vejamos alguns exemplos em dimensão baixa para n = 0 e n = 1

não há o que fazer. Seja então n—— 2 e partição de n = 1 + 1 que nos
da a reta projetiva —

O(ª) _ 1

. , »

O(I)f><ª0(1') _ P
' Pré o mesmo que o círculo Sl

O(ª) _ 1F“”. o<1>x ou) *“ P
Devemos tomar Mª e uma matriz de diagonalcom autovalores dis-

tintos A1 # Ãz .

A1 O
* "ue ode ser

O O

,
0 A2 ª p

, 0 .1

que tem traço 1. M; tem dimensão 3—- ª(2(2 +'1)) As'esferas deste
ambiente sãoas bidimensionais usuais, como S2 com centro na ºrigem.
Os hiperplan'os ou são planos bidimensionais, como aquele das matriZes
de traços 1. Como deVemos a correspondência

,, A a . ,

M2 3 (al, A2) —-—> (A1,A2,va) GR?

O ponto (O, 1 ,0)'eda nossa matriz escolhida, queesta no plano H1 e
na esfera de centro na origem e raio 1.H1e ortogºnalao vetor (1,1, O)
que representa a matriz identidade ll.

Portanto a eQuação deste plano noRªé
m+y=l
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Quando conjugamos a matriz (o; ponto (0, 1, O)) «estamos mergu-
lhando P1 = 81 na intersecção da esfera,,»S? l—ªcom o plano H1 que nos
da um círculo

'

SºnHl

Este círculo está em S2 e tem centro na reta" gerada pelo vetor
(1, 1 ,O) que correspondea 1.
Aovariarmos o valor do traço c > O podemos tomar o ponto (0, c, 0)

que vem da matriz (ºº) que dará S1= P1 mergulhado como o círculo
que é a intersecção da6 esfera de centro zero e raio c com o plano que
passa por (O, 0, c) e é perpendicular do vetor (1,1, O) Cuja operação é

m+y=c

O plano.H é paralelo ao plano H1ambosperpendiculares ao ,vetor
(1,1,0)Os mergulhos de P1= S1 em cada casoda um círculo com
centro na reta gerada por (11,0), perpendicular ao plano de eixos A1

e A2 e cujo raio em função do traço c é: cx/ª, pois seu diâmetro é
exatamente owzsegmento que une os pontos (1, 0, O) e (O, 1, .O).

Agora, tomemos o caso n—_ 3 temos aqui duas partições com sig-
n1ficadol+1+1—3-—2+1 .

Vejamos o caso 2+ 1—_3. Aqui temos a:flag

M:”.. F(2,71) =

que é o plano projetivo P2. Este está mergulhado em M; qué'teffi
dimenSão 6,mas como a dimensão cai de 2, P2 está. de fato mergulhado
em dimensão 4'É-

Tºmemos a matriz de Ms. Devemos ter um autovalor de multipli-
cidade de 2 e outro de 1 já que 2 +1— 3

D=f
O

OAH—l

Odªly-

o

'

uno-

o
'o

que édiagonale de traço 1. Conjugando D pelo grupo Ó(3) obtermos-
o mergulhode P2 em Mª mas como já apreSentamos- antesP2esta na
intersecção do hiperplano H1 que é perpendicular ao vetor li e passapor
D. Nãopodemos representar o espaço 6-dimensional M3 no plano deste
papel, mas podemos representar o espaço 133 das matrizes diagonais de
M3, que tem dimensão 3. »
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Ds D E Ds mD=-(Ã1',Ã2',Ã3)

O hiperplano de traço ]lH1 de M; corta. 133 exatamente no plano
que passa pelos vetores unitários dos eixos A1, A2 e A3. As matrizes
diagonais de traço 1 e MS > O formam o triangulo equilátero que
tem paraªvértíces os ..vetores (1,0, O), (0,1,0) e (0, 0, 1), como na figura
acima. Sua equação é

m+y+z=1
A matriz D =

O

DNI—4

ºhh-'O

lo—lo

o
é representada“ pelo ponto (ª, à, %) _

Quando conjugamos 2D por O(3) obtemos como orbita de D 'o mer-
gulho de Pº na esfera 4-dimensional que é a intersecção deesfera .5'5

centro ,0 e raio "D“ = Tªí/%com o hiperplano 5 dimensional H1 per-
pendicular a 11 e passando por D'. Tal intersecção é uma esfera com
centro na reta por 11. Fazendo as contas obtemos o centro sendo o
ponto (ª, %, à) que representa a matriz diagonal 3131. Como ela deve

passar por D, seu raio e a norma do vetor

Esta é uma esfera de dimensão 4 que contem Pº'ali mergulhado
como uma superfície de dimensão 2. Como P2 C 84 não é igual,
podemos omitir um ponto desta-S4 e assim temos 54 — pt homeomorfa
(difeomorfa) a R4 e temos um mergulho de P2 em R4.

A título de informação apenas (a prova é sofisticada) sabemos que
não é possível mergulhar P2 em R3.

E o caso da partição 1 + 1 + 1 = 3 o que se passa? Devemos tomar
uma matriz diagonal detraço 1_ e com autovalores distintos (multipli-
cidade 1)

.

, 0.0 0

D: 0 % 0,
» 00%
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Aqu1 temos aflag F(1,1-,1) ', .

. ;, _.

.
O(1) x O(1)x_O(1) ' '

'

cuja dimensaoe 3 e é realizada em Mª numaesfera de dlmensao4 do
hiperplano H1 como antes. -

.Esta flag tem então codimensão 1 e mergulharassimem R4 Quando
se começam a considerar variedades flag, nopassado só setratava das
que vinham da partição

n=1+1+ +1

17(1,1,1)=

ou seja F(1,1,. ,1.) Podemºs assim chama-las 'de flag»clássica Ha
quem chame a F(n1,n'2,. .-.,n,) de flagsgeneralizadas

Vamos intercalar nesta s'equêr'iéia de exemplo, informaçoessobre a
aplicação

_

6: Mª —> D,, C Mª

=diagonal de A.
, ,

s inicialmente que 5 é uma projeção ortogonal Para isso
devemos mostrar que o vetor 6(A)A'e ortogonal aos subespaçOS D,,.

Seja então D E D,,.
_

Devemos provar que 56 (A) = 5 (A) que é claro e .,

(6(A)— A, D)-—— 0
'

onde A é qualquer em Mª e D é qualquer em D,,. Observamos que a
matriz 6(A) A tem diagonal fiula. Daí '

(5(A) - A, D) = tr((6(A) -'A)D)" = 0-

"Se DÉ D,, temª auto valores Ã1,Ã2,— . .,An e 0 é umapermutação
qualquer de S,, A,“ A”,“ -,/)a,. # D,, é outra matriz de D,,.

Assim, variando o em S,, obtermos o conjunto finito de pontos
dando'eiiatamente

F(D) 0 D,,
Se D com traço 1 o mesmo acontece com as D,, e tal conjunto”

está aSSim num hiperplano de D,,. O envólucro convexo P(D) deste
conjunto finito de pontos nos da um poliedro conexo cujos vértices são
os (D,). Vejamos porque:

Z = F(D) m D,, é uni Conjunto finito de pontos de D,,, com traço
1, portanto estão no hiperplano 'de D,, de traço 1. Este conjunto finito
Z é invariante por permutações ,a Et“ S,, nas—"coordenadas fdeles. Cada
permutação a é produzida pela conjugação de uma matriz de permuta-
ção X; de O(n)', que sãoiis'o'metrias, Tais iSometrias atuam no poliedro
P(D) deixando-o inVariante. -Se mostrarmos ªque iam-pontoªde» Z é
vértice-dªe P(D)—“então todos são,p0is“,congruentes por tais iSomet-rifasí

O'ConjuntovZét-em seu diâmetro realizadofp'or' dois de seus.,pon'tos
A eíBa Tomemos por A um hi—p'eriplaªno BA e por Bentão HE ambos
perpendiculares ao segmento de extremidades A e B. Assim temo'sª-za
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fatia de D,, determinada por estes hiperplanos. A e E estão na fronteira
de tal fatia. Não pode haver outro ponto de Z nesta fronteira e nem em
ser exterior por isso aumentaria o diâmetro 'de Z, contra uma hipótese
sobre A e B. Assim sendo A--e B são vértices legítimos do poliedro
P(D) e dai, pelo comentário acima o conjunto de Vértices o P(D) é Z

O poliedro P(D) tem seu grupo simetria, digamos T(P(D)). Cada
permutação a e S,, produz uma simetria de P(D) digamos, & e por—
tanto 6 & T(P(D)). Temos assim um homeomorfismo.

h : S,, ——> T(P(D))
Se D tem seus autovalores distintos dois a dois, h é injetivo pois

a # t => & 76 73. Caso contrario, isto é, caso haja autovalor com
multiplicidade podemos ter a # t com & = ?.

Seria interessante examinar quanto é que h é sobrejetora (o que não
faremos)

Vejamos exemplos no caso n—*- 4.
Tomemos inicialmente a partição 4 = 1 + 1 + 1 + 1 e fixemos a

matriz de traço 1

0 0
1

D = 6 ª =
6

3
6 2

Esta está em 774 que tem base canônica

e,(1, 0, 0, o), e2(0, 1, o, 0),e3(0, 0, 1,0), e4(0,0, 0, 1)
Temos assim estes quatro pontos formando um tetraedro regular

em 734

1/3
62

cah-

Gºl!—l

|H

'que é parte do- hiperplano (traço 1) de equação
.

LE1+£U2+£B3+III4=1

Quando impomos, para cada i, m,>/ 0 temos o tetraedro regular.
A matriz D que escolhemos D = (0, é, à, ª) é um ponto do tetraedro
indicado como D., Fazendo todas as permutações destas coordenadas
obtermos '4!;= 24 pontos que comporão os vértices do octaedroªªtrun- '

cado
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' Observe que o quadrado que tem D para um-ídªos vértices é eªxa'ta-
mente o corte de um “bico” do ectaedro regular ins'cªrito'rio tet-rfâédro
que tem para vértices os pontos médios daS'ar'estíaS'í'dõ “tétraêdfõ. ' 7

O octaedro truncado é um dos poucos poliedros com regularidade
de vértices (ou de faces) que tesSelam o Rª. Os outros dois são: o
cubo (que é vértice e face regular) e o dodecaedro rômbico (que é face
regular):- "'Isso torna a 'Hag

O(4) , _

ou) >< ou) >< ou) >< ou)F(1,1,1,1) =

muito especial. Esta Variedade tem dimensão igual a de O(4) que é 6
e está mergulhada em R8 já que '

Esta é uma boa dimensão de mergulho, já que os reSuItados gerais
de Whitney dizem que ela mergulha em R“ (por ser Orientáve'l).
' , Examinemos ainda para n = 4 o que acontece com a partição 4 =
2+2. Para tal devemos tomar uma matriz diagonal em dois autovalores
com multiplicidade 2, digamos

D = 1 - de traço. 1.

l
2

.

Este será um ponto. do tetraedro de' vértices

61: (

€2=(
—(

(

OHPO HDCD
VVVV
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_— 64

' 61 " yl”.62

Simetrizando D por permutações obtemos todos os pontos médios
das arestas que compõem os vértices do ectaedro regular. Este poliedro
não tessela o R3, Ele tem o mesmo grupo de simetria ,do cubo e do
octaedro truncado.

A variedade flag determinada por D sua orbita pela conjugação por
O(4) é

O(4)
O(2) >< O(2)

que é & Grassmanniana de planos no R4, Gn.
Para n qualquer e n1+nz+- -+ns partição qualquer de n,formando

uma matriz diagonal D com autovalores A1, A2, . . . , A de multiplicidade
respectivamente n1,n2,. . . ,nª. A ação de O(n) pOr conjugação sobre
D produz uma orbita que é a variedade flag

F(D)F= F(2, 2):

,, , _ O(n>
, “" O(nl) >< O(ng) x ...O(ns)

que está assim mergulhada no espaço euclidiano das matrizes simétricas
M$, que tem para subespaço o das matrizes diagonais Dn. Temos, como
vimos, a projeção ortogonal de M:, em D,,

6 : M; -—> Dn
õ(A) = diagonal de A

,

Seja Z= F(D) n Dn.“ Este é umconjunto finito de pontos que são
De os permutados de'D.

Denotamos por P(D) orenvólucro convexo de Z. P(D) é um polie—
dro convexo cujos vértices são exatamente Z, como já demonstramos.

Podemos agora fornecer informações bastante interessantes que re-
laciona a ílag F(D) com P(D) que são dois teoremas elaborados por:

Shur: A imagem de F (D) por 5 está contida em P(D) (por volta
de 1920).

Horn: A imagem de F(D) por 5 é sobre F(D) (por volta de 1953).
Portanto, podemos enunciar os dois teoremas num só e os chamar-

mos de
Teorema de Schur—Horn: A imagem de F (D) por 6 é igual a P(D).
Este teorema de Schur—Horn é, de certa forma, surpreendente pois

F(D) C M;, é uma variedade Cºº, portanto suave, sem nenhum singu-
laridade enquanto sua projeção ortogonal é um poliedro e assim com

F(D)=F(TL1,TL2,...
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vértices e arestas este que é por assim dizer uma variedade linear-'por
parte e cheia de singularidades.

Os mergulhos F(D) das flags em Mª para cadaDe D,, são eSpeci-
ais, por exemplo,- ogrupo O(n) atua em F(D),1_sometricamente,e tran-
sitivamente, pois como orbita de ação degrupo, dados A e B & F(D)
existe sempre um X E O(n) tal que XAX '1 = 13. A ação é por iso—

metria jáf-q'ue'a conjugaçãoo é. Podemos investigar 'se—estes mergulhos
tem algumas simetria (isometrias obvias). Omais natural *é'--v“er*Se as
simetrias de poliedro P(D) são simetrias de F(D).
Paraisso vamos tomar uma permutação a do grupo de permutações

S,, e deixar que a mesma atue em D,,

(Al, A2, — - ,An) '—) (AauAdzv ' Aq")
Esta aplicação é conseguida também por conjugação em D,, por

matrizes de permutação e é assim, isometria que preserva o conjunto
de Vértices Z de P(D). Portanto, tais permutações preservam P(D) já
que aªt-ran'sformação é linear.

Vejamos como'es'tas matrizes de per-mutação (que permutam adia—

gonal de cada D e D,,) atuam numa matriz genérica A e M;. Seja P a
tal matriz de permutação ela produz, por conjugação, uma permutação
a dos autova'lores (diagonais de D E D,,, isto é, PDP—71 = P,).

A composição AP altera A, permutando suas colunas, segundo a
permutação cr, que produziu P a partir da matriz identidade ]l.

_

Quando tomamos a composição QA com 62 matriz de permutação
,
obtida da identidade ]l permutando-se suas linhas, o que obtemos é a
matriz obtida de A permutando-se as mesmas linhas.

Para termos o efeito geral da ação PAP—1 basta considerarmos P
obtida de 11 por uma transposição de duas linhas. Isto da P“1 = P.

Se P foi obtida de 11 por uma transposição de troca as colunas i
ej, temos P = P"1 e AP e matriz obtida de A trocando-se as colunas
i e j. Ao tomarmos P(AP) = PAP = PAP”1 obtemos a matriz AP
como as linhas i e j permutadas. '

Veja. na figura abaixo o que se passa na diagonal de Aij ij ij
__. II. .Q— ._—

Assim sendo, na diagonal de A as entradas, i e j serão permutadas
igualmente. Haverá outras alterações de A para PAP fora da diagonal,
mas queremos concentrar nossa atenção apenas na diagonal de A. Se
A se projeta na sua diagonal D

F : M;”; —> D,,
6 (A) = D = diagonal de A
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Vemos que (“PAP—1) = Pô (A)P'1.
Assim õ comuta com a ação de P, por conjugação, em M; -e em Dn;
Como uma permutação genérica a € Sn é“ composição de transpo-

sições temos o mesmo para a matriz de permutação genérica Q
5(QAQ' )ª 'Q5(A)Q"

Assim sendo, toda isometria de poliedro P(D) determinada por
permutação a e S,, produz uma simetria de F(D). Temos aqui um
homomoríismo do grupo Sn no grupo de simetria. de-P(D) e portanto
novgrupo de simetrias de F(D). Se D E Dn tem as entradas da di-
agonal distintas 2 a 2 então tal homomorfismo é injetivo, Se “houver.
multiplicidade não será. É interessante se examinar quando ele será
sobreo grupo de simetria'do poliedro P(D)-.

Ou seja numa simetria de P(D) produz uma permutação de sens
vértices, quando tal permutação de vértices vem de uma permutação
da cóordenadas das mesmas?

Consideremos entãoIR" e o grupo simétrico Sn das permutações de'
n letras. Sn atua em R" permutando as coordenadas

(xl) 1.2.3' ' -,$n)'—*($a15$a2a- ' ' 7x6")

para cada a € Sn. Cada ação a destas é uma isometriak de R".


