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Antonio Conde



DIAGONALIZAGCAO E SUA GEOMETRIA 1
Diagonalizacao e sua geometria

Demonstraremos’ por M 0 espago vetor1a1 real das matrizes n. _por
n com entradas reais, que tem dimensio n?.
M o espago vetorial real das matrizes n por n simétricas com en-
tradas reais, que tem dimensdo (n(n+ 1)).
M2 o espago vetorial real das matrizes n por n anti simétricas com
entradas reais, que tem dimenséo 3(n(n — 1)).
D,. o espago vetorial real das matrizes n por n diagonais com en-
tradas reais, que tem dimenséo n.
Observemos que
(1) 3(n(n=1)) +n=3(n(n+ 1))
(2) l(n(n - 1)+ 2(n(n +1)) =n?
3) M, = M ) M a
Para (iit) veja que vale a igualdade, (para A € M n)

A=A+ AY (A= AY

o primeiro fator de M2 e o segundo de M?
Dotemos M,, do produto interno:

(A, B) = tr(AB")
Das propriedades '
tr(AB) = tr(BA) e

tr(X*) = tr(X)
e linearidade de tr decorre que (A, B) é de fato um produto interno. -
Se fixarmos uma ordem linear para as entradas das matrizes de M,
(por exemplo, a ordem do dicionario nos indices (%, j) de a;;, estamos
fixando seu isomorfismo linear)

¢ : M, — R™

Tal isémorfismo é uma isometria quando tomamos em R™ o pro-
duto interno euclidiano, pois se A tem a linha ¢ (a;,, a4, ,a;,) sua
transposta A? terd para coluna i o mesmo vetor e pOrtanto na posigéo
i da diagonal de AA? aparecera o mimero que é a + a + - + a e
o trago de AA? serd finalmente a soma de todos os quadrados a das
entradas de A; ou seja ¢ preserva a norma.

(o(A), o(A)) = (A, A)

e portanto € uma isometria linear,
Vale que
(XA, B) = (A, X*B)
(AX,B) = (4, BX")
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(XA, B) tr (XABY. = tr(AB'X) = tr(A(X!B)*) = (A,X'B) e
(AX,B) = tr(AXBt) = tr(A(BX‘)t) = (A, BX")

Dai vern que se X é do grupo ortogonal X € O(n), isto é XXt= =1
identidade temos

(xAx, XBXt> = (A, B) isto-é
a conjuigacso em M, por matrizes do grupo ortogonal é 1sometr1a linear,
ja que 7
A XAX? & linear ein A
Tais conjugagbes preservam a decomposi¢ao
M, =M & M;
jé que A simétrica (antissimétrica) nos d4, para X € O(n), que '
XAX* é simétrica (antissimétrica)

A conjugacio por qualquer X inversivel preserva o tragb pois
tr(XAX ! = tr(AX 1 X) = tr(A)

Assim sendo a conjugacdo preserva os hiper planos de trago cons-

tante a
H, = tr2(c)

Seja d : M,, = D, a aplicagdo que usa cada matriz A € M, na
matriz §(A) que é a diagonal de A. ‘

Vejamos que & é uma projecio ortogonal de M, sobre D,. E claro
que 06(A) = §(A).

Vamos agora mostrar que (D, (A — §A)) e nulo, ou seja mostrar que

tr(D(A - 6A)%) =
mas observe que DA! ¢ DSA tem a mesma diagonal, logo tr(DA! —
DJ§A) = 0 como quereimos. ’

Os hiperplanos H, de traco constante ¢ sdo ortogonais ao subes-
pago um dimensional das matrizes escalares, gerado pela identidade 1
ve_]amos H.Nn({l) = { } a matriz escalar de diagonal constante igual’
a —_—

Agora se Y € H,, Y — £1 é paralelo 2 H,. Como tr(Y) =c temos
que tr(Y — £1) =0 logo

<11, Y- —E]l> = 0 como queriamos.

Portanto cada hiperespago afim H, tem a reta (1) como comple-
mento ortogonal.
As matrizes anti simétrica tem diagonais nulas, logo

M: C Hy
Vamos nos restringir ao espago M; das-matrizes simétricas
dim M} = n(n + 1)/2
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Pomos H: = H.N M} que sdo as simétricas de trago constante c.
H, e H sdo subespagcos afim, para c = 0 séo subespacos vetoriais
| dimH? =n(n+1)/2 -1
H? é um hiperplano-de M.
O subespago das diagonais D,, estd em M.
Consideremos O(n) C GL(n) C M, = M ® M;;.
O(n) é subvariedade de M, e a fibra tangente a O(n) na identidade

1é
O(n) = .
Observemos que M: é ortogonal a M2, pois (A, B) = (A%, B) =
(A,—B) = — (A, B) que implica em (A,B) =0 para A€ M e B €

n' .
Como sabemos, as matrizes simétricas sdo diagonalizdveis pelo gru-
po ortogonal, ou seja a ag¢do de O(n) em M por conjugacio
O(n) x M3 — M?
(X, 4) — XAX?
tem cada orbita F(A) = {XAX? | X € O(n)} encontrando o subespago
das diagonais -
F(A)ND, #0
Para termos uma descrigdo das orbitas vamos examinar o grupo de
isotropia de um ponto da mesma. Podemos tomar aquele ponto que é
matriz diagonal:-D € D,. Digamos

D= diag()\l, )\2, ceey ’\n)

Vamos incluir a multiplicidades A; com multiplicidade n;

/\1 n
)\2 %)
As g

com ny1+ns+- - -+ns = n. Temos assim que D determina uma particdo
de n.

‘Designando por [n;] a matriz identidade n; por n;, temos que, agru-
pando as multiplicidades.

D= /\1[n1] ® Aa[na] © - - - ® Ag[n] )
Se uma matriz A tem para linhas os vetores U1, Va,. . ;Vn podemos
denoté-la por '

My
. ‘ e
~A=| . | sea mesma tem colunas uy, Ug;. .., U, -
\v. /)

pomos a notacdo A = (uy,ug, ..., un).
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Um elemento: X~ de O(n) esta no grupo de 1sotrop1a de D; Op =
{X:€0(n)| XDX“1 D}se

XDX'=DouXD= DX;isto é

X € Op se e 56 se X comuta com D examinemos cada membro da
1gualdade .

XD=DX

Se D = diag()‘ly n) eX = ( zJ)

XD = (XXy): 1sto ¢ XD tem sua coluna u; multiplicada.por ;.

DX = (M\Xi) isto é, DX é obtida de X mult1phcando a linha v;
por \;. A 1gua1dade entdo nos diz que

)‘ZIZJ - )\ §Lij

o que nos da duas possibilidades, ou \; — Aj-ou z;; = 0 caso contrario.
Levando em conta as mult’iplicidades n; de A;; concluimos que: se z
comuta com D entdo z é formado por blocos na dlagonal dos subgrupos
ortogonais O(nl) O(ny),...,0(n,), ou seja = é do grupo de isotropia
de D se e 86 se T esta no subgrupo

~ O(m) x Ofna) x -+ x O(n.) € O(n)

Assim sendo identificamos a orbita de D como sendo homeomorfa
(O(n) é compacto) a

O(n)

F(D) = O(ny) x O(na) x - x O(ny)

= F(ny,na,...,n,)

mas esta é exatamente a variedade bandeira real determinada pela
particdo-den =ny; +no+-- -+ n,. :

Como a agdo-de O(n) em M: é diferencidvel, nés temos ai um
mergilho“da variedade bandeira F(ni,ng,...,n,) no espaco vetorial
euclidiano M.

" Fixado ‘o natural n > 2, para cada particio (n;) deste n, temos
o mergulho da respectiva variedade bandeira em M. M? esta assim
folheado (com singularidade) pelas variedades bandeiras que vem das
particdes de n. Nos vamos chamar esta folheagio de M: de n-pacote
de flags e chamaremos a variedade bandeira de flag.

Cada flag entdo corta D, em algum ponto D. Na verdade, se apli-
carmos & diagonal de D uma permutagdo o obteremos outra matriz dia-
gonal D,, que é de fato uma conjugada-de D. A matriz'de O(n) que faz
este servico é a matriz P obtida a partir da identidadeé 1 aplicando-se
a mesma permutagao o nas suas colunas. Quandé multiplicamos PD
a matriz resultante é a obtida de D onde permutamos suas colunas
segundo 0.
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Vejamos no caso n = 3 € pomos ¢ como uma 1nvolugao (1 2,3) =
(3,2,1)
0 1L OJ[O X O]=[0 X 0
1 0°0/\0 0 A3 A 000

Ao completarmos PDP~! = PDP j que P = P~! permutamos as
linhas de PD perfazendo involugdo nas (A1, Az, A3) = (A3, Az, )\1)

0 0 XA\ /0 01 A3 0 0)
1o x offo1o]=(0 x o
M 0 0/\100/ \0o 0 X

Assim sendo, cada permutagéo o aplicada na diagonal de D, produz
a nova matriz diagonal D, que continua a estar na orbita de D. Isto nos
diz que a orbita de D encontra a de D,, nos pontos D, onde ¢ varia no
grupo isométrico S,. Se D tem todos seus autovalores )\; distintos 2 a
2 entdo o niimero de pontos em FpND, é n!. Havendo multiplicidades -
ny, Na, ..., N, 0 nimero de pontos passa a ser '

n!
n 'a ny ': .y ns'

Para facilitar a representagao geométrica vamos nos deter no hiper-
plano ‘das matrizes de trago 1.

Sendo nossa agdo de O(n) um M, por isometrias temos que se
Al = |IXAXP]|| para X € O(n) e portanto a conjugacéo preserva
as esferas com centro na origem. Com a conjugacio preserva também
o traco da matriz, os hiperplanos de traco constante H, também s&o
preservados.

Se S, é a esfera de M de centro 0 e R > 0, vamos ver quanto t1
estd nesta esfera.

‘Devemos ter ||t1|| = t||1]| = |¢t|/n =7 ou seja |t] = Z=- Neste caso
|t =retl € S,

Agora, quando é que t1 tem traco c.

tr(t1) = t tr(1) = t » = c. Portanto, para termos uma, matriz
escalar da reta < 1 > que pertence a H,. devemos ter ¢ = £. Para que
esta matriz escalar esteja também na esfera de raio r devemos ter

ol
N
donde'r=J5L

Conclulmos entdo que dado H. se tomarmos r VL temos que
cl estars no. h1perplano H, e na esfera S, e este éo tnico ponto em
comum, pois H, é ortogonal a < 1 >. ,

Dai sabemos que para r > % temos numa esfera como a mtersecgao

H.NS,
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Assim serido'se:||4|| = r entédo a-flag F(A) esta nessa esfera:menor.

De inicio-tinhamos que cada flag vinda de uma particdo de n mer-
gulhara em um espago euclidiano de dimenséo (n(n + 1)). Com o
raciocinio logo acima. temos que a dimensao pode ser reduzida de dois,
isto é, cada flag no caso, mergulha em uma esfera de dimensio

(n(n +1)-2

Vejamos alguns exemplos em dimensao balxa paran=0en = 1
ndo hd o que fazer. Seja. entao n=2eparticioden=1+1 que nos
da a reta projetiva

0(?)

" PY é 0 mesmo que o circulo S*

= P!

0(2)
o(1) x 0(1)

Devemos tomar M; e uma matriz de diagonal « com ‘autovalores dxs—

tintos A; #-Ag
M0 ue pode ser 00
Lo Ay dUeP \o 1

que tem trago 1. M3 tem dimensdo 3 = 1(2(2 + 1)) Asesferas deste
ambienté s&0-as bidimensionais usuais, como S? com centro na, origem.
Os hiperplanos ou'sdo planos bidimensionais, como aquele‘das miatrizes
de‘tragos 1. Como devemos a correspondéncia

F(1,1) = ;_Pl

s Al a ‘o
M3 > (alf )\2) — ()‘1?>‘2’,a) e]Rf‘

O ponto (O 1 O) é danossa matrlz escolhlda,, que esta 1o plano He
na esfera de centro na origem e raio 1. H; é ortogonal s ao vetor (1,1, O)
que representa a matriz identidade 1.

‘Portanto a equagio deste plano no R3 é

z+y=1
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Quando conjugamos a matriz (o ponto (0,1,0)) estamos mergu-
Ihando P! = S" na intersecgio da esfera .S? com o plano H; que nos
da um circulo '

S?n Hy

Este circulo estd em S? e tem centro na reta gerada pelo vetor
(1,1 ,0) ‘que corresponde & 1.

Ao variarmos o valor do trago ¢ > 0 podemos tomar o ponto (0, c,0)
que vem da matriz (3 9) que dard S* = P* mergulhado como o circulo
que € a intersecgdo da esfera de centro zero e raio ¢ com o plano que
passa por (O 0,¢) e é perpendicular do vetor (1,1,0) ‘cuja operagio é

m+y=c

0. plano H.é pa,ralelo ao plano Hy ambos: perpendlculares ao. vetor
(1,1,0):"0Os mergulhos de P! = S! em cada caso-da um circulo com
centro na reta gerada por (1,1,0), perpendicular ao plano de eixos X;
e Ay e cujo raio em funcdo do trago ¢ é: c¢v/2, pois seu didmetro é
exatamente o segmento que une os pontos (1,0,0) e (0,1,0).

Agora, tomemos o caso n = 3 temos aqui duas’ particbes com sig-
nificado 1+ 14 1=3=2+ 1. :

© Vejamos o caso-2+:1 = 3. Aqui temos aflag

© 0(8)

0@2) x0(1) p?

F@,1)-

que é o plano projetivo P2. Este ests mergulhado em M2 que tem
dimensdo 6, mas como a dimensdo cai de 2, P? estd de fato mergulhado

em dimensdo 4:
Tomemos a matriz de M3 Devemos ter um autovalor de multlph-

cidade de 2 e outro de 1 ja que 2 + 1 =3

D=1

O ORim
OO
oo o

que é‘diagonal:e de'trago 1. Conjugando ‘D pelo grupo .(3) obtermos-
o mergulho de P? em M{ mas como j4 apresentamos antes P% st 1ia
interseccdo do hlperplano H; que é perpendicular ao vetor 1 e passa por
D. N8o podemos representar o espago,6-dimensional M3 no plano deste
papel, mas podemos representar o espago D3 das matrizes diagonais de
M3, que tem dimenséo 3.
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Ds D € D3 D'=(A1;A2,23)

O hiperplano de tragco 1H, de M3 corta D3 exatamente no plano
que passa pelos vetores unitirios dos eixos A1, Az e X3. As matrizes
diagonais de tragco 1 e Ajs > 0 formam o triangulo equildtero que
tem para vértices os vetores (1,0,0),(0,1,0) e (0,0, 1), como na figura
acima. Sua equagdo é

z+y+z=1
i00 , A
A matriz D = { 0 1 0 | é representada pélo ponto (%, I %)
00} SR

Quando conjugamos 2D por O(3) obtemos como orbita de D o mer-
gulho de P? na esfera 4-dimensional que é a interseccio de esfera §°
centro 0 e raio [|D| = 2—‘\//§§_com o hiperplano 5 dimensional H; per-
pendicular a 1 e passando por D. Tal intersec¢do é uma esfera com
centro na reta por 1. Fazendo as contas obtemos o centro sendo o
ponto (%, 3 %) que representa a matriz diagonal 31. Como ela deve
passar por D, seu raio e a norma do vetor

\ 2 2\/_

Esta é uma esfera de dimensdo 4 que contem P? ali mergulhado
como uma superficie de dimensdo 2. Como P? C S$* nio é igual,
podemos omitir um ponto desta'S* ¢ assim temos S* — pt homeomorfa
(difeomorfa) a R* e temos um mergulho de P? em R*.

A titulo de informagdo apenas (a prova é sofisticada) sabemos que
ndo é possivel mergulhar P? em R3,

E o caso da particdo 1+ 1+ 1 = 3 o que se passa? Devemos tomar
uma-matriz diagonal de.traco 1 e com autovalores distintos (multipli-
cidade 1)

, 0.0 0
- D=|010
~ 00 2
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Aqu1 temos a ﬂag F(1,1,1)

. 0(1) x O(l) x 0(1) ' B
qua dlmensao é 3 e é realizada em M 3 numa. esfera de dlmensao 4 do
hlperplano ‘H, como antes. :

_Esta flag tem ent&o codimensio. 1 e mergulhar as&m em R4 Quando
se comegam a considerar variedades ﬂag, no passado so se- tratava das
que vinham da partigdo

S
ou seja F(1,1,...,1): Podemos assim chamis-las de flag’ classma Ha

quem chame a F(nl, Ny, .y ny) de ﬂags generalizadas
Vamos 1ntercalar nesta sequencm d’e exemplo, mformagoes s@bre a

aplicagdo’

F(1,1,1) =

_ d: M s D, - M s
onde 8(A) = diagonal de A. ,
s inicialmente que J é uma projecao ortogonal Para isso
devemos mostrar que o vetor §(A) — A é ortogonal aos subespagos D;,.
Seja entdo D € D,. ‘
Devemos provar que d6(A) = 6(A) que éclaro e .
(8(A)—A,Dy=0

ondé A é qualquer em Mg e D é qualquer em D Observamos que a
rhatriz 0(A) — A tem dlagonal nula. Daf -

(8(A) — A, D) = tr((6(A) — A)D) =0

Se D€ D,, tem auto valores A, Xsg,..., \, € ¢ é uma’ permutagao
qualquer de S, Asy, Aggs- -5 Ag, #F Dy € outra matriz de D,,.

Assim, variando ¢ em S, obtetmos o conjunto finito de pontos
dando-exatamente

F(D)NnD,

Se D com trago 1 o mesmo acontece com as D, e tal conjunto
est4 assim num hiperplano de D,. O envélucro convexo P(D) deste
conjunto finito de pontos nos d4 um poliedro conexo cujos vértices sdo
os {D,}. Vejamos porque:

Z = F(D) N D,, é um conjunto finito de pontos de D, com trac¢o
1, portanto estdo no hiperplano de D,, de traco 1. Este conjunto finito
Z é invariante por permutacdes .o €:5, nas coordénadas:deles. Cada
permutagdo o é produzida pela conjugacio de uma matriz de permuta-
¢do X, de O(n); que sdo-isometrias. Tais isometrias atuam no poliedro
P(D) deixando-o invariante. -Se mostrarmos:que um: ponto ‘de-Z &
vértice de P(D) entdo todos sdo,pois;congruentes por tais isometrias!

O conjunto - Z tem seu didmetro realizado por dois de seus.pontos
A e B. Tomemos por A um hiperplano H4 e por B-entdo Hpg ambos
perpendiculares ao segmento de extremidades A e B. Assim temos-a
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fatia de D,, determinada por estes hiperplanos. A e B estdo na fronteira
de tal fatia. Ndo pode haver outro ponto de Z nesta fronteira e nem em
ser exterior por isso aumentaria o didmetro de Z, contra uma hipétese
sobre A e B. Assim sendo A-e B sdo vértices legitimos do poliedro
P(D) e dai, pelo comentario acima o conjunto de vértices o P(D) é Z.

0o pohedro P(D) tem seu grupo simetria, digamos T'(P(D)). Cada
permutagdo o € S, produz uma simetria de P(D) digamos, & e por-
tanto & € T(P(D)). Temos assim um homeomorfistno.

h: S, — T(P(D))
Se D tem seus autovalores distintos dois a dois, h é injetivo pois
o #t = & # t. Caso contrario, isto é, caso haja autovalor com

multiplicidade podemos ter o # t com & = {.
Seria interessante examinar quanto é que h é sobrejetora (o que ndo

faremos).
Vejamos exemplos no caso n = 4.
Tomemos inicialmente a partigdo 4 = 1 + 1+ 1+1 e fixemos a
matriz de trago 1
0 0
1
D= I =
6 3

6 2
Esta estd em Dy que tem base candnica

e1(1,0,0,0), e2(0,1,0,0), e3(0, 0,1, 0), e4(0, 0, 0, 1)

‘Temos assim estes quatro pontos formando um tetraedro regular

em Dy
1 /3

€2

o=

o=
=

‘que é parte do hiperplano (traco 1) de equacdo
‘ Ti+To+zT3+z4=1

Quando impomos, para cada i, z; 2> 0 temos o tetraedro regular.
A matriz D que escolhemos D = (O, é, ;, ;) é um ponto do tetraedro
indicado como D. Fazendo todas as permutacdes destas coordenadas
obtermos 4!:= 24 pontos que comporao os vértices do octaedrotrun-

cado
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* Observe que o quadrado que tem D para um dos vértices é exata-
mente o corte de um “bico” do ectaedro regular inscrito o tetraedro
que tem para vértices os pontos médios das‘arestas'do tetraedro.

O octaedro truncado é um dos poucos poliedros com regularidade
de vértices (ou de faces) que tesselam o R3. Os outros dois séo: o
cubo (que € vértice e face regular) e o dodecaedro rémbico (que é face
regular). Tsso torna a flag .

o4 -
O(1) x O(1) x O(1) x O(1)

F(1,1,1,1) =

muito especial. Esta variedade tem dimensdo igual a de O(4) que é 6
e est4 mergulhada em R8 j3 que :

Esta é uma boa dimensdo de mergulho, ja que os resultados gerais
de Whitney dizem que ela mergulha em R (por ser orientdvel).
. . Examinemos ainda para n = 4 o que acontece com a particio 4 =
2+42. Para tal devemos tomar uma matriz diagonal em dois autovalores
com multiplicidade 2, digamos

D= 1| detrago 1.
1
2

Este serd um ponto.do tetraedro de vértices

OO
o oo
N N e e’
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AE4

el 9 )ﬂ3
€2
Simetrizando D por permutagdes obtemos todos os pontos médios
das arestas que compdem os vértices do ectaedro regular. Este poliedro
nio tessela o R%. Ele tem o mesmo grupo de simetria do cubo e do

octaedro truncado
A variedade flag determinada por D sua orbita pela congugagao por

O(4) é
0o4)
0(2) x 0O(2)

que é a- Grassmannlana de planos no R4, Gas. : :

Para n qualquer e ny+ny+- - -+n, partlgao qualquer de n, formando
uma matriz diagonal D com autovalores Aj, Ag, .. ., A; de multiplicidade
respectivamente ni,na,...,ns. A agdo de O(n) por conjugagio sobre
D produz uma orbita que é a variedade flag

F(D) = F(2,2) =

. o)
* T 0(ng) x Ong) x ... O(ny)
que esta assim mergulhada no espaco euclidiano das matrizes simétricas
M que tem para subespago o das matrizes diagonais D,,. Temos, como
vimos, a projecdo ortogonal de M em D,
0: M — D,
d(A) = diagonal de A

Seja Z = F(D) N D,. Este é um conjunto finito de pontos que sdo
D e os permutados de D.

Denotamos por P(D) o-envélucro convexo de Z. P(D) é um polie-
dro convexo cujos vértices sdo exatamente Z, como ja demonstramos.

Podemos agora fornecer informagdes bastante interessantes que re-
laciona a flag F(D) com P(D) que séo dois teoremas elaborados por:

Shur: A imagem de F(D) por ¢ est4 contida em P(D) (por volta
de 1920).

Horn: A imagem de F(D) por § é sobre F(D) (por volta de 1953).

Portanto, podemos enunciar os dois teoremas num s6 e os chamar-
mos de

Teorema de Schur-Horn: A imagem de F(D) por ¢ é igual a P(D).

Este teorema de Schur-Horn é, de certa forma, surpreendente pois
F(D) ¢ MZ é uma variedade C*, portanto suave, sem nenhum singu-
laridade enquanto sua projecio ortogonal é um poliedro e assim com

F(D)=F(TL1,7’L2,...
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vértices e arestas este que é por assim dizer uma variedade linear por
parte e cheia de singularidades.

Os mergulhos F(D) das flags em M? para cada D.€ D, 536 especi-
ais, por exemplo, o grupo O(n) atua em F(D) isometricamente e tran-
sitivamente, pois como orbita de acdo de grupo, dados A e B € F(D)
existe sempre um X € O(n) tal que XAX ™! = 13. A agfio é por iso-
metria j& que a conjugacio o é. Podemos investigar se estes mergulhos
tem algumas simetria (isometrias obvias). O-mais natural é ver se as
simetrias de poliedro P(D) so simetrias de F(D).

Para’isso vaimos tomar uma permutagao o do grupo de permutagcoes
S e de1xar que a mesma atue em D,

(’\la /\2, n) — ()‘01:’\02’ U'n.-)

-Esta aplicagioé consegulda também por conjugagao em D, por
matrizes de permutagdo e é assim, isometria que preserva o conjunto
de vértices Z de P(D). Portanto, tais permutagdes preservam P(D) jé
que a-transformagéo é linear.

Vejamos como estas matrizes de permutagdo (que permutam a dia-
gonal de cada D € D,) atuam numa matriz genérica A € M3. Seja P a
tal matriz de permutacéo ela produz, por conjugacdo, uma permutacio
o dos autovalores (diagonais de D € D, isto ¢, PDP~! = P,).

A composicio AP -altera A, permutando suas colunas, segundo a
permutacio o, que produziu P a partir da matriz identidade 1. »

Quando tomamos a composi¢io QA com ¢ matriz de permutagio
_ obtida da identidade 1 permutando-se suas linhas, o que obtemos é a
matriz obtida de A permutando-se as mesmas linhas.

Para termos o efeito geral da agio PAP~! basta considerarmos P
obtida de 1 por uma transposicdo de duas linhas. Isto da P~! = P.

Se P foi obtida de 1 por uma transposicido de troca as colunas 3
ej, temos P = P71 e AP e matriz obtida de A trocando-se as colunas
i e j. Ao tomarmos P(AP) = PAP = PAP~! obtemos a matriz AP
como as linhas ¢ e j permutadas.

Veja na figura abaixo o que se passa na diagonal de A

i g T g i g
— II

> o+ —

Assim sendo, na diagonal de A as entradas, i e j serdo permutadas
igualmente. Haveré outras alteragdes de A para PAP fora da diagonal,
mas queremos concentrar nossa atencdo apenas na diagonal de A. Se
A se projeta na sua diagonal D

F:M:— D,
0(A) = D = diagonal de A
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Vemos que §(PAP~1) = P§(A)P~L.

Assim § comuta com a agdo de P, por conjugagdo, em M:-e em D,

Como uma permutacdo genérica o € S, é composicio de transpo-
sighes temos o mesmo para a matriz de permutagéo genérica @

§(QAQ™) = Qé(A)Q™

- Assim. sendo,. toda-isometria de poliedro. P(D) determinada por
permutagdo o € S, produz uma simetria de F(D). Temos aqui um
homomorfismo do grupo S, no grupo de simetria de..P(D) e portanto
no grupo de simetrias de F(D). Se D € D, tem as entradas da di-
agonal distintas 2 a 2 entdo tal homomorfismo é injetivo. Se houver
multiplicidade ndo sers. E interessante se examinar quando ele seréd
sobre-o grupo de simetria-do poliedro P(D).

Ou seja numa simetria de P(D) produz uma permutacdo de seus
vértices, quando tal permutacdo de vértices vem de uma permutagao
da coordenadas das mesmas?

Consideremos entdo R™ e o grupo simétrico S, das permutacoes de
n letras. S, atua em R™ permutando as coordenadas

V(xlaz?) e az’n) H (x015$62’ LG "'L‘O'n)

para cada o € S,. Cada acdo o destas é uma isometria de R".



