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1. Introduction

Many problems in extremal combinatorics concern embeddings of graphs and hypergraphs of fixed
isomorphism type into a large host graph/hypergraph. The systematic study of pseudorandom graphs
was initiated by Thomason [15,16] and since then many embedding results have been developed for
host pseudorandom graphs. For example, a well-known consequence of the Chung-Graham-Wilson
theorem [4] asserts that dense pseudorandom graphs G contain the “right” number of copies of any
fixed graph, where “right” means approximately the same number of copies as expected in a random
graph with the same density as G. In view of this result, the question arises to which extent it can be
generalized to sparse pseudorandom graphs, and results in this direction can be found in [2,3,5,12].
We continue this line of research for embedding properties of sparse pseudorandom hypergraphs.
Counting lemmas for pseudorandom hypergraphs were also investigated by Conlon, Fox and Zhao [6].
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Let G = (V,E) be a k-uniform hypergraph. For every 1 < i < k — 1 and every i-element set
(X1,...,x) € (‘f),let
4
Ne(x1, ..., %) = {{Xiy1, ..., X} € k—i)’ {X1,....,x} €Ep,

i.e, Ng(x1, ..., x;) is the set of elements of (k:’) that form an edge of G together with {xq, ..., x;}. In

what follows, our hypergraphs will usually be k-uniform and will have n vertices. The parameters n
and k will often be omitted if there is no danger of confusion.

Property 1.1 (Boundedness Property). Let k > 2. We say that an n-vertex k-uniform hypergraph
G = (V, E) satisfies BDD(d, C, p) if, for all 1 < r < d and all families of distinct sets Sy, ...,S; € (kL),
we have

ING(S1) N --- N Ne(Sy)| < Cnp". (1)

Property 1.2 (Tuple Property). Let k > 2. We say that an n-vertex k-uniform hypergraph G = (V,E)
satisfies TUPLE(d, &, p) if, for all 1 < r < d, the following holds.

| ING(S1) N -+ N Ne(S)| — np" | < snp" (2)
for all but at most § <(k;1 ) ) families {S1, ..., S;} of r distinct sets of (kL )
The notion of pseudorandomness considered in this paper is given in Definition 1.3.

Definition 1.3. A k-uniform hypergraph G = (V,E) is (dy, C, d3, 8, p)-pseudorandom if |[E| = p (',:)
and G satisfies BDD(d,, C, p) and TUPLE(d,, §, p).

Note that property TUPLE implies edge-density close to p, but we put the condition |[E| =
p ( ’;) in the definition of pseudorandomness for convenience. We remark that similar notions of
pseudorandomness in hypergraphs were considered in [8,9].

A hypergraph H is called linear if every pair of edges shares at most one vertex. Our main
result, Theorem 1.4, estimates the number of copies of some linear k-uniform hypergraphs in sparse
pseudorandom hypergraphs. An embedding of a hypergraph H into a hypergraph G is an injective
mapping ¢: V(H) — V(G) such that {¢(v1), ..., ¢(vx)} € E(G) whenever {vq, ..., v} € E(H). An
edge e of a linear k-uniform hypergraph E (H) is called connector if there exist v € V(H) \ e and k edges
ey, ..., e, containing v such that |eNe;| = 1for 1 < i < k. Note that, for k = 2, a connector is an edge
that is contained in a triangle. Moreover, since H is linear,e Ne; # eNe;forall 1 <i < j < k. Givena
k-uniform hypergraph H, let

dy = max{§(J): ] C H} and Dy = min{kdy, A(H)},

where §(J) and A(J) stand, respectively, for the minimum and the maximum degree of a vertex in
V(). Note that dy < Dy.

Kohayakawa, Rodl and Sissokho [12] proved the following counting lemma: given a fixed triangle-
free graph H and p = p(n) > n~YPH withp = o(1), forall e > 0 and C > 1, there exists § > 0 such
that, if Gis an n-vertex (Dy, C, 2, §, p)-pseudorandom graph and n is sufficiently large, then

[1€(H. ©)] = n*®p*™| < en'®)

e(H)

< en’"p

where &(H, G) stands for the set of all embeddings from H into G. The triangle-freeness condition on H
is necessary and the reader is referred to [ 12] for a detailed discussion of this fact. Our main theorem
generalizes this result for k-uniform hypergraphs.
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Theorem 1.4. Let k > 2 and m > 4 be integers and let ¢ > 0 and C > 1 be fixed. Let H be a linear
k-uniform connector-free hypergraph on m vertices. Then there exists § > 0 for which the following holds
for any p = p(n) with p > n~ /P and p = 0(1), and for any sufficiently large n.

If G is an n-vertex k-uniform hypergraph that is (Dy, C, 2, 8, p)-pseudorandom, then

| |&(H,G)| — nmpe(H)| < en™p®,
This paper is organized as follows. In Section 2 we state an important result, Lemma 2.3, and we
give some results that are needed for the proof of Lemma 2.3. In Section 3 we state the so-called

“Extension Lemma”, an important step in the proof of Theorem 1.4. In Section 4, we prove Lemma 2.3
and Theorem 1.4. We finish with some concluding remarks in Section 5.

2. Auxiliary results

We begin by generalizing the definitions of BDD and TUPLE to deal not only with sets of k — 1
vertices, but with sets of i vertices, forany 1 <i < k — 1.

Property 2.1 (General Boundedness Property). Let k > 2 and 1 < i < k — 1. We define BDD;(d, C, p) as
the family of n-vertex k-uniform hypergraphs G = (V, E) such that, for all 1 < r < d and all families of

distinct sets Sy, ..., S, € <‘I/> we have
ING(S1) N+ N Ng(Sy)| < Cn*'p’. (3)
Note that BDDy_1(d, C, p) is the same as BDD(d, C, p).

Property 2.2 (General Tuple Property). Let k > 2 and 1 < i < k — 1. We define TUPLE;(d, 8, p) as the
family of n-vertex k-uniform hypergraphs G = (V, E) such that, for all 1 < r < d, the following holds.

n T
<k—i>p “)

for all but at most § (q) >families {S1, ..., S} of r distinct sets of <‘1’) We note that TUPLE,_¢(d, 8, p)
is the same as TUPLE(d, 8, p).

‘|NG(S1)O...DNG(Sr)| — (kii>pr <

Let d > 2 be an integer and let § > 0. Roughly speaking, the next result (Lemma 2.3) states that if
Gisa(2,C,?2,8, p)-pseudorandom k-uniform hypergraph on n vertices and p = p(n) > n~ "4, then
Gisinfact (2, C, d, 8, p)-pseudorandom for all sufficiently large n as long as &’ is sufficiently small.

Lemma 2.3. Forall § > 0, C > 1and integers k, d > 2, there exists 8’ > 0 such that the following holds
when p = p(n) > n~"4 and n is sufficiently large: if Gisa (2, C, 2,8, p)-pseudorandom k-uniform
hypergraph, then Gis (2, C, d, 8, p)-pseudorandom.

Since we have n=/P# > n=1/4 for any k-graph H, Lemma 2.3 tells us that it suffices to consider
(Dy, C, dy, 8, p)-pseudorandom hypergraphs G in the proof of Theorem 1.4.

In the remainder of this section we prove some results that are important in the proof of Lemma 2.3.
We start with some simple combinatorial facts and in Section 2.1 we, roughly speaking, show how to
obtain properties BDD; for every 1 < i < k — 1 and TUPLE; from our pseudorandomness assumption.
The proof of the following well-known lemma can be seen in [12].

Fact 2.4. For every § > O, there exists y > 0 such that, if a family of real numbers a; > O, for 1 <i < N,
and a > 0 satisfy

(i) YN, a > (1—y)Ng,

(i) YN, a < (1+ y)Na?,
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then
[{i: la; —al < 8a}| > (1 —8)N.

Letr > 1and a > 0. Since (”ra) Ja ('rl) — 1whenn — oo, we obtain the following lemma, which
provides a combinatorial inequality that will be used often.

Fact2.5. Let 0 > O,r > 1and a > 0. Then, the following holds for a sufficiently large n.

(F) = (Dl <o (7).

2.1. Extending properties BDD and TUPLE

In this section we prove two results, Lemmas 2.6 and 2.7, that give conditions for a hypergraph G
to satisfy properties BDD; for every 1 < i < k — 1, and TUPLE;.

Lemma 2.6. Let C > 1 be an integer, let G be an n vertex k-uniform hypergraph and consider 0 < p =
p(n) < 1.If G satisfies BDD(2, C, p), then G satisfies BDD;(2, C, p) forall 1 <i <k — 1.

Proof. The proof follows by inductiononi =k — 1, ..., 1 and a simple averaging argument. [

The next result gives necessary conditions for a k-uniform hypergraph to satisfy property
TUPLE; (2, 8, p).

Lemma 2.7. Forall C > 1,8 > 0 and an integer k > 2, there exists o > 0 such that the following holds
for p > n~ /2 and sufficiently large n.
If Gisa (2, C, 2, o, p)-pseudorandom n-vertex k-uniform hypergraph, then G satisfies TUPLE; (2, §, p).

Proof. We must prove that (4) holds for 1 < r < 2. Since the proofs of the casesr = 1and r = 2 are
similar, we present only the proof for the case r = 2. We will show that the two inequalities required
to apply Fact 2.4 hold.

Fix C > 1,8 > 0and an integer k > 2. Let y > 0 be obtained by an application of Fact 2.4 with
parameter§ > Oandleto = o (C, y) be a sufficiently small constant. Now let p >> n~'/? and consider
a sufficiently large n. Suppose that G = (V,E) isa (2, C, 2, o, p)-pseudorandom n-vertex k-uniform
hypergraph. Thus,

INGS)I
ZV INW) NN()| = Z ( N )
woie(¥) se(ih)
INGS)|
x (%)

se(¥y): IN®I=(1-0)mp

9“—(’)(::1)((1 _2")’3”)
>(]_")4(721) (kL)pz
><1—y>(§)(kf1>p2, (5)

Vv
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where the first inequality is trivial, the second follows from TUPLE(2, o, p), the third inequality
follows from Fact 2.5, and the last one follows from the fact that o is sufficiently small.

Heading for an application of Fact 2.4 we consider the following sum.

2 IN(S1) NN(S)|
> INwNN@P= ) ( N )

{u,v]E(‘g) (51,52)6(,{!1)2
(lN(Sl)ﬂN(52)|> <|N(51)|>
> (") e
2 2
(51v52)E(kK1)2 Sle(lll)
S1#52

We will bound the two sums in (6). By BDD(2, C, p), the choice of p and an application of Fact 2.5, we

have
Z (|N(51)|> < < n ) ((Inp)
. 2 k—1 2

S16(k—1)
<(1+0)C? (2) (kf 1)p2.

—1/2 we obtain

Sincep > n

> ("M <a O((," 1),,2)2. ”

sie(i)

To bound the remaining sum, define A and B as the families of pairs {S, S} with §1, S, € (kL)

and S; # S, such that [N(S;) NN(S;)| < (140 )np? for all pairsinA, and [N(S;)NN(S,)| > (1+0)np?
for all pairs in B. By Fact 2.5 we obtain

5 (lN(51)ﬂN(52)|)<1< n )2((1+a>p2n)
55 2 S 2\k—1 2

(14+0)3 /n n )\
ST (2)(<k—1)p>' ®)

By BDD(2, C, p), TUPLE(2, o, p) and Fact 2.5 applied with o, r = 2 and a = Cp?, we have

)3 INSDNNS) o n 2 /Cp*n
(M) <) ()

{S1.52}€B
oc(14+0)C? /n n 5 2
s 2 (2) ((k—])p) ' ®
Replacing (7)-(9) in (6), we have

5 (14+0)® o(1+0)C%\ /n n 5\’
{ ]Z%V)w(u)mv(vn <(o+ T+ > )(2) ((k_l)p)
2
<+ (3) ((kf1>p2) . (10)
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Eqs. (5) and (10) can be seen as inequalities (i) and (ii) in Fact 2.4. Therefore, we conclude that, for
atleast (1 — &) () pairs of vertices {u, v} € (‘2/) we have

) " 2.0
k—1)P"

n 2
IN(w) NN(Q)| — (k— ]>P

3. Extension lemma and corollaries

In this section we prove a result called Extension Lemma (Lemma 3.1) from where we derive
Corollaries 3.3 and 3.4, which are used in the proof of Theorem 1.4.

3.1. Extension lemma

Before starting the discussion concerning the Extension lemma we shall define some concepts.
Consider k-uniform hypergraphs G and H. Given sequences W = wyq,...,w; € V(H)  and X =
X1, ..., % € V(G define &(H, G, W, X) as the set of embeddings f € &(H, G) such that f(w;) = x;
for all 1 < i < £. Furthermore, for a sequence Y define the set of its elements by Y = {y;, ..., y¢}.
We say that a subset of vertices V' C V(H) is stable if E(H[V']) = @, i.e., if there is no edge of H
contained in V',

Let H be a hypergraph with m vertices. We say that H is d-degenerate if there exists an ordering
V1, ..., Uy of V(H) such that dy,(v;)) < dforall 1 < i < m, where H; = H[{vy, ..., v;}]. In this
case, we say that vy, ..., vy, is a d-degenerate ordering of the vertices of H. Note that there is always a
dy-degenerate ordering of H.

Given a sequence W e V(H)*, we define w(H, W) = |E(H)| — |[E(H[W*®])|, i.e., w(H, W) is the
number of edges of H that are not contained in W*¢t,

Lemma 3.1 (Extension Lemma). Let C > 1, m > 1and k > 2. Let G and H be k-uniform hypergraphs
such that H is linear, |V(H)| = m, |V(G)| = nand p = p(n) = e(G)/(}). Suppose that 0 < £ <
max{k, (k — 1)dy}, and let W € V(H)" and X € V(G) be fixed. If G € BDD(Dy, C, p), then

|€(H, G, W, X)| < C"tnm—tpedW)
In particular, if W™ C V (H) is stable, then |&(H, G, W, X)| < C™~‘nm~¢pe),

For a k-uniform hypergraph H = (V, E) with |V| = m vertices, a positive integer ¢ < max{k, (k —
1)dy}, and W e V¥, Proposition 3.2 allows us to obtain a Dy-degenerate ordering wy, . .., wy of V
from a dy-degenerate ordering of V such that W = wyq, ..., w,. Consider a sequence L of the vertices
of H. Given a subsequence W of V, we write L\ W for the sequence of L\ W obtained from L by deleting
the vertices of W. Given a sequence of vertices Y in V¢, we write L' = (Y, L\ Y) to denote the sequence
L’ of V obtained by removing Y from L and placing it before the elements of L.

Proposition 3.2. Let H = (V, E) be a linear k-uniform hypergraph and let £ be an integer with 0 < £ <
max{k, (k — 1)dy). If W e V¥, then there exists a Dy-degenerate ordering wy, . .., wyy| of V such that
W =wq,..., w,.

Proof. Fix k > 2 and let H, £ and W be as in the statement of the proposition. Note that the result
is trivial whenever W is empty, and if Dy = A(H), then any ordering of the vertices of H is Dy-
degenerate. Therefore, assume Dy = k - dy and 1 < [W| = £ < max{k, (k — 1)dy}.

Let L be a dy-degenerate ordering of V and put L' = (W, L'\ W). Given a vertex v of H, define the
left degree of v in L’ as the number of edges e such that v is the rightmost element of e considering the
ordering L. Since L is dy-degenerate and, by the linearity of H, any vertex v belongs to at most |W|
edges containing vertices of W, the left degree of v in L’ is at most |W | + dy. We divide the proof into
three cases.
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Case 1: (k — 1)dy > k. In this case, |[W| < (k — 1)dy. Then, the left degree of any vertex of H in L’ is
at most dy + (k — 1)dy < k - dy = Dy. Therefore, L’ is a Dy-degenerate ordering of V.

Case 2: (k — 1)dy < k. Here we have |W| < k.If dy > 2, then the left degree of each vertex of H
in L’ is at most k + dy < k - dy = Dy. Therefore, L’ is a Dy-degenerate ordering of V. Thus, we may
assume dy = 1. Note that the only possibility for a vertex v to have left degree larger than k - dy = k
in L' is if the following holds: |W| = k and, for every w € W, the vertex v belongs to an edge e,
containing w and w is the rightmost element of e,, in L. But note that, since dy = 1, there exists at
most one vertex v with this property, otherwise L would not be a dy-degenerate ordering. Let W' be
the ordering wy, ..., wy, v.Now consider the ordering L” = (W’, L\W").Itis clear that all the vertices
of H have left degree at most 2 < k-dy = Dy inL”. Therefore, L” is a Dy-degenerate ordering of V. O

Now we prove the Extension lemma.

Proof of Lemma 3.1. Fix C > 1,m > 1and k > 2. Let G and H be k-uniform hypergraphs such
that H is linear with [V(H)| = m, [V(G)| = nand p = p(n) = e(G)/ (}). Let £ be an integer with
0 < ¢ < max{k, (k — 1)dy},and let W € V(H) and X € V(G)l. Suppose that G € BDD(Dy, C, p). By
Proposition 3.2, we know that there exists a Dy-degenerate ordering vy, . . ., v, of V(H) such that W
is its initial segment. We will prove by induction on h that, forall £ < h < m,

|&(Hp, G, W, X)| < Chtnh=tpetnW) (11)

where H, = H[{v1, ..., vp}].
If h = ¢, the statement is trivial. Suppose that £ < h < m and

|8(Hh7], G, W, X)| < Ch—l—[nh—‘l—lpw(thl,W)'

Since vy, ..., vp is Dy-degenerate we have dy, (vy) < Dy. By G € BDD(Dy, C, p), we know that any
embedding from Hy_; to G can be extended to an embedding from Hy to G in at most Cnpd”h n)
different ways. Since w(Hp, W) = w(Hp—1, W) + dy, (vp), applying the induction hypothesis, we
conclude that

|€(Hp, G, W, X)| < Cnp™ P |&(Hy_1, G, W, X)|

Crpin 00 ch=1=€ ph=1=C po(Hh 1. W)

NN

Ch=t =t potnw) o

3.2. Corollaries of the extension lemma

Given k-uniform hypergraphs G and H, we write €7 (H, G) and €™ (H, G) for the set of non-
induced and induced embeddings from H into G, respectively. The following corollary bounds from
above the number of embeddings in 67" (H, G) for some hypergraphs G whenever H is linear.

Corollary3.3. Let C > 1, m,k,n > Oandp = p(n) = o(1) withm > k > 2. Then, for all
k-uniform hypergraphs G and H, where |V(G)| = n and H is linear with |V(H)| = m the following
holds. If G € BDD(Dy, C, p) and n is sufficiently large, then

€™ H, )| < nn"pt®.

Proof. FixC > 1,m >k > 2,n > 0and let p = p(n) = o(1). Let G and H be as in the statement and
let n be sufficiently large.

Fix an edge {x1,...,x} € E(G) and a non-edge {wy, ..., wy} of H. Applying Lemma 3.1 with
W = (wq,...,wg) and X = (xq,...,Xxy), we conclude that the number of embeddings f from
V(H) into V(G) such that f(w;) = x; for 1 < i < k is bounded from above by C™*n™*pE®  Since
G € BDD(Dy, C, p), we have |E(G)| < Cn*p, from where we conclude that there exist at most Cn*p

choices for {x1, ..., ¢} in E(G). Note that there exist at most (’7:) choices for {wq, ..., wi} in (V(,f'))
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Then, we can choose (x1, . .., x;) and (w1, .. ., wy), respectively, in Ck!n*p and k! ('l’;) ways. Therefore,

€7 (H, G)| < Kn"pt™*1 for some constant K = K (C, k, m). Since p = o(1) the lemma follows for
any n > 0 and any sufficiently largen. O

Let G and H be k-uniform hypergraphs with |V(G)| = n and consider a set X C (i(f'])) If f

is an embedding from H into G, we denote by f,_1(X) the family of sets {f (x1), ..., f(xx_1)}, for all
{X], ey Xk_1} € X.

Given § > 0, define B;(§, r) as the families {Xy, ..., X} of r distinct subsets of (‘,:(f])) such that

[ IN(X1) N+ - N NG(X)| — np"| > énp".

Consider the following definition.

.
B®(S, 1) = {{xl, ... X} €Bg(8,1): | JXiis stable in c] .
i=1

Given r distinct sets X, ..., X, of (‘;ﬁ?) we say that X = {Xq,...,X;}is 6-bad if X € ng(S, r).
Let H be a k-uniform hypergraph with m vertices and let vy, ..., vy, be a dy-degenerate ordering
of V(H). Define H; = HJvy, ..., v;]. We say that an embedding f: V(Hy,_1) — V(G) is §-clean
if fy—1(Nm, (vp)) € BSG“’(S, dy, (vy)). Moreover, if f: V(H,—1) — V(G) is not §-clean, then we say
that f is §-polluted. We denote the set of embeddings f € &(Hy_1, G) such that f is §-polluted by
&s-pott (Hy—1, G). Similarly, we denote by &s_ciean (Hr—1, G) the set of embeddings f € &(Hy_1, G) such
that f is 5-clean. The next corollary shows that if H is linear and connector-free then most of the
embeddings from Hj,_; into a sufficiently pseudorandom hypergraph G are clean, for 1 < h < m.

Corollary34. et 6 > 0,C > 1, m > 4and k > 2 be fixed constants. Let H be an m-vertex linear
k-uniform hypergraph that is connector-free and let v4, ..., v, be a dy-degenerate ordering of V(H).
Suppose that 1 < h < mand put r = dy, (vp). If Gis (Dy, C, dy, 8, p)-pseudorandom, then

|€s-pott (Hh—1, G)| < & (r!((k — Y =170 ph=Tpeltn-1),

Proof. Fixconstantsé > 0,C > 1,m > 4and k > 2.Let H be an m-vertex linear k-uniform hypergraph
that is connector-free. Consider a dy-degenerate ordering vy, ..., vy, of V(H).Let 1 < h < mand put
r = dy, (vp). Suppose that G is (Dy, C, dy, 8, p)-pseudorandom.

By definition, an embedding f: V(H,—1) — V(G) is é-polluted if fi_; (N, (vn)) € BSG“’(S, r). Let

Ny, (vp) = (W1, ..., W} where W; = {w; 1, ..., wix—1} forall 1 <i < r(note that since H is linear,
the sets Wi, ..., W, are pairwise disjoint). Let
Word = (W11, ++ o, W1 ka1 W21y - v oy W2kTs - vy Wr1-vny Wrk—1)

be an ordering of W; U - - - U W, Therefore,

Es-poll(Hp—1, G) = U (U &(Hp—1, G, Worq, Xord)) ,

X Xord

where the first union is over all families X = {Sy,...,S;} € ng(& r) and the second union is over all
((k — 1)!)" possible orderings of S; for 1 < i < r, and all r! orderings of X. Therefore,

|&5-pot (Hp—1, G)| < Z Z |€ (Hh—1, G, Word, Xora) |-
X Xord

Note that, since Hy is linear and connector-free, | J Np, (vp) is stable in Hy. Since G € BDD(Dy, C, p)
and |Wyq| = r(k — 1), we know from the conclusion of Lemma 3.1 that

|€(Hh71a G, WOI'dv Xord)| < Ch—1—r(k—l)nh—l—r(k—l)pE(th)'
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Since r = dy, (v)) < dy and G satisfies TUPLE(dy, 8, p), we have |[BZ*(8, )| < 8n"®*~". Then, the
first of the sums contains at most §n"*~? terms. Since the second sum is over r!((k — 1)!)" terms, we
obtain

|&5-pott (Hn—1. Q)| < 8 (rl((k — D" " I7E=D) ph=Tpeth) -

4. Proof of the main result

Before proving Theorem 1.4 we prove Lemma 2.3. The proof of Lemma 2.3 is simple and rely on
Facts 2.4 and 2.5, and Lemma 2.6. For simplicity, we will not make explicit the constants used in its
proof.

Proof of Lemma 2.3. Fix § > 0,C > 1 and integers k,d > 2,andlet2 < r < d.Lety > 0be
obtained by an application of Fact 2.4 with parameters §. Now let ¢ = o (k, r, y) be a sufficiently
small constant. Let 8, ; be obtained by an application of Lemma 2.7 with parameter C, o and k and put
8 = min{8, 8,,}. Consider p > n~1/? and let n be sufficiently large.

Suppose G = (V,E) is an n-vertex k-uniform (2, C, 2, §’, p)-pseudorandom hypergraph. By
Lemma 2.7, the following two inequalities hold, respectively, for more than (1 — o )n verticesu € V

and for more than (1 — o) (}) pairs {u, v} € (‘2/)

n n
‘IN(u)|—<k_1>p <6<k_1)p, (12)

ww)mwwn—<kﬁ1>f <o<kf1)ﬁ. (13)

We must check that the inequalities (i) and (ii) of Fact 2.4 hold. For inequality (i), consider the following

sum over distinct sets Sq, ..., S, € (kL).
N
3 |N(S1)m...mN(Sr)|=Z<| i””)
StnSre(4Yy) uev
> (-l _O_)n <(1 _G) (kﬁl)p>
r
>(1-y) <(";1)>in, (14)

where the first inequality follows from (12) and the last one follows from Fact 2.5. It remains to prove
that inequality (ii) of Fact 2.4 holds. Consider the following sum over distinct sets Sy, ..., S; € (,{L )
2

- IN(u) NN()|
= s - 3 ()

Spens Sre(,ll) (u,v)eV2
_ IN(u) NN(v)| IN(w)|
= Z < r )+Z< . ) (15)
e uev

Let us estimate the sumsin (15). In view of Lemma 2.6 applied for i = 1 we can apply the boundedness
property to bound |N (u)| for every u € V, obtaining

k—1 n
Z(|N(U)|) gn(cn p) gC/((kl))npr (16)
ueV r r g

for some C' = C'(k, r, o).
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Now we estimate the remaining sum. Define A and B as the families of pairs {u, v} € (‘;) such

that IN(u) NN(@)| < (1+0)(,",)p*and [IN(w) NN@)| > (1 +0)(,",) p? respectively. Since
p?n*=1 > 1, Fact 2.5 implies

3 (|N(u> mN(v)|> o ((1 +o)p® (,ﬁ)) _(+0) ((;JH)) ')’ (17
r ’

(i oreA r 2 r 2

where ¢’/ = o/ (r, o) is a sufficiently small constant. Similarly, using the boundedness of G and (13)
we obtain

2 k=12 n n
Z <|N(U) ﬂN(v)|> < ﬂ <C(k ]) p (kl)) < O', <(k1)> (npr)Z' (]8)
(ioTeB r 2 r r

Replacing (16)-(18) in (15), we have
2

T n
> NN < +p) ((";1)> (np")?, (19)
Stosre(Yy) =1
where the above sum is over distinct sets Sy, ..., S;.
Inequalities (14) and (19) can be seen as inequalities (i) and (ii) in Fact 2.4. Therefore, we conclude
that, for more than (1 — §) ((k;l )) families of distinct sets S;,...,S; € (k: ) the following holds

forall1<r <d.

[INGSD) NN —np"| < snp”.
To finish the proof, note that, since 8’ < § and G € TUPLE(2, &', p), the following holds for more than
(1—-8)(,",)setsS; € (kL).

|IN(S)I —np| < énp. O

Proof of Theorem 1.4. Let k > 2 and m > 4 be integers and fix C > 1. Let H be a linear k-uniform
connector-free hypergraph on m vertices. Fix a dy-degenerate ordering vy, ..., v, of V(H) and put
Hp = H[{vy, ..., vp}l.

We will use induction on h to prove that for every 1 < h < m and for every ¢ > 0, there exists
8 > 0 such that the following holds when p >> n~'/P# and n is sufficiently large: if G is an n-vertex
k-uniform (Dy, C, dy, 8, p)-pseudorandom hypergraph (recall that Lemma 2.3 allows us to consider
this stronger pseudorandomness condition on G), then

| 18 (Hn, )| — n"p"™ | < en"peFin), (20)

For every ¢ > 0 and h = 1 the result is trivial. Thus, assume 1 < h < m and suppose the result
holds for h — 1 and forall ¢ > 0.

Let ¢ > 0 be given, let & = min{e/4, ¢/6C} and consider 8’ = §'(¢’) given by the induction
hypothesis such that for p > n~'/P# with p = o(1) the following holds for sufficiently large n.

| 1€ (Hp1, G)| — n"TpeHh—0| < g/n"~TpHh-—1), (21)

Fix n = ¢’/2 and define r = dy,(vy) < dy. Let § be a sufficiently small constant, and suppose
p > n~ /P with p = 0(1) and n is sufficiently large.

Suppose G is an n-vertex k-uniform (Dy, C, dy, §, p)-pseudorandom hypergraph. An application
of Corollary 3.3 with parameters C, m = h — 1, k, n and p for the graphs Hy_; and G provides the
following upper bound on the number of non-induced embeddings.

|67 (Hy_y, G)| < = 1pe(Hh-1) (22)
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By Corollary 3.4 applied with §, C, m and k for the graphs H,_1 and G, we have

|€5-poti (Hh—1. G)| < "~ 1p?Hh-1. (23)
By (22) and (23),

|67 (Hp—1, G) U Es-pon(Hy—1, G)| < 2y~ prth=1) = /=1 peti =,
Then, (21) implies

(1= 2" Tp? =T < g (Hy—1, G)| < (14 &"n"TpHw=r, (24)
~ The next step is to bound from below the number of ways we can extend an embedding ' €
€nd (H,_1, G) to an embedding f € &(Hy, G). Let f' be such an embedding. Since f’ is clean,

§-clean
Sty (N, (vn)) & BE®(8, 1), i.e., either f'(|J Ny, (vy)) is not stable in G or [N (fy_; (N, (vn))) — np"| <
Snp". Since H is linear and connector-free, it is easy to see that |_J Ny, (vy) is stable in Hy. But since f’
is an induced embedding, f' (| Ny, (vn)) is stable in G. Therefore,

NG (fy_; (N, (vn))) — np"| < snp’. (25)

To obtain an extension f € &(Hy, G) from f* € &(Hp_1, G) we must choose f(v,) in the set
No(fy_1(Ni, (vn)) \ f'(V (Hp—1)). Therefore, the number of such extensions is

NG (fi_ i (Nu, o)) \f'(V(Hh—1))| = (1 = &)np" — (h— 1) > (1 — 28)np", (26)

where the first inequality is due to (25) and the last one follows from the choice of p. By (24) and (26),
we have
|€(Hn, G)| > |6, Gcan(Hn, G)|

§-clean
> |6 Hi1, O] [No (fi_y (N, (o) \ ' (V (Hi— )|
> (1=2¢")(1 = 28)n"1pet—ppr
> (1—e)npe™,

where the last inequality follows from the choice of ¢” and the fact that § is sufficiently small.

To finish the proof we must show that |&(H, G)| < (1 + &)n"p?™n Fix an embedding f' €
& (Hy_1, G). Consider the case f' € ng_‘gean(Hh,l, G). Note that the number of extensions of f’ to
embeddings from Hj, into G is at most !NG (fk/_l (N, (vh))) ‘ Therefore, since § is sufficiently small and

we have (24) and (25), the number of such embeddings is at most

|63 ean Hi—1, G| [N (fi_y (N, (vn))) | < (1 + &Hn" Tp*HW =" (1 4 8)np
< (1+g/2)n"petn), (27)

Now suppose " € {€(Hy_1, G) \ €,n(Hn—1, G)}. By (21) and (24), we have

-clean

|€(Hn—1, ) \ €™ ean (Hn—1, G)| < 3¢/n"~Tpet =T, (28)

§-clean

But since r = dy, (v;) < dy < Dy and G € BDD(Dy, C, p), every embedding f” from Hj,_; into G can be
extended to at most Cnp” embeddings f € &(Hp, G). In fact, to see this, apply property BDD(Dy, C, p)
to the family {f'(S), ... ’f/(S\NH,,(vh)\)}v where {S1, 52, . .., Siny, 1} is the neighbourhood of v, in Hy.
This fact together with (28) implies that the number of extensions of an embedding in §(H,_1, G) \
gind .. (Hn—1, G) to embeddings from Hj, into G is at most (3¢'C)n"p?) < (¢/2)n"p**n). Therefore,
using (27) we conclude that |€ (Hy, G)| < (1 + &)n"pt®), O
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5. Concluding remarks

We say that a graph G = (V, E) satisfies property @(7, 8, «) if, for every subgraph G[S] induced

by S C V with |S| > n|V|, we have (& — 8) ('g‘) < [EGIS]| < (@ + ) (‘g').m [11,14], answering

affirmatively a question posed by Erdds (see, e.g., [7] and [1, p. 363]; see also [13]), Rodl proved that
for every positive integer m and for every positive «, 7 < 1 there exist § > 0 and an integer ny such
that, if n > ng, then every n-vertex graph G satisfying @(n, 8, o) contains all graphs with m vertices
as induced subgraphs. In [10], we apply Theorem 1.4 to obtain a variant of this result, which allows
one to count the number of copies (not necessarily induced) of some fixed 3-uniform hypergraph
in hypergraphs satisfying a property similar to Q (7, §, @), as long as they are subhypergraphs of
sufficiently “jumbled” 3-uniform sparse hypergraphs.

Acknowledgments

We thank the referees for their helpful suggestions and comments. Y. Kohayakawa was
partially supported by FAPESP (2013/03447-6, 2013/07699-0), CNPq (310974/2013-5, 459335/2014-
6), NUMEC/USP (Project MaCLinC/USP) and the NSF (DMS 1102086). G. O. Mota was supported by
FAPESP (2009/06294-0,2013/11431-2, 2013/20733-2). M. Schacht was supported by the Heisenberg-
Programme of the DFG (grant SCHA 1263/4-1). A. Taraz was supported in part by DFG grant TA 309/2-2.
The cooperation was supported by a joint CAPES/DAAD PROBRAL (333/09 and 430/15).

References

[1] B.Bollobas, Extremal Graph Theory, in: London Mathematical Society Monographs, vol. 11, Academic Press, Inc. [Harcourt
Brace Jovanovich Publishers], London, New York, 1978, MR506522.
[2] F.Chung, R. Graham, Sparse quasi-random graphs, Combinatorica 22 (2) (2002) 217-244. Special issue: Paul Erdés and his
mathematics, MR1909084 (2003d:05110).
[3] F.Chung, R. Graham, Quasi-random graphs with given degree sequences, Random Struct. Algorithms 32 (1) (2008) 1-19.
MRMR2371048 (2009a:05189).
[4] F. Chung, R. Graham, R. Wilson, Quasi-random graphs, Combinatorica 9 (4) (1989) 345-362. MR1054011.
[5] D. Conlon, J. Fox, Y. Zhao, Extremal results in sparse Pseudorandom graphs, Adv. Math. 256 (2014) 206-290. MR3177293.
[6] D. Conlon, J. Fox, Y. Zhao, A relative Szemerédi theorem, Geom. Funct. Anal. 25 (3) (2015) 733-762. MR3361771.
[7] P. Erdés, Some old and new problems in various branches of combinatorics, in: Proc. 10th Southeastern Conference on
Combinatorics, Graph Theory and Computing, 1979, pp. 19-37.
[8] A.Frieze, M. Krivelevich, Packing Hamilton cycles in random and Pseudo-random hypergraphs, Random Struct. Algorithms
41(1)(2012) 1-22. MR2943424.
[9] A. Frieze, M. Krivelevich, P.-S. Loh, Packing tight Hamilton cycles in 3-uniform hypergraphs, Random Struct. Algorithms
40 (3) (2012) 269-300. MR2900140.
[10] Y. Kohayakawa, G.O. Mota, M. Schacht, A. Taraz, Counting results for sparse Pseudorandom hypergraphs II, European J.
Combin. (2017) http://dx.doi.org/10.1016/j.ejc.2017.04.007, (in press).
[11] Y. Kohayakawa, V. Rodl, Szemerédi’s regularity Lemma and Quasi-randomness, in: Recent Advances in Algorithms and
Combinatorics, 2003, pp. 289-351. MR1952989 (2003j:05065).
[12] Y. Kohayakawa, V. Réd], P. Sissokho, Embedding graphs with bounded degree in sparse pseudorandom graphs, Israel J.
Math. 139 (2004) 93-137. MR2041225 (2004m:05243).
[13] V. Nikiforov, On the edge distribution of a graph, Combin. Probab. Comput. 10 (6) (2001) 543-555. MR1869845.
[14] V.Radl, On universality of graphs with uniformly distributed edges, Discrete Math. 59 (1-2) (1986) 125-134. MR837962
(88b:05098).
[15] A. Thomason, Pseudorandom graphs, in: Random graphs '85 (Poznari, 1985), 1987, pp. 307-331. MR89d:05158.
[16] A.Thomason, Random graphs, strongly regular graphs and Pseudorandom graphs, in: Surveys in combinatorics 1987 (New
Cross, 1987), 1987, pp. 173-195. MR88m:05072.

Please cite this article in press as: Y. Kohayakawa, G.0. Mota, M. Schacht, A. Taraz, Counting results for sparse pseudorandom
hypergraphs I, European Journal of Combinatorics (2017), http://dx.doi.org/10.1016/j.ejc.2017.04.008



http://refhub.elsevier.com/S0195-6698(17)30055-0/sbref1
http://refhub.elsevier.com/S0195-6698(17)30055-0/sbref2
http://refhub.elsevier.com/S0195-6698(17)30055-0/sbref3
http://refhub.elsevier.com/S0195-6698(17)30055-0/sbref4
http://refhub.elsevier.com/S0195-6698(17)30055-0/sbref5
http://refhub.elsevier.com/S0195-6698(17)30055-0/sbref6
http://refhub.elsevier.com/S0195-6698(17)30055-0/sbref7
http://refhub.elsevier.com/S0195-6698(17)30055-0/sbref8
http://refhub.elsevier.com/S0195-6698(17)30055-0/sbref9
http://dx.doi.org/10.1016/j.ejc.2017.04.007
http://refhub.elsevier.com/S0195-6698(17)30055-0/sbref11
http://refhub.elsevier.com/S0195-6698(17)30055-0/sbref12
http://refhub.elsevier.com/S0195-6698(17)30055-0/sbref13
http://refhub.elsevier.com/S0195-6698(17)30055-0/sbref14
http://refhub.elsevier.com/S0195-6698(17)30055-0/sbref15
http://refhub.elsevier.com/S0195-6698(17)30055-0/sbref16

	Counting results for sparse pseudorandom hypergraphs I
	Introduction
	Auxiliary results
	Extending properties BDD and TUPLE

	Extension lemma and corollaries
	Extension lemma
	Corollaries of the extension lemma

	Proof of the main result
	Concluding remarks
	Acknowledgments
	References


