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1. Introduction

Manyproblems in extremal combinatorics concern embeddings of graphs andhypergraphs of fixed
isomorphism type into a large host graph/hypergraph. The systematic study of pseudorandom graphs
was initiated by Thomason [15,16] and since then many embedding results have been developed for
host pseudorandom graphs. For example, a well-known consequence of the Chung–Graham–Wilson
theorem [4] asserts that dense pseudorandom graphs G contain the ‘‘right’’ number of copies of any
fixed graph, where ‘‘right’’ means approximately the same number of copies as expected in a random
graph with the same density as G. In view of this result, the question arises to which extent it can be
generalized to sparse pseudorandom graphs, and results in this direction can be found in [2,3,5,12].
We continue this line of research for embedding properties of sparse pseudorandom hypergraphs.
Counting lemmas for pseudorandom hypergraphs were also investigated by Conlon, Fox and Zhao [6].
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Let G = (V , E) be a k-uniform hypergraph. For every 1 6 i 6 k − 1 and every i-element set
{x1, . . . , xi} ∈


V
i


, let

NG(x1, . . . , xi) =


{xi+1, . . . , xk} ∈


V

k − i


: {x1, . . . , xk} ∈ E


,

i.e., NG(x1, . . . , xi) is the set of elements of


V
k−i


that form an edge of G together with {x1, . . . , xi}. In

what follows, our hypergraphs will usually be k-uniform and will have n vertices. The parameters n
and kwill often be omitted if there is no danger of confusion.

Property 1.1 (Boundedness Property). Let k > 2. We say that an n-vertex k-uniform hypergraph
G = (V , E) satisfies BDD(d, C, p) if, for all 1 6 r 6 d and all families of distinct sets S1, . . . , Sr ∈


V

k−1


,

we have

|NG(S1) ∩ · · · ∩ NG(Sr)| 6 Cnpr . (1)

Property 1.2 (Tuple Property). Let k > 2. We say that an n-vertex k-uniform hypergraph G = (V , E)
satisfies TUPLE(d, δ, p) if, for all 1 6 r 6 d, the following holds. |NG(S1) ∩ · · · ∩ NG(Sr)| − npr

 < δnpr (2)

for all but at most δ


( n
k−1 )
r


families {S1, . . . , Sr} of r distinct sets of


V

k−1


.

The notion of pseudorandomness considered in this paper is given in Definition 1.3.

Definition 1.3. A k-uniform hypergraph G = (V , E) is (d1, C, d2, δ, p)-pseudorandom if |E| = p
 n
k


and G satisfies BDD(d1, C, p) and TUPLE(d2, δ, p).

Note that property TUPLE implies edge-density close to p, but we put the condition |E| =

p
 n
k


in the definition of pseudorandomness for convenience. We remark that similar notions of

pseudorandomness in hypergraphs were considered in [8,9].
A hypergraph H is called linear if every pair of edges shares at most one vertex. Our main

result, Theorem 1.4, estimates the number of copies of some linear k-uniform hypergraphs in sparse
pseudorandom hypergraphs. An embedding of a hypergraph H into a hypergraph G is an injective
mapping φ : V (H) → V (G) such that {φ(v1), . . . , φ(vk)} ∈ E(G) whenever {v1, . . . , vk} ∈ E(H). An
edge e of a linear k-uniform hypergraph E(H) is called connector if there exist v ∈ V (H)\e and k edges
e1, . . . , ek containing v such that |e∩ ei| = 1 for 1 6 i 6 k. Note that, for k = 2, a connector is an edge
that is contained in a triangle. Moreover, since H is linear, e ∩ ei ≠ e ∩ ej for all 1 6 i < j 6 k. Given a
k-uniform hypergraph H , let

dH = max{δ(J) : J ⊂ H} and DH = min{kdH , ∆(H)},

where δ(J) and ∆(J) stand, respectively, for the minimum and the maximum degree of a vertex in
V (J). Note that dH 6 DH .

Kohayakawa, Rödl and Sissokho [12] proved the following counting lemma: given a fixed triangle-
free graph H and p = p(n) ≫ n−1/DH with p = o(1), for all ε > 0 and C > 1, there exists δ > 0 such
that, if G is an n-vertex (DH , C, 2, δ, p)-pseudorandom graph and n is sufficiently large, then |E(H,G)| − nv(H)pe(H)

 < εnv(H)pe(H),

where E(H,G) stands for the set of all embeddings from H into G. The triangle-freeness condition on H
is necessary and the reader is referred to [12] for a detailed discussion of this fact. Our main theorem
generalizes this result for k-uniform hypergraphs.
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Theorem 1.4. Let k > 2 and m > 4 be integers and let ε > 0 and C > 1 be fixed. Let H be a linear
k-uniform connector-free hypergraph on m vertices. Then there exists δ > 0 for which the following holds
for any p = p(n) with p ≫ n−1/DH and p = o(1), and for any sufficiently large n.

If G is an n-vertex k-uniform hypergraph that is (DH , C, 2, δ, p)-pseudorandom, then |E(H,G)| − nmpe(H)
 < εnmpe(H).

This paper is organized as follows. In Section 2 we state an important result, Lemma 2.3, and we
give some results that are needed for the proof of Lemma 2.3. In Section 3 we state the so-called
‘‘Extension Lemma’’, an important step in the proof of Theorem 1.4. In Section 4, we prove Lemma 2.3
and Theorem 1.4. We finish with some concluding remarks in Section 5.

2. Auxiliary results

We begin by generalizing the definitions of BDD and TUPLE to deal not only with sets of k − 1
vertices, but with sets of i vertices, for any 1 6 i 6 k − 1.

Property 2.1 (General Boundedness Property). Let k > 2 and 1 6 i 6 k − 1. We define BDDi(d, C, p) as
the family of n-vertex k-uniform hypergraphs G = (V , E) such that, for all 1 6 r 6 d and all families of
distinct sets S1, . . . , Sr ∈


V
i


, we have

|NG(S1) ∩ · · · ∩ NG(Sr)| 6 Cnk−ipr . (3)

Note that BDDk−1(d, C, p) is the same as BDD(d, C, p).

Property 2.2 (General Tuple Property). Let k > 2 and 1 6 i 6 k − 1. We define TUPLEi(d, δ, p) as the
family of n-vertex k-uniform hypergraphs G = (V , E) such that, for all 1 6 r 6 d, the following holds. |NG(S1) ∩ · · · ∩ NG(Sr)| −


n

k − i


pr
 < δ


n

k − i


pr (4)

for all but at most δ


( n
i )
r


families {S1, . . . , Sr} of r distinct sets of


V
i


. We note that TUPLEk−1(d, δ, p)

is the same as TUPLE(d, δ, p).

Let d > 2 be an integer and let δ > 0. Roughly speaking, the next result (Lemma 2.3) states that if
G is a (2, C, 2, δ′, p)-pseudorandom k-uniform hypergraph on n vertices and p = p(n) ≫ n−1/d, then
G is in fact (2, C, d, δ, p)-pseudorandom for all sufficiently large n as long as δ′ is sufficiently small.

Lemma 2.3. For all δ > 0, C > 1 and integers k, d > 2, there exists δ′ > 0 such that the following holds
when p = p(n) ≫ n−1/d and n is sufficiently large: if G is a (2, C, 2, δ′, p)-pseudorandom k-uniform
hypergraph, then G is (2, C, d, δ, p)-pseudorandom.

Since we have n−1/DH > n−1/dH for any k-graph H , Lemma 2.3 tells us that it suffices to consider
(DH , C, dH , δ, p)-pseudorandom hypergraphs G in the proof of Theorem 1.4.

In the remainder of this sectionweprove some results that are important in the proof of Lemma2.3.
We start with some simple combinatorial facts and in Section 2.1 we, roughly speaking, show how to
obtain properties BDDi for every 1 6 i 6 k − 1 and TUPLE1 from our pseudorandomness assumption.
The proof of the following well-known lemma can be seen in [12].

Fact 2.4. For every δ > 0, there exists γ > 0 such that, if a family of real numbers ai > 0, for 1 6 i 6 N,
and a > 0 satisfy

(i)
N

i=1 ai > (1 − γ )Na,
(ii)

N
i=1 ai

2 6 (1 + γ )Na2,
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then {i : |ai − a| < δa}
 > (1 − δ)N.

Let r > 1 and a > 0. Since
 na

r


/ar

 n
r


→ 1 when n → ∞, we obtain the following lemma, which

provides a combinatorial inequality that will be used often.

Fact 2.5. Let σ > 0, r > 1 and a > 0. Then, the following holds for a sufficiently large n.na
r


− ar

n
r

 6 σar
n
r


.

2.1. Extending properties BDD and TUPLE

In this section we prove two results, Lemmas 2.6 and 2.7, that give conditions for a hypergraph G
to satisfy properties BDDi for every 1 6 i 6 k − 1, and TUPLE1.

Lemma 2.6. Let C > 1 be an integer, let G be an n vertex k-uniform hypergraph and consider 0 < p =

p(n) 6 1. If G satisfies BDD(2, C, p), then G satisfies BDDi(2, C, p) for all 1 6 i 6 k − 1.

Proof. The proof follows by induction on i = k − 1, . . . , 1 and a simple averaging argument. �

The next result gives necessary conditions for a k-uniform hypergraph to satisfy property
TUPLE1(2, δ, p).

Lemma 2.7. For all C > 1, δ > 0 and an integer k > 2, there exists σ > 0 such that the following holds
for p ≫ n−1/2 and sufficiently large n.

If G is a (2, C, 2, σ , p)-pseudorandomn-vertex k-uniformhypergraph, thenG satisfies TUPLE1(2, δ, p).

Proof. We must prove that (4) holds for 1 6 r 6 2. Since the proofs of the cases r = 1 and r = 2 are
similar, we present only the proof for the case r = 2. We will show that the two inequalities required
to apply Fact 2.4 hold.

Fix C > 1, δ > 0 and an integer k > 2. Let γ > 0 be obtained by an application of Fact 2.4 with
parameter δ > 0 and letσ = σ(C, γ ) be a sufficiently small constant. Now let p ≫ n−1/2 and consider
a sufficiently large n. Suppose that G = (V , E) is a (2, C, 2, σ , p)-pseudorandom n-vertex k-uniform
hypergraph. Thus,

{u,v}∈


V
2

 |N(u) ∩ N(v)| =


S∈


V
k−1




|N(S)|
2



>


S∈


V
k−1


: |N(S)|>(1−σ)np


|N(S)|

2



> (1 − σ)


n

k − 1


(1 − σ)pn

2


> (1 − σ)4

n
2

 n
k − 1


p2

> (1 − γ )
n
2

 n
k − 1


p2, (5)
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where the first inequality is trivial, the second follows from TUPLE(2, σ , p), the third inequality
follows from Fact 2.5, and the last one follows from the fact that σ is sufficiently small.

Heading for an application of Fact 2.4 we consider the following sum.
{u,v}∈


V
2

 |N(u) ∩ N(v)|2 =


(S1,S2)∈


V

k−1

2


|N(S1) ∩ N(S2)|
2



=


(S1,S2)∈


V

k−1
2

S1≠S2


|N(S1) ∩ N(S2)|

2


+


S1∈


V

k−1




|N(S1)|
2


. (6)

We will bound the two sums in (6). By BDD(2, C, p), the choice of p and an application of Fact 2.5, we
have 

S1∈


V
k−1




|N(S1)|
2


6


n

k − 1


Cnp
2



6 (1 + σ)C2
n
2

 n
k − 1


p2.

Since p ≫ n−1/2, we obtain
S1∈


V

k−1




|N(S1)|
2


6 σ

n
2

 n
k − 1


p2
2

. (7)

To bound the remaining sum, define A and B as the families of pairs {S1, S2} with S1, S2 ∈


V

k−1


and S1 ≠ S2 such that |N(S1)∩N(S2)| 6 (1+σ)np2 for all pairs in A, and |N(S1)∩N(S2)| > (1+σ)np2
for all pairs in B. By Fact 2.5 we obtain

{S1,S2}∈A


|N(S1) ∩ N(S2)|

2


6

1
2


n

k − 1

2 
(1 + σ)p2n

2



6
(1 + σ)3

2

n
2

 n
k − 1


p2
2

. (8)

By BDD(2, C, p), TUPLE(2, σ , p) and Fact 2.5 applied with σ , r = 2 and a = Cp2, we have
{S1,S2}∈B


|N(S1) ∩ N(S2)|

2


6

σ

2


n

k − 1

2 Cp2n
2



6
σ(1 + σ)C2

2

n
2

 n
k − 1


p2
2

. (9)

Replacing (7)–(9) in (6), we have
{u,v}∈


V
2

 |N(u) ∩ N(v)|2 6


σ +

(1 + σ)3

2
+

σ(1 + σ)C2

2

n
2

 n
k − 1


p2
2

6 (1 + γ )
n
2

 n
k − 1


p2
2

. (10)
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Eqs. (5) and (10) can be seen as inequalities (i) and (ii) in Fact 2.4. Therefore, we conclude that, for
at least (1 − δ)

 n
2


pairs of vertices {u, v} ∈


V
2


, we have |N(u) ∩ N(v)| −


n

k − 1


p2
 < δ


n

k − 1


p2. �

3. Extension lemma and corollaries

In this section we prove a result called Extension Lemma (Lemma 3.1) from where we derive
Corollaries 3.3 and 3.4, which are used in the proof of Theorem 1.4.

3.1. Extension lemma

Before starting the discussion concerning the Extension lemma we shall define some concepts.
Consider k-uniform hypergraphs G and H . Given sequences W = w1, . . . , wℓ ∈ V (H)ℓ and X =

x1, . . . , xℓ ∈ V (G)ℓ, define E(H,G,W , X) as the set of embeddings f ∈ E(H,G) such that f (wi) = xi
for all 1 6 i 6 ℓ. Furthermore, for a sequence Y define the set of its elements by Y set

= {y1, . . . , yℓ}.
We say that a subset of vertices V ′

⊂ V (H) is stable if E(H[V ′
]) = ∅, i.e., if there is no edge of H

contained in V ′.
Let H be a hypergraph with m vertices. We say that H is d-degenerate if there exists an ordering

v1, . . . , vm of V (H) such that dHi(vi) 6 d for all 1 6 i 6 m, where Hi = H[{v1, . . . , vi}]. In this
case, we say that v1, . . . , vm is a d-degenerate ordering of the vertices of H . Note that there is always a
dH-degenerate ordering of H .

Given a sequence W ∈ V (H)ℓ, we define ω(H,W ) = |E(H)| − |E(H[W set
])|, i.e., ω(H,W ) is the

number of edges of H that are not contained inW set.

Lemma 3.1 (Extension Lemma). Let C > 1, m > 1 and k > 2. Let G and H be k-uniform hypergraphs
such that H is linear, |V (H)| = m, |V (G)| = n and p = p(n) = e(G)/

 n
k


. Suppose that 0 6 ℓ 6

max{k, (k − 1)dH}, and let W ∈ V (H)ℓ and X ∈ V (G)ℓ be fixed. If G ∈ BDD(DH , C, p), then

|E(H,G,W , X)| 6 Cm−ℓnm−ℓpω(H,W ).

In particular, if W set
⊂ V (H) is stable, then |E(H,G,W , X)| 6 Cm−ℓnm−ℓpe(H).

For a k-uniform hypergraph H = (V , E) with |V | = m vertices, a positive integer ℓ 6 max{k, (k −

1)dH}, and W ∈ V ℓ, Proposition 3.2 allows us to obtain a DH-degenerate ordering w1, . . . , wm of V
from a dH-degenerate ordering of V such thatW = w1, . . . , wℓ. Consider a sequence L of the vertices
ofH . Given a subsequenceW of V , wewrite L\W for the sequence of L\W obtained from L by deleting
the vertices ofW . Given a sequence of vertices Y in V ℓ, wewrite L′

= (Y , L\Y ) to denote the sequence
L′ of V obtained by removing Y from L and placing it before the elements of L.

Proposition 3.2. Let H = (V , E) be a linear k-uniform hypergraph and let ℓ be an integer with 0 6 ℓ 6
max{k, (k − 1)dH}. If W ∈ V ℓ, then there exists a DH-degenerate ordering w1, . . . , w|V | of V such that
W = w1, . . . , wℓ.

Proof. Fix k > 2 and let H , ℓ and W be as in the statement of the proposition. Note that the result
is trivial whenever W is empty, and if DH = ∆(H), then any ordering of the vertices of H is DH-
degenerate. Therefore, assume DH = k · dH and 1 6 |W | = ℓ 6 max{k, (k − 1)dH}.

Let L be a dH-degenerate ordering of V and put L′
= (W , L \ W ). Given a vertex v of H , define the

left degree of v in L′ as the number of edges e such that v is the rightmost element of e considering the
ordering L′. Since L is dH-degenerate and, by the linearity of H , any vertex v belongs to at most |W |

edges containing vertices ofW , the left degree of v in L′ is at most |W | + dH . We divide the proof into
three cases.
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Case 1: (k − 1)dH > k. In this case, |W | 6 (k − 1)dH . Then, the left degree of any vertex of H in L′ is
at most dH + (k − 1)dH 6 k · dH = DH . Therefore, L′ is a DH-degenerate ordering of V .
Case 2: (k − 1)dH 6 k. Here we have |W | 6 k. If dH > 2, then the left degree of each vertex of H
in L′ is at most k + dH 6 k · dH = DH . Therefore, L′ is a DH-degenerate ordering of V . Thus, we may
assume dH = 1. Note that the only possibility for a vertex v to have left degree larger than k · dH = k
in L′ is if the following holds: |W | = k and, for every w ∈ W , the vertex v belongs to an edge ew

containing w and w is the rightmost element of ew in L. But note that, since dH = 1, there exists at
most one vertex v with this property, otherwise L would not be a dH-degenerate ordering. Let W ′ be
the orderingw1, . . . , wℓ, v. Now consider the ordering L′′

= (W ′, L\W ′). It is clear that all the vertices
ofH have left degree at most 2 6 k ·dH = DH in L′′. Therefore, L′′ is a DH-degenerate ordering of V . �

Now we prove the Extension lemma.

Proof of Lemma 3.1. Fix C > 1, m > 1 and k > 2. Let G and H be k-uniform hypergraphs such
that H is linear with |V (H)| = m, |V (G)| = n and p = p(n) = e(G)/

 n
k


. Let ℓ be an integer with

0 6 ℓ 6 max{k, (k − 1)dH}, and let W ∈ V (H)ℓ and X ∈ V (G)ℓ. Suppose that G ∈ BDD(DH , C, p). By
Proposition 3.2, we know that there exists a DH-degenerate ordering v1, . . . , vm of V (H) such thatW
is its initial segment. We will prove by induction on h that, for all ℓ 6 h 6 m,

|E(Hh,G,W , X)| 6 Ch−ℓnh−ℓpω(Hh,W ), (11)

where Hh = H[{v1, . . . , vh}].
If h = ℓ, the statement is trivial. Suppose that ℓ < h 6 m and

|E(Hh−1,G,W , X)| 6 Ch−1−ℓnh−1−ℓpω(Hh−1,W ).

Since v1, . . . , vm is DH-degenerate we have dHh(vh) 6 DH . By G ∈ BDD(DH , C, p), we know that any
embedding from Hh−1 to G can be extended to an embedding from Hh to G in at most CnpdHh (vh)

different ways. Since ω(Hh,W ) = ω(Hh−1,W ) + dHh(vh), applying the induction hypothesis, we
conclude that

|E(Hh,G,W , X)| 6 CnpdHh (vh)|E(Hh−1,G,W , X)|

6 CnpdHh (vh)Ch−1−ℓnh−1−ℓpω(Hh−1,W )

= Ch−ℓnh−ℓpω(Hh,W ). �

3.2. Corollaries of the extension lemma

Given k-uniform hypergraphs G and H , we write E¬ind(H,G) and E ind(H,G) for the set of non-
induced and induced embeddings from H into G, respectively. The following corollary bounds from
above the number of embeddings in E¬ind(H,G) for some hypergraphs Gwhenever H is linear.

Corollary 3.3. Let C > 1, m, k, η > 0 and p = p(n) = o(1) with m > k > 2. Then, for all
k-uniform hypergraphs G and H, where |V (G)| = n and H is linear with |V (H)| = m the following
holds. If G ∈ BDD(DH , C, p) and n is sufficiently large, thenE¬ind(H,G)

 < ηnmpe(H).

Proof. Fix C > 1, m > k > 2, η > 0 and let p = p(n) = o(1). Let G and H be as in the statement and
let n be sufficiently large.

Fix an edge {x1, . . . , xk} ∈ E(G) and a non-edge {w1, . . . , wk} of H . Applying Lemma 3.1 with
W = (w1, . . . , wk) and X = (x1, . . . , xk), we conclude that the number of embeddings f from
V (H) into V (G) such that f (wi) = xi for 1 6 i 6 k is bounded from above by Cm−knm−kpE(H). Since
G ∈ BDD(DH , C, p), we have |E(G)| 6 Cnkp, from where we conclude that there exist at most Cnkp
choices for {x1, . . . , xk} in E(G). Note that there exist at most

m
k


choices for {w1, . . . , wk} in


V (H)

k


.
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Then,we can choose (x1, . . . , xk) and (w1, . . . , wk), respectively, in Ck!nkp and k!
m

k


ways. Therefore,

|E¬ind(H,G)| 6 Knmpe(H)+1 for some constant K = K(C, k,m). Since p = o(1) the lemma follows for
any η > 0 and any sufficiently large n. �

Let G and H be k-uniform hypergraphs with |V (G)| = n and consider a set X ⊂


V (H)

k−1


. If f

is an embedding from H into G, we denote by fk−1(X) the family of sets {f (x1), . . . , f (xk−1)}, for all
{x1, . . . , xk−1} ∈ X .

Given δ > 0, define BG(δ, r) as the families {X1, . . . , Xr} of r distinct subsets of


V (G)

k−1


such that |NG(X1) ∩ · · · ∩ NG(Xr)| − npr

 > δnpr .

Consider the following definition.

Bstb
G (δ, r) =


{X1, . . . , Xr} ∈ BG(δ, r) :

r
i=1

Xi is stable in G


.

Given r distinct sets X1, . . . , Xr of


V (G)

k−1


, we say that X = {X1, . . . , Xr} is δ-bad if X ∈ Bstb

G (δ, r).
Let H be a k-uniform hypergraph with m vertices and let v1, . . . , vm be a dH-degenerate ordering
of V (H). Define Hi = H[v1, . . . , vi]. We say that an embedding f : V (Hh−1) → V (G) is δ-clean
if fk−1(NHh(vh)) ∉ Bstb

G (δ, dHh(vh)). Moreover, if f : V (Hh−1) → V (G) is not δ-clean, then we say
that f is δ-polluted. We denote the set of embeddings f ∈ E(Hh−1,G) such that f is δ-polluted by
Eδ-poll(Hh−1,G). Similarly, we denote by Eδ-clean(Hh−1,G) the set of embeddings f ∈ E(Hh−1,G) such
that f is δ-clean. The next corollary shows that if H is linear and connector-free then most of the
embeddings from Hh−1 into a sufficiently pseudorandom hypergraph G are clean, for 1 < h 6 m.

Corollary 3.4. Let δ > 0, C > 1, m > 4 and k > 2 be fixed constants. Let H be an m-vertex linear
k-uniform hypergraph that is connector-free and let v1, . . . , vm be a dH-degenerate ordering of V (H).
Suppose that 1 < h 6 m and put r = dHh(vh). If G is (DH , C, dH , δ, p)-pseudorandom, then

|Eδ-poll(Hh−1,G)| 6 δ

r!((k − 1)!)rCh−1−r(k−1) nh−1pe(Hh−1).

Proof. Fix constants δ > 0, C > 1,m > 4 and k > 2. LetH be anm-vertex linear k-uniformhypergraph
that is connector-free. Consider a dH-degenerate ordering v1, . . . , vm of V (H). Let 1 < h 6 m and put
r = dHh(vh). Suppose that G is (DH , C, dH , δ, p)-pseudorandom.

By definition, an embedding f : V (Hh−1) → V (G) is δ-polluted if fk−1(NHh(vh)) ∈ Bstb
G (δ, r). Let

NHh(vh) = {W1, . . . ,Wr} where Wi = {wi,1, . . . , wi,k−1} for all 1 6 i 6 r (note that since H is linear,
the setsW1, . . . ,Wr are pairwise disjoint). Let

Word = (w1,1, . . . , w1,k−1, w2,1, . . . , w2,k−1, . . . , wr,1 . . . , wr,k−1)

be an ordering ofW1 ∪ · · · ∪ Wr . Therefore,

Eδ-poll(Hh−1,G) =


X


Xord

E(Hh−1,G,Word, Xord)


,

where the first union is over all families X = {S1, . . . , Sr} ∈ Bstb
G (δ, r) and the second union is over all

((k − 1)!)r possible orderings of Si for 1 6 i 6 r , and all r! orderings of X . Therefore,

|Eδ-poll(Hh−1,G)| 6

X


Xord

|E(Hh−1,G,Word, Xord)|.

Note that, since Hh is linear and connector-free,


NHh(vh) is stable in Hh. Since G ∈ BDD(DH , C, p)
and |Word| = r(k − 1), we know from the conclusion of Lemma 3.1 that

|E(Hh−1,G,Word, Xord)| 6 Ch−1−r(k−1)nh−1−r(k−1)pe(Hh−1).
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Since r = dHh(vh) 6 dH and G satisfies TUPLE(dH , δ, p), we have
Bstb

G (δ, r)
 6 δnr(k−1). Then, the

first of the sums contains at most δnr(k−1) terms. Since the second sum is over r!((k− 1)!)r terms, we
obtain

|Eδ-poll(Hh−1,G)| 6 δ

r!((k − 1)!)rCh−1−r(k−1) nh−1pe(Hh−1). �

4. Proof of the main result

Before proving Theorem 1.4 we prove Lemma 2.3. The proof of Lemma 2.3 is simple and rely on
Facts 2.4 and 2.5, and Lemma 2.6. For simplicity, we will not make explicit the constants used in its
proof.
Proof of Lemma 2.3. Fix δ > 0, C > 1 and integers k, d > 2, and let 2 6 r 6 d. Let γ > 0 be
obtained by an application of Fact 2.4 with parameters δ. Now let σ = σ(k, r, γ ) be a sufficiently
small constant. Let δ2.7 be obtained by an application of Lemma 2.7 with parameter C , σ and k and put
δ′

= min{δ, δ2.7}. Consider p ≫ n−1/d and let n be sufficiently large.
Suppose G = (V , E) is an n-vertex k-uniform (2, C, 2, δ′, p)-pseudorandom hypergraph. By

Lemma 2.7, the following two inequalities hold, respectively, for more than (1 − σ)n vertices u ∈ V
and for more than (1 − σ)

 n
2


pairs {u, v} ∈


V
2


. |N(u)| −


n

k − 1


p
 < σ


n

k − 1


p, (12) |N(u) ∩ N(v)| −


n

k − 1


p2
 < σ


n

k − 1


p2. (13)

Wemust check that the inequalities (i) and (ii) of Fact 2.4 hold. For inequality (i), consider the following
sum over distinct sets S1, . . . , Sr ∈


V

k−1


.

S1,...,Sr∈


V
k−1

 |N(S1) ∩ · · · ∩ N(Sr)| =


u∈V


|N(u)|

r



> (1 − σ)n


(1 − σ)
 n
k−1


p

r


> (1 − γ )

 n
k−1


r


npr , (14)

where the first inequality follows from (12) and the last one follows from Fact 2.5. It remains to prove
that inequality (ii) of Fact 2.4 holds. Consider the following sum over distinct sets S1, . . . , Sr ∈


V

k−1


.


S1,...,Sr∈


V

k−1


 r
i=1

N(Si)


2

=


(u,v)∈V2


|N(u) ∩ N(v)|

r



=


(u,v)∈V2

u≠v


|N(u) ∩ N(v)|

r


+


u∈V


|N(u)|

r


. (15)

Let us estimate the sums in (15). In view of Lemma 2.6 applied for i = 1we can apply the boundedness
property to bound |N(u)| for every u ∈ V , obtaining

u∈V


|N(u)|

r


6 n


Cnk−1p

r


6 C ′

 n
k−1


r


npr (16)

for some C ′
= C ′(k, r, σ ).
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Now we estimate the remaining sum. Define A and B as the families of pairs {u, v} ∈


V
2


such

that |N(u) ∩ N(v)| 6 (1 + σ)
 n
k−1


p2 and |N(u) ∩ N(v)| > (1 + σ)

 n
k−1


p2, respectively. Since

p2nk−1
≫ 1, Fact 2.5 implies

{u,v}∈A


|N(u) ∩ N(v)|

r


6

n2

2


(1 + σ)p2

 n
k−1


r


6

(1 + σ ′)

2

 n
k−1


r


(npr)2, (17)

where σ ′
= σ ′(r, σ ) is a sufficiently small constant. Similarly, using the boundedness of G and (13)

we obtain
{u,v}∈B


|N(u) ∩ N(v)|

r


6

σn2

2


C(k − 1)k−1p2

 n
k−1


r


6 σ ′

 n
k−1


r


(npr)2. (18)

Replacing (16)–(18) in (15), we have


S1,...,Sr∈


V

k−1


 r
i=1

N(Si)


2

6 (1 + γ )

 n
k−1


r


(npr)2, (19)

where the above sum is over distinct sets S1, . . . , Sr .
Inequalities (14) and (19) can be seen as inequalities (i) and (ii) in Fact 2.4. Therefore, we conclude

that, for more than (1 − δ)


( n
k−1 )
r


families of distinct sets S1, . . . , Sr ∈


V

k−1


, the following holds

for all 1 6 r 6 d. |N(S1) ∩ · · · ∩ N(Sr)| − npr
 < δnpr .

To finish the proof, note that, since δ′ 6 δ and G ∈ TUPLE(2, δ′, p), the following holds for more than
(1 − δ)

 n
k−1


sets S1 ∈


V

k−1


. |N(S1)| − np

 < δnp. �

Proof of Theorem 1.4. Let k > 2 and m > 4 be integers and fix C > 1. Let H be a linear k-uniform
connector-free hypergraph on m vertices. Fix a dH-degenerate ordering v1, . . . , vm of V (H) and put
Hh = H[{v1, . . . , vh}].

We will use induction on h to prove that for every 1 6 h 6 m and for every ε > 0, there exists
δ > 0 such that the following holds when p ≫ n−1/DH and n is sufficiently large: if G is an n-vertex
k-uniform (DH , C, dH , δ, p)-pseudorandom hypergraph (recall that Lemma 2.3 allows us to consider
this stronger pseudorandomness condition on G), then |E(Hh,G)| − nhpe(Hh)

 < εnhpe(Hh). (20)

For every ε > 0 and h = 1 the result is trivial. Thus, assume 1 < h 6 m and suppose the result
holds for h − 1 and for all ε > 0.

Let ε > 0 be given, let ε′
= min{ε/4, ε/6C} and consider δ′

= δ′(ε′) given by the induction
hypothesis such that for p ≫ n−1/DH with p = o(1) the following holds for sufficiently large n. |E(Hh−1,G)| − nh−1pe(Hh−1)

 < ε′nh−1pe(Hh−1). (21)

Fix η = ε′/2 and define r = dHv (vh) 6 dH . Let δ be a sufficiently small constant, and suppose
p ≫ n−1/DH with p = o(1) and n is sufficiently large.

Suppose G is an n-vertex k-uniform (DH , C, dH , δ, p)-pseudorandom hypergraph. An application
of Corollary 3.3 with parameters C , m = h − 1, k, η and p for the graphs Hh−1 and G provides the
following upper bound on the number of non-induced embeddings.E¬ind(Hh−1,G)

 6 ηnh−1pe(Hh−1). (22)
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By Corollary 3.4 applied with δ, C , m and k for the graphs Hh−1 and G, we have

|Eδ-poll(Hh−1,G)| 6 ηnh−1pe(Hh−1). (23)

By (22) and (23),E¬ind(Hh−1,G) ∪ Eδ-poll(Hh−1,G)
 6 2ηnh−1pe(Hh−1) = ε′nh−1pe(Hh)−r .

Then, (21) implies

(1 − 2ε′)nh−1pe(Hh)−r <
E ind

δ-clean(Hh−1,G)
 < (1 + ε′)nh−1pe(Hh)−r . (24)

The next step is to bound from below the number of ways we can extend an embedding f ′
∈

E ind
δ-clean(Hh−1,G) to an embedding f ∈ E(Hh,G). Let f ′ be such an embedding. Since f ′ is clean,

f ′

k−1(NHh(vh)) ∉ Bstb
G (δ, r), i.e., either f ′(


NHh(vh)) is not stable in G or

NG

f ′

k−1(NHh(vh))

− npr

 <

δnpr . Since H is linear and connector-free, it is easy to see that


NHh(vh) is stable in Hh. But since f ′

is an induced embedding, f ′(


NHh(vh)) is stable in G. Therefore,NG

f ′

k−1(NHh(vh))

− npr

 < δnpr . (25)

To obtain an extension f ∈ E(Hh,G) from f ′
∈ E(Hh−1,G) we must choose f (vh) in the set

NG

f ′

k−1(NHh(vh))

\ f ′

V (Hh−1)


. Therefore, the number of such extensions isNG


f ′

k−1(NHh(vh))

\ f ′

V (Hh−1)

 > (1 − δ)npr − (h − 1) > (1 − 2δ)npr , (26)

where the first inequality is due to (25) and the last one follows from the choice of p. By (24) and (26),
we have

|E(Hh,G)| > |E ind
δ-clean(Hh,G)|

>
E ind

δ-clean(Hh−1,G)
 NG


f ′

k−1(NHh(vh))

\ f ′

V (Hh−1)


> (1 − 2ε′)(1 − 2δ)nh−1pe(Hh)−rnpr

> (1 − ε)nhpe(Hh),

where the last inequality follows from the choice of ε′ and the fact that δ is sufficiently small.
To finish the proof we must show that |E(Hh,G)| < (1 + ε)nhpe(Hh). Fix an embedding f ′

∈

E(Hh−1,G). Consider the case f ′
∈ E ind

δ-clean(Hh−1,G). Note that the number of extensions of f ′ to
embeddings from Hh into G is at most

NG

f ′

k−1(NHh(vh))
. Therefore, since δ is sufficiently small and

we have (24) and (25), the number of such embeddings is at mostE ind
δ-clean(Hh−1,G)

 NG

f ′

k−1(NHh(vh))
 6 (1 + ε′)nh−1pe(Hh)−r(1 + δ)npr

6 (1 + ε/2)nhpe(Hh). (27)

Now suppose f ′
∈

E(Hh−1,G) \ E ind

δ-clean(Hh−1,G)

. By (21) and (24), we haveE(Hh−1,G) \ E ind

δ-clean(Hh−1,G)
 6 3ε′nh−1pe(Hh)−r . (28)

But since r = dHh(vh) 6 dH 6 DH and G ∈ BDD(DH , C, p), every embedding f ′ fromHh−1 into G can be
extended to at most Cnpr embeddings f ∈ E(Hh,G). In fact, to see this, apply property BDD(DH , C, p)
to the family


f ′(S1), . . . , f ′(S|NHh (vh)|)


, where {S1, S2, . . . , S|NHh (vh)|} is the neighbourhood of vh inHh.

This fact together with (28) implies that the number of extensions of an embedding in E(Hh−1,G) \

E ind
δ-clean(Hh−1,G) to embeddings from Hh into G is at most (3ε′C)nhpe(Hh) 6 (ε/2)nhpe(Hh). Therefore,

using (27) we conclude that |E(Hh,G)| < (1 + ε)nhpe(Hh). �
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5. Concluding remarks

We say that a graph G = (V , E) satisfies property Q(η, δ, α) if, for every subgraph G[S] induced
by S ⊂ V with |S| > η|V |, we have (α − δ)


|S|
2


< |E(G[S])| < (α + δ)


|S|
2


. In [11,14], answering

affirmatively a question posed by Erdős (see, e.g., [7] and [1, p. 363]; see also [13]), Rödl proved that
for every positive integer m and for every positive α, η < 1 there exist δ > 0 and an integer n0 such
that, if n > n0, then every n-vertex graph G satisfying Q(η, δ, α) contains all graphs with m vertices
as induced subgraphs. In [10], we apply Theorem 1.4 to obtain a variant of this result, which allows
one to count the number of copies (not necessarily induced) of some fixed 3-uniform hypergraph
in hypergraphs satisfying a property similar to Q (η, δ, α), as long as they are subhypergraphs of
sufficiently ‘‘jumbled’’ 3-uniform sparse hypergraphs.
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