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In this Letter we discuss the origin of the asymmetry present in D meson production and its energy
dependence. In particular, we have applied the meson cloud model to calculate the asymmetries in
D−/D+ meson production in high energy pp collisions and find a good agreement with recent LHCb
data. Although small, this non-vanishing asymmetry may shed light on the role played by the charm
meson cloud of the proton.
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1. Introduction

It is experimentally well known [1–6] that there is a significant
difference between the xF (Feynman momentum) distributions of
D+ and D− mesons produced in hadronic collisions with proton,
Σ− and pion projectiles. It is usually quantified in terms of the
asymmetry function:

A = ND− − ND+

ND− + ND+
(1)

where N may represent the number of mesons of a specific type
or its distribution in xF , rapidity y and pT . The recent data of the
COMPASS Collaboration [7] have confirmed the existence of charm
production asymmetries also in γ p collisions. Moreover, the very
recent data from the LHCb Collaboration [8] showed that there is
asymmetry in the production of D+ and D− mesons in proton–
proton collisions at 7 TeV. The origin of these asymmetries is still
an open question. It is not possible to understand these production
asymmetries only with usual perturbative QCD (pQCD) or with the
string fragmentation model contained in PYTHIA. This has moti-
vated the construction of alternative models [9–11] which were
able to obtain a reasonable description of the low energy data and
make concrete predictions for higher energy collisions. The LHCb
data allow us, for the first time, to compare the predictions of the
models with high energy data. Moreover, studying the energy de-
pendence of production asymmetries, it may be possible to learn
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more about forward charm production, which undoubtedly has a
non-perturbative component [10]. In this work we update one of
these models, the meson cloud model or MCM [9], and compare
its predictions with the new LHCb data.

Let us now briefly review some ideas about charm produc-
tion. In perturbative QCD the most relevant elementary processes
which are responsible for charm production are q + q̄ → c + c̄ and
g + g → c + c̄. At high energies, due to the growth of the gluon
distributions, the latter should be dominant. In standard pQCD, af-
ter being produced the c and c̄ quarks fragment independently
and hence, the resulting mesons D+ and D− (also D0 and D̄0)
will have the same rapidity, pT and xF distributions. This is in-
deed true for the bulk of charm production. Differences between
the D+ and D− xF distributions appear at large xF , with D− be-
ing harder. Given the valence quark content of the proton p(uud)

and of the D−(dc̄), a natural explanation of the observed effect
is that the c̄ is dragged by the projectile valence d quark, form-
ing the, somewhat harder, dc̄ bound state. This process has been
usually called recombination or coalescence and it is illustrated in
Fig. 1. This is a non-perturbative process and recombination mod-
els have been first proposed long time ago [12–14] and then used
more recently [15,16] to study the accumulated experimental data
and to make predictions for the RHIC collisions. Unfortunately, the
current RHIC experimental set up did not allow for a precise de-
termination of production asymmetries. However, a more detailed
analysis of the heavy quark sector is expected to be possible in the
upgraded RHIC facility–RHIC II [17].

An alternative way to implement the idea of recombination is
to use a purely hadronic picture of charm production, in which, in-
stead of producing charm pairs and then recombining them with
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Fig. 1. D meson production in a proton–proton reaction. The charm pair is created
by gluon fusion and then the quarks may fragment independently, as it happens
to the c quark in figure, or they can “recombine” or “coalesce” with one of the
projectile valence quarks, as it is the case of the c̄ in the figure. Mesons formed by
recombination are harder since they are “dragged” by the hard valence quark.

the valence quarks, we assume that the incoming proton fluctu-
ates into a virtual charm meson–charm baryon pair, which may be
liberated during the interaction with the target. This kind of fluctu-
ation is unavoidable in any field theoretical description of hadrons
and, in fact, it was shown [18] to be quite relevant to the under-
standing of hadron structure. It has been also successfully applied
to particle production in high energy soft hadron collisions [19,20]
and in [9] it has been extended to the charm sector. This mech-
anism, in which the “meson cloud” plays a major role, is quite
economical and can be improved systematically (see [21] for light
mesons). From now on we shall call it meson cloud model (MCM).
A simple and accurate description of charm asymmetry production
at lower energies (

√
s � 10–40 GeV) within the framework of the

MCM can be found in [22].
Another popular model of forward charm production is the

intrinsic charm model (ICM) [10,11,23]. The existence of an in-
trinsic charm component in the wave function enhances charm
meson production at large xF . While IC, as formulated in [10,11]
is supported by several phenomenological analyses, it is, alone, not
enough to explain the difference between the D+ and D− xF dis-
tributions. It is necessary to add a recombination mechanism (or
“coalescence”) in this kind of model to account for the observed
asymmetries. In [10,11] the intrinsic charm component of the pro-
ton is the higher Fock state |uudcc̄〉 and its existence is attributed
to a multigluon fusion, which is not calculable in pQCD. In [9] the
intrinsic charm component of the proton was a consequence of
the meson–baryon fluctuations mentioned above. In this approach,
since they “feel” the virtual bound states where they once were,
the c and c̄ distributions are different from the beginning and
when they later undergo independent fragmentation their differ-
ence will be transmitted to the final D mesons. Thus, in its “meson
cloud” version, intrinsic charm may account for large xF charm
meson production including the asymmetries. The charm quarks of
the projectile wave function traverse the target and fragment inde-
pendently. In this corner of the phase space this mechanism may
be more effective than gluon fusion because the later generates fi-
nal mesons with an xF distribution peaked at zero. This possibility
was explored in [23].

The appearance of the first LHCb data on asymmetries [8] opens
the exciting possibility of studying the energy dependence of for-
ward charm production. Indeed, more than ten years from the last
data on this subject, we have now data taken at an energy which
is larger than the previous one by a factor of � 200! What do the
models discussed above have to say about the energy dependence
of forward charm production? What will be the fate of the pro-
duction asymmetries? The answer to this question is interesting
not only to the hadron physics community but also to the stud-
ies of CP violation, since a change in the relative yield of particles
and antiparticles may affect the interpretation of their decays and
hence change the amount of CP violation.
Naively, we expect that perturbative processes grow faster and
become more important than non-perturbative ones as the reac-
tion energy increases. As a consequence the asymmetries would
gradually disappear. In [24] a kinematical treatment of this prob-
lem arrived at the conclusion that, as the collision energy grows,
the energy deposition in the central region increases. Baryon stop-
ping also increases, the remnant valence quarks emerge from the
collision with less energy and when they recombine with charm
antiquarks the outgoing charm mesons with these quarks will be
decelerated and their xF distribution will become invisible, buried
under the much higher contribution from the (symmetric) central
gluon fusion. In [16], using a recombination approach, the authors
concluded that the asymmetry remains nearly constant with en-
ergy. In the meson cloud approach of [22] the energy dependence
of the asymmetry A is approximately given by

A ∝ σhp(s)

σcc̄(s)
(2)

where σhp is hadron–proton cross section and σcc̄ is the total cc̄
pair production cross section, which grows faster than the hadronic
cross sections. Therefore the asymmetry decreases with the en-
ergy.

In this work we use the model developed in [22] to study the
recent LHCb data on D+/D− asymmetry and to check if the en-
ergy behavior of this asymmetry can be satisfactorily understood
with this model. The Letter is organized as follows. In the next
section, we discuss the asymmetry production in terms of the me-
son cloud model, presenting the main formulas and assumptions
of the model. In Section 3 we present our results for the asym-
metries in Λ and D production at SELEX (

√
s = 33 GeV) and LHCb

(
√

s = 7 TeV) energies. We compare the results with the current
data and make predictions for

√
s = 14 TeV. Finally, in Section 4

we summarize our main conclusions.

2. Asymmetry production in the meson cloud model

2.1. The interaction between the cloud and the target

In the MCM we assume that quantum fluctuations in the pro-
jectile play an important role. The proton may be decomposed in
a series of Fock states, containing states such as |p〉 = |uudc̄c〉.
In the MCM we write the Fock decomposition in terms of the
equivalent hadronic states, such as |p〉 = |Σ++

c D−〉. This expansion
contains the “bare” terms (without cloud fluctuations), light states
and states containing the produced charmed meson (D or Ds).
The latter are, of course very much suppressed but they will be
responsible for asymmetries. The “bare” states occur with a higher
probability and are responsible for the bulk of charm meson pro-
duction at low and medium momentum (xF � 0.4), including, for
example the perturbative QCD contribution. The cloud states are
less frequent fluctuations and contribute to D production in the
ways described below. More precisely we shall assume that

|p〉 = Z
[|p0〉 + · · · + |M B〉 + · · · + |Λc D̄0〉 + ∣∣Σ++

c D−〉]
(3)

where Z is a normalization constant, |p0〉 is the “bare” proton
and the “dots” denote all possible meson (M)–baryon (B) cloud
states |M B〉 in the proton. The relative normalization of these
states is fixed once the cloud parameters are fixed. The proton is
thus regarded as being a sum of virtual meson–baryon pairs and a
proton–proton reaction can thus be viewed as a reaction between
the “constituent” mesons and baryons of the projectile proton with
the target proton (or nucleus).

With a proton beam the possible reaction mechanisms for D−
meson production at large xF and small pT (the soft regime) are
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Fig. 2. pp collision in which the projectile is in an |M B〉 state. Figures a) and b)
show the “indirect” D± production and c) the “direct” D− production.

illustrated in Fig. 2. In Fig. 2 a) the baryon just “flies through”,
whereas the corresponding meson interacts inelastically produc-
ing a D meson in the final state. In Fig. 2 b) the meson just
“flies through”, whereas the corresponding baryon interacts inelas-
tically producing a D meson in the final state. In Fig. 2 c) the
meson in the cloud is already a D− which escapes (similar con-
siderations hold for D− production with a π− beam). This last
mechanism is the main responsible for generating asymmetries.
We shall refer to the first two processes as “indirect production”
(I) and to the last one as “direct production” (D). The first two
are calculated with convolution formulas whereas the last one is
given basically by the meson momentum distribution in the ini-
tial |M B〉 cloud state. Direct production has been widely used in
the context of the MCM and applied to study n, �++ and π0

production [19]. Indirect meson production has been considered
previously in [20].

Inside the baryon, in the |M B〉 state, the meson and baryon
have fractional momentum yM and yB with distributions called
f M/M B(yM) and f B/M B(yB) respectively (we shall use for them the
short notation f M and f B ). Of course, by momentum conservation,
yM + yB = 1 and these distributions are related by [18,20]:

f M(y) = f B(1 − y). (4)

The “splitting function” f M(y) represents the probability density
to find a meson with momentum fraction y of the total cloud
state |M B〉. With f M and f B we can compute the differential cross
section for production of D , D̄0 and Λc . In what follows we write
the formulas for the specific case of D production but it is easy,
with the proper replacements, to write the corresponding expres-
sions for D̄0 and Λc . In the reaction pp → D− X the differential
cross section for D production is given by

dσ pp→D X

dxF
= Φ0 + ΦI + ΦD (5)

where Φ0 and ΦI refer respectively to “bare” and indirect contri-
butions to D meson production and xF is the fractional longitudi-
nal momentum of the outgoing meson. ΦD represents the direct
process depicted in Fig. 2 c) and is given by [19,20]:

ΦD = π

xF
f D(xF )σΣ p (6)

where f D ≡ f D−/Σ++
c D− and σΣ p is the total pΣ++

c cross section.
In the MCM the proton is from the start replaced by meson (M)

and baryon (B) constituents, which interact independently with
the target. In the projectile frame the M and B constituents can
be considered as approximately free, since their interaction energy
is much smaller than the energy carried by the incoming proton,
which will smash M or B individually. This is sometimes called
the impulse approximation. The subprocesses M +target → D± + X
and B + target → D± + X ′ involve different initial and final states
and their amplitudes are not supposed to be added (and subse-
quently squared). We have rather to compute the corresponding
cross sections, which we call σ Mp and σ Bp , multiply them by the
respective weight, given by the function f (y), and then sum the
cross sections. This is why, in our case, the cross section reduces
to the sum shown in Eq. (5). The splitting function f (y) comes
already from a squared amplitude, it is positive definite and it is
interpreted as a probability [18].

Replacing D± by Λc/Λ̄c in Figs. 2 a) and 2 b), exchanging B
with M and replacing D− by Λc in Fig. 2 c) we have a pictorial
representation of Λc production in the MCM with the following
expression for the direct process:

ΦD = π

xF
fΛ(xF )σ Dp (7)

where fΛ ≡ fΛc/Λc D̄0
and σ Dp is the total D̄0 p cross section. Anal-

ogous expressions can be written for the reaction π− p → D X .

2.2. The asymmetry

Using (5), we can compute the cross sections and also the lead-
ing (D−)/nonleading (D+) asymmetry:

AD(xF ) =
dσ D−

(xF )
dxF

− dσ D+
(xF )

dxF

dσ D−
(xF )

dxF
+ dσ D+

(xF )
dxF

= ΦD + ΦD−
I + ΦD−

0 − ΦD+
I − ΦD+

0

ΦD + ΦD−
I + ΦD−

0 + ΦD+
I + ΦD+

0

� ΦD

ΦD + 2ΦD
I + 2ΦD

0

≡ ΦD

ΦD
T

(8)

where the last line follows from assuming ΦD−
I = ΦD+

I = ΦD
I . This

last assumption is made just for the sake of simplicity. In reality
these contributions are not equal and their difference is an addi-
tional source of asymmetry, which we assume to be less important
than ΦD . Since the “bare” states do not give origin to D−/D+
asymmetries (they represent mostly perturbative QCD contribu-
tions which rarely leave quark pairs in the large xF region), we
have made use of ΦD+

0 = ΦD−
0 = ΦD

0 . The denominator of the
above expression can be replaced by a parametrization of the ex-
perimental data:

ΦD
T = dσ D−

(xF )

dxF
+ dσ D+

(xF )

dxF

= σ D
0

[
(1 − xF )n− + (1 − xF )n+]

� 2σ D
0 (1 − xF )nD (9)

where n− and n+ are powers used by the different collaborations
to fit their data. Typically n+ = 5 and n− = 3.5, as suggested by
the data analysis performed in [1–6]. For the sake of simplicity
we shall assume that n+ = n− = nD = 5 for D mesons. Integrating
the above expression we obtain the total cross section for charged
charm meson production σ D± = 1/3σ D

0 . Assuming isospin sym-

metry the charged and neutral (σ D0
) production cross sections are

equal. Neglecting the contribution of other (heavier) charm states
we can relate the D meson production cross section to the total
c − c̄ production cross section, σcc̄ , in the following way:

σ D± = σ D0 = σ D = 1
σ D

0 = 1
σcc̄ . (10)
3 2
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From the above relation we can extract the parameter σ D
0 from the

experimentally measured σcc̄ :

σ D
0 = 1.5σcc̄. (11)

Inserting (6) and (9) into (8) the asymmetry becomes

AD(xF ) = πσΣ p

2σ D
0

f D(xF )

xF (1 − xF )nD
. (12)

An analogous development can be performed for the Λc/Λ̄c pro-
duction asymmetry, AΛ(xF ). In the analysis made by the SELEX
Collaboration, the differential cross section for Λc production was
parametrized as

ΦΛ
T = dσΛc (xF )

dxF
+ dσ Λ̄c (xF )

dxF

� 2σΛ
0 (1 − xF )nΛ (13)

with nΛ � 2. Integrating the above expression we obtain the total
cross section for Λc and Λ̄c production σΛ = 2/3σΛ

0 , which, ac-
cording to [25], can be related to the total c − c̄ production cross
section, σcc̄ , in the following way:

σΛ = 2

3
σΛ

0 � 0.1σcc̄ (14)

from where we finally have

σΛ
0 = 0.15σcc̄. (15)

Using (4) to obtain fΛ and then inserting (7) and (13) into (8) the
asymmetry AΛ(xF ) can be written as

AΛ(xF ) = πσ Dp

2σΛ
0

fΛ(xF )

xF (1 − xF )nΛ
. (16)

The behavior of (12) [Eq. (16)] is controlled by the splitting func-
tion f D(xF ) [ fΛ(xF )].

2.3. The splitting function

We now write the splitting function in the Sullivan approach
[18,20]. The fractional momentum distribution of a pseudoscalar
meson M in the state |M B ′〉 (of a baryon |B〉) is given by [18,20]:

f M(y) = g2
M B B ′

16π2
y

tmax∫
−∞

dt
[−t + (mB ′ − mB)2]

[t − m2
M ]2

F 2
M B B ′(t) (17)

where t and mM are the four momentum square and the mass
of the meson in the cloud state and tmax = m2

B y − m2
B ′ y/(1 − y)

is the maximum t , with mB and mB ′ respectively the B and B ′
masses. Following a phenomenological approach, we use for the
baryon–meson–baryon form factor F M B B ′ , the exponential form:

F M B B ′(t) = exp

(
t − m2

M

Λ2
M B B ′

)
(18)

where ΛM B B ′ is the form factor cut-off parameter. Considering the
particular case where B = p, B ′ = Σ++

c and M = D− , we insert
(17) into (12) to obtain the final expression for the asymmetry in
our approach:

AD(xF ) = N D

(1 − xF )nD

tmax∫
dt

[−t + (mΣ − mp)2]
[t − m2

D ]2
F 2

pDΣ (19)
−∞
where

N D = g2
pDΣc

σΣc p

32πσ D
0

. (20)

With the replacements gpDΣc → gpDΛc and σΣc p → σΛc p this
same expression holds for the process pp → D̄0 X . With the re-
placements gpDΣc → gpDΛc , σΣc p → σ Dp and σ D

0 → σΛ
0 the

above expression holds for the process pp → Λc X . For the pion
beam, we need also the splitting function of the state |π−〉 →
|D0∗D−〉. In this state, the D meson momentum distribution turns
out to be identical to (17) except for the bracket in the numera-
tor which takes the form [−t + ((m2

π −m2
D0∗ − t)/2mD0∗ )2], and for

trivial changes in the definitions, i.e., g2
M B B ′ → g2

π D D0∗ , F M B B ′ →
Fπ D D0∗ and ΛM B B ′ → Λπ D D0∗ . Realizing that y = xF in the above
equations, we can see that in the limit xF → 1, tmax → −∞ and
the integral in (19) goes to zero. In fact, it vanishes faster than
the denominator and therefore A → 0. This behavior does not de-
pend on the cut-off parameter but it depends on the choice of the
form factor. For a monopole form factor we may obtain asymme-
tries which grow even at very large xF .

To conclude this section we would like to point out that
our calculation is based on quite general and well-established
ideas, namely that hadron projectiles fluctuate into hadron–hadron
(cloud) states and that these states interact with the target. During
the derivation of the expressions for the asymmetry many strong
assumptions have been made. In the end our results depend on
two parameters: Λ and N . Whereas Λ affects the width and posi-
tion of the maximum of the momentum distribution of the leading
meson in the cloud (and consequently of the asymmetry), N is a
multiplicative factor which determines the strength of the asym-
metry.

3. Results and discussion

3.1. The energy dependence

Although the recent data [8] are given in terms of the pseudo-
rapidity η, in order to study the energy dependence it is more
convenient to use the Feynman xF variable, which may be written
as

xF = 2mT cosh(y)√
s

� 2mT cosh(η)√
s

� 2mT eη

√
s

for η > 1. Moreover, if the transverse momentum of the final D
meson is zero or very small, then mT � mD .

In order to study the energy dependence of the asymmetry, we
shall focus on the two energies where we have experimental data:√

s1 = 33 GeV and
√

s2 = 7000 GeV and construct the asymmetry
ratio:

R A ≡ A(
√

s2 )

A(
√

s1 )
= ΦD(

√
s2 )/ΦT (

√
s2 )

ΦD(
√

s1 )/ΦT (
√

s1 )
. (21)

Using the definitions of the splitting function (17) in (6) and then
in (8), many energy independent factors cancel out and we find

R A = A(s2)

A(s1)
=

(
σΣ(s2)

σΣ(s1)

)/(
σ D

0 (s2)

σ D
0 (s1)

)

=
(

σ pp(s2)

σ pp(s1)

)/(
σcc̄(s2)

σcc̄(s1)

)
(22)

where in the last step we have used (11) and assumed that
σΣ = σΣ++

c p = const. σ pp . Moreover, we have neglected the en-
ergy dependence of nD . The above ratios can be estimated with
the recently obtained experimental data listed in Table 1.
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Table 1
Total pp cross section from [26] and total cc̄ production cross section from [27]
as a function of the energy. The first two lines refer to measurements and the
last one shows model calculations described in the corresponding references.

Energy (GeV) σpp (mb) σcc̄ (mb)

33 40 0.04
7000 97 8

14 000 110 11

With these numbers we find that increasing the energy from√
s = 33 GeV to 7000 GeV the asymmetry ratio is R A = 1/75, i.e.,

there is a strong decrease in the asymmetry. This happens be-
cause meson emission (which ultimately causes the asymmetry) is
a non-perturbative process and has a slowly growing cross section.
In contrast, the symmetric processes are driven by the perturbative
partonic interactions, which have strongly growing cross sections.
We end this subsection making the prediction for the order of
magnitude of the D+/D− asymmetry in the forthcoming 14 TeV
pp collisions. Using the last line of Table 1, setting

√
s2 = 14 TeV

and substituting the numbers in (22) we find R A = 1/100 showing
the decreasing trend of the asymmetry.

3.2. Predictions for the asymmetries

Due to the lack of experimental data a direct comparison of
D+/D− asymmetries in the same reaction, e.g. proton–proton, at
different energies is difficult. However, we can relate and compare
similar reactions. In what follows we shall relate the two sets of
data on asymmetries in proton–proton collisions: the low energy
one taken by the SELEX Collaboration [6] and the high energy
one obtained by the LHCb Collaboration [8]. We will fit the data
on Λc/Λ̄c asymmetry. This will fix the value of NΛ and define
a range of possible values for the cut-off ΛD̄0 pΛc

. Using experi-

mental information it is easy to go from the estimate of NΛ to the
estimate of N D and then it is straightforward to calculate the asso-
ciate asymmetry in D̄0/D0. In proton–proton collisions the leading
charm mesons are those with valence quarks and hence D̄0(uc̄)
has the same properties as D−(dc̄). From this approximate equiv-
alence we infer the D−/D+ asymmetry at the lower energy. The
final step is to calculate this asymmetry at the LHC energy. This ex-
trapolation can be done, since the model has a well-defined energy
dependence and fortunately the necessary ingredients (the cross
sections) are already available.

3.2.1. The coupling constants
The coupling constant gpDΛc was estimated in several works

with QCD sum rules [28]. Here we have chosen a representative
number. In our analysis we will also need the coupling gpD−Σ++

c
,

about which, to the best of our knowledge, nothing is known. As a
first guess we will then assume that

gpD−Σ++
c

= gpD̄0Λc
= 5.6. (23)

3.2.2. The interaction cross sections of the cloud particles
The D-proton and Λc-proton total cross sections in the

10–40 GeV range are unknown. We know that the presence of
the heavy quark makes these states much more compact than the
proton and hence with smaller geometrical cross section. In the
well-studied case of the J/ψ-proton cross section, a series of theo-
retical works gradually converged to σ J/ψ p � 4 mb [29]. Moreover,
it was found that, in contrast to the expectation of additive quark
models, σ J/ψ p � σ J/ψπ . Inspired by these previous works we shall
assume that

σ Dp � σΛc p = 0.15σ pp = 6 mb. (24)
Table 2
Parameters used to calculate N at

√
s = 33 GeV.

gpDΛc σ Dp σΛ
0 σΛc p σ D

0

5.6 0.15σ pp 0.15σcc̄ 0.15σ pp 1.5σcc̄

Fig. 3. Comparison of the MCM asymmetry for Λc production with experimental
data [6] for

√
s = 33 GeV.

3.2.3. The production cross sections of the charm particles
The production cross section of charmed hadrons is measured

in some cases and calculated with pQCD in others. In order to have
an estimate of these cross sections it is enough for our present
purposes to use the pQCD results published in [25], from where
we have deduced (11) and (15). All this information is summarized
in Table 2. Starting from the definition (20) and using the numbers
given in Table 2 we have

NΛ = g2
pDΛc

32π

σ Dp

σΛ
0

= (5.6)2

32π

0.15σ pp

0.15σcc̄
� 320 (25)

and also

N D = g2
pDΛc

32π

σΛc p

σ D
0

= (5.6)2

32π

0.15σ pp

1.5σcc̄
� 32. (26)

In Fig. 3, we show the Λc/Λ̄c asymmetry in pp collisions at√
s = 33 GeV. The experimental points are the results obtained

by the SELEX Collaboration. The lines are calculated with Eq. (16)
with the normalization fixed by (25). These data cannot impose a
stringent constraint on the model, but they can establish a range
of acceptable values for the cut-off parameter, which values are
shown in the figure. The outcoming numbers for Λ are those ex-
pected in this kind of meson cloud calculation. If they had been
smaller than 1 GeV or larger than 5, this would have been an evi-
dence against the model.

In Fig. 4, we show the D̄0/D0 asymmetry in pp collisions at√
s = 33 GeV. It was calculated with Eq. (19) with the normaliza-

tion factor given by (26). Since N D is fixed the only free parameter
is the cut-off Λ, which, as it will be seen next, will be fixed so
as to yield a good fit of the D+/D− asymmetry data from the
LHCb Collaboration. Also in this case, the values of Λ used to draw
the curves are quite reasonable. The shapes of Figs. 3 and 4 are
correlated since they refer to the same vertex, where the proton
splits into a meson D̄0 and a baryon Λc . Due to its larger mass
the baryon takes most of the momentum and the resulting asym-
metry peaks at very large values of xF . Complementarily, the D̄0
distribution peaks at lower values of xF , which, nevertheless, are
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Fig. 4. MCM prediction of the D̄0/D0 asymmetry, Eq. (19).

Fig. 5. Comparison of the MCM asymmetry, Eq. (19), with experimental data [8] for
D−/D+ .

still large. The value of the cut-off Λ does not have to be the same
as that used in Fig. 3 because, even though the coupling constant
of a given vertex is always the same, the functional form of the
form factor (as a function of the off-shell particle squared momen-
tum) changes when the off-shell particle changes.

Neglecting differences coming from the different isospin, we
assume that, apart from trivial changes in the masses, the ver-
tex pΣ++

c D− has the same splitting function as the previously
discussed pΛc D̄0 vertex and therefore the asymmetry of D− pro-
duction is given by the same expression used for the D̄0. Now we
try to reproduce the

√
s = 7 TeV LHCb data with Eq. (19). The

only part of this expression which depends on the energy is the
factor N D , which at higher energies will be corrected by the fac-
tor (22):

N D(
√

s = 7 TeV) = R A . N D(
√

s = 33 GeV)

= 1

75
N D(

√
s = 33 GeV). (27)

In Fig. 5 we show Eq. (19) with N D(
√

s = 7 TeV) and compare
with the data, properly rewritten in terms of xF and with the def-
inition (8), which introduces a minus sign with respect to [8]. In
spite of the large error bars we can see that the MCM is able to
reproduce the non-vanishing asymmetry. The data are surprisingly
sensitive to cut-off choices, being able to discriminate small varia-
Fig. 6. Comparison of the MCM asymmetry, Eq. (19), with experimental data [8] for
D−/D+ . Extension of Fig. 5 to the large xF region.

Fig. 7. Prediction of the D−/D+ asymmetry for
√

s = 14 TeV.

Fig. 8. Prediction of the Λc/Λ̄c asymmetry for
√

s = 7 TeV.

tions in Λ. These data cannot yet give a detailed information about
the xF dependence of the asymmetry, but they show clearly that
this asymmetry exists and also that it is much smaller than what
we expect to find at lower energies for pp and than what we have
already found for pion and Σ projectiles. After this close look into
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the data points, this figure deserves a zoom out to reach the xF re-
gion which was scanned in previous lower energies experiments.
This is shown in Fig. 6, from where we draw the most impor-
tant conclusion of this work: the asymmetry definitely decreases
at increasing energies, reaching at most 2% at xF � 0.4. Finally, in
Fig. 7 we show our prediction for the asymmetry to be measured
at

√
s = 14 TeV. For completeness, we present in Fig. 8 our predic-

tions for the Λc asymmetry at
√

s = 7 TeV.

4. Summary

In this Letter we have shown that the MCM provides a good
understanding of the charm production asymmetries in terms of
a simple physical picture with few parameters. It connects the
behavior of the asymmetries at large xF with the charm meson
momentum distribution within the cloud state. We can explain
why we observe asymmetries, why they are different for different
beams and why they decrease with increasing energies.
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