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Animal bioacoustics is an important tool for monitoring different aspects of the physiology, behavior and well-
being of animals remotely, non-invasively and continuously. Studies using this science are growing mainly due to
the development of machine learning. This work aims to investigate the use of machine-learning classifiers to
determine whether calves’ vocalization audio data can be used to assess their welfare condition regarding
feeding. Firstly, we collected several calves’ vocalization audio data before and after feeding the animals at
different day times and ages. Then, eleven time-domain, frequency-domain and sound quality-based metrics
were extracted from these audio data and used as features for the classifiers. These features were used to
determine whether vocalization audio data belonged to before or after feeding classes. Moreover, the most
relevant ones were identified using the Random Forest algorithm. Finally, seven machine-learning classifiers
were trained and tested, considering the entire set of features and a subset containing the most relevant features.
The k-nearest neighbor classifier trained with the subset of the most relevant features obtained a 98.37% ac-
curacy. Both frequency-domain and sound quality features played important roles in this classification. The main
implications of this study are the development of a methodological proposal to study acoustics using machine
learning and the fact that vocalization is a biomarker of animal welfare.

1. Introduction techniques. Macmillan et al. [8] monitored rumination and activity

behavior using a collar-mounted automated activity monitoring system.

Animal welfare encompasses theories concerning an animal’s natural
life, biological functioning, and emotional condition [1-4]. As Nielsen
et al. [4] highlighted, understanding feeding behavior and nutritional
requirements is essential for assessing animal welfare. Calves are usually
fed milk (or milk replacer) twice daily until they are 8 or 9 weeks old.
During this life stage, assessing their welfare at a herd level is of utmost
importance since it can be valuable in assessing the health and growth of
calves [5-6]. Many strategies based on physiology and/or animal
behavior on have been explored for assessing animal welfare using
feeding behavior. On the one hand, de Passillé et al. [7] investigated the
correlation between several physiological behaviors as open-field con-
ditions with sniffing, licking, running, walking, vocalizing, and jumping
with welfare conditions, including feeding behavior. In addition, Mac-
millan et al. [8] and Gaillard et al. [9] propose behavior-monitoring
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Due to the importance of estimating animals’ nutrient requirements,
Gaillard et al. [9] claimed that new technologies, such as real-time
sensing animal condition techniques, should be extensively used.

The relationship between vocal parameters and animal welfare has
been widely investigated due to the potential of vocalizations as
noninvasive indicators of the emotional and physiological state of ani-
mals. Vocal parameters, such as frequency, amplitude, duration and
tonal variation, can reflect responses to the environment, handling
conditions and social interactions. Animals in situations of stress, pain or
discomfort tend to emit vocalizations with distinct characteristics, such
as higher frequencies and greater intensity, compared to states of
relaxation or contentment, which generate softer and more harmonic
sounds. Furthermore, analysis of vocalizations can identify signs of
distress associated with isolation, hunger, thirst or physical restraint,
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allowing adjustments in handling practices [10-13]. Schnaider et al.
[10] realized that high vocal frequency could happen during the arrival
of the calf in the corral and the reunion of the calf and its mother. This
claim was found by assessing the fundamental frequency of vocalization
audio data. Similarly, de la Torre et al. [14] aimed to identify vocal
parameters that can characterize cow and calf contact calls. Shorten and
Hunter [15] used acoustic sensors to automate the detection of cow
vocalization duration and type (open mouth, closed mouth, and mixed
mouth).

Several authors have been addressing animal welfare conditions
using machine learning strategies. In fact, Siegford et al. [16] indicated
that automated behavior analysis tools had been rapidly developed for
use with animals. Regarding the calves’ welfare condition, Gavojdian
et al. [17] proposed the use of machine learning techniques to perform
this evaluation. Jung et al. [18] exploited a deep learning-based cattle
vocal classification model for real-time livestock monitoring, while Peng
et al. [19] extracted and combined multiple acoustic features for cattle
call pattern classification. Our proposal also exploits machine-learning
classifiers to assess calves’ emotional state using vocal audio data.
This emotional state can be further correlated to animal welfare metrics.
The novelty of this work is the inclusion of sound quality-based metrics
in the set of investigated features for the derivation of machine learning
classifiers related to calves’ feeding condition at herd level. Sound
quality refers to how individuals perceive and react to a sound.
Perception is a mental capability shaped by sensory input and influenced
by objective and subjective factors. Sound quality metrics reflect the
extent to which the sound is deemed suitable for that specific aim.
Several metrics have been proposed for evaluating the human percep-
tion of a sound, such as loudness, sharpness, and roughness, among
others [20].

In summary, we investigate the importance of some features
extracted from audio data acquired during calves’ vocalization to
identify their feeding condition at a herd level. The primary objective of
this work is to investigate the use of machine-learning classifiers to
identify if calves’ vocalization audio data belongs to the before-feeding
or after-feeding classes. However, the efficiency of a classifier can be
significantly improved by exploring proper features extracted from the
audio data. Therefore, a secondary objective of this work, which is
equally important, is to evaluate some time and frequency-domain and
sound quality-based features by assessing their importance for the
classification. This evaluation of the features’ importance, denoted as
feature engineering, is a crucial step in our research and could poten-
tially significantly impact the classifiers’ performance. In summary, this
work presents a tool that distinguishes between the vocals of a group of
animals, which can be a manner to assess welfare.

2. Materials and methods
2.1. Ethical note

The study was carried out at Sao Paulo University - Luiz de Queiroz
College of Agriculture (Piracicaba City, Sao Paulo State, Brazil). The
region where the research was conducted is located at the geographical
coordinates 22° 42' 30" S and 47° 38' 00" W and at an altitude of 546 m. It
was approved by the Animal Ethics Committee (CEUA) of the same
university, under protocol n. 582,210,722. The study was carried out in
this same higher education institution and was in compliance with the
Animal Research: Reporting of In Vivo Experiments (ARRIVE)
guidelines.

2.2. Animals

A total of 75 calves aged between 3 and 8 weeks and clinically
healthy were studied. After birth, calves were immediately separated
from their mothers and fed the equivalent of 5% of birth weight with
high-quality colostrum and a dose of powdered colostrum (SSCL, 100 g
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1gG) within 2 h of birth.

Calves were housed in individual hanging cages until 14 days of age
and then in individual shelters until 8 weeks of age (Fig. 1). The animals
had access to drinking water and starter concentrate (20% Crude Pro-
tein). The calves were fed with commercial milk replacer (Agroceres,
Brazil), diluted to 14% solids, in a volume of 6 L/d until 42 days of age, 4
L/d until 49 days and then 2 L/d until weaning at 56 days of age. The
total volume was supplied in teat-buckets for two meals (7am and 5pm).

2.3. Data organization

We acquired this audio data before and after feeding on different
days and calves’ ages (Fig. 2). Subsequently, the data were organized as
before and after feeding the milk replacer (Table 1). The main objective
of collecting audio data sets at different ages (July/2023 and November/
2023) and daytime (morning and afternoon) is to investigate if the same
classifier can be used, considering different animals’ ages and different
daytimes. This is important since a simpler strategy could be used if a
single classifier achieves good accuracy with different data sets.

Some individuals may have produced sound during the acquisition,
while others remained silent. We extracted the samples from the audio
data sets considering the individuals’ variety. This approach corrobo-
rates achieving results at the herd level rather than the individual level.

2.4. Data acquisition

Audio data have been recorded before and after feeding to obtain the
distinct calves’ vocalizations. Calf vocalizations were recorded using a
Sennheiser MKE 200 microphone (frequency response 40-20,000 Hz,
max SPL 120 dB at 1000 Hz) and recorded on a Zoom Hnl digital
recorder with stereo input (sampling rate 44.1 kHz). Each was stored in .
wav format with 16-bit amplitude resolution. The microphone was hung
near the rain houses (Figs. 1 and 2) at a distance of approximately 1 m
above the ground for calf vocal recordings. An audio data sample of a
calf vocalization in the morning before feeding is illustrated in Fig. 3,
and the absolute values of this audio data set’s fast fourier transform
(FFT) are depicted in Fig. 4. The audio data are proportional to the
sound pressure level, a measure that can be acquired in Pa and has been
scaled so that its maximum value is below 15,050. This maximum value
has been arbitrarily selected.

Fig. 1. Experimental location.
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Fig. 2. Calves fed with milk replacer (The organization of the calves dur-
ing feeding).

Table 1

Amount of acquired data during a specific month and day time.
Amount of audio data Before feeding After feeding
July/morning 144 36
July/afternoon 100 36
November/morning 72 10
November/afternoon 48 44
July 244 72
November 120 54
All data 364 126

2.5. Feature extraction

Feature engineering aims to identify pertinent details within raw
data and convert them into a format that a machine-learning based
model can readily explore, improving its performance. In this work, the
raw data consists of audio data sets. Each audio data set contains an
entire vocalization of a single calf. Data containing two vocalizations are
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not considered in this work but may investigated in the future. Aiming to
identify features that may play an important role in the detection of the
feeding status, this work investigates three classes of features:
frequency-domain, time-domain and sound quality metrics. Table 2
describes the eleven features explored in this work.

The features F1 and F2 were derived from the absolute values of each
audio data set’s FFT (depicted in Fig. 4). F1 is the average value of the
FFT’s amplitudes in the frequency range from 0 up to 2600 Hz, while F2
is the frequency value of the FFT’s peak value. The features F4, F5, F6, F7
and F8 are the bin histogram values. This 5-bin histogram is found by
evaluating the actual envelope of the time-domain signal. The actual
envelope is derived by the mean of the upper and lower envelopes.
While Fig. 5(a) illustrates a single time-domain audio data, the upper
and the lower envelopes and the actual envelope, Fig. 5(b) shows the
histogram of the actual envelope with 5 bins. Finally, F11 is the abscissa
of the highest value obtained by deriving a spectrogram. Fig. 6 depicts
the spectrogram of the audio illustrated in Fig. 3. A cross signal high-
lights the highest value.

Acoustic engineers and researchers develop sound quality metrics to
assess sound qualities objectively. This work investigates the use of such
metrics for identifying calves’ vocalization condition. The features F3,
F9, and F10 are sound quality metrics [21], also denoted as
psycho-acoustic models [22]. The following sound quality metrics were
investigated:

Loudness (F3): According to American National Standards Institute
[23], loudness can be defined as the attribute of auditory sensation in
terms of which sounds can be ordered on a scale extending from quiet to
loud. In other words, it is the subjective perception of sound pressure
[20]. This metric was derived for each dataset using the MOSQITO Py-
thon toolbox [21]. MOSQITO offers the possibility of computing the
acoustic loudness of a signal according to the Zwicker method for
time-varying signals according to ISO 532-1:2017 [24].

Roughness (F9): Roughness is understood as the texture perception
of the sound. It depends on the distance between the partials measured
in critical bandwidths [20]. Despite several models have been developed
to compute the acoustic roughness [20], the most commonly used is the
one proposed by Daniel [25]. This calculation is available in MOSQITO
and is used in this work.

Sharpness (F10): Sharpness is a hearing perception associated with
frequency, differently from loudness. Its derivation is carried out by a
specific loudness distribution of the sound using weighting functions. At
MOSQITO, the default weighting functions are defined in DIN
45,692:2009-08 [26].

2.6. Feature engineering

In this study, the objective of the classifiers is to distinguish between
before-feeding and after-feeding classes based on audio data sets. In the
preceding section, we discussed the features under investigation. The
classifiers were trained and tested using the complete feature set and a
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Fig. 3. Audio data of a calf mooing in the morning before feeding.
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Fig. 4. The absolute value of sound signal’s FFT

Table 2

Frequency-domain, and Psycho-acoustic metrics.
Feature (Fj) Description Metric’s Nature
F1 Frequencies’ Mean Frequency-domain
F2 Max. Amplit.’s Freq. Frequency-domain
F3 Loudness Sound quality
F4-F8 Histogram Time-domain
F9 Roughness Sound quality
F10 Sharpness Sound quality
F11 Spectrum Frequency-domain

carefully selected subset of the most significant features using feature
selection.

Feature selection plays a crucial role in improving the performance
of classification models while reducing computational complexity. As
highlighted in previous research by Khaire and Dhanalakshmi [27],
evaluating the importance of features allows for identifying those most
relevant to the task at hand, enhancing model accuracy. By using a more

of a calf mooing in the morning before feeding.

compact yet pertinent subset of features, we can streamline the model
and improve its efficiency.

This study focus on applying the Random Forest (RF) algorithm to
select the most relevant features for classification from a set of 11 fea-
tures, as described in Table 2. The RF algorithm has been widely used in
previous works [28-29] for classification, regression, and feature se-
lection tasks. It constructs multiple decision trees, as shown in Fig. 7,
and uses the average of these trees to determine the final classification
output [30]. In this work, we generate 100 decision trees to derive this
average and assess their effectiveness in identifying the most significant
features for classification.

In Fig. 7, target=0 means that the data set was acquired before
feeding the animals (before-feeding class), and target=1 means that the
data set was acquired after feeding the animals (categorized as the after-
feeding class). The features are denoted as F?, and each decision tree
consists of a root node, intermediate nodes, and leaf nodes. The figure
illustrates a decision tree with three nodes, i.e. a decision tree with a
single intermediate node. An optimal decision is made for each node
using the Gini impurity measure to identify the most relevant features
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Fig. 5. (a) Time-domain audio data and envelopes and (b) Histogram with 5 bins.
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Fig. 6. Spectrogram and its highest value.
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Fig. 7. Illustration of a Decision Tree for Classification of before-feeding and
after-feeding classes.

for the classifications.

The decision values can be either "true" or "false" based on the con-
dition F?>Value, as depicted in Fig. 7. It is worth noting that a decision
tree may have fewer nodes than the total number of features, high-
lighting the possibility of classification with a reduced feature set con-
sisting of the most critical features. This reduced set was adopted in our
study.

2.7. Machine-learning based classifiers

This work exploits two sets of features: the entire set containing 11
features and a reduced subset containing the most relevant ones. This
investigation compares seven well-known machine-learning based
classifiers: k-nearest neighbors (k-NN) [31], support vector machines
considering a linear Kernel function (SVM-Linear) [32-33], support
vector machines considering radio basis Kernel function (SVM-RBF)
[32-33], decision tree (DT) [34], RF [28-29], multi-layer perceptron
(MLP) [35] and AdaBoost [36]. For completeness, these classifiers and
their hyperparameters are briefly explained. In this work, we used the
Python library scikit-learn to implement the classifiers.

2.7.1. k-nearest neighbor (k-NN)

The k-NN classifier, introduced by Cover and Hart [31] in their
seminal work, operates by assigning the class label of the most
frequently occurring pattern among the k nearest training samples. For
example, when k = 1, the assigned pattern corresponds to the nearest
neighbor.

This assignment can be carried out uniformly or weighted according
to a distance metric between the samples. In this work, the distance
metrics investigated are Euclidean and Manhattan distance metrics,
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according to Table 3. The former metric corresponds to the Euclidean
distance, while the latter corresponds to the sum of the absolute dif-
ferences between the samples’ Cartesian coordinates.

One notable advantage of this approach is its ability to create a de-
cision surface that readily adapts to the distribution shape of the training
data. However, a significant drawback lies in the complexity of the
training phase, which involves the derivation of multiple distance
metrics and the sorting and verification of several neighboring samples.

2.7.2. Support vector machine (SVM) - Linear and RBF

Support Vector Machine (SVM) is a supervised learning method
designed to derive a hyperplane, often referred to as a "hard margin’,
that effectively separates data patterns. In Fig. 8, one can perceive two
distinct patterns categorized as ’target = 0" and ’target = 1,” visually
represented by the hyperplane equation wT-xi+b = 0. The data points
closest to this hyperplane are referred to as ’support vectors’. The co-
efficients w and b are determined during the training phase.

The primary objective is to maximize the distances between the
hyperplane and these support vectors, as outlined by [32-33]. However,
there are scenarios where a hyperplane cannot perfectly separate data-
sets. In such cases, a dimensionless transformation can be applied to the
input sets using Kernel functions, which reshape the data to be linearly
separable. Various Kernel functions have been proposed in the litera-
ture, and our study investigates two specific ones: the linear and the
Radial Basis Function (RBF) Kernel functions, as discussed by [33].

Additionally, SVM allows for some margin violations by imposing a
penalty factor on the optimization problem. This penalty factor is known
as the box constraint, represented by hyperparameter *C’. This approach
is referred to as ’soft-margin’ SVM. The RBF Kernel function introduces a
hyperparameter, denoted as ’Y’, which controls the degree of flexibility
in this transformation. In Fig. 8, one can observe the concept of soft
margins applied to our case study.

2.7.3. Decision tree (DT) and random forest (RF)

A Decision Tree (DT), as depicted in Fig. 7, is a series of if-else
statements created during the training stage and can be used as a clas-
sification tool [34].

The tree begins at the root node, progresses through intermediate
nodes, and terminates at the leaves, as shown in Fig. 7. It’s important to
note that as the tree depth increases, the number of samples required for
tree expansion doubles at each level. Users can control the tree’s depth
using the hyperparameter *'max_depth’ to mitigate overfitting. Similarly,
the user can regulate the number of features considered at each

Table 3
Classifiers’ grid parameters.

Classifier Parameters Range

k-NN k 1,3,5,7,13

k-NN weights uniform and distance

k-NN metric Euclidean and Manhattan

SVM- C 0.01, 0.02, 0.05, 0.1, 0.2, 0.25, 0.3, 0.33, 0.4, 0.5,

Linear 0.75,0.9,1,2,3

SVM-RBF C 0.01, 0.02, 0.05, 0.1, 0.2, 0.25, 0.3, 0.33, 0.4, 0.5,
0.75,0.9, 1, 2, 3, 5, 10, 20, 50, 100, 150

SVM-RBF 0.01, 0.02, 0.05, 0.1, 0.2, 0.25, 0.3, 0.33, 0.4, 0.5,
0.75,0.9,1,2,3

DT max_depth 1,2,3,4,5,6,7,8,9, 10,11, 12, 13, 14, 15, 16, 17,
18, 19, 20

DT max_features auto, sqrt, log2

RF max_depth 1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20

RF max_features auto, sqrt, log2

RF n_estimators 50, 70, 80, 90, 100, 110, 120, 130, 150

MLP alpha 0.0001, 0.001, 0.01, 0.1, 1, 10

MLP solver Ibfgs, sgd, adam

MLP activation identity, logistic, tanh, relu

Adaboost n_estimators 50, 70, 80, 90, 100, 110, 120, 130, 150

Adaboost learning rage 0.0001, 0.001, 0.01,0.1,1,9
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Fig. 8. Illustration of a soft-margins SVM-based classifier.

branching decision using the ’'max_features’ hyperparameter. This
hyperparameter can be automatically determined or manually set based
on factors such as the square root or logarithm of the total number of
features. For example, the algorithm uses 5 randomly selected features
in the splitting process if the *'max_features’ is set to 5.

As mentioned, the Random Forest (RF) algorithm calculates several
decision trees and their average results in the output’s classifier [30].
Several decision trees have been evaluated during the training stage.
This hyperparameter is denoted as the number of estimators
(’n_estimators’).

2.7.4. Multi layer perceptron (MLP)

A Multi-Layer Perceptron (MLP) classifier maps an input dataset,
x € R, into appropriate targets (outputs), o- € RO (Rumelhart and
McClelland, 1987). In this work, we evaluated the performance of this
classifier considering two input subsets I = 11 or I=the number of
relevant features, and two possible outputs (target = 0 or target = 1)
yield O = 1. An MLP, also defined as a feed-forward artificial neural
network model, is composed of input, hidden and output layers. The
user can specify the number of hidden layers since it is a hyper-
parameter. In this work, we used 2 hidden layers and 100 neurons in
each layer.

A single layer of an MLP can be mathematically described by

fx) = G{(2) + 2)[s((1) + (1)x)]} ¢

with bias vectors b(1), b(2); weight matrices W(1), W(2) and activation
functions G and s.

Weight matrices are determined through an optimization process in
the training phase. A variety of optimization solvers can be applied,
including the Limited-Memory BFGS, the stochastic gradient descent
and Adam methods [37]. Our study considers these optimization solvers
as hyperparameters denoted as ’1bfgs,” *sgd,” and ’adam,’ respectively.

Given that a is the input for the activation functions, we can define
the typical activation functions, G: the identity (which returns a), the
logistic sigmoid function (which 1/(1 + exp(—a)), the hyperbolic tan
function (which returns tanh(a)) and the rectified linear unit function
(which returns max(0, a)). In this work, these activation functions are
denoted as ’identity’, ’logistic’, "tanh’ and 'relu’, respectively.

Aiming to mitigate overfitting, we also used a regularization term
labeled ’alpha’. This term controls the magnitude of the weights. By
increasing ’alpha’, simpler decision boundary curves are produced,
while more complex decision boundaries can be derived by reducing’
alpha’. More details about the MLP method can be found at [38].

2.7.5. AdaBoost
The AdaBoost algorithm is known for its effectiveness in binary
classification problems, as discussed by Breiman (2001). This algorithm
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leverages boosting iterations of weak learners to create a strong learner.
Typically, a weak learner comprises a simple tree structure, denoted as a
decision stump, consisting of a root node and two leaves (for binary
classification).

AdaBoost constructs a decision stump during each iteration based on
a decision metric, such as the Gini impurity measure. In the training
phase, the importance of features in creating an effective classifier in-
fluences the likelihood of a feature being included in the next evalua-
tion. The algorithm goes through numerous boosting iterations,
resulting in multiple decision stumps. The final classification is deter-
mined by the most common output across these decision stumps.

The ’'n_estimators’ hyperparameter allows users to specify the
maximum number of evaluations, and the algorithm may terminate
earlier upon convergence. Moreover, there is a ’learning rate’ hyper-
parameter, which can adjust the contribution of each decision stump.
However, a high learning rate can lead to premature convergence.

2.8. Statistical analysis

We investigated seven different classifiers to derive machine-
learning classifiers and identify whether calves’ vocalization audio
data belongs to the before-feeding or after-feeding classes. The data set
was divided into training and testing using the stratified cross-validation
method with k-fold=5. During the training stage, a grid search was
carried out considering several hyperparameters, as detailed in Table 3.
We used the set of best hyperparameters for each classifier to derive the
results discussed in this section.

We split up the audio data sets in different manners to investigate the
role of the daytime and the calves’ age in the vocalization. For instance,
we investigated the audios acquired in July/morning and July/after-
noon to verify the impact of the daytime on the results. The same
reasoning has been exploited considering the audios acquired in
November/morning and November/Afternoon. We also considered all
the data obtained in July and November to understand the role of age in
the classifiers. Finally, we derived classifiers including all data acquired
in the morning/afternoon and July/November. This final investigation
is the most important since it can indicate if a single classifier can
distinguish the before-feeding and the after-feeding classes.

The performance of these classifiers is compared using accuracy
(ACC), Fl-score [39], training, and testing times. The computational
routine was developed in Python 3 using the scikit-learn library, among
others.

3. Results and discussion

Table 4 presents the performance of the classifiers based on all fea-
tures listed in Table 3, along with their optimal hyperparameters. When
analyzing data from distinct times of day (July morning, July afternoon,
November morning, and November afternoon), both the k-NN and SVM-
RBF classifiers achieved perfect accuracy and F1-scores of 100%. These
classifiers also exhibited fast training and testing times, making them
efficient for practical applications.

When considering the age of the calves (July and November), the k-
NN classifier performed exceptionally well, achieving 98.73% accuracy
in July and 100% in November. These findings suggest that the k-NN
classifier can effectively handle variations in calves’ ages, highlighting
its robustness in differentiating between the before-feeding and after-
feeding classes. Notably, the k-NN classifier also achieved 100% accu-
racy across the entire dataset, reinforcing its versatility. The results
demonstrate that the k-NN classifier can reliably distinguish between
the before-feeding and after-feeding states, independent of the time of
day or the age of the calves when all features are considered. However, it
is important to acknowledge that deriving the 11 features can be
computationally demanding, which may limit real-time application in
certain conditions.

From an animal welfare perspective, these findings underscore the
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Table 4
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Classifiers’ performance considering all features - before-feeding and after-feeding classes.

Classifier Month/day time ACC Performance Indicators Ttrain(s) Ttest(s) Best hyperparameters
F1-Score
- - - - - metric k weights
July/morning 100 100 0.0015 0.0080 euclidean 1 uniform
July/afternoon 100 100 0.0053 0.0036 manhattan 1 uniform
k-NN November/morning 100 100 0.0016 0.0010 manhattan 13 distance
November/afternoon 100 100 0.0049 0.0120 euclidean 13 distance
July 98.73 97.99 0.090 0.016 euclidean 1 uniform
November 100 100 0.0094 0.0018 euclidean 5 distance
All data 100 100 0.0130 0.0021 manhattan 1 uniform
- - - - - C
July/morning 100 100 0.1221 0.0005 0.20
July/afternoon 91.18 89.04 0.1645 0.0005 0.20
SVM-linear November/morning 100 100 0.2894 0.0003 0.25
November/afternoon 86.96 86.00 2.1309 0.0004 0.50
July 92.41 86.19 0.3971 0.0005 0.20
November 84.09 78.11 8.6495 0.0007 0.20
All data 80.49 76.04 2.9192 0.0010 0.20
- - - - - C & gamma
July/morning 100 100 0.0060 0.0010 2&0.01
July/afternoon 100 100 0.0045 0.0005 0.9 & 0.02
SVM-RBF November/morning 100 100 0.0013 0.0003 0.9 & 0.01
November/afternoon 100 100 0.0019 0.0003 0.4 & 0.01
July 98.73 97.99 0.0067 0.013 0.9 & 0.01
November 68.18 40.54 0.0034 0.0012 2 & 0.01
All data 95.12 94.20 0.0115 0.026 2 & 0.01
- - - - - max_depth & max features
July/morning 98.67 98.54 0.0014 0.0002 7 & sqrt
July/afternoon 100 100 0.0010 0.0001 7 & log2
DT November/morning 100 100 0.0043 0.0002 8 & auto
November/afternoon 95.65 95.52 0.0036 0.0002 5 & log2
July 96.20 94.25 0.0012 0.0002 11 & sqrt
November 88.64 87.55 0.0014 0.0002 17 & log2
All data 98.37 98.15 0.0053 0.0002 19 & auto
- - - - - max_depth max_features n_estimators
July/morning 100 100 0.2313 0.0073 7790
July/afternoon 100 100 0.1196 0.0045 7970
RF November/morning 95.2 82.1 0.2262 0.0082 7 7 150
November/afternoon 95.65 95.52 0.0709 0.0027 127 50
July 96.20 94.25 0.0067 0.0013 7780
November 97.73 97.33 0.2804 0.0081 117100
All data 95.93 95.20 0.1699 0.0050 107 70
- - - - - activation alpha solver
July/morning 100 100 0.6887 0.0004 identity 0.0001 lbfgs
July/afternoon 91.18 85.73 0.4109 0.0012 logistic 0.001 1bfgs
MLP November/morning 100 100 0.2411 0.0005 tanh 0.01 adam
November/afternoon 91.30 91.15 0.4022 0.0010 tanh 0.0001 1bfgs
July 91.14 83.37 0.3470 0.0004 identity 0.01 1bfgs
November 88.64 86.03 0.8905 0.0005 logistic 0.001 1bfgs
All data 84.55 79.29 0.7549 0.0011 tanh 10 adam
- - - - - learning rate & n_estimators
July/morning 100 100 0.2313 0.0073 1&90
July/afternoon 100 100 0.1789 0.0112 0.1 & 80
AdaBoost November/morning 100 100 0.2148 0.0165 0.1 & 130
November/afternoon 95.65 95.52 0.1241 0.0102 0.1&70
July 98.73 97.89 0.3204 0.0222 1& 130
November 97.73 97.33 0.3842 0.0230 1& 110
All data 94.31 93.38 0.2128 0.0130 1&90

potential of using animal acoustics as a phenotypic biomarker to assess
the well-being of calves. Acoustic features, particularly those related to
vocalizations, can be a non-invasive indicator of various aspects of an-
imal health, including feeding behavior and stress levels. This biomarker
could contribute to a more comprehensive assessment of calves’ welfare
at the herd level when combined with other welfare indicators, such as
behavioral observations or physiological measures.

From a set of 11 features (Table 2), the RF algorithm derived the
most relevant ones for identifying the before-feeding and after-feeding
classes according to their importance. The RF algorithm operates by
evaluating how each feature contributes to the prediction, helping to
identify key features that can be used to differentiate between the two
classes. For illustration, Fig. 9 shows the importance of the features
according to the RF algorithm for the data acquired in November. In this

case, the most important features are F10, F9, F3, and F2: three are
sound quality-based metrics, while the other is a frequency-domain-
based metric. This finding suggests that sound quality metrics signifi-
cantly distinguish between the before-feeding and after-feeding classes,
potentially reflecting important physiological or behavioral changes
that occur before and after feeding events. Sound-based metrics are
often sensitive to environmental and behavioral factors, and their
dominance in the feature set may indicate that audio signals are strongly
correlated with the feeding process.

Fig. 10 depicts the correlation between the selected features. One can
observe that the diagonal of this plot presents values equal to one, as
expected since each feature is perfectly correlated with itself. More
importantly, the values out of the diagonal should be smaller than one,
demonstrating that the features are not highly correlated with each
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Fig. 9. Features’ importance according to Random Forest algorithm for data acquired in November.
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Fig. 10. Features’ correlation data acquired in November.

other. The analysis of correlations is critical in feature selection, as
highly correlated features can introduce redundancy, which might
negatively affect the performance of machine learning models. In this
case, the highest correlation values are 0.44 and 0.43 between F3/F9
and F2/F9, respectively. These moderate correlations indicate that while
the features are not entirely independent, the redundancy between them
is adequate. The lack of highly correlated features in the selected set is
an important outcome, as it confirms that the RF algorithm has identi-
fied a diverse and complementary set of variables. This diversity en-
hances the robustness of the model, ensuring that it leverages different
aspects of the data to improve predictive performance.

Table 5 describes the most important features, considering the
different daytime and calves’ ages. The RF algorithm selected two
frequency-based metrics (F1 and F2), one time-domain metric (F4), and
two sound quality-based metrics (F3 and F10) to serve as input for the
classifiers when considering all data. The selection of both frequency-
based and time-domain metrics indicates that the RF algorithm recog-
nizes the relevance of the data’s spectral and temporal characteristics in
differentiating feeding conditions. Frequency-based metrics, such as F1

Table 5

Features selected by random forest algorithm.
Month/ day time Features
July/ morning Fy, Fy, Fy

Fy, Fa, F3, Fy, Fro
F1, F, F3, F7, Fg, F1y

July/ afternoon
November/ morning

November/ afternoon F3, Fs, Fo, F1o
July Fy, Fa, F3, Fy
November Fa, Fs, Fo, F1o
All data F1, F, F3, F4, F1o

and F2, likely capture critical patterns related to the acoustic environ-
ment during feeding. The inclusion of the time-domain metric F4 further
suggests that temporal features, such as the duration and intensity of
sounds over time, are important for detecting shifts in feeding behavior.
This metric may also capture variations in feeding activity that occur
over time, such as changes in the pacing or frequency of feeding events.
Notably, the two sound quality-based metrics (F3 and F10) are of
particular interest. The fact that the RF algorithm highlights sound
quality features implies that the quality of sound, rather than just the
quantity or frequency, can be a sensitive indicator of feeding conditions.
Sound quality-based features are often associated with the clarity,
richness, or sharpness of sounds, which can vary based on the animal’s
feeding behavior, the environment, and even the animal’s welfare.
Therefore, sound quality metrics may provide a higher level of sensi-
tivity to feeding conditions compared to traditional methods, potentially
leading to more accurate and timely detection of feeding events.

Table 6 describes the performance of the investigated classifiers
considering the set of selected features, as shown in Table 5, and the best
hyperparameters. The results indicate that when considering distinct
daytimes (July/morning, July/afternoon, November/morning, and
November/afternoon), the best classifiers were the k-NN, the SVM-RBF,
the DT, and the RF. These four classifiers achieved perfect scores of
100% in both accuracy and F1-score for the conditions of July/morning,
July/afternoon, and November/morning. This performance clearly in-
dicates that these classifiers are well-suited for detecting feeding con-
ditions under varying daytime conditions.

The fact that these classifiers scored 100% accuracy and F1-score
across different time periods suggests that the selected featur-
es—derived from sound quality, frequency, and time-domain metri-
cs—are robust and effective for distinguishing between feeding
conditions. The classifiers’ consistency across different times of day
highlights their generalizability and reliability in real-world
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Classifiers’ performance considering the features selected by RF - Before and After Dairy.

Classifier Month/day time ACC Performance F1-Score Indicators Ttrain(s) Ttest(s) Best parameters

- - - - - metric k weights
July/morning 100 100 0.0050 0.0103 euclidean 1 uniform
July/afternoon 100 100 0.0057 0.0084 manhattan 1 uniform
k-NN November/morning 100 100 0.0223 0.0121 euclidian 1 uniform
November/afternoon 95.65 95.52 0.0036 0.025 manhattan 13 distance
July 100 100 0.063 0.0222 euclidean 1 uniform
November 100 100 0.0133 0.0062 euclidean 5 distance
All data 98.37 98.12 0.0117 0.0037 manhattan 3 distance
- - - - - C

July/morning 88.89 80.00 0.0050 0.0103 0.05

July/afternoon 88.24 83.65 0.4120 0.0018 0.20

SVM-linear November/morning 95.24 82.05 0.4785 0.0017 0.25

November/afternoon 82.61 82.58 0.138 0.0014 0.50

July 88.61 79.90 0.2964 0.0034 0.20

November - - - - -

All data - - - - -

- - - - - C & gamma

July/morning 100 100 0.0059 0.0017 0.75 & 0.02

July/afternoon 100 100 0.0028 0.0014 0.75 & 0.01

SVM-RBF November/morning 100 100 0.0034 0.0014 0.9 & 0.01

November/afternoon 95.65 95.62 0.0040 0.0018 3 & 0.01

July 100 100 0.0076 0.036 1&0.02

November 100 100 0.0047 0.0023 0.75 & 0.01

All data 67.48 40.29 0.0097 0.040 2&0.01

- - - - - max depth & max features

July/morning 100 100 0.0038 0.0013 16 & sqrt

July/afternoon 100 100 0.0032 0.0015 7 & auto

DT November/morning 100 100 0.0037 0.0013 4 & sqrt

November/afternoon 95.65 95.52 0.0044 0.0011 15 & log2

July 100 100 0.4488 0.0164 16 & sqrt

November 97.73 97.33 0.0048 0.0019 17 & auto

All data 75.61 68.94 0.0040 0.0020 4 & auto

- - - - - max depth max features n estimators
July/morning 100 100 0.1133 0.0049 7 7 90
July/afternoon 100 100 0.1662 0.0102 7 7 110

RF November/morning 100 100 0.2112 0.0031 7 7 50
November/afternoon 95.65 95.52 0.0791 0.0039 7 13 50

July 100 100 0.4488 0.0164 10 10 90
November 100 100 0.3289 0.0065 7 14 90

All data 95.12 94.29 0.2076 0.0108 7 7 80

- - - - - activation alpha solver
July/morning 88.89 80.00 0.1361 0.0019 identity 0.0001 Ibfgs
July/afternoon 85.29 82.78 0.5790 0.0031 tanh 0.01 Ibfgs
MLP November/morning 100 100 0.2112 0.0031 logistic 0.1 Ibfgs
November/afternoon 100 100 0.1248 0.0022 identity 0.01 Ibfgs
July 88.61 78.62 0.7726 0.0035 identity 1 Ibfgs
November 79.55 74.86 0.2691 0.0026 logistic 1 adam
All data 68.29 42.93 0.1011 0.0032 identity 0.0001 adam

- - - - - learning rate & estimators

July/morning 100 100 0.0818 0.0083 1&30

July/afternoon 100 100 0.1563 0.0119 0.1 &70

AdaBoost November/morning 85.71 65.95 0.1318 0.0138 0.1 & 50

November/afternoon 95.65 95.52 0.1141 0.0106 0.01 & 70

July 100 100 0.1532 0.0084 1&30

November 93.18 91.99 0.2637 0.0219 1 & 130

applications, where conditions might vary. Additionally, the high per-
formance across different daytimes might reflect the fact that the
feeding behaviors and corresponding acoustic signals do not undergo
significant changes depending on the time of day, further suggesting that
the classifier’s decision-making process is based on strong, invariant
patterns in the data.

Interestingly, while the testing times for the k-NN, SVM-RBF, DT, and
RF classifiers are fast, the training times for the RF classifiers appear
more demanding. This difference in computational demands is an
important consideration for real-time applications. While RF classifiers
may provide robust performance with high accuracy, the need for longer
training times might limit their usability in systems that require quick
model updates or real-time feedback. This tradeoff between accuracy
and computational efficiency is a common challenge in machine
learning applications, and in practice, the choice of classifier may

depend on the specific requirements of the system. For example, if real-
time predictions are a priority, k-NN or SVM-RBF might be preferred due
to their faster training and testing times, even though RF offers slightly
superior predictive accuracy in certain cases.

When considering distinct calves’ ages (July and November), the
best classifiers were again the k-NN, SVM-RBF, and RF, all achieving
100% accuracy in both July and November. This suggests that the
classifiers can handle variability in the data associated with age, further
emphasizing the robustness of the selected features. The ability to
maintain high accuracy across different age groups indicates that the
model is relatively insensitive to age-related differences in feeding
behavior or acoustic signals, which is important for developing a
generalized system.

The k-NN classifier achieved 98.37% accuracy when considering all
data and the selected features, which is very close to 100%, indicating
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that even with slight variations in performance across data subsets (e.g.,
time of day or age), the overall accuracy remains exceptionally high.
This is a noteworthy result, as it demonstrates that the k-NN classifier,
despite being relatively simple compared to more complex classifiers.
This is particularly valuable in scenarios where simplicity, interpret-
ability, and computational efficiency are prioritized over marginal gains
in accuracy.

From these results, we can conclude that using a reduced, yet rele-
vant set of features has minimal impact on the accuracy of the best
classifiers. This is important because it suggests that simplifying the
feature set does not necessarily compromise the model’s predictive ac-
curacy, which can be crucial for developing real-time or embedded
systems where computational resources might be limited. By focusing on
a more compact set of features, the complexity of the calculation can be
reduced, allowing for faster inference times. This also facilitates the
creation of real-time algorithms for detecting calves’ feeding conditions,
which could be deployed in field applications where quick decisions are
needed, such as in automated livestock monitoring or precision farming.
Moreover, the results underscore the importance of feature selection in
improving classifier performance. By selecting only the most relevant
features, the model is not burdened with redundant or irrelevant data,
which can lead to overfitting or unnecessary complexity.

4. Conclusions

It is concluded that the k-NN classifier achieved 100% accuracy using
all features and 98.37% with a relevant subset, demonstrating that it is
possible to obtain high accuracy with a smaller set of metrics. The SVM-
RBF classifier also achieved 100% accuracy with all features, but
showed unsatisfactory performance with the reduced subset. The time,
frequency and sound quality domain-based metrics used by k-NN proved
to be effective in assessing the emotional condition of calves, suggesting
that audio data and the proposed methodology can be explored in other
animal welfare assessments. Although promising, these tools should be
complemented with other indicators for a more comprehensive assess-
ment, pointing out directions to improve the welfare and biological
function of animals. Future studies can expand the use of these metrics
to other contexts and species, refining their application in animal
welfare.

Research regulation

The study was approved by the Ethics Committee on Animal Use
(CEUA) of University of Sao Paulo - Luiz de Queiroz Agriculture School
(USP/ESALQ), Piracicaba City, Sao Paulo State, Brazil, under protocol n.
582,210,722. The study was carried out in this same higher education
institution and was in compliance with the Animal Research: Reporting
of In Vivo Experiments (ARRIVE) guidelines.
Consent to participate

Not applicable.
Consent for publication

Not applicable.
Code availability

Not applicable.
Funding

This work was supported by the Sao Paulo Research Foundation -

FAPESP [grant number 2022/07,442-8] and by the National Council for
Scientific and Technological Development - CNPq [grant number

Smart Agricultural Technology 9 (2024) 100682
303,884/2021-5].
CRediT authorship contribution statement

Maira Martins da Silva: Data curation, Conceptualization, Writing —
original draft, Validation, Methodology, Funding acquisition. Robson
Mateus Freitas Silveira: Conceptualization, Writing — original draft.
Gean Gobo da Cruz: Data curation, Conceptualization. Karen Airosa
Machado de Azevedo: Conceptualization. Carla Maris Machado Bit-
tar: Validation, Supervision, Resources, Writing — original draft. Iran
José Oliveira da Silva: Formal analysis, Data curation, Conceptuali-
zation, Writing — original draft, Funding acquisition.

Declaration of competing interest
None.
Data availability

The datasets used and/or analysed during the current study available
from the corresponding author on reasonable request.

References

[1] J. Rushen, Assessing the welfare of dairy cattle, J. Appl. Animal Welf. Sci 4 (2001)
223-234, https://doi.org/10.1207/515327604JAWS0403_05. Available from.

[2] R. Uehleke, S. Seifert, S. Hiittel, Do animal welfare schemes promote better animal
health? An empirical investigation of German pork production, Livest. Sci. 247
(2021) 104481, https://doi.org/10.1016/].1ivsci.2021.104481. Available from.

[3] G.D. Rosa, R.D. Palo, R. Serafini, F. Grasso, A. Bragaglio, A. Braghieri,

F. Napolitano, Different assessment systems fail to agree on the evaluation of dairy

cattle welfare at farm level, Livest. Sci. 229 (2019) 145-149, https://doi.org/

10.1016/j.1ivsci.2019.09.024. Available from.

Nielsen B.L., de Jong I.C., De Vries T.J. The use of feeding behaviour in the

assessment of animal welfare. In: Phillips, C. (eds) Nutrition and the Welfare of

Farm Animals. Animal Welfare. 2016; 16. Springer, Cham. Avalilable from: http

s://doi.org/10.1007/978-3-319-27356-3_4.

[5] S. Ivemeyer, J. Preuer, D. Haager, C. Simantke, P. Waldherr, K. Kull, G. Utz,

U. Knierim, C. Winckler, Impact of enhanced compared to restricted milk feeding
on the behaviour and health of organic dairy calves, Appl. Anim. Behav. Sci. 252
(2022) 105655, https://doi.org/10.1016/j.applanim.2022.105655. Available
from.

[6] M. Machado, R.M.F. Silveira, C.M.M. Bittar, C.M.V. Lobos, 1.J.0. da Silva, Can the
emotional state of calves be noticed by their facial expression and heart rate? Appl.
Anim. Behav. Sci. 260 (2023) 105874 https://doi.org/10.1016/j.
applanim.2023.105874. Available from.

[71 AM. de Passillé, J. Rushen, F. Martin, Interpreting the behaviour of calves in an
open-field test: a factor analysis, Appl. Anim. Behav. Sci. 45 (3-4) (1995) 201-213,
https://doi.org/10.1016/0168-1591(95)00622-Y. Available from.

[8] K. Macmillan, M. Gobikrushanth, M. Colazo, Activity and rumination changes as
predictors of calving in primiparous and multiparous holstein cows, Livest. Sci. 260
(2022) 104944, https://doi.org/10.1016/j.livsci.2022.104944. Available from.

[9] C. Gaillard, M. Durand, C. Largouét, J.Y. Dourmad, C. Tallet, Effects of the
environment and animal behavior on nutrient requirements for gestating sows:
future improvements in precision feeding, Anim. Feed Sci. Technol. 279 (2021)
115034, https://doi.org/10.1016/j.anifeedsci.2021.115034. Available from.

[10] M. Schnaider, M. Heidemann, A. Silva, C. Taconeli, C. Molento, Vocalization and
other behaviors as indicators of emotional valence: the case of cow-calf separation
and reunion in beef cattle, J. Veterin. Behav 49 (2022) 28-35, https://doi.org/
10.1016/j.jveb.2021.11.011. Available from.

[11] H. Pedersen, K. Malm, Cross-disciplinary method development for assessing dog
welfare in canine-assisted pedagogical work: a pilot study, J. Appl. Animal Welfare
Sci (2023) 1-14, https://doi.org/10.1080/10888705.2023.2211205. Available
from.

[12] G. Smith-Vidaurre, V. Perez-Marrufo, T.F. Wright, Individual vocal signatures show
reduced complexity following invasion, Anim. Behav. 179 (2021) 15-39, https://
doi.org/10.1016/j.anbehav.2021.06.020. Available from.

[13] N. Sharma, V. Prakash, S. Kohshima, R. Sukumar, Asian elephants modulate their
vocalizations when disturbed, Anim. Behav. 160 (2020) 99-111, https://doi.org/
10.1016/j.anbehav.2019.12.004. Available from.

[14] M.P. dela Torre, E.F. Briefer, T. Reader, A.G. McElligott, Acoustic analysis of cattle
(bos taurus) mother—offspring contact calls from a source-filter theory perspective,
Appl. Anim. Behav. Sci. 163 (2015) 58-68, https://doi.org/10.1016/].
applanim.2014.11.017. Available from.

[15] Shorten P., Hunter L. Acoustic sensors for automated detection of cow vocalization
duration and type. Comput. Electron. Agric. 2023; 208: 107760. Available from:
https://doi.org/10.1016/j.compag.2023.107760.

[4

=


https://doi.org/10.1207/S15327604JAWS0403_05
https://doi.org/10.1016/j.livsci.2021.104481
https://doi.org/10.1016/j.livsci.2019.09.024
https://doi.org/10.1016/j.livsci.2019.09.024
http://doi.org/10.1007/978-3-319-27356-3_4
http://doi.org/10.1007/978-3-319-27356-3_4
https://doi.org/10.1016/j.applanim.2022.105655
https://doi.org/10.1016/j.applanim.2023.105874
https://doi.org/10.1016/j.applanim.2023.105874
https://doi.org/10.1016/0168-1591(95)00622-Y
https://doi.org/10.1016/j.livsci.2022.104944
https://doi.org/10.1016/j.anifeedsci.2021.115034
https://doi.org/10.1016/j.jveb.2021.11.011
https://doi.org/10.1016/j.jveb.2021.11.011
https://doi.org/10.1080/10888705.2023.2211205
https://doi.org/10.1016/j.anbehav.2021.06.020
https://doi.org/10.1016/j.anbehav.2021.06.020
https://doi.org/10.1016/j.anbehav.2019.12.004
https://doi.org/10.1016/j.anbehav.2019.12.004
https://doi.org/10.1016/j.applanim.2014.11.017
https://doi.org/10.1016/j.applanim.2014.11.017
http://doi.org/10.1016/j.compag.2023.107760

M.M.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

da Silva et al.

J.M. Siegford, J.P. Steibel, J. Han, M. Benjamin, T. Brown-Brandl, J.R. Dérea,

D. Morris, T. Norton, E. Psota, G.J Rosa, The quest to develop automated systems
for monitoring animal behavior, Appl. Anim. Behav. Sci. 265 (2023) 106000.

D. Gavojdian, T. Lazebnik, M. Mincu, A. Oren, I. Nicolae, A. Zamansky, Bovinetalk:
machine learning for vocalization analysis of dairy cattle under negative affective
states, Front. Vet. Sci. 11 (2024), https://doi.org/10.3389/fvets.2024.1357109.
Available from.

D.H. Jung, N.Y. Kim, S.H. Moon, C. Jhin, H.J. Kim, J.S. Yang, H.S. Kim, T.S. Lee, J.
Y. Lee, S.H. Park, Deep learning-based cattle vocal classification model and real-
time livestock monitoring system with noise filtering, Animals 11 (2) (2021) 357,
https://doi.org/10.3390/ani11020357. Available from.

Y. Peng, Kondo N Wulandari, T. Fujiura, T. Suzuki, H. Yoshioka, E Itoyama,
Japanese black cattle call patterns classification using multiple acoustic features
and machine learning models, Comput. Electron. Agric. 204 (2023) 107568,
https://doi.org/10.1016/j.compag.2022.107568. Available from:.

H. Fastl, E. Zwicker, Psychoacoustics: Facts and Models, Springer, Berlin
Heidelberg, 2007, https://doi.org/10.1007/978-3-540-68888-4. URL.

Green Forge Coop, Mosqito, 2022. Available from: https://zenodo.org/recor
d/5284054. doi:10.5281/ZENODO.5284054.

J.A. Mosquera-Sanchez, W. Desmet, L.P.R. de Oliveira, A multichannel amplitude
and relative-phase controller for active sound quality control, Mech. Syst. Signal.
Process. 88 (2017) 145-165, https://doi.org/10.1016/j.ymssp.2016.10.036.
Available from.

American National Standards Institute, Committee On Bioacoustics. American
National Standard Psychoacoustical Terminology, American National Standards
Institute New York, ANSI, American National Standards Institute, NY, 1973.
Available from, https://books.google.com.br/books?id=5Fo0GQAACAAJ.

1SO 532-1:2017, Acoustics — Methods for Calculating Loudness — Part 1: Zwicker
method, Standard, International Organization for Standardization, Geneva, CH,
2017. Available from, https://www.en-standard.eu/bs-iso-532-1-2017-acoustics
-methods-for-calculating-loudness-zwicker-method/?msclkid=2a6450470d2c1
€b2903a36c29968a972.

R.W.P. Daniel, Psychoacoustical roughness: implementation of an optimized
model, Acta Acustica 83 (1997) 113-123.

DIN 45692:2009-08, Messtechnische Simulation der Horempfindung Schatrfe,
Beuth Verlag GmbH, Standard, 2017, https://doi.org/10.31030/1521326.
Available from:.

11

[27]

[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Smart Agricultural Technology 9 (2024) 100682

U.M. Khaire, R. Dhanalakshmi, Stability of feature selection algorithm: a review,
J. King Saud Uni. - Comput. Inform. Sci 34 (2022) 1060-1073, https://doi.org/
10.1016/j.jksuci.2019.06.012. Available from.

L. Breiman, Random forests, Mach. Learn. 45 (2001) 5-32, https://doi.org/
10.1023/A:1010933404324. Available from.

R. Genuer, J.M. Poggi, C. Tuleau-Malot, Variable selection using random forests,
Pattern. Recognit. Lett. 31 (2010) 2225-2236, https://doi.org/10.1016/j.
patrec.2010.03.014. Available from.

X. Li, W. Chen, Q. Zhang, L. Wu, Building auto-encoder intrusion detection system
based on random forest feature selection, Comput. Secur. 95 (2020) 101851,
https://doi.org/10.1016/j.cose.2020.101851. Available from.

T. Cover, P. Hart, Nearest neighbor pattern classification, IEEe Trans. Inf. Theory.
13 (1967) 21-27, https://doi.org/10.1109/TIT.1967.1053964. Available from.
Vapnik V. The support vector method of function estimation, Springer U.S., Boston,
M.A. 1998: 55-85. Available from: https://doi.org/10.1007/978-1-4615-5703-6.
A. Christmann, I. Steinwart, Support Vector Machines, Information Science and
Statistics, Springer, New York, NY, 2008. Available from, https://link.springer.
com/book/10.1007/978-0-387-77242-4.

S. Safavian, D. Landgrebe, A survey of decision tree classifier methodology, IEEE
Trans. Syst. Man Cybern. 21 (1991) 660-674, https://doi.org/10.1109/21.97458.
Available from.

D.E. Rumelhart, J.L. McClelland, Learning internal representations by error
propagation. Parallel Distributed Processing: Explorations in the Microstructure of
Cognition: Foundations, MIT Press, 1987, pp. 318-362.

R.E. Schapire, Explaining AdaBoost, in: B. Scholkopf, Z. Luo, V. Vovk (Eds.),
Empirical Inference, Springer, Berlin, Heidelberg, 2013, https://doi.org/10.1007/
978-3-642-41136-6_5. Available from.

D.P. Kingma, Ba J. Adam, A method for stochastic optimization, in: International
Conference on Learning Representations, 2014, https://doi.org/10.48550/
arXiv.1412.6980. Available from:.

T. Windeatt, Accuracy/diversity and ensemble MLP classifier design, IEEe Trans.
Neural Netw. 17 (2016) 1194-1211, https://doi.org/10.1007/10.1109/
TNN.2006.875979. Available from.

A.A. Taha, A. Hanbury, Metrics for evaluating 3d medical image segmentation:
analysis, selection, and tool, BMC. Med. ImAging 15 (2015) 29, https://doi.org/
10.1186/512880-015-0068-x. Available from.


http://refhub.elsevier.com/S2772-3755(24)00287-9/sbref0016
http://refhub.elsevier.com/S2772-3755(24)00287-9/sbref0016
http://refhub.elsevier.com/S2772-3755(24)00287-9/sbref0016
https://doi.org/10.3389/fvets.2024.1357109
https://doi.org/10.3390/ani11020357
https://doi.org/10.1016/j.compag.2022.107568
https://doi.org/10.1007/978-3-540-68888-4
https://zenodo.org/record/5284054
https://zenodo.org/record/5284054
http://10.5281/ZENODO.5284054
https://doi.org/10.1016/j.ymssp.2016.10.036
https://books.google.com.br/books?id=5Fo0GQAACAAJ
https://www.en-standard.eu/bs-iso-532-1-2017-acoustics-methods-for-calculating-loudness-zwicker-method/?msclkid=2a6450470d2c1eb2903a36c29968a972
https://www.en-standard.eu/bs-iso-532-1-2017-acoustics-methods-for-calculating-loudness-zwicker-method/?msclkid=2a6450470d2c1eb2903a36c29968a972
https://www.en-standard.eu/bs-iso-532-1-2017-acoustics-methods-for-calculating-loudness-zwicker-method/?msclkid=2a6450470d2c1eb2903a36c29968a972
http://refhub.elsevier.com/S2772-3755(24)00287-9/sbref0025
http://refhub.elsevier.com/S2772-3755(24)00287-9/sbref0025
https://doi.org/10.31030/1521326
https://doi.org/10.1016/j.jksuci.2019.06.012
https://doi.org/10.1016/j.jksuci.2019.06.012
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.patrec.2010.03.014
https://doi.org/10.1016/j.patrec.2010.03.014
https://doi.org/10.1016/j.cose.2020.101851
https://doi.org/10.1109/TIT.1967.1053964
http://doi.org/10.1007/978-1-4615-5703-6
https://link.springer.com/book/10.1007/978-0-387-77242-4
https://link.springer.com/book/10.1007/978-0-387-77242-4
https://doi.org/10.1109/21.97458
http://refhub.elsevier.com/S2772-3755(24)00287-9/sbref0035
http://refhub.elsevier.com/S2772-3755(24)00287-9/sbref0035
http://refhub.elsevier.com/S2772-3755(24)00287-9/sbref0035
https://doi.org/10.1007/978-3-642-41136-6_5
https://doi.org/10.1007/978-3-642-41136-6_5
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1007/10.1109/TNN.2006.875979
https://doi.org/10.1007/10.1109/TNN.2006.875979
https://doi.org/10.1186/s12880-015-0068-x
https://doi.org/10.1186/s12880-015-0068-x

	Acoustic-based models to assess herd-level calves’ emotional state: A machine learning approach
	1 Introduction
	2 Materials and methods
	2.1 Ethical note
	2.2 Animals
	2.3 Data organization
	2.4 Data acquisition
	2.5 Feature extraction
	2.6 Feature engineering
	2.7 Machine-learning based classifiers
	2.7.1 k-nearest neighbor (k-NN)
	2.7.2 Support vector machine (SVM) - Linear and RBF
	2.7.3 Decision tree (DT) and random forest (RF)
	2.7.4 Multi layer perceptron (MLP)
	2.7.5 AdaBoost

	2.8 Statistical analysis

	3 Results and discussion
	4 Conclusions
	Research regulation
	Consent to participate
	Consent for publication
	Code availability
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	datalink3
	References


