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A B S T R A C T

Animal bioacoustics is an important tool for monitoring different aspects of the physiology, behavior and well- 
being of animals remotely, non-invasively and continuously. Studies using this science are growing mainly due to 
the development of machine learning. This work aims to investigate the use of machine-learning classifiers to 
determine whether calves’ vocalization audio data can be used to assess their welfare condition regarding 
feeding. Firstly, we collected several calves’ vocalization audio data before and after feeding the animals at 
different day times and ages. Then, eleven time-domain, frequency-domain and sound quality-based metrics 
were extracted from these audio data and used as features for the classifiers. These features were used to 
determine whether vocalization audio data belonged to before or after feeding classes. Moreover, the most 
relevant ones were identified using the Random Forest algorithm. Finally, seven machine-learning classifiers 
were trained and tested, considering the entire set of features and a subset containing the most relevant features. 
The k-nearest neighbor classifier trained with the subset of the most relevant features obtained a 98.37% ac
curacy. Both frequency-domain and sound quality features played important roles in this classification. The main 
implications of this study are the development of a methodological proposal to study acoustics using machine 
learning and the fact that vocalization is a biomarker of animal welfare.

1. Introduction

Animal welfare encompasses theories concerning an animal’s natural 
life, biological functioning, and emotional condition [1–4]. As Nielsen 
et al. [4] highlighted, understanding feeding behavior and nutritional 
requirements is essential for assessing animal welfare. Calves are usually 
fed milk (or milk replacer) twice daily until they are 8 or 9 weeks old. 
During this life stage, assessing their welfare at a herd level is of utmost 
importance since it can be valuable in assessing the health and growth of 
calves [5–6]. Many strategies based on physiology and/or animal 
behavior on have been explored for assessing animal welfare using 
feeding behavior. On the one hand, de Passillé et al. [7] investigated the 
correlation between several physiological behaviors as open-field con
ditions with sniffing, licking, running, walking, vocalizing, and jumping 
with welfare conditions, including feeding behavior. In addition, Mac
millan et al. [8] and Gaillard et al. [9] propose behavior-monitoring 

techniques. Macmillan et al. [8] monitored rumination and activity 
behavior using a collar-mounted automated activity monitoring system. 
Due to the importance of estimating animals’ nutrient requirements, 
Gaillard et al. [9] claimed that new technologies, such as real-time 
sensing animal condition techniques, should be extensively used.

The relationship between vocal parameters and animal welfare has 
been widely investigated due to the potential of vocalizations as 
noninvasive indicators of the emotional and physiological state of ani
mals. Vocal parameters, such as frequency, amplitude, duration and 
tonal variation, can reflect responses to the environment, handling 
conditions and social interactions. Animals in situations of stress, pain or 
discomfort tend to emit vocalizations with distinct characteristics, such 
as higher frequencies and greater intensity, compared to states of 
relaxation or contentment, which generate softer and more harmonic 
sounds. Furthermore, analysis of vocalizations can identify signs of 
distress associated with isolation, hunger, thirst or physical restraint, 
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allowing adjustments in handling practices [10–13]. Schnaider et al. 
[10] realized that high vocal frequency could happen during the arrival 
of the calf in the corral and the reunion of the calf and its mother. This 
claim was found by assessing the fundamental frequency of vocalization 
audio data. Similarly, de la Torre et al. [14] aimed to identify vocal 
parameters that can characterize cow and calf contact calls. Shorten and 
Hunter [15] used acoustic sensors to automate the detection of cow 
vocalization duration and type (open mouth, closed mouth, and mixed 
mouth).

Several authors have been addressing animal welfare conditions 
using machine learning strategies. In fact, Siegford et al. [16] indicated 
that automated behavior analysis tools had been rapidly developed for 
use with animals. Regarding the calves’ welfare condition, Gavojdian 
et al. [17] proposed the use of machine learning techniques to perform 
this evaluation. Jung et al. [18] exploited a deep learning-based cattle 
vocal classification model for real-time livestock monitoring, while Peng 
et al. [19] extracted and combined multiple acoustic features for cattle 
call pattern classification. Our proposal also exploits machine-learning 
classifiers to assess calves’ emotional state using vocal audio data. 
This emotional state can be further correlated to animal welfare metrics. 
The novelty of this work is the inclusion of sound quality-based metrics 
in the set of investigated features for the derivation of machine learning 
classifiers related to calves’ feeding condition at herd level. Sound 
quality refers to how individuals perceive and react to a sound. 
Perception is a mental capability shaped by sensory input and influenced 
by objective and subjective factors. Sound quality metrics reflect the 
extent to which the sound is deemed suitable for that specific aim. 
Several metrics have been proposed for evaluating the human percep
tion of a sound, such as loudness, sharpness, and roughness, among 
others [20].

In summary, we investigate the importance of some features 
extracted from audio data acquired during calves’ vocalization to 
identify their feeding condition at a herd level. The primary objective of 
this work is to investigate the use of machine-learning classifiers to 
identify if calves’ vocalization audio data belongs to the before-feeding 
or after-feeding classes. However, the efficiency of a classifier can be 
significantly improved by exploring proper features extracted from the 
audio data. Therefore, a secondary objective of this work, which is 
equally important, is to evaluate some time and frequency-domain and 
sound quality-based features by assessing their importance for the 
classification. This evaluation of the features’ importance, denoted as 
feature engineering, is a crucial step in our research and could poten
tially significantly impact the classifiers’ performance. In summary, this 
work presents a tool that distinguishes between the vocals of a group of 
animals, which can be a manner to assess welfare.

2. Materials and methods

2.1. Ethical note

The study was carried out at São Paulo University - Luiz de Queiroz 
College of Agriculture (Piracicaba City, São Paulo State, Brazil). The 
region where the research was conducted is located at the geographical 
coordinates 22◦ 42′ 30″ S and 47◦ 38′ 00″ W and at an altitude of 546 m. It 
was approved by the Animal Ethics Committee (CEUA) of the same 
university, under protocol n. 582,210,722. The study was carried out in 
this same higher education institution and was in compliance with the 
Animal Research: Reporting of In Vivo Experiments (ARRIVE) 
guidelines.

2.2. Animals

A total of 75 calves aged between 3 and 8 weeks and clinically 
healthy were studied. After birth, calves were immediately separated 
from their mothers and fed the equivalent of 5% of birth weight with 
high-quality colostrum and a dose of powdered colostrum (SSCL, 100 g 

IgG) within 2 h of birth.
Calves were housed in individual hanging cages until 14 days of age 

and then in individual shelters until 8 weeks of age (Fig. 1). The animals 
had access to drinking water and starter concentrate (20% Crude Pro
tein). The calves were fed with commercial milk replacer (Agroceres, 
Brazil), diluted to 14% solids, in a volume of 6 L/d until 42 days of age, 4 
L/d until 49 days and then 2 L/d until weaning at 56 days of age. The 
total volume was supplied in teat-buckets for two meals (7am and 5pm).

2.3. Data organization

We acquired this audio data before and after feeding on different 
days and calves’ ages (Fig. 2). Subsequently, the data were organized as 
before and after feeding the milk replacer (Table 1). The main objective 
of collecting audio data sets at different ages (July/2023 and November/ 
2023) and daytime (morning and afternoon) is to investigate if the same 
classifier can be used, considering different animals’ ages and different 
daytimes. This is important since a simpler strategy could be used if a 
single classifier achieves good accuracy with different data sets.

Some individuals may have produced sound during the acquisition, 
while others remained silent. We extracted the samples from the audio 
data sets considering the individuals’ variety. This approach corrobo
rates achieving results at the herd level rather than the individual level.

2.4. Data acquisition

Audio data have been recorded before and after feeding to obtain the 
distinct calves’ vocalizations. Calf vocalizations were recorded using a 
Sennheiser MKE 200 microphone (frequency response 40–20,000 Hz, 
max SPL 120 dB at 1000 Hz) and recorded on a Zoom Hn1 digital 
recorder with stereo input (sampling rate 44.1 kHz). Each was stored in . 
wav format with 16-bit amplitude resolution. The microphone was hung 
near the rain houses (Figs. 1 and 2) at a distance of approximately 1 m 
above the ground for calf vocal recordings. An audio data sample of a 
calf vocalization in the morning before feeding is illustrated in Fig. 3, 
and the absolute values of this audio data set’s fast fourier transform 
(FFT) are depicted in Fig. 4. The audio data are proportional to the 
sound pressure level, a measure that can be acquired in Pa and has been 
scaled so that its maximum value is below 15,050. This maximum value 
has been arbitrarily selected.

Fig. 1. Experimental location.
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2.5. Feature extraction

Feature engineering aims to identify pertinent details within raw 
data and convert them into a format that a machine-learning based 
model can readily explore, improving its performance. In this work, the 
raw data consists of audio data sets. Each audio data set contains an 
entire vocalization of a single calf. Data containing two vocalizations are 

not considered in this work but may investigated in the future. Aiming to 
identify features that may play an important role in the detection of the 
feeding status, this work investigates three classes of features: 
frequency-domain, time-domain and sound quality metrics. Table 2
describes the eleven features explored in this work.

The features F1 and F2 were derived from the absolute values of each 
audio data set’s FFT (depicted in Fig. 4). F1 is the average value of the 
FFT’s amplitudes in the frequency range from 0 up to 2600 Hz, while F2 
is the frequency value of the FFT’s peak value. The features F4, F5, F6, F7 
and F8 are the bin histogram values. This 5-bin histogram is found by 
evaluating the actual envelope of the time-domain signal. The actual 
envelope is derived by the mean of the upper and lower envelopes. 
While Fig. 5(a) illustrates a single time-domain audio data, the upper 
and the lower envelopes and the actual envelope, Fig. 5(b) shows the 
histogram of the actual envelope with 5 bins. Finally, F11 is the abscissa 
of the highest value obtained by deriving a spectrogram. Fig. 6 depicts 
the spectrogram of the audio illustrated in Fig. 3. A cross signal high
lights the highest value.

Acoustic engineers and researchers develop sound quality metrics to 
assess sound qualities objectively. This work investigates the use of such 
metrics for identifying calves’ vocalization condition. The features F3, 
F9, and F10 are sound quality metrics [21], also denoted as 
psycho-acoustic models [22]. The following sound quality metrics were 
investigated:

Loudness (F3): According to American National Standards Institute 
[23], loudness can be defined as the attribute of auditory sensation in 
terms of which sounds can be ordered on a scale extending from quiet to 
loud. In other words, it is the subjective perception of sound pressure 
[20]. This metric was derived for each dataset using the MOSQITO Py
thon toolbox [21]. MOSQITO offers the possibility of computing the 
acoustic loudness of a signal according to the Zwicker method for 
time-varying signals according to ISO 532–1:2017 [24].

Roughness (F9): Roughness is understood as the texture perception 
of the sound. It depends on the distance between the partials measured 
in critical bandwidths [20]. Despite several models have been developed 
to compute the acoustic roughness [20], the most commonly used is the 
one proposed by Daniel [25]. This calculation is available in MOSQITO 
and is used in this work.

Sharpness (F10): Sharpness is a hearing perception associated with 
frequency, differently from loudness. Its derivation is carried out by a 
specific loudness distribution of the sound using weighting functions. At 
MOSQITO, the default weighting functions are defined in DIN 
45,692:2009–08 [26].

2.6. Feature engineering

In this study, the objective of the classifiers is to distinguish between 
before-feeding and after-feeding classes based on audio data sets. In the 
preceding section, we discussed the features under investigation. The 
classifiers were trained and tested using the complete feature set and a 

Fig. 2. Calves fed with milk replacer (The organization of the calves dur
ing feeding).

Table 1 
Amount of acquired data during a specific month and day time.

Amount of audio data Before feeding After feeding

July/morning 144 36
July/afternoon 100 36
November/morning 72 10
November/afternoon 48 44
July 244 72
November 120 54
All data 364 126

Fig. 3. Audio data of a calf mooing in the morning before feeding.
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carefully selected subset of the most significant features using feature 
selection.

Feature selection plays a crucial role in improving the performance 
of classification models while reducing computational complexity. As 
highlighted in previous research by Khaire and Dhanalakshmi [27], 
evaluating the importance of features allows for identifying those most 
relevant to the task at hand, enhancing model accuracy. By using a more 

compact yet pertinent subset of features, we can streamline the model 
and improve its efficiency.

This study focus on applying the Random Forest (RF) algorithm to 
select the most relevant features for classification from a set of 11 fea
tures, as described in Table 2. The RF algorithm has been widely used in 
previous works [28–29] for classification, regression, and feature se
lection tasks. It constructs multiple decision trees, as shown in Fig. 7, 
and uses the average of these trees to determine the final classification 
output [30]. In this work, we generate 100 decision trees to derive this 
average and assess their effectiveness in identifying the most significant 
features for classification.

In Fig. 7, target=0 means that the data set was acquired before 
feeding the animals (before-feeding class), and target=1 means that the 
data set was acquired after feeding the animals (categorized as the after- 
feeding class). The features are denoted as F?, and each decision tree 
consists of a root node, intermediate nodes, and leaf nodes. The figure 
illustrates a decision tree with three nodes, i.e. a decision tree with a 
single intermediate node. An optimal decision is made for each node 
using the Gini impurity measure to identify the most relevant features 

Fig. 4. The absolute value of sound signal’s FFT of a calf mooing in the morning before feeding.

Table 2 
Frequency-domain, and Psycho-acoustic metrics.

Feature (Fj) Description Metric’s Nature

F1 Frequencies’ Mean Frequency-domain
F2 Max. Amplit.’s Freq. Frequency-domain
F3 Loudness Sound quality
F4-F8 Histogram Time-domain
F9 Roughness Sound quality
F10 Sharpness Sound quality
F11 Spectrum Frequency-domain

Fig. 5. (a) Time-domain audio data and envelopes and (b) Histogram with 5 bins.
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for the classifications.
The decision values can be either "true" or "false" based on the con

dition F?>Value, as depicted in Fig. 7. It is worth noting that a decision 
tree may have fewer nodes than the total number of features, high
lighting the possibility of classification with a reduced feature set con
sisting of the most critical features. This reduced set was adopted in our 
study.

2.7. Machine-learning based classifiers

This work exploits two sets of features: the entire set containing 11 
features and a reduced subset containing the most relevant ones. This 
investigation compares seven well-known machine-learning based 
classifiers: k-nearest neighbors (k-NN) [31], support vector machines 
considering a linear Kernel function (SVM-Linear) [32–33], support 
vector machines considering radio basis Kernel function (SVM-RBF) 
[32–33], decision tree (DT) [34], RF [28–29], multi-layer perceptron 
(MLP) [35] and AdaBoost [36]. For completeness, these classifiers and 
their hyperparameters are briefly explained. In this work, we used the 
Python library scikit-learn to implement the classifiers.

2.7.1. k-nearest neighbor (k-NN)
The k-NN classifier, introduced by Cover and Hart [31] in their 

seminal work, operates by assigning the class label of the most 
frequently occurring pattern among the k nearest training samples. For 
example, when k = 1, the assigned pattern corresponds to the nearest 
neighbor.

This assignment can be carried out uniformly or weighted according 
to a distance metric between the samples. In this work, the distance 
metrics investigated are Euclidean and Manhattan distance metrics, 

according to Table 3. The former metric corresponds to the Euclidean 
distance, while the latter corresponds to the sum of the absolute dif
ferences between the samples’ Cartesian coordinates.

One notable advantage of this approach is its ability to create a de
cision surface that readily adapts to the distribution shape of the training 
data. However, a significant drawback lies in the complexity of the 
training phase, which involves the derivation of multiple distance 
metrics and the sorting and verification of several neighboring samples.

2.7.2. Support vector machine (SVM) - Linear and RBF
Support Vector Machine (SVM) is a supervised learning method 

designed to derive a hyperplane, often referred to as a ’hard margin’, 
that effectively separates data patterns. In Fig. 8, one can perceive two 
distinct patterns categorized as ’target = 0′ and ’target = 1,’ visually 
represented by the hyperplane equation wT⋅xi+b = 0. The data points 
closest to this hyperplane are referred to as ’support vectors’. The co
efficients w and b are determined during the training phase.

The primary objective is to maximize the distances between the 
hyperplane and these support vectors, as outlined by [32–33]. However, 
there are scenarios where a hyperplane cannot perfectly separate data
sets. In such cases, a dimensionless transformation can be applied to the 
input sets using Kernel functions, which reshape the data to be linearly 
separable. Various Kernel functions have been proposed in the litera
ture, and our study investigates two specific ones: the linear and the 
Radial Basis Function (RBF) Kernel functions, as discussed by [33].

Additionally, SVM allows for some margin violations by imposing a 
penalty factor on the optimization problem. This penalty factor is known 
as the box constraint, represented by hyperparameter ’C’. This approach 
is referred to as ’soft-margin’ SVM. The RBF Kernel function introduces a 
hyperparameter, denoted as ’Y’, which controls the degree of flexibility 
in this transformation. In Fig. 8, one can observe the concept of soft 
margins applied to our case study.

2.7.3. Decision tree (DT) and random forest (RF)
A Decision Tree (DT), as depicted in Fig. 7, is a series of if-else 

statements created during the training stage and can be used as a clas
sification tool [34].

The tree begins at the root node, progresses through intermediate 
nodes, and terminates at the leaves, as shown in Fig. 7. It’s important to 
note that as the tree depth increases, the number of samples required for 
tree expansion doubles at each level. Users can control the tree’s depth 
using the hyperparameter ’max_depth’ to mitigate overfitting. Similarly, 
the user can regulate the number of features considered at each 

Fig. 6. Spectrogram and its highest value.

Fig. 7. Illustration of a Decision Tree for Classification of before-feeding and 
after-feeding classes.

Table 3 
Classifiers’ grid parameters.

Classifier Parameters Range

k-NN k 1,3,5,7,13
k-NN weights uniform and distance
k-NN metric Euclidean and Manhattan
SVM- 

Linear
C 0.01, 0.02, 0.05, 0.1, 0.2, 0.25, 0.3, 0.33, 0.4, 0.5, 

0.75, 0.9, 1, 2, 3
SVM-RBF C 0.01, 0.02, 0.05, 0.1, 0.2, 0.25, 0.3, 0.33, 0.4, 0.5, 

0.75, 0.9, 1, 2, 3, 5, 10, 20, 50, 100, 150
SVM-RBF ​ 0.01, 0.02, 0.05, 0.1, 0.2, 0.25, 0.3, 0.33, 0.4, 0.5, 

0.75, 0.9, 1, 2, 3
DT max_depth 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 

18, 19, 20
DT max_features auto, sqrt, log2
RF max_depth 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 

18, 19, 20
RF max_features auto, sqrt, log2
RF n_estimators 50, 70, 80, 90, 100, 110, 120, 130, 150
MLP alpha 0.0001, 0.001, 0.01, 0.1, 1, 10
MLP solver lbfgs, sgd, adam
MLP activation identity, logistic, tanh, relu
Adaboost n_estimators 50, 70, 80, 90, 100, 110, 120, 130, 150
Adaboost learning_rage 0.0001, 0.001, 0.01, 0.1, 1, 9
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branching decision using the ’max_features’ hyperparameter. This 
hyperparameter can be automatically determined or manually set based 
on factors such as the square root or logarithm of the total number of 
features. For example, the algorithm uses 5 randomly selected features 
in the splitting process if the ’max_features’ is set to 5.

As mentioned, the Random Forest (RF) algorithm calculates several 
decision trees and their average results in the output’s classifier [30]. 
Several decision trees have been evaluated during the training stage. 
This hyperparameter is denoted as the number of estimators 
(’n_estimators’).

2.7.4. Multi layer perceptron (MLP)
A Multi-Layer Perceptron (MLP) classifier maps an input dataset, 

x ∈ R, into appropriate targets (outputs), o⋅ ∈ RO (Rumelhart and 
McClelland, 1987). In this work, we evaluated the performance of this 
classifier considering two input subsets I = 11 or I=the number of 
relevant features, and two possible outputs (target = 0 or target = 1) 
yield O = 1. An MLP, also defined as a feed-forward artificial neural 
network model, is composed of input, hidden and output layers. The 
user can specify the number of hidden layers since it is a hyper
parameter. In this work, we used 2 hidden layers and 100 neurons in 
each layer.

A single layer of an MLP can be mathematically described by 

f(x) = G{(2) + (2)[s((1) + (1)x)]} (1) 

with bias vectors b(1), b(2); weight matrices W(1), W(2) and activation 
functions G and s.

Weight matrices are determined through an optimization process in 
the training phase. A variety of optimization solvers can be applied, 
including the Limited-Memory BFGS, the stochastic gradient descent 
and Adam methods [37]. Our study considers these optimization solvers 
as hyperparameters denoted as ’lbfgs,’ ’sgd,’ and ’adam,’ respectively.

Given that a is the input for the activation functions, we can define 
the typical activation functions, G: the identity (which returns a), the 
logistic sigmoid function (which 1∕(1 + exp(− a)), the hyperbolic tan 
function (which returns tanh(a)) and the rectified linear unit function 
(which returns max(0, a)). In this work, these activation functions are 
denoted as ’identity’, ’logistic’, ’tanh’ and ’relu’, respectively.

Aiming to mitigate overfitting, we also used a regularization term 
labeled ’alpha’. This term controls the magnitude of the weights. By 
increasing ’alpha’, simpler decision boundary curves are produced, 
while more complex decision boundaries can be derived by reducing’ 
alpha’. More details about the MLP method can be found at [38].

2.7.5. AdaBoost
The AdaBoost algorithm is known for its effectiveness in binary 

classification problems, as discussed by Breiman (2001). This algorithm 

leverages boosting iterations of weak learners to create a strong learner. 
Typically, a weak learner comprises a simple tree structure, denoted as a 
decision stump, consisting of a root node and two leaves (for binary 
classification).

AdaBoost constructs a decision stump during each iteration based on 
a decision metric, such as the Gini impurity measure. In the training 
phase, the importance of features in creating an effective classifier in
fluences the likelihood of a feature being included in the next evalua
tion. The algorithm goes through numerous boosting iterations, 
resulting in multiple decision stumps. The final classification is deter
mined by the most common output across these decision stumps.

The ’n_estimators’ hyperparameter allows users to specify the 
maximum number of evaluations, and the algorithm may terminate 
earlier upon convergence. Moreover, there is a ’learning_rate’ hyper
parameter, which can adjust the contribution of each decision stump. 
However, a high learning rate can lead to premature convergence.

2.8. Statistical analysis

We investigated seven different classifiers to derive machine- 
learning classifiers and identify whether calves’ vocalization audio 
data belongs to the before-feeding or after-feeding classes. The data set 
was divided into training and testing using the stratified cross-validation 
method with k-fold=5. During the training stage, a grid search was 
carried out considering several hyperparameters, as detailed in Table 3. 
We used the set of best hyperparameters for each classifier to derive the 
results discussed in this section.

We split up the audio data sets in different manners to investigate the 
role of the daytime and the calves’ age in the vocalization. For instance, 
we investigated the audios acquired in July/morning and July/after
noon to verify the impact of the daytime on the results. The same 
reasoning has been exploited considering the audios acquired in 
November/morning and November/Afternoon. We also considered all 
the data obtained in July and November to understand the role of age in 
the classifiers. Finally, we derived classifiers including all data acquired 
in the morning/afternoon and July/November. This final investigation 
is the most important since it can indicate if a single classifier can 
distinguish the before-feeding and the after-feeding classes.

The performance of these classifiers is compared using accuracy 
(ACC), F1-score [39], training, and testing times. The computational 
routine was developed in Python 3 using the scikit-learn library, among 
others.

3. Results and discussion

Table 4 presents the performance of the classifiers based on all fea
tures listed in Table 3, along with their optimal hyperparameters. When 
analyzing data from distinct times of day (July morning, July afternoon, 
November morning, and November afternoon), both the k-NN and SVM- 
RBF classifiers achieved perfect accuracy and F1-scores of 100%. These 
classifiers also exhibited fast training and testing times, making them 
efficient for practical applications.

When considering the age of the calves (July and November), the k- 
NN classifier performed exceptionally well, achieving 98.73% accuracy 
in July and 100% in November. These findings suggest that the k-NN 
classifier can effectively handle variations in calves’ ages, highlighting 
its robustness in differentiating between the before-feeding and after- 
feeding classes. Notably, the k-NN classifier also achieved 100% accu
racy across the entire dataset, reinforcing its versatility. The results 
demonstrate that the k-NN classifier can reliably distinguish between 
the before-feeding and after-feeding states, independent of the time of 
day or the age of the calves when all features are considered. However, it 
is important to acknowledge that deriving the 11 features can be 
computationally demanding, which may limit real-time application in 
certain conditions.

From an animal welfare perspective, these findings underscore the 

Fig. 8. Illustration of a soft-margins SVM-based classifier.
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potential of using animal acoustics as a phenotypic biomarker to assess 
the well-being of calves. Acoustic features, particularly those related to 
vocalizations, can be a non-invasive indicator of various aspects of an
imal health, including feeding behavior and stress levels. This biomarker 
could contribute to a more comprehensive assessment of calves’ welfare 
at the herd level when combined with other welfare indicators, such as 
behavioral observations or physiological measures.

From a set of 11 features (Table 2), the RF algorithm derived the 
most relevant ones for identifying the before-feeding and after-feeding 
classes according to their importance. The RF algorithm operates by 
evaluating how each feature contributes to the prediction, helping to 
identify key features that can be used to differentiate between the two 
classes. For illustration, Fig. 9 shows the importance of the features 
according to the RF algorithm for the data acquired in November. In this 

case, the most important features are F10, F9, F3, and F2: three are 
sound quality-based metrics, while the other is a frequency-domain- 
based metric. This finding suggests that sound quality metrics signifi
cantly distinguish between the before-feeding and after-feeding classes, 
potentially reflecting important physiological or behavioral changes 
that occur before and after feeding events. Sound-based metrics are 
often sensitive to environmental and behavioral factors, and their 
dominance in the feature set may indicate that audio signals are strongly 
correlated with the feeding process.

Fig. 10 depicts the correlation between the selected features. One can 
observe that the diagonal of this plot presents values equal to one, as 
expected since each feature is perfectly correlated with itself. More 
importantly, the values out of the diagonal should be smaller than one, 
demonstrating that the features are not highly correlated with each 

Table 4 
Classifiers’ performance considering all features - before-feeding and after-feeding classes.

Classifier Month/day time ACC Performance 
F1-Score

Indicators Ttrain(s) Ttest(s) Best hyperparameters

​ – – – – – metric k weights
​ July/morning 100 100 0.0015 0.0080 euclidean 1 uniform
​ July/afternoon 100 100 0.0053 0.0036 manhattan 1 uniform
k-NN November/morning 100 100 0.0016 0.0010 manhattan 13 distance
​ November/afternoon 100 100 0.0049 0.0120 euclidean 13 distance
​ July 98.73 97.99 0.090 0.016 euclidean 1 uniform
​ November 100 100 0.0094 0.0018 euclidean 5 distance
​ All data 100 100 0.0130 0.0021 manhattan 1 uniform
​ – – – – – ​ C ​
​ July/morning 100 100 0.1221 0.0005 ​ 0.20 ​
​ July/afternoon 91.18 89.04 0.1645 0.0005 ​ 0.20 ​
SVM-linear November/morning 100 100 0.2894 0.0003 ​ 0.25 ​
​ November/afternoon 86.96 86.00 2.1309 0.0004 ​ 0.50 ​
​ July 92.41 86.19 0.3971 0.0005 ​ 0.20 ​
​ November 84.09 78.11 8.6495 0.0007 ​ 0.20 ​
​ All data 80.49 76.04 2.9192 0.0010 ​ 0.20 ​
​ – – – – – ​ C & gamma ​
​ July/morning 100 100 0.0060 0.0010 2 & 0.01
​ July/afternoon 100 100 0.0045 0.0005 0.9 & 0.02
SVM-RBF November/morning 100 100 0.0013 0.0003 0.9 & 0.01
​ November/afternoon 100 100 0.0019 0.0003 0.4 & 0.01
​ July 98.73 97.99 0.0067 0.013 0.9 & 0.01
​ November 68.18 40.54 0.0034 0.0012 2 & 0.01
​ All data 95.12 94.20 0.0115 0.026 2 & 0.01
​ – – – – – max_depth & max_features
​ July/morning 98.67 98.54 0.0014 0.0002 7 & sqrt
​ July/afternoon 100 100 0.0010 0.0001 7 & log2
DT November/morning 100 100 0.0043 0.0002 8 & auto
​ November/afternoon 95.65 95.52 0.0036 0.0002 5 & log2
​ July 96.20 94.25 0.0012 0.0002 11 & sqrt
​ November 88.64 87.55 0.0014 0.0002 17 & log2
​ All data 98.37 98.15 0.0053 0.0002 19 & auto
​ – – – – – max_depth max_features n_estimators
​ July/morning 100 100 0.2313 0.0073 7 7 90
​ July/afternoon 100 100 0.1196 0.0045 7 9 70
RF November/morning 95.2 82.1 0.2262 0.0082 7 7 150
​ November/afternoon 95.65 95.52 0.0709 0.0027 12 7 50
​ July 96.20 94.25 0.0067 0.0013 7 7 80
​ November 97.73 97.33 0.2804 0.0081 11 7 100
​ All data 95.93 95.20 0.1699 0.0050 10 7 70
​ – – – – – activation alpha solver
​ July/morning 100 100 0.6887 0.0004 identity 0.0001 lbfgs
​ July/afternoon 91.18 85.73 0.4109 0.0012 logistic 0.001 lbfgs
MLP November/morning 100 100 0.2411 0.0005 tanh 0.01 adam
​ November/afternoon 91.30 91.15 0.4022 0.0010 tanh 0.0001 lbfgs
​ July 91.14 83.37 0.3470 0.0004 identity 0.01 lbfgs
​ November 88.64 86.03 0.8905 0.0005 logistic 0.001 lbfgs
​ All data 84.55 79.29 0.7549 0.0011 tanh 10 adam
​ – – – – – learning_rate & n_estimators
​ July/morning 100 100 0.2313 0.0073 1 & 90
​ July/afternoon 100 100 0.1789 0.0112 0.1 & 80
AdaBoost November/morning 100 100 0.2148 0.0165 0.1 & 130
​ November/afternoon 95.65 95.52 0.1241 0.0102 0.1 & 70
​ July 98.73 97.89 0.3204 0.0222 1 & 130
​ November 97.73 97.33 0.3842 0.0230 1 & 110
​ All data 94.31 93.38 0.2128 0.0130 1 & 90
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other. The analysis of correlations is critical in feature selection, as 
highly correlated features can introduce redundancy, which might 
negatively affect the performance of machine learning models. In this 
case, the highest correlation values are 0.44 and 0.43 between F3/F9 
and F2/F9, respectively. These moderate correlations indicate that while 
the features are not entirely independent, the redundancy between them 
is adequate. The lack of highly correlated features in the selected set is 
an important outcome, as it confirms that the RF algorithm has identi
fied a diverse and complementary set of variables. This diversity en
hances the robustness of the model, ensuring that it leverages different 
aspects of the data to improve predictive performance.

Table 5 describes the most important features, considering the 
different daytime and calves’ ages. The RF algorithm selected two 
frequency-based metrics (F1 and F2), one time-domain metric (F4), and 
two sound quality-based metrics (F3 and F10) to serve as input for the 
classifiers when considering all data. The selection of both frequency- 
based and time-domain metrics indicates that the RF algorithm recog
nizes the relevance of the data’s spectral and temporal characteristics in 
differentiating feeding conditions. Frequency-based metrics, such as F1 

and F2, likely capture critical patterns related to the acoustic environ
ment during feeding. The inclusion of the time-domain metric F4 further 
suggests that temporal features, such as the duration and intensity of 
sounds over time, are important for detecting shifts in feeding behavior. 
This metric may also capture variations in feeding activity that occur 
over time, such as changes in the pacing or frequency of feeding events. 
Notably, the two sound quality-based metrics (F3 and F10) are of 
particular interest. The fact that the RF algorithm highlights sound 
quality features implies that the quality of sound, rather than just the 
quantity or frequency, can be a sensitive indicator of feeding conditions. 
Sound quality-based features are often associated with the clarity, 
richness, or sharpness of sounds, which can vary based on the animal’s 
feeding behavior, the environment, and even the animal’s welfare. 
Therefore, sound quality metrics may provide a higher level of sensi
tivity to feeding conditions compared to traditional methods, potentially 
leading to more accurate and timely detection of feeding events.

Table 6 describes the performance of the investigated classifiers 
considering the set of selected features, as shown in Table 5, and the best 
hyperparameters. The results indicate that when considering distinct 
daytimes (July/morning, July/afternoon, November/morning, and 
November/afternoon), the best classifiers were the k-NN, the SVM-RBF, 
the DT, and the RF. These four classifiers achieved perfect scores of 
100% in both accuracy and F1-score for the conditions of July/morning, 
July/afternoon, and November/morning. This performance clearly in
dicates that these classifiers are well-suited for detecting feeding con
ditions under varying daytime conditions.

The fact that these classifiers scored 100% accuracy and F1-score 
across different time periods suggests that the selected featur
es—derived from sound quality, frequency, and time-domain metri
cs—are robust and effective for distinguishing between feeding 
conditions. The classifiers’ consistency across different times of day 
highlights their generalizability and reliability in real-world 

Fig. 9. Features’ importance according to Random Forest algorithm for data acquired in November.

Fig. 10. Features’ correlation data acquired in November.

Table 5 
Features selected by random forest algorithm.

Month/ day time Features

July/ morning F2, F4, F7

July/ afternoon F1, F2, F3, F4, F10

November/ morning F1, F2, F3, F7, F8, F11

November/ afternoon F3, F5, F9, F10

July F1, F2, F3, F4

November F2, F3, F9, F10

All data F1, F2, F3, F4, F10
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applications, where conditions might vary. Additionally, the high per
formance across different daytimes might reflect the fact that the 
feeding behaviors and corresponding acoustic signals do not undergo 
significant changes depending on the time of day, further suggesting that 
the classifier’s decision-making process is based on strong, invariant 
patterns in the data.

Interestingly, while the testing times for the k-NN, SVM-RBF, DT, and 
RF classifiers are fast, the training times for the RF classifiers appear 
more demanding. This difference in computational demands is an 
important consideration for real-time applications. While RF classifiers 
may provide robust performance with high accuracy, the need for longer 
training times might limit their usability in systems that require quick 
model updates or real-time feedback. This tradeoff between accuracy 
and computational efficiency is a common challenge in machine 
learning applications, and in practice, the choice of classifier may 

depend on the specific requirements of the system. For example, if real- 
time predictions are a priority, k-NN or SVM-RBF might be preferred due 
to their faster training and testing times, even though RF offers slightly 
superior predictive accuracy in certain cases.

When considering distinct calves’ ages (July and November), the 
best classifiers were again the k-NN, SVM-RBF, and RF, all achieving 
100% accuracy in both July and November. This suggests that the 
classifiers can handle variability in the data associated with age, further 
emphasizing the robustness of the selected features. The ability to 
maintain high accuracy across different age groups indicates that the 
model is relatively insensitive to age-related differences in feeding 
behavior or acoustic signals, which is important for developing a 
generalized system.

The k-NN classifier achieved 98.37% accuracy when considering all 
data and the selected features, which is very close to 100%, indicating 

Table 6 
Classifiers’ performance considering the features selected by RF - Before and After Dairy.

Classifier Month/day time ACC Performance F1-Score Indicators Ttrain(s) Ttest(s) Best parameters

– – – – – metric k weights
July/morning 100 100 0.0050 0.0103 euclidean 1 uniform
July/afternoon 100 100 0.0057 0.0084 manhattan 1 uniform
k-NN November/morning 100 100 0.0223 0.0121 euclidian 1 uniform
November/afternoon 95.65 95.52 0.0036 0.025 manhattan 13 distance
July 100 100 0.063 0.0222 euclidean 1 uniform
November 100 100 0.0133 0.0062 euclidean 5 distance
All data 98.37 98.12 0.0117 0.0037 manhattan 3 distance
– – – – – ​ C ​
July/morning 88.89 80.00 0.0050 0.0103 ​ 0.05 ​
July/afternoon 88.24 83.65 0.4120 0.0018 ​ 0.20 ​
SVM-linear November/morning 95.24 82.05 0.4785 0.0017 ​ 0.25 ​
November/afternoon 82.61 82.58 0.138 0.0014 ​ 0.50 ​
July 88.61 79.90 0.2964 0.0034 ​ 0.20 ​
November – – – – ​ – ​
All data – – – – ​ – ​
– – – – – ​ C & gamma ​
July/morning 100 100 0.0059 0.0017 0.75 & 0.02
July/afternoon 100 100 0.0028 0.0014 0.75 & 0.01
SVM-RBF November/morning 100 100 0.0034 0.0014 0.9 & 0.01
November/afternoon 95.65 95.62 0.0040 0.0018 3 & 0.01
July 100 100 0.0076 0.036 1 & 0.02
November 100 100 0.0047 0.0023 0.75 & 0.01
All data 67.48 40.29 0.0097 0.040 2 & 0.01
– – – – – max depth & max features
July/morning 100 100 0.0038 0.0013 ​ 16 & sqrt ​
July/afternoon 100 100 0.0032 0.0015 ​ 7 & auto ​
DT November/morning 100 100 0.0037 0.0013 ​ 4 & sqrt ​
November/afternoon 95.65 95.52 0.0044 0.0011 ​ 15 & log2 ​
July 100 100 0.4488 0.0164 ​ 16 & sqrt ​
November 97.73 97.33 0.0048 0.0019 ​ 17 & auto ​
All data 75.61 68.94 0.0040 0.0020 ​ 4 & auto ​
– – – – – max depth max features n estimators
July/morning 100 100 0.1133 0.0049 7 7 90
July/afternoon 100 100 0.1662 0.0102 7 7 110
RF November/morning 100 100 0.2112 0.0031 7 7 50
November/afternoon 95.65 95.52 0.0791 0.0039 7 13 50
July 100 100 0.4488 0.0164 10 10 90
November 100 100 0.3289 0.0065 7 14 90
All data 95.12 94.29 0.2076 0.0108 7 7 80
– – – – – activation alpha solver
July/morning 88.89 80.00 0.1361 0.0019 identity 0.0001 lbfgs
July/afternoon 85.29 82.78 0.5790 0.0031 tanh 0.01 lbfgs
MLP November/morning 100 100 0.2112 0.0031 logistic 0.1 lbfgs
November/afternoon 100 100 0.1248 0.0022 identity 0.01 lbfgs
July 88.61 78.62 0.7726 0.0035 identity 1 lbfgs
November 79.55 74.86 0.2691 0.0026 logistic 1 adam
All data 68.29 42.93 0.1011 0.0032 identity 0.0001 adam
– – – – – learning rate & estimators
July/morning 100 100 0.0818 0.0083 1 & 30
July/afternoon 100 100 0.1563 0.0119 0.1 & 70
AdaBoost November/morning 85.71 65.95 0.1318 0.0138 0.1 & 50
November/afternoon 95.65 95.52 0.1141 0.0106 0.01 & 70
July 100 100 0.1532 0.0084 1 & 30
November 93.18 91.99 0.2637 0.0219 1 & 130
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that even with slight variations in performance across data subsets (e.g., 
time of day or age), the overall accuracy remains exceptionally high. 
This is a noteworthy result, as it demonstrates that the k-NN classifier, 
despite being relatively simple compared to more complex classifiers. 
This is particularly valuable in scenarios where simplicity, interpret
ability, and computational efficiency are prioritized over marginal gains 
in accuracy.

From these results, we can conclude that using a reduced, yet rele
vant set of features has minimal impact on the accuracy of the best 
classifiers. This is important because it suggests that simplifying the 
feature set does not necessarily compromise the model’s predictive ac
curacy, which can be crucial for developing real-time or embedded 
systems where computational resources might be limited. By focusing on 
a more compact set of features, the complexity of the calculation can be 
reduced, allowing for faster inference times. This also facilitates the 
creation of real-time algorithms for detecting calves’ feeding conditions, 
which could be deployed in field applications where quick decisions are 
needed, such as in automated livestock monitoring or precision farming. 
Moreover, the results underscore the importance of feature selection in 
improving classifier performance. By selecting only the most relevant 
features, the model is not burdened with redundant or irrelevant data, 
which can lead to overfitting or unnecessary complexity.

4. Conclusions

It is concluded that the k-NN classifier achieved 100% accuracy using 
all features and 98.37% with a relevant subset, demonstrating that it is 
possible to obtain high accuracy with a smaller set of metrics. The SVM- 
RBF classifier also achieved 100% accuracy with all features, but 
showed unsatisfactory performance with the reduced subset. The time, 
frequency and sound quality domain-based metrics used by k-NN proved 
to be effective in assessing the emotional condition of calves, suggesting 
that audio data and the proposed methodology can be explored in other 
animal welfare assessments. Although promising, these tools should be 
complemented with other indicators for a more comprehensive assess
ment, pointing out directions to improve the welfare and biological 
function of animals. Future studies can expand the use of these metrics 
to other contexts and species, refining their application in animal 
welfare.
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