This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2824810, IEEE

Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 00, NO. 0, XXXXXX 20XX 1

Robust and Reliable Process-Aware Information
Systems

André Luis Schwerz, Rafael Liberato, Calton Pu, Fellow Member, IEEE and Joao Eduardo Ferreira

Abstract—Over recent years, several sophisticated Process-Aware Information Systems (PAIS) have been proposed for managing
business processes and automating large-scale scientific (e-Science) processes. Much of this success is due to their ability to provide
generic functionality for modeling, execution and monitoring processes. These functionalities work well when process execution follows
a well-behaved path towards achieving the models objectives. However, exceptions and anomalous situations that fall outside of the
well-behaved execution path still pose a significant challenge to PAIS. The treatment for such exceptions usually involves interventions
in systems by human operators, which result in significant additional cost for businesses. In this paper, we introduce a cost-aware
recovery composition method that is able to find and follow recovery paths that reduce the cost of exception handling. From a practical
point of view, our proposal reduces complexity and the need for manual interventions to handle exceptions. Finally, the feasibility of
recovery mechanism is discussed from its implementation into WED-flow framework.

Index Terms—Process-Aware Information Systems, Reliability, Robustness, WED-flow, Exception Handling.

1 INTRODUCTION

Over recent years, several sophisticated Process-Aware
Information Systems (PAIS) have been proposed [1], [2] for
managing business processes and automating large-scale
scientific (e-Science) processes. PAIS are software systems
that manage and execute processes explicitly defined us-
ing process models and specifications [1]. These explicit
specifications of process models enable the translation of
business process and scientific application requirements into
executable programs. While this strategy has worked well
for specifying and executing the expected behaviors of
processes, deviations and error recovery from the expected
paths remain a significant challenge. For each expected path,
there are many potential exceptions and failures that may
arise, some expected and many unexpected. Consequently,
providing robust execution (with appropriate handling of
deviations and errors) is a complex and expensive task for
current PAIS, since exception handling can become expo-
nentially difficult when all possible outcomes and values are
considered, and their treatment translated into procedural
programs.

To a large extent, this structure of PAIS (favoring the
expected over the exceptions) reflects the applications they
model, which typically have a well-defined objective and a
well-behaved path towards achieving that objective. Typi-
cally, this path can be explicitly specified and then trans-
lated into a sequence of state transitions for execution. In
this paper, we will use a simplified car rental process (car

e A. L. Schwerz and R. Liberato are with the Department of Computing, at
the Federal University of Technology - Parand (UTFPR), Brazil
E-mail: {andreluis, liberato}@utfpr.edu.br

o C. Pu is with the School of Computer Science, Georgia Institute of
Technology, Atlanta, GA 30332, USA.
E-mail: calton.pu@gatech.edu.

e | E. Ferreira is with the Department of Computer Science, Institute of
Mathematics and Statistics, at University of Sdo Paulo, Brazil.
E-mail: jef@ime.usp.br

Manuscript received XXX XX, 2016; revised XXXXX XX, 2016.

reservation, credit card verification, car pick-up, and return)
as an illustrative application for our approach. This money-
making path (called the primary path) leads to a sequence
of states that produce business profits at the end. However,
primary paths also have many branches that lead to unsuc-
cessful states. These branches are exceptions [3] that deviate
from the primary path, for example, car rental process may
include complications such as car return delays, accidents,
and mechanical problems in cars. Trying to model these
exceptions in a procedural implementation of PAIS is both
non-trivial and expensive, since each state in the primary
path may lead to several such exceptions.

The exception handling problem is both important and
urgent. With the increasing importance of PAIS in modern
business processes, more revenue-generating primary paths
are added. Each primary path is accompanied by its own
branches of exceptions and non-revenue outcomes that need
to be handled properly. It is common for the exception
handling of so many cases to grow much bigger than the
primary paths in practical PAIS applications, leading to
problems in maintenance, testing, and reuse. Furthermore,
one of the main goals of PAIS is to support business pro-
cess reengineering, which exacerbate the problem since the
large body of exception handling code also needs to be
reengineered. In practice, PAIS applications consist mainly
of the primary paths, and the exceptions are handled by call
center operators, who provide two kinds of services. For
customers, they fix problems such as incomplete, duplicate,
or cancelled purchases. For the service providers, they fix
inconsistencies in business databases such as wrong charges
or orders, and recovering from software or hardware system
errors. The importance of the exception handling problem is
demonstrated by the size of global contact center market,
expected to reach USD 9.7 billion by 2019 [4].

To address the challenges of automated exception han-
dling, the WED-flow (Workflow, Event processing and Data-
flow) approach has been introduced [5], [6], [7] to provide a

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2824810, IEEE

Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 00, NO. 0, XXXXXX 20XX 2

method to specify exception handling procedures, the trans-
lation of the specification into executable programs, and
the run-time environment to execute robust WED-flows that
can recover automatically from errors and deviations from
the primary path. WED-flow provides a dynamically com-
posable environment in which several exception handling
methods can be integrated into recovery paths that result in
consistent outcomes. The main contribution of this paper is
a system that builds on WED-flow mechanisms to provide
an automated and optimized exception handling process,
by calculating the cost and benefits of each recovery path,
and choosing the recovery path with the best cost/benefits
available. A practical demonstration system implements the
cost-aware WED-flow system for the car rental application.

This paper is organized as follows. An overview of the
WED-flow approach is described in Section 2. The WED-
flow recovery strategies are discussed in Section 3. Section 4
presents cost-aware automated recovery of WED-flow. The
experimental results are discussed in Section 5. Section 6
discusses related work. Finally, the conclusion is presented
in Section 7.

2 THE WED-FLOW APPROACH
2.1 Summary of WED-flow concepts

The WED-flow (Workflow, Event processing and Data-flow)
approach for modeling and implementation of business
processes has been described previously [5], [6], [7]. We
include a summary of main WED-flow concepts to make
this paper self-contained.

Informally, a WED-flow model consists of a set of
WED-states, WED-conditions, WED-transitions and WED-
triggers. A WED-state is a set of attribute values (known
as WED-attributes) that define a concrete workflow execu-
tion state. Specifically, WED-state includes sufficient data
and execution states that will enable backward and for-
ward recovery of a workflow. A WED-condition is a logical
predicate defined over a specific set of WED-states. WED-
condition captures events (changes of data states) and en-
ables triggering of WED-transitions as part of workflow
execution. A WED-transition is a step of WED-flow execu-
tion that transforms an input (WED-state) into an output
(WED-state). Some WED-transitions have an inverse func-
tion (compensating step) named WED-compensation, where
WED-compensation(WED-transition(input WED-state)) =
input_ WED-state. Currently, we assume that the execution
of WED-transitions (and WED-compensations) is encapsu-
lated in atomic transactions such as SAGA steps [8]. A time-
out for execution is specified for typical WED-transitions.
The timeout expirations are abnormal behaviors that require
exception handling. A WED-trigger binds a WED-condition
to a WED-transition. When the WED-condition of a WED-
trigger is satisfied, its associated WED-transition is exe-
cuted.

A WED-flow instance is a specific occurrence or execu-
tion of a WED-flow process. An instance example for the car
rental process occurs when a customer reserves a car. More
concretely, the creation of a WED-flow instance occurs when
a new WED-state (usually produced by an external event)
satisfies the starting condition of WED-flow process. An
instance finishes its execution when it reaches a WED-state

that satisfies final condition of WED-flow process. Therefore,
all WED-flow process has two special WED-conditions used
for capturing initial and final WED-state. A WED-state may
satisfy more than one WED-condition causing the diver-
gence of a branch into two or more parallel branches. Each
of these parallel branches produces data states by writing
in a disjoint subset of wed-attributes. The convergence of
two or more branches into a single subsequent branch
occurs when a WED-state satisfies a WED-condition whose
predicate is defined on WED-attributes of all subsets.

Multiple WED-flow instances are also supported. The
WED-triggers evaluate WED-states from several instances.
In other words, when a WED-state s is produced, each
WED-trigger g; = (c;,t;) must evaluate. If the associated
WED-condition c¢; is satisfied by s, then the associated
WED-transition ¢; is fired.

The execution history of a WED-flow is recorded as a se-
quence of WED-states, stored in a multiversion database [9]
in an append-only fashion. An execution history h; of WED-
flow instance i starts from WED-state sg, and contains (
WED-transition ¢;, WED-state s1), ... ,(WED-transition ¢,
WED-state s,,), in which s,, is the final state of h;. We omit
the instance name h; when the context is clear.

2.2 Business Process Modeling in WED-flow

The abstract model summarized in Section 2.1 is imple-
mented by concrete software tools that execute WED-flow
instances providing appropriate consistency properties. The
specification of a business process as an instance of WED-
flow model and its execution is outlined in this section.
Further details of WED-flow application specification and
execution can be found in [6].

The WED-flow development methodology models a
business process as a set of activities that transform the
system and data state (WED-states). Activities are linked
together by explicit events, defined as predicates describing
changes on WED-states. The modeling of a business activity
starts from the primary path, the important activities and
related events that generate revenues, or achieve some other
important business goals. Using WED-flow, the primary
path starts from an initial WED-state, which serves an input
to a WED-transition, generating an output WED-state. The
execution of a WED-flow instance (implemented by WED-
triggers) follows the sequence of events captured by WED-
state changes to a final WED-state.

An implementation of WED-flow starts from the defi-
nition of WED-attributes, the set of schemas that describe
the databases that store WED-states (including data and
WED-flow execution states). Business activities are specified
as functional mappings (WED-transitions), which transform
input WED-states into output WED-states (atomically). The
execution of a WED-transition is initiated by WED-triggers
(pairs of WED-conditions and WED-transitions), which are
conceptually similar to continual queries [10]. Through
the WED-condition, a WED-trigger ensures that the pre-
conditions of its WED-transition (including the availability
of appropriate input) are satisfied before activating the
WED-transition. WED-transitions are protected by transac-
tional boundaries for maintaining system data consistency,
and they are similar to SAGA steps [8]. The successful ex-
ecution of a WED-transition takes the WED-flow system to

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2824810, IEEE

Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 00, NO. 0, XXXXXX 20XX 3

an output WED-state, which (under normal circumstances)
will trigger the next step in the primary path by satisfying
the WED-condition in the next WED-trigger.

We have developed effective software tools [11] that
implement the WED-flow execution outlined above, includ-
ing the support for WED-state database schema (WED-
attributes), WED-conditions (changes of WED-states), and
WED-transitions (activities that take a consistent input
WED-state into a consistent output WED-state). Practical
applications built on WED-flow include DECA online busi-
ness license management system [12] for the Sdo Paulo
State Government and CEGH genetic testing system [13]
for the Human Genome Research Center in Brazil. In the
next subsection, a concrete example shows how the primary
path of the business process is described using the WED-
flow approach.

2.3 Primary Path Example: Car Rental

We will use a simplified online car rental process to illustrate
the advantages of business process modeling and imple-
mentation using WED-flow approach. The car rental process
manages rental orders, payment method verification, car
pickup, and return locations. The illustrative primary path
starts from the placement of an order for car rental and
concludes with the car return and payment. The main steps
of the car rental primary path are outlined in Fig. 1(a), where
each square represents an activity, which is specified by a
corresponding WED-transition in Fig. 1(b). In the graphical
notation of Fig. 1(b), a circle indicates a WED-condition
and a pentagon represents a WED-transition. In addition, a
pair (circle and pentagon) represents a WED-trigger and the
rectangles denote the externally visible WED-states during
the execution of primary path.

The WED-attributes of the car rental process WED-
state database are divided into three groups (Fig. 1(c)):
WED-Order, WED-Customer, and WED-Vehicle, which may
be implemented as individual tables. We note that these
tables are quite different from the classic database tables for
(all) orders, (all) customers, and (all) vehicles. The rows in
Fig. 1(c) contain the concrete WED-states recorded during
the execution of the primary path. All the rows refer to the
fulfillment of the same order (ID = 1), which was placed by
a single customer (ID = C4), and in this example, the same
car (ID = V1).

The primary path of the car rental process starts from
a customer login and initiating the request for renting a
car. The request is created by an initial WED-transition that
inserts the initial WED-state S, into the WED-state database
(top row denoted by S, in Fig. 1(c)):

So = (1, NYC, 01-01, 01-03, [C], Requested, C4, Not
Validated, null, null, null)

The WED-state S, triggers WED-condition ¢;, which
activates activity aq: Customer Login (WED-transition ¢; in
Fig. 1(b)). In t;, the validation of customer creates WED-
state S, which satisfies WED-condition ¢, and triggers ac-
tivity aq: Vehicle Assignment (WED-transition ¢2). A success-
ful assignment of a compact vehicle in as creates WED-state
S3. The rows in Fig. 1(c) show the successful execution of the
activities in primary path from a; through as. Concretely,

the activities as: Payment Method Validation, as: Car Pick-up,
as: Car Return, and ae: Send Invoice, are triggered by their
respective WED-conditions when WED-states S, S3, S5, and
Ss are created. The successful conclusion of the primary path
is the (paying) WED-state S¢ in Fig. 1(b).

For simplicity of presentation, the car rental example
in Fig. 1 describes a sequential primary path, where each
WED-state only satisfies one WED-condition, which acti-
vates only one WED-transition. Readers familiar with event
processing may expect high parallelism from the event-
based WED-flow specification, capable of describing the
most complex control-flow behaviors proposed in [14], [15].
Intuitively, all WED-conditions are evaluated in parallel
each time a new WED-state is created, which can activate
many parallel WED-transitions if appropriate. A full discus-
sion of the WED-flow specification expressiveness is beyond
the scope of this paper.

An important advantage of the WED-flow approach is
the preservation of correctness properties and system con-
sistency throughout the execution of a WED-flow instance
that is discussed in the following subsection.

2.4 Consistency Properties Preserved by WED-flow

First, we will introduce some notation to describe the preser-
vation of correctness properties and system consistency
throughout the execution of a WED-flow instance (e.g., the
primary path). These consistency properties are derived
from the WED-flow definitions:

Consistency of successful path. Let m-tuple (s1, S2, ..., Sm)
be a successful sequence of WED-states produced by a
WED-flow instance in which no inconsistent data is gen-
erated. In WED-flow execution, a process instance leads
the application from one AWIC-consistent state to an-
other AWIC-consistent state. Application-Wide Integrity
Constraints (AWICs) are described as predicates (WED-
conditions) over the WED-attributes of process and define
integrity constraints that cover the databases of application.
AWICs also include the semantic rules that express business
rules (e.g., total number of available cars). Throughout its
execution, a process instance may create several intermedi-
ate WED-states (e.g., s1 to s,,—1), which are referred to as
transaction-consistent WED-states.
Consistency of recovery paths. When the execution of an
instance deviates from the primary path (e.g., timeout expi-
ration for WED-transition), an inconsistent WED-state may
be created. The automated WED-flow recovery proceeds
at two levels. At the syntactic level, active transactions
are aborted and their (partial) updates are undone. At the
semantic level, system data consistency may be recovered in
two ways: (1) backward recovery; or (2) forward recovery.
To illustrate the advantages of the recovery techniques
described here, in next subsection, two concrete exception
examples from the car rental order are discussed.

3 BUILDING BLOCKS OF WED-FLOW RECOVERY

3.1 Modular Recovery Components (Backward and
Forward)

A recovery path is a sequence of recovery steps that takes
the application database from an (potentially) inconsistent

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2824810, IEEE

Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 00, NO. 0, XXXXXX 20XX 4

Send

c Choose Specify
ulsto_mer vehicle payment Pick up Drop off o= .
ogin type method invoice
(a)

Vehicle
Requested

Vehicle
Booked

Customer
Validated

Credit Card
Verified

Vehicle
Picked Up

Vehicle

Returned Flnlshed

-

WED-Order WED-Customer| WED-Vehicle
ID Clty :Pg:t:piDggt:ﬁ Preference Status ID Status ID Categoryi Status
S, 1§NYC; 0101 { 0103 | [C] | Requested [C4 i NotValidated | ‘
S,|1INYCi01:01 0103 i [C] : Valdated [C4: Valdated | |
S,|1iNYC{01-01§ 0103 [C] | Validated |C4{ Validated [V1iCompact| Booked
S, 1iNYCi 0101 { 0103 i [C] {CCVerified | C4{ Validated |V1iCompact! Booked
S.[1{NYCi 0101 01-03 | [C] | CCVerified | C4 | Validated [V1:Compact Picked-up
S;| 1iNYCi 0101 § 0103 i [C] | CCVerified | C4 | Validated ~[V1iCompact Retured
Se| 1iNYCi 0101 { 0103 [C] | Finished |C4: Validated |V1iCompact: Returned

Fig. 1. Car Rental Primary Path: (a) main component activities in car rental; (b) WED-flow model of the primary path; and (c) concrete WED-states

created by the execution of the primary path.

state back to an AWIC-consistent state. The recovery steps
consist of two special kinds of WED-transitions:

o Undo recovery steps that perform backward recovery.
They take a WED-flow instance to a previous AWIC-
consistent state (e.g., in the execution of primary path).

e Redo recovery steps that perform forward recovery.
They take a WED-flow instance to a new AWIC-
consistent state that may not have been executed (e.g.,
“further down” in the primary path).

The undo and redo steps are designed and implemented
at the same time as the WED-transitions in the primary path.
The undo recovery steps consist of WED-compensation
steps, one for each WED-transition. The purpose of WED-
compensation steps is to “roll back” WED-states so the
WED-flow instance can restore AWIC-consistency caused
by failures. The redo recovery steps are components of
secondary paths to the primary path. The purpose of redo
recovery steps is to “roll forward” WED-states so the WED-
flow instance can resume, preferably somewhere further
along the primary path that is unaffected by the failure that
interrupted the original primary path execution.

Although the design and implementation of undo and
redo steps are application-dependent, they are typically
closely related to the WED-transitions in the primary path.
In the next subsection, we use the car rental example to
illustrate the design strategy for undo and redo steps. More
details about recovery strategies are described in [7].

3.2 Cost-Insensitive Recovery Examples

First, we use backward recovery to handle the cancellation
of car reservation process. A cancellation may occur for
several reasons, e.g., explicit customer request for cancel-
lation, or failure to pick up car at specified time (detected

by timeout). Fig. 2(a) illustrates the backward recovery of
car cancellation. The cancellation event (either by request or
timeout) is detected when WED-state S, is created by the
cancelling activity or timeout handler. Since the semantics
of cancellation prevent further execution, backward recov-
ery path starting from the shaded undo step is followed,
taking the WED-state S. as input and producing the WED-
state S," as output. The WED-state S," is equivalent to
WED-state S, in the primary path, which is transaction-
consistent, but not AWIC-consistent. Due to the absence of
side-effects in the primary path before vehicle assignment,
the backward recovery path is able to continue follow-
ing a sequence of WED-compensations t,* and t;*, (addi-
tional undo steps) to compensate for WED-transitions t2
and t;, and reaching the AWIC-consistent WED-state S, 1
These WED-compensations are carefully designed and im-
plemented to produce the WED-states equivalent to WED-
states used as input in the execution of WED-transitions.
For example, in illustrative example of Fig. 2, the WED-
compensation t,' is executed to “unassign” the compact
vehicle in the car rental process. After its execution, the
compact vehicle is again available for a new reservation.
The WED-state ;' generated by ¢;* is semantically equiv-
alent to the WED-state ;. Informally, two WED-states are
equivalent if both satisfy the same WED-conditions. Finally,
the WED-compensation ¢, is executed, reaching the AWIC-
consistent WED-state S, .

Complementing the previous backward recovery exam-
ple, we use forward recovery to include a new credit card.
Fig. 3(a) illustrates a deviation from the primary path when
a customer has expired credit card: WED-transition t3 is
outside of primary path, producing a WED-state S4. The
forward recovery path is activated by Sq with the redo step,

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2824810, IEEE

Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 00, NO. 0, XXXXXX 20XX 5

Vehicle Customer Vehicle
Requested Validated Booked

First Undo Step
(a)
WED-Order WED-C WED-Vehicl
IDi City Pi[():k-up Drop-off b oterence | Status | D Status |ID: Category: Status
ate | Date

S, | 1iNYC: 01-01} 01-03 IC] Requested | C4 i Not Validated
S, | 1iNYC: 01:01} 01-03 IC] Validated | C4 Validated
32 1:NYC: 01-01: 01-03 [C] Validated | C4 Validated ~ |V1: Compact: Booked
SC 1:NYC: 01-01: 01-03 [C] To cancel | C4 Validated |V1: Compact: Booked
S;'[1iNYCi 01-01} 01-03 [C] Validated | C4 Validated |V1: Compacti Booked
S;'[1iNYCi 01:01} 01-03 [c] Validated | C4 i Validated |V1i Compact: Canceled
S;'| 1iNYCi 01-011 01-03 [C] Canceled | C4: Validated [V1:Compact: Canceled

(b)

Fig. 2. lllustrative backward recovery example for car cancellation: (a)
WED-flow model of primary path and backward recovery path (b) WED-
states produced by the entire WED-flow including backward recovery.

which enables the customer to include a new credit card,
generating a new transaction-consistent WED-state S3. At
this point, the WED-flow instance returns again to primary
path as illustrated in Fig. 3. If the customer does not inform
a new credit card, the timeout handler notifies a cancellation
event (e.g., S in Fig. 2). Both cases are naturally supported
by WED-flow.

Vehicle Customer Vehicle
Requested Validated Booked

Credit Card Vehicle
Verified Picked Up

Credit Card
_ Denied

*

Redo Step

Oy

WED-Order WED-Customer| WED-Vehicle

ID} City Pg:{gp Dg’;fﬁ Preference | Status | ID Status ID: Category; Status
S,| 1 NYC: 01/01: 03/01 [C] Requested | C4 : Not Validated
S,| 1:NYC: 01/01: 03/01 [C] Validated | C4 Validated
S,| 1:NYC: 01/01: 03/01 [C] Validated | C4 Validated | V1:Compact: Booked
S,| 1 NYC: 01/01: 03/01 [C] CC Denied | C4 Validated | V1: Compact: Booked
S,| 1 NYC: 01/01} 03/01 [C] CC Verified | C4 Validated |V1:Compact: Booked
S,| 1iNYC: 01/01} 03/01 [C] CC Verified | C4 Validated |V1: Compact Picked-up
S,| 1 NYC: 01/01: 03/01 [C] CC Verified | C4 Validated | V1: Compact | Returned
Sg| 11 NYCi 01/01¢ 03/01 [C] Finished | C4 Validated | V1: Compact: Returned

(b)

Fig. 3. lllustrative forward recovery example for handling a denied pay-
ment: (a) WED-flow model of primary path and forward recovery path
(b) WED-states produced by the WED-flow including forward recovery.

Forward recovery paths can be combined with backward
recovery paths. This flexible composition at run-time in-
troduces an interesting challenge, namely, the problem of
choosing the best secondary path from the various possible
combinations. This is particularly the case when different
secondary paths have different costs and benefits that may
vary dynamically. The cost-aware recovery composition
method described in the following section is designed to
find the secondary path that maximizes the profit (or min-
imizes the cost) of the current WED-flow instance despite
failures.

3.3 Cost Considerations in the Recovery of AWIC-
Consistency

The scenarios outlined in the previous section (backward
recovery and forward recovery) illustrate the WED-flow
approach to restore AWIC-consistency when a failure oc-
curs. However, the restoration of AWIC-consistency by itself
may or may not achieve the business objective of adopting
a recovery path while minimizing losses (by maximizing
remaining profits) when a failure occurs. Let us consider
the various alternatives that can help a rental car company
recover from a car breakdown.

The car rental primary path described in Fig. 1 gen-
erates the maximum profits when the execution reaches
a successful ending. However, the primary path also has
several potential branches for each activity to cover the less
successful situations (secondary paths) such as failures. We
will use a specific car reassignment scenario to illustrate the
several possible secondary paths enabled by WED-flow. Let
us consider the following situation:

o All compact vehicles have been rented, or assigned to
upcoming rentals.

o A compact vehicle with a serious mechanical problem
has been identified.

o At least one of the upcoming rental assignments needs
to be changed to accommodate the existing (approved)
request that no longer can be fulfilled by the car that
just broke.

Note that the broken car is an external event that intro-
duces an inconsistency into the application, i.e., the invari-
ant of total number of available cars has been reduced by
one. It is non-trivial to recover from this type of AWIC-
consistency violation, since there is no internal record of
how the external event originated. Traditionally, recovery
from such events is left to human operators (e.g., in call
centers) by executing a decision tree defined by business
process designers. In the broken car scenario, the easiest
solution is to replace the broken with another similar car.
In case of sold-out, the goal is selecting a suitable replace-
ment vehicle that will satisfy customers preferences. The
candidate secondary paths include: (1) find an available
vehicle from higher categories, (2) transfer a suitable vehicle
from other locations, (3) give a discount coupon and Uber
credits to end the car rental, plus other potential business
solutions. Currently, call center operators must determine
which of these alternatives are feasible, and offer them to
customers. Unfortunately, the relative costs of various alter-
natives are dynamically variable and typically unavailable
to the operators. Consequently, it is difficult for a PAIS-
based business process to find the secondary path that
optimizes the cost/benefits.

In the following section, we will describe the WED-flow
building block to calculate profits and compose (automati-
cally) feasible secondary paths with their costs, so we can
choose the secondary path with highest profit.

3.4 WED-flow Support for Estimated Profit Calcula-
tions

The design and implementation of WED-flow facilitates the
introduction of “new” features that can be difficult to handle

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2824810, IEEE

Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 00, NO. 0, XXXXXX 20XX 6

in traditional PAIS. The support for cost and benefit calcula-
tions is a good example of such features. For simplicity, we
use the term profit to denote the difference between all costs
and revenues produced by an execution path. In procedural
programs, the tracking and calculation of costs and revenues
of each recovery path is difficult. The main problem is that
both the costs and benefits may vary dynamically at run-
time due to the context of execution, dependencies among
the workflow components, and often the current system
state. Consequently, the tracking and calculation of profit is
as difficult as the exception handling itself, subject to com-
binatorial explosion when each recovery path is described
explicitly in procedures.

In contrast to procedural PAIS, in WED-flow recovery
paths are composed dynamically and each component is
triggered by an event, implemented as appropriate WED-
state changes. Since WED-states contain all the relevant in-
formation about the WED-flow instance being executed, we
calculate the profit of each execution path (including both
the primary path and the secondary paths) from its WED-
states. We also augment the WED-state with a new WED-
attribute, called C/R for the estimated cost and revenue of
activities contained in an execution path.

Definition 1. CR. Consider a WED-flow instance W f;
consisting of WED-transitions (t1,...,%,). Let h; =
(50,81, - - -, Sm) be an execution history of W f;, formed by
a sequence of WED-states produced by the corresponding
WED-transitions in W f;. For each s;, we calculate the value
Uer(8;) that represents the value (cost or revenue) achieved
by t; in the execution history h;. The C'R function of h; is
given by:

CR(h) =Y ver(5))

The interpretation of profit calculation of CR function
above is straightforward when h; starts from an initial
WED-state and ends in a final WED-state, e.g., from S, to
Se in Fig. 1.

We generalize Definition 1 on concrete execution history
h; to enable the calculation of an estimated profit of an
incompletely executed history h;n. = (S0, $1, - - - , S».), Where
r < m. The calculation of such estimated profits proceeds by
simulating the execution of WED-transitions (t,41,...,%),
n < m, by continuing the execution of W f; from WED-state
.. The simulated execution (with hypothetical but reason-
able input for each WED-transition, and without causing
any side effects) of various possible outcomes of W f; allows
us to estimate its achievable profits. The estimated profits
enable a cost-conscious comparison that results in a choice
of a path with maximum profits. We assume that there are &
feasible continued executions (enumerated from f; through
fx) to the end of W f;. We define the expected profits of W f;
with history h;, when continuing from the current WED-
state (s,) as follows.

Definition 2. ECR. The expected profits of W f; with WED-
transitions (t1,...,%y), but in the middle of an incomplete
execution hine = (S0,S1,...,8r), 7 < m, is the sum of
profits achieved by the ongoing execution CR(h;y.) and the
maximum of estimated profits from feasible hypothetical

paths that W f; can take from the current WED-state s,.
The choice of hypothetical paths {f1,..., fr} is restricted
by the feasibility of estimating the input values for their
WED-states. The process of finding reasonable input values
for a hypothetical path will be further explained below.

ECR(W fi,h,) = CR((s1,...,8:))+

mjaX{CR(fj = (Srq1,---58m(y))), 1 < j <k}

We denote the ending WED-state of a hypothetical ex-
ecution f; by s,,(;), since each hypothetical execution may
end at any WED-state for the purpose of ECR calculation.
Readers familiar with optimization problem may notice
that such a general definition of the EC'R function allows
a potentially large number of hypothetical paths, which
may introduce a computational problem for finding their
maximum, since optimization problems are often NP-hard.
Since the focus of this paper is on automated and cost-
conscious recovery methods in WED-flow, we simplify the
calculation of EC'R to consider only feasible paths f; of
length 1, i.e., $,,(jy = sr41. This is a greedy algorithm [16]
and we will use the acronym GECR (for Greedy ECR) to
denote the optimized result from the greedy algorithm.

The greedy algorithm works well when activities that are
semantically dependent (complex interdependence) are en-
capsulated in WED-transitions, and the optimization space
of each WED-transition is convex [17]. In this case, the
sum of local maximum profits (from each WED-transition)
becomes the global maximum profit. This assumption is
valid in the car rental example, where each WED-transition
in the primary path is independent of others. This assump-
tion is valid in many practical applications. In addition,
we are exploring promising ideas such as the systematic
removal of inter-component dependencies from workflows
by merging the components with dependencies into a com-
posite component. A full treatment of the general case,
where dependencies may arise among the WED-transitions,
is subject of ongoing research and beyond the scope of
this paper. In additon, probabilistic models for estimating
profitable paths that cannot be converted into parameters
that represent costs and revenues also are beyond the scope
of this work.

We now apply the greedy algorithm to calculate the esti-
mate profits of the primary path. Fig. 4 includes the profits
as a new column in the WED-state (the C/R field), where the
profits are calculated by following the primary path and
choosing the lowest cost and highest revenue option for
the next WED-transition when multiple choices are feasible.
A good example is WED-transition t, that has as input
a WED-state in which customers preferences may result
in multiple acceptable alternatives of vehicles for reserva-
tion. This WED-transition is designed and implemented
for choosing the highest revenue option among available
vehicles that satisfy the customer preferences. More details
on the different design methods of process steps and their
implications are beyond the scope of this paper. In Fig. 4, the
execution of WED-transition ¢» (vehicle assignment) adds
an estimated rental income ($20) according to the vehicle
category that the customer booked, and WED-transition t5
(car return) includes the estimated depreciation of vehicle

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2824810, IEEE

Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 00, NO. 0, XXXXXX 20XX 7

during the rental period and vehicle cleaning costs when
it is returned (-$3). For this car rental primary path (h;)
example of a compact car, the GECR(W f; ,h;) adds up to
$17.

Vehicle Customer Vehicle Credit Card Vehicle Vehicle Order
Requested Validated Booked Verified Picked Up Returned Finished

[8:] IO~] @IB{s: | @B 5] CID-{ 5.] @IB-{=. | GO =]

(a)

WED-Order WED-Customer| WED-Vehicle

ID; City Pg;;:p Dgg]—eoff Preference | ~ Status | ID Status |ID: Category; Status | CIR
S,| 1:NYC: 01-01 i 01-03 [C] Requested | C4 : Not Validated
S,| 1iNYC} 01-01 | 01-03 [C] Validated | C4 { Validated
S,[1iNYC: 01-01 | 01-03 [c] Validated | C4 | Validated |V1:Compact; Booked | $20
S,| 1:NYC: 01-01 | 01-03 [C] CC Verified | C4 Validated |V1:Compact: Booked
S,[1iNYC: 01-01 | 01-03 [C] CC Verified | C4 Validated |V1:Compact: Picked-up|
S| 1:NYC: 01-01 | 01-03 [C] CC Verified | C4 Validated V1 Compact i Returned| -$3
Se| 1 NYC: 01-01 | 01-03 [C] Finished | C4 Validated |V1:Compact: Returned

(b)
Fig. 4. Car rental primary path including the cost and revenue.

The primary path example in Fig. 4 has one single path
(S0, 81, ..., S¢) when successfully executed to the end. In
the following sections, we will describe the use of GECR
in the automated cost-conscious recovery of WED-flows
when their executions may deviate from the primary path,
by automated combination of (pre-defined) backward and
forward recovery steps.

4 COST-AWARE AUTOMATED RECOVERY OF
WED-FLOW

4.1 Automated and Cost-conscious Recovery in WED-
flow

The automated recovery from deviations from primary path
is handled by WED-flow through a dynamic composition
of two kinds of consistency restoration procedures that
include the undo and redo steps described in Section 3.1.
The dynamic composition process is divided into two parts:
autogen-undo and autogen-redo, to choose and compose
the appropriate undo and redo recovery steps. In Fig. 5,
we use a concrete recovery example (handling the impact
of a mechanical failure of car that was assigned to a reser-
vation) to illustrate the dynamic composition process by a
combination of autogen-undo and autogen-redo.

When a car becomes unavailable due to mechanical
failure, the event is handled by the WED-flow recovery
process in three stages: (1) determination of situation, (2)
autogen-undo, and (3) autogen-redo. In the first stage, a
search for any references to the broken car is performed in
the WED-states of the WED-flow instance execution. If no
references are found (car is unassigned), then the car can be
sent to repairs without further action. In this example, the
car is found to be assigned to a rental process, which is in
WED-state S3 awaiting pickup. Recovery is needed since the
pickup will fail due to the broken car becoming unavailable.

The recovery process moves to second stage by invoking
autogen-undo to “unassign” the broken vehicle. This is
achieved by compensating for the WED-states affected by
the failure event. In the example, it starts from S3 and
continues until reaching the goal of “unassign” by undoing
the WED-state in which the car was assigned (S;). To undo

the assignment made by S,, the autogen-undo procedure
generates the WED-compensations up to WED-state S,
called the stop point for the automated recovery method.

The autogen-undo procedure starts from the current
WED-state (S3), called S3* to avoid confusion with the
forward execution of the primary path. We assume that
at the time of implementation of each WED-transition ¢;,
a corresponding WED-compensation t;l has been also im-
plemented, where semantically (¢;0 ¢;') = I. The autogen-
undo procedure follows the sequence of WED-states starting
from the current (S3) by invoking WED-compensation ;"
with S3* as input. Successful execution of ;' generates S,*,
which becomes the input to WED-compensation ¢,', since
the previous WED-transition was t,*. The undo recovery
process continues until the autogen-undo procedure reaches
the stop point (S,), illustrated in Fig. 5.

The general algorithm for autogen-undo can be de-
scribed as follows:

1) Obtain the current WED-state s, at the time of failure,
the last entry in the WED-state database and the start-
ing point of the recovery path;

2) Find the stop point WED-state s,, the goal of the
recovery path; this search starts from the failure that
caused one of the fields in s, to become inconsistent. (In
Fig. 5 it is the broken car that caused the car assignment
to become invalid). The WED-state that served as input
to the WED-transition that generated the inconsistent
field (car assignment) is the stop point;

3) The undo recovery steps thus generated should have
appropriate WED-conditions that will trigger succes-
sive undo WED-transitions, starting from s.! until
reaching sp,.

The autogen-undo restores the WED-flow to a consistent
state by compensating for the intermediate inconsistent
states. The third step of the recovery process attempts to
find an alternative solution to profitability, e.g., by returning
to the primary path. The third stage is implemented by
autogen-redo, which starts from the stop point WED-state
Ssp (87! in the car rental example). To avoid confusion
with backward recovery, the stop point WED-state s, used
as input for autogen-redo is illustrated as Slﬁl in Fig. 5.
This WED-state is then evaluated for all WED-conditions to
determine which WED-transitions (redo steps) have to be
executed. In the car rental example, the WED-transition ¢; is
triggered, and its execution produces the WED-state S;l+1
In other words, the execution of ¢, assigns a new vehicle
for this reservation order according to the available vehicles
and the customer’s preferences. Next, the WED-state sgl“
is also evaluated by all WED-conditions, which determines
the execution of WED-transition ¢3. This execution produces
the WED-state sgl“. The autogen-redo procedure ends
when a step produces a state equivalent to the current state
5. before starting the autogen-undo, e.g., by returning to
the primary path. However, when the primary path is not
achieved, the autogen-redo procedure may also be finalized
when an AWIC-consistent WED-state is reached. A concrete
secondary path that illustrates this situation is described in
the following section.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2824810, IEEE

Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 00, NO. 0, XXXXXX 20XX 8

Send

Cust Choose Specify
uls omer vehicle payment Pick up Drop off e .
ogin type method invoice

Vehicle
Requested

Vehicle
Booked

Customer
Validated

Credit Card
Verified

Vehicle
Picked Up

Vehicle
Returned

Order
Finished

[s)@0-{5] @R-{s] -] @-{s] @-{s] @]

autogen-undo

[skde 3]

sweeet (67} @45} C+5T

Fig. 5. Automatic recovery in WED-flow

The general algorithm for autogen-redo can be described
as follows:

1) Obtain the WED-state equivalent to s, produced
through the autogen-undo procedure;

2) The redo recovery steps thus generated should have ap-
propriate WED-conditions that will trigger successive
redo WED-transitions, starting from s, (last WED-state
executed by autogen-undo) until reaching a WED-state
equivalent to WED-state s..

The autogen-redo procedure ended because the WED-
state sgi“ is equivalent to the current state Sz at the time
of the inconsistency is detected. After WED-state S;ﬁl has
been created, the process instance can go ahead with its
normal execution, so as to reach the activities of car pick-up,
car return and send invoice, as illustrated in Fig. 5.

The autogen-undo and autogen-redo procedures pro-
duce a secondary path that does not involve the compact
vehicle that was found to have a mechanical failure. There
are several secondary paths, which depend on a combina-
tion of factors concerning process instance requirements,
available resources and recovery costs. In the next section,
some possible secondary paths obtained from execution of
autogen-undo and autogen-redo procedures are described.

4.2 Secondary Path Examples from Recovery

For concreteness, we outline some examples of secondary
paths that illustrate the car rental scenario. In these exam-
ples, all WED-states are numbered sequentially. However,
the lines in the execution history that are highlighted refer
to the additional steps taken by the autogen-undo and
autogen-redo. In addition, the costs and revenues at each
state transition are presented.

Fig. 6 illustrates a secondary path, in which the compact
vehicle that was previously reserved has to be canceled and
another vehicle is automatically obtained through the com-
bination of autogen-undo and autogen-redo procedures.
Firstly, the WED-states S;, Sy, and S3 indicate conclusion
of the activities of customer validation, vehicle assignment and
payment method validation, respectively. Next, the recovery

composition method generates the WED-conditions and
WED-transitions that will carry out the undo of the WED-
states that need to be canceled. The autogen-redo proceeds
with WED-states S, and Ss that compensate for the vehicle
assignment and payment method validation activities. Then
the autogen-redo process is able to create the WED-states Sg
and S7 by re-executing WED-transitions ¢3 and ¢3. The re-
covery process ends with WED-state S7, which corresponds
to the WED-state at the beginning of the cancellation (i.e.
S3). From WED-state S7, onwards, the WED-flow continues
its normal execution, to reach the WED-states Sg, Sg and S1,.

WED-Order WED-Cust WED

D} City Pg;sp Dr[());)t-;)ff Preference | Status | ID Status |ID Category: Status | CRR
S,| 1 iNYC: 01-04; 01-05 [E, C] Requested | C4 i Not Validated
S,| 1 iNYC: 0104} 01-05 | [EC] Validated | C4 Validated $20
S,[1:NYC: 01-04: 01-05 [E, C] Validated | C4 Validated | V1: Compact: Booked
S,| 1 INYC: 0104} 01-05 [E, C] CC Verified | C4 Validated | V1: Compact; Booked
S,[1:NYC: 01-04; 01-05 [E, C] Unverified | C4 Validated | V1; Compact; Booked
S, 1:NYC: 01-04: 01-05 : [E,C] Unverified | C4 Validated | V1: Compact; Canceled| -$20
S,| 1iNvC] 0104} 0105 | [E,C] | Unverified | C4} Vaidated |V3]Economy; Booked | $15
S,[1:NYC: 01-04; 01-05 [E, C] CC Verified | C4 Validated | V3: Economy; Booked
S| 1iNYC: 01-04i 01-05 i [E C] CC Verified | C4 Validated | V3: Economy: Picked-up|
S,| 1 NYC: 0104} 01-05 [E, C] CC Verified | C4 Validated | V3: Economy: Returned
S, 1 iNYC: 01-04: 01-05 [E, C] Finished | C4 Validated | V3: Economy: Returned

Fig. 6. Secondary path: another vehicle within the customers prefer-
ences is obtained

Although the replacement vehicle is different from the
broken vehicle originally reserved, the autogen-redo pro-
cedure was able to find one that meets the customers
preferences. In this example, an economy vehicle (of higher
value) replaces the compact vehicle without additional cost
to the customer. Note that the costs and revenues at each
WED-transition are explicitly represented in the WED-state
database (right side of Fig. 6). For example, the process
instance has accumulated revenue of $20 at the time when
WED-state S5 is written. As soon as the compact vehicle is
canceled, a financial loss is calculated by the autogen-undo
procedure. The autogen-redo procedure re-executes WED-
transitions t5 and t3 and a new CR function is calculated.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2824810, IEEE

Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 00, NO. 0, XXXXXX 20XX 9

The instance has now achieved a CR function of $15 instead
of the $20 that was obtained before the cancellation.

Fig. 7 shows a similar scenario in which a higher-
category vehicle is selected to replace the canceled vehicle.
In this example, the customer has reserved a premium
vehicle that has been replaced by a luxury vehicle. We
take into consideration that a luxury vehicle is a compatible
replacement for the premium vehicle requested by the cus-
tomer. Even though this alternative may not be the normal
recovery procedure for car rental companies, it may result in
some profit, as illustrated in Fig. 7. The secondary path has
a CR function of $50 instead of the $90 that was obtained
before the cancellation.

WED-Order WED-Cust WED-Vehicl

ID: City Pgl;;gp Dgg{:ﬁ Preference | Status | ID Status [ID} Category; Status | CRR
S,| 1:NYC: 01-04: 01-05 [P] Requested | C4: Not Validated
S,| 1:NYC: 01-04; 01-05 [P Validated | C4 Validated
S,[11 NYC: 01-04; 01-05 [Pl Validated | C4 Validated ~ |V4: Premium: Booked | $90
S,| 1:NYC: 01-04; 01-05 [P] CC Verified | C4 Validated | V4: Premium: Booked
S,| 1:NYC: 01-04; 01-05 [P] Unverified | C4 Validated | V4: Premium: Booked
S| 1/ NYC: 0104 01-05 [P] Unverified | C4 Validated | V4 Premium: Canceled| -$90
S| 1INYC] 01047 01057 Pl | Unverified | C4} Validated |V5 Luxury | Booked | $50
S,| 1/ NYC: 01-04: 01-05 [Pl CC Verified | C4 Validated | V5: Luxury i Booked
Sg| 1/ NYC: 01-04: 01-05 [Pl CC Verified | C4 Validated | V5: Luxury :Picked-up
S,| 1:NYC: 01-04; 0105 [P] CC Verified | C4 Validated | V5: Luxury :Returned
S,{ 11 NYC: 01-04: 01-05 [P] Finished | C4 Validated | V5: Luxury : Returned

Fig. 7. Secondary path: a higher-category vehicle is selected

Figures 6 and 7 depict recovery scenarios, in which
secondary paths that satisfy the customers preferences have
been found. Unlike the previous examples, Fig. 8 illustrates
an example, in which no vehicle that satisfies the customers
preferences is found. More specifically, the autogen-redo
procedure terminates early when WED-transition ¢, pro-
duces the WED-state Sg. Termination before achieving a
WED-state equivalent to the current state at the time of the
cancellation is a special case of the autogen-redo procedure.
The WED-flow approach allows multiple termination states
for a process [7]. In this example illustrated by Fig. 8, the
termination state Sg for the process instance is an AWIC-
consistent state, from the WED-flow perspective. From the
business perspective, this termination is an unprofitable
way of handling cancellations; it also lowers customer satis-
faction for failing to address customer needs. By automating
the recovery process, WED-flow improves both profitability
and customer satisfaction.

WED-Order WED-Cust WED-Vehicl

ID: City Pgl;;gp Dg;gﬁ Preference | Status | ID Status IDi Category! Status | C/R
S,| 1{NYC: 01-04: 01-05 [C] Requested | C4 : Not Validated
S,[1:NYC; 01-04: 01-05 [C] Validated | C4 Validated
S,| 1:NYC: 01-04: 01-05 [C] Validated | C4 Validated | V1: Compacti Booked | $20
S,[1:NYC; 01-04; 01-05 [C] CC Verified | C4 Validated [V1: Compact: Booked
S,|1 NYC 01-04 01-05 [C] Unverified C4 Validated V1 Compact Booked | -$20
S,[1 NYC 01-04 0105 [C] Unverified C4 Validated V1 Compact Canceled
S| 1 NYC 0104 0105 [C] Unverified C4 Validated V1 CompactNotFound

Fig. 8. Secondary path: nothing can be done and the customers reser-
vation is canceled

Fig. 9 depicts an example in which the customer receives
a bonus because his reservation was canceled. This bonus

refers to some type of credit that can be used in future
reservations or in some partner company (e.g., Uber). This
strategy is commonly used by several companies in case of
cancellations. From the customer’s point of view, a bonus
may minimize his dissatisfaction, but it also increases the
costs of the company to handle exceptions.

WED-Order WED-Customer| WED-Vehicle

D City PI[t):l;;:p Dgg{:ﬁ Preference : Status | ID Status [ID; Category: Status [CRR
S,| 1iNYC: 01-04} 01-05 [C] Requested | C4 i Not Validated
S,| 1iNYC: 01-04: 01-05 [C] Validated | C4 Validated
S, 1:NYC: 01-04: 01-05 [C] Validated | C4 Validated | V1; Compact; Booked | $20
S,| 1iNYC: 01-04: 01-05 [C] CC Verified | C4 Validated | V1: Compact: Booked
S,|1 NYC 01-04 01-05 [C] Unverified C4 Validated V1 Compact Booked | -$20
S,|1 NYC 0104 0105 [C] Unverified C4 Validated V1 Compact Canceled
S,| 1 NYC 0t:04 0105 [C]Unverified C4 Validated V4 CompactNotFound |
S,| 1 _NYC 01-04 01-05 [C] Bonus C4 Validated V1 Compact Not Found| -$10

Fig. 9. Secondary path: No vehicle is found and the customer receives
a bonus

In this section, we described several secondary paths
within the car rental scenario. Although our examples focus
on a car rental scenario, the autogen-undo and autogen-redo
procedures are widely applied in a variety of cancellation
situations in several scenarios. Another common example
is the cancellation of flights due to mechanical failures or
unfavorable weather conditions. Due to the complex engi-
neering of many recovery steps, long lines form at airports
with passengers who would like to find the best alterna-
tive for their journeys. Similarly, long waits may happen
with overloaded call centers when many recovery choices
are possible. In order to improve the quality of recovery
results, an optimization algorithm is added to autogen-redo
and autogen-undo procedures, described in the following
section.

4.3 Optimization Algorithm to find Max-profit Sec-
ondary Path

In this section, we describe the WED-flow support for incor-
porating an optimization algorithm into autogen-undo and
autogen-redo procedures. As result, WED-flow recovery is
able to find automatically the highest-profit secondary path
(among all the alternatives that satisfy customer require-
ments), using the CR function as the objective function.
Consider an exception that occurred during the ex-
ecution of the primary path, causing a violation of
AWIC-consistency. WED-flow recovery (autogen-undo and
autogen-redo, described in the previous section) can gen-
erate several secondary paths to recover AWIC-consistency.
The main purpose of optimization algorithm is to find the
secondary path that minimizes the cost (equivalently, max-
imizes the remaining profit). The optimization algorithm
assumes that the component segments of secondary paths
for recovery (both undo and redo) have been designed
and implemented, ready for composition and execution
by WED-flow. The search for appropriate component seg-
ments starts from the execution history (k) that contains the
paths of active running instances. The search is refined by
the data items (assigned_item) affected by the exception,
whose AWIC-consistency needs to be restored. Once all the
relevant secondary paths (with assigned_item) have been

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2824810, IEEE

Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 00, NO. 0, XXXXXX 20XX 10

found, the optimization algorithm chooses and executes the
secondary path that has the lowest cost.

Fig. 10 outlines the optimization algorithm, in which
the execution history (h) provides the context in which
the secondary paths will be generated, and assigned_item
identifies the parameters that affect the cost of recovery (in
the car rental example it is the broken car). The first step of
the algorithm finds the WED-states that form the context of
optimization, determined by the scope of violation of AWIC-
consistency, identified by the assigned_item in line 2. If
no recovery instance is found, recovery actions are either
unnecessary or unavailable, and the algorithm execution
is terminated in line 4. Otherwise, the recovery algorithm
enumerates the secondary paths found, and determine the
most profitable secondary path. In lines 6-11, a loop iterates
on instances in order to produce secondary paths by execut-
ing the autogen-undo and autogen-redo procedures. At each
step of the iteration, the current state s, and the stop point
state s, are identified for each instance 7. Both are obtained
by queries on execution history (WED-states) of instance ¢
in line 7 and 8. As discussed in Section 4.1, the stop-point
state is used as stop condition for autogen-undo, and the
current state is used as a stop condition for autogen-redo.
For each secondary path created for each instance (lines 6-
11), its cost/revenue is calculated using the CR function.
After all secondary paths have been found, the highest profit
path is identified and invoked in line 12.

1: procedure RECOVERY(h, assigned_item)

2 instances < find_instances(h, assigned_item)
3 if instances = () then

4 return false

5: end if

6 for i € instances do

7 S¢ «— current_state(h;)

8 ssp find_stop_point_state(h;, assigned_item)
9 autogen-undo(h;, Ssp)

10: autogen-redo(h;, s¢)

11: end for

12: choose_highest_profit_path(instances)

13: end procedure

Fig. 10. Optimization algorithm to max-profit path

The autogen-undo procedure illustrated in Fig. 11 is
responsible for recovering each instance from its current
state to the stop-point state. The autogen-undo executes
undo steps to semantically undo the effects produced by
execution of WED-transitions between s. and s),. The input
parameters for autogen-undo are the execution history h; of
instance 4, and the stop-point WED-state s;,. In line 2, the
autogen-undo procedure identifies the current state s, by
executing a query on execution history h;. Between lines 3-7,
a loop executes until WED-state s,,. to be equivalent to stop-
point WED-state s,,. At each step of iteration, the WED-
transition that produced WED-state s, is identified and its
associated undo (sometimes a semantic compensation step)
is executed, producing a new WED-state s,,.. The autogen-
undo process terminates when a backward recovery path
has been produced for instance i.

After autogen-undo execution, the autogen-redo pro-

1: procedure AUTOGEN-UNDO(h;, 54p)

2 Sne < current_state(h;)

3 while s, # s,p do

4 Let t be WED-transition that generated s,
5: Let ¢t~ be undo step for ¢;

6 Sne < 7 H(sne)

7 end while

8: end procedure

Fig. 11. Autogen-undo procedure.

cedure illustrated in Fig. 12 is invoked. Autogen-redo is
responsible for finding a secondary path for each instance
involved in the recovery process. This procedure has two
input parameters: the execution history h; of instance 7, and
WED-state s., which was the current state before starting
autogen-undo. In line 2, the procedure gets the current
state sp. of h;. The main purpose of autogen-redo is to
construct the secondary paths that will produce a WED-
state equivalent to s. (returning to primary path), or a
secondary path that produces an AWIC-consistent WED-
state (final WED-state). Both stop conditions are used in
loop in lines 3-6. At each step of iteration, autogen-redo
finds a redo WED-transition to be executed by evaluating
WED-state s, with WED-conditions of application. In line
5, the WED-transition associated to satisfied WED-condition
is executed, and its execution produces a new WED-state
Sne. After autogen-redo execution, a secondary path will
have been produced for instance i. Since many instances
may be involved in the recovery process, we need to find
which of them produces the max-profit secondary path as
discussed below.

procedure AUTOGEN-REDO(h;, S¢)
Sne < current_state(h;)
while s,. #Z s. and not FINAL_STATE(S,,.) do
Let ¢ be WED-transition enabled by s,
Sne < t(Sne)
end while
end procedure

Fig. 12. Autogen-redo procedure

Q

The recovery algorithm is used to produce a secondary
path for each WED-flow instance involved in recovery. We
use the concept of Nested Transactions [18] to avoid each
secondary path has its effects exposed until the max-profit
path has its data committed. Because of this, the algorithm
described in Fig. 13 calculates the profit for each path using
the CR function (see Definition 1). Next, in line 5, the
instance k£ with highest profit secondary path is found and
its data are committed (line 8). All other secondary paths are
discarded (line 10). The recovery algorithm is encapsulated
by a highest-level transaction while the execution of auto-
undo and auto-redo (each secondary path) for each instance
is enclosed in a sub-transaction. Finally, the lowest level
refers to transitions and compensations that are performed
encapsulated within transactions. An optimization to pro-
duce secondary paths is one of the ongoing works of our
research group.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2824810, IEEE

Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 00, NO. 0, XXXXXX 20XX 11

1: procedure CHOOSE_HIGHEST_PROFIT_PATH(instances)
2: for i € instances do

3 profit; < CR(h;)

4: end for

5: k < max_profit(pro fit)
6 for i € instances do
7

8

9

if i = k then
commit(h;)
else
10: abort(h;)
11: end if

12: end for
13: end procedure

Fig. 13. Procedure for calculation and identification of the highest profit
secondary path

The execution time for the optimization algorithm to
the highest profit secondary path is characterized by two
factors: (i) the number of instances involved in optimiza-
tion process; and (ii) the number of compensations and
transitions executed for each instance. In the next section,
we present the experimental results obtained from different
loads submitted to our algorithm.

5 [EVALUATION: A FEASIBILITY STUDY OF THE RE-
COVERY

5.1 Implementation in the WED-flow framework

The algorithms described in Section 4.3 were implemented
within the WED-flow framework. The WED-flow frame-
work was developed using the Ruby programming lan-
guage together with the Ruby on Rails application frame-
work [11]. Both the process schema and the process instance
are stored in a relational database. The framework features
are grouped into modules as follows:

Definition and maintenance of process schemas. The
process schema is designed in a XML file. This includes
WED-attributes, WED-conditions, WED-transitions, WED-
compensations and WED-triggers. Here, we include a new
WED-attribute C/R used for WED-transitions and WED-
compensations to store their costs and revenues. The XML
file is used for the initial configuration of processes, which
includes creation of the complete database structure.

Execution control. This module manages process instances
and controls their execution. The module receives external
events as initial attribute values (initial state) and begins
a process instance to handle this new state. All the infor-
mation about each new instance is recorded in a relational
database. The execution control is responsible for execution
of the primary path, in which the process control flow
is determined by WED-conditions that are applied to the
WED-state. Therefore, all WED-states must be monitored,
and when one of them satisfies a condition, the associated
transition will be triggered. More concretely, the concepts
of WED-condition and WED-trigger were implemented
through the fundamentals of continual queries [10].

Recovery management. This module is responsible for han-
dling process instances when deviate from primary path.
Such instances are interrupted by the execution control. The

recovery management executes alternative actions such as
backward and forward recovery steps. We included the opti-
mization algorithm to max-profit secondary path within the
recovery management module. This algorithm is triggered
when an external event violates some AWIC-consistency
rule.

5.2 Experimental setup

An example of business process was implemented based
on the car rental business. The mechanism was submitted
to 30 loads from 500 to 15,000 instances. We started the
experiment with a load of 500 instances and added 500 in-
stances for each subsequent load until the last load of 15,000
instances had been performed. For the sake of uniformity
among the loads, each instance needed to undergo 3 to 5
steps in order to recover from the cancellation. Each load
was submitted three times and the average execution times
were recorded. We take care that each process instance has
a viable secondary path (that is, it reaches a WED-state
equivalent to the stop-point state or a final WED-state).
If none of these alternatives was feasible, an inconsistent
WED-state would be produced and the process instance
would remain stuck. We conducted the experiments in a
server running Ubuntu 14.04.02 LTS, PostgreSQL 9.3.10 and
Ruby 2.3.0. The hardware used in the experiments included
a server machine with 7 CPUs, Intel Xeon 2.4 GHz, 32 GB
RAM and 200 GB disks.

5.3 Results

Fig. 14 depicts the experimental result obtained from exe-
cution of 30 loads. The first load with 500 instances was
performed in 39.4 seconds, while the last load with 15,000
instances was performed in a runtime of 5,106.8 seconds.

6000

5000 |- Ve

4000 |- o

(sec)
"

3000 ./l/

2000 w

ime
|
N

T

T

1000

T
\
|}

o™
0 l—l"'.‘.l

[P TRU RS R S RS SR
500 2500 4500 6500 8500 10500 12500 14500

Instances

Fig. 14. Experimental results: number of instances versus time (sec).

The main objective of the feasibility study is to show
that the cost-oriented recovery can be applied in different
contexts even in scenarios involving a reasonable number
of recovery transactional steps. The recovery complexity is
evaluated by the number of backward and forward trans-
actional recovery steps in which each instance involved in
the recovery must perform to return to the consistency state.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2824810, IEEE

Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 00, NO. 0, XXXXXX 20XX 12

Fig. 14 shows the behavior of the execution time given the
addition of new recovery transactional steps. In each sample
of our study, we increase the number of instances, and
consequently the number of recovery transactional steps.

6 RELATED WORK

The importance of robust and reliable PAIS has long been
observed [19], [20]. Reliability is the ability of PAIS to
provide efficient and accurate support for designing and
implementation of automatic recovery routines for excep-
tion handling (i.e. expected exceptions). Robustness is the
ability of PAIS to remain in operation despite unexpected
exceptions. Robust and reliable PAIS are able to recover
system from an inconsistent state to a consistent state when
an abnormality causes deviation of execution.

The earliest work towards development of PAIS con-
sisted of attempts to include advanced transactional con-
cepts for supporting robust and reliable execution of
business processes [21]. Among these, Garcia-Molina and
Salem [8] were the first to introduce compensation actions
associated with each step of the process for recovering
consistency, in the Sagas model. The semi-atomicity pro-
posal [22] extended the Sagas model by providing alterna-
tive execution paths that led the process to an acceptable
final state after a failure. Opera [23] integrated programming
language concepts and transactional atomicity, in which
the semantics defined through the language constructs
were enforced through use of an execution model based
on extended transaction models (ETMs). Although many
notable efforts have been made over the years to relax
transaction properties in order to support reliable systems,
contributions from ETMs only comprise a fraction of the
many components needed for providing new abstractions
towards robust and reliable processes [24], [25]. Bhiri et
al. [25] argued that primitive control structures and non-
intuitive sets of constraints imposed on structures were the
main reasons for limited adoption of ETMs for supporting
applications.

Transactional features were incorporated with tradi-
tional workflow to support business processes with well-
defined failure semantics and recovery features were pro-
posed in the early 1990s [20], [26], [27]. The ConTract
Model [28], [29] ensured semantic database consistency by
ensuring semantic rules known as invariants. Kamath and
Ramamritham [30] proposed an approach called oppor-
tunistic compensation and re-execution that reduced recov-
ery overheads when workflows were rolled back partially
and re-executed to handle errors. Task Net [31] was a trans-
actional workflow model based on a colored Petri net, which
was used to express intra and inter-task state dependency.
This prominent contribution provided clear evidence that
oriented-process models still face challenges relating to reli-
ability and flexibility that need to be overcome. The need for
dependency mapping beforehand entails large overheads
for analysts and designers and leads to complex process
models.

As workflow technology consolidated, significant contri-
butions regarding workflow recovery for ensuring reliable
execution were also proposed. A classification framework

for exception handling in PAIS based on patterns was pro-
posed [32]. Exception handling patterns for process mod-
eling were also addressed [33]. Adams et al. [34] proposed
an extensible repertoire of self-contained exception handling
processes (named exlets) based on workflow exception pat-
terns and an associated set of selection rules to support
dynamically exception handling for business process in-
stances. A more comprehensive overview [32] evaluated
several approaches with regard to their exception handing
capabilities using a pattern-based approach. The Chimera-
Exc language [35] was proposed for expressing exceptions in
workflow management systems. Chimera-Exc is a language
based on detached active rules that are used to capture
exceptional events and to react to them.

Since Service-Oriented Architecture (SOA) has become
a popular solution for distributed systems, several tech-
niques have been proposed for robust and reliable Web
service composition [36], [37], [38]. Although Web service
compositions are beyond the scope of the present work, one
of the most outstanding studies combines the coordination
and organizational aspects of PAIS with the reliability of
transactional processing [25]. A more detailed survey [39]
has been published.

All of these approaches have significantly contributed
towards improvement of process design and exception han-
dling. However, to date, to the best of our knowledge, none
of these new strategies has included an automatic recovery
mechanism with the ability to find alternative paths for
reducing the financial side-effects of exception handling.

Our solution to handle exceptions is supported by the
WED-flow approach. This approach is an alternative to
process modeling represented by the primitive constructors:
triggers, conditions, transitions, and data state. An impor-
tant phase for information systems modeling for processes
is the capturing and ordering of events [40]. Usually, the
events are ordered through temporal dependencies [41], and
the data repository is modeled using classical database [42].
Event-driven methodology is a well-known strategy to
identify and represent processes [41], [43]. However, the
modeling of complex tasks goes beyond just capturing and
representing events. In contrast to event-oriented strategies,
the WED-flow approach is based on integrated paradigms
(work, event, and data-flow) and concept of advanced trans-
action models. A more comprehensive comparison among
the WED-flow approach and different process modeling
paradigms (event-driven modeling, data-driven modeling,
and control-flow modeling) may also be found in [6].

The main problem of PAIS in dealing with exceptions is
their limited ability for modeling and automatic execution
all possible outcomes and alternatives in a process. Because
of this need, exception handling has usually been addressed
through intervention of human operators in call centers, to
solve the side-effects of unexpected events. Gradually, these
ad-hoc interventions have become more common because of
the exponential growth of systems. Therefore, maintenance
of PAIS is becoming increasingly expensive and error-prone.
To address this problem, our approach focuses on automat-
ing recovery routines that can be widely used in several
business processes with the aim of reducing human operator
intervention for exception handling. The feasibility study is
intended to show that the recovery mechanism is appropri-

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2824810, IEEE

Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 00, NO. 0, XXXXXX 20XX 13

ate for practical purposes. The result illustrated in Fig. 14
indicates that the optimization algorithm to max-profit sec-
ondary path is feasible for execution within real business
processes. Even though the response time for a large set
of instances is substantial, our proposal is able to reduce
significantly overheads relating to call centers, by providing
an automated way for exception handling. In some business
scenarios, not all instances may be involved in exception
handling, because of semantic factors. For example, high-
priority customers may not have their reservations canceled
if there are other low-priority instances that can be canceled,
even if this means a higher cost to the company.

Many PAIS are based on process models that provide
well-founded notation that enables formal verification of
correctness properties. These techniques avoid many serious
structural problems in process models, such as deadlock and
livelock. However, these are not enough to ensure robust
and reliable execution when a particular process instance
needs to deviate from the normal behavior defined by the
flow structure. Because of this limitation, many PAIS are in-
tegrated with procedural languages in order to code specific
routines for exception handling. In spite of the flexibility
provided by these languages, exception handling code tends
to grow much bigger than the primary path because of the
many possibilities for errors. This significant code growth
leads to various problems such as maintenance, testing and
reuse. In contrast to these approaches, our proposal includes
a reduced number of recovery steps that is enough for
accurate and efficient management of exception handling.
These recovery steps are homogeneously designed in ac-
cordance with the WED-flow framework. This facilitates
their reuse, minimizes the effort involved in automation and
reduces the complexity of exception handling for dynamic
environments.

One requirement of PAIS in dynamic environments is
that it should support long-duration execution of process
instances that can become intertwined when sharing data
resources. This generates dependencies among instances
that have to be taken into consideration when dealing with
an exception. An exception in this scenario can result in
a side-effect that goes beyond the boundaries of the pro-
cess instance in which the exception occurred. In addition,
because the exception involves other instances, handling it
within this scenario can also lead to significant costs for the
business. As discussed in Section 4, our cost-aware recovery
composition method is able to find secondary paths for all
process instances that were indirectly affected by the excep-
tion. The instance that minimizes financial loss arising from
exception handling can then be automatically selected. Intu-
itively, when an exception (violation of AWIC-consistency)
is detected, our proposal allows automatic rearrangement of
systems in order to comply with the dependencies among
process instances. In contrast with another study [31], there
is no need to map all dependencies at the design time,
in our approach. We assume that the dependencies are
generated dynamically when instances share data resources.
Since the execution histories of process instances are stored
permanently as data states, dependent instances affected by
exception handling can be identified through a simple query
on execution history, as shown in Section 4.3.

7 CONCLUSION

PAIS have serious difficulties with anomalous situations
that fall outside of the well-behaved execution path. Hence,
exception handling is usually delegated to call centers in
order to recover application data consistency from failures.
This results in significant additional costs for businesses. In
this paper, we introduce a cost-aware recovery composition
method that is able to find and follow secondary paths that
reduce the cost of exception handling. From a practical point
of view, our proposal reduces complexity and the need for
manual interventions to handle exceptions.

Our WED-flow research initiative addresses the chal-
lenges of transactional recovery needed in complex scientific
and business process. Our ongoing research includes devel-
opment of an adaptation mechanism to deal with automatic
migration of running process instances in adaptive PAIS.
In addition, we have ongoing efforts towards ensuring
correctness properties in WED-flow models that are able to
avoid anomalies at the build time. Regarding to exception
handling, we are studying some optimization alternatives
by introducing parallel computing ideas into our recovery
algorithm; a generic utility function to which many factors
can be translated to replace the current cost function; and
new strategies for comparative experiments and evaluation
our work.

ACKNOWLEDGMENTS

This work has been supported by FAPESP (Sdo Paulo
State Research Foundation) grant number 2015/01587-0,
CNPq (Brazilian National Research Council) grant number
308476/2015-8, and Fundagao Araucéria.

REFERENCES

[1] M. Dumas, W. van der Aalst, and A. H. M. ter Hofstede, Eds.,
Process-Aware Information Systems: Bridging People and Software
through Process Technology. New York, NY, USA: Wiley, 2005.

[2] M. Weske, Business Process Management: Concepts, Languages, Archi-
tectures. Secaucus, NJ, USA: Springer-Verlag, 2007.

[3] J. Eder and W. Liebhart, “Contributions to exception handling
in workflow management,” in Proc. EDBT Workshop Workflow
Manage. Syst., 1998, pp. 3-10.

[4] Technavio, “Global contact center market 2015-2019,” Technavio,
London, UK, Tech. Rep., 2015.

[5] J. E. Ferreira, Q. Wu, S. Malkowski, and C. Pu, “Towards flexible
event-handling in workflows through data states,” in Proc. 6th
World Congr. on Services (SERVICES-1), 2010, pp. 344-351.

[6] . E. Ferreira, O. K. Takai, S. Malkowski, and C. Pu, “Reducing
exception handling complexity in business process modeling and
implementation: the wed-flow approach,” in Proc. the Int’l Conf.
the Move to Meaningful Internet Syst. (OTM’10), 2010, pp. 150-167.

[7] J. E. Ferreira, K. R. Braghetto, O. K. Takai, and C. Pu, “Transac-
tional recovery support for robust exception handling in business
process services,” in Proc. the 19th Int’l Conf. Web Services (ICWS
12), 2012, pp. 303-310.

[8] H. Garca-Molina and K. Salem, “Sagas,” ACM SIGMOD Rec.,
vol. 16, no. 3, pp. 249-259, Dec. 1987.

[9] D.B. Lomet, R. S. Barga, M. F. Mokbel, G. Shegalov, R. Wang, and
Y. Zhu, “Immortal db: Transaction time support for sql server,” in
Proc. the 2005 ACM SIGMOD Int’l Conf. Manage. of Data (SIGMOD
'05), 2005, pp. 939-941.

[10] L. Liu, C. Pu, and W. Tang, “Continual queries for internet scale
event-driven information delivery,” IEEE Trans. Knowl. Data Eng.,
vol. 11, no. 4, pp. 610-628, July 1999.

[11] M. Garcia, K. Braghetto, C. Pu, and J. E. Ferreira, “An implementa-
tion of a transaction model for business process systems,” J. Inform.
and Data Manage. (JIDM), vol. 3, no. 3, pp. 271-286, 2012.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2824810, IEEE

Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 00, NO. 0, XXXXXX 20XX

(12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

[36]

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

J. E. Ferreira, O. K. Takai, and C. Pu, “Integration of business
processes with autonomous information systems: a case study in
overnment services,” in 7th IEEE Int’l Conf. E-Commerce Technol.
(CEC’05), 2005, pp. 471-474.
L. V. Arajo, S. Malkowski, K. R. Braghetto, M. R. Passos-Bueno,
M. Zatz, C. Pu, and J. E. Ferreira, “A rigorous approach to facilitate
and guarantee the correctness of the genetic testing management
in human genome information systems,” BMC Genomics, vol. 12,
no. 4, pp. 1-8, 2011.
W. M. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and
A. Barros, “Workflow patterns,” Distributed and Parallel Database,
vol. 14, no. 1, pp. 5-51, July 2003.
N. Russell, A. H. M. T. Hofstede, W. M. van der Aalst, and
N. Mulyar, “Workflow control flow patterns: A revised view,”
BPMcenter.org, Tech. Rep., 2006.
T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Greedy
algorithms,” in Introduction to Algorithms. Cambridge, MA, USA:
MIT Press, 2009, pp. 414-450.
S. Boyd and L. Vandenberghe, Convex Optimization.
NY, USA: Cambridge University Press, 2004.
J. E. B. Moss, “Nested transactions: an approach to reliable dis-
tributed computing,” Massachusetts Inst. of Technol., Cambridge,
MA, USA, Tech. Rep., 1981.
D. Georgakopoulos, M. Hornick, and A. Sheth, “An overview of
workflow management: From process modeling to workflow au-
tomation infrastructure,” Distributed and Parallel Databases, vol. 3,
no. 2, pp. 119-153, Apr. 1995.
J. Eder and W. Liebhart, “Workflow recovery,” in Proc. the 1st IFCIS
Int’l Conf. Cooperative Inform. Syst. (CooplS’96), 1996, pp. 124-134.
A. K. Elmagarmid, Ed., Database Transaction Models for Advanced
Applications. San Francisco, CA, USA: Morgan Kaufmann, 1992.
A. Zhang, M. Nodine, B. Bhargava, and O. Bukhres, “Ensuring
relaxed atomicity for flexible transactions in multidatabase sys-
tems,” SIGMOD Rec., vol. 23, no. 2, pp. 67-78, May 1994.
C. Hagen and G. Alonso, “Exception handling in workflow man-
agement systems,” IEEE Trans. Softw. Eng., vol. 26, no. 10, pp. 943—
958, Oct. 2000.
G. Alonso, D. Agrawal, A. E. Abbadi, M. Kamath, R. Giinthor, and
C. Mohan, “Advanced transaction models in workflow contexts,”
in Proc. the 12th Int’l Conf. Data Eng. (ICDE’96), 1996, pp. 574-581.
S. Bhiri, C. Godart, and O. Perrin, “Transactional patterns for
reliable web services compositions,” in Proc. the 6th Int’l Conf. Web
Eng. (ICWE 06), 2006, pp. 137-144.
A. Sheth and M. Rusinkiewicz, “On transactional workflows,”
Data Eng. Bull., vol. 16, no. 2, pp. 20-25, 1993.
D. Georgakopoulos, M. E. Hornick, and F. Manola, “Customizing
transaction models and mechanisms in a programmable envi-
ronment supporting reliable workflow automation,” IEEE Trans.
Knowl. Data Eng., vol. 8, no. 4, pp. 630-649, Aug. 1996.
H. Wichter and A. Reuter, “The contract model,” in Database
Transaction Models for Advanced Appl., A. K. Elmagarmid, Ed. San
Francisco, CA, USA: Morgan Kaufmann, 1992, pp. 219-263.
A. Reuter, K. Schneider, and F. Schwenkreis, “Contracts revisited,”
in Advanced Transaction Models and Architectures, S. Jajodia and
L. Kerschberg, Eds. Springer US, 1997, pp. 127-151.
M. Karnath and K. Ramamritham, “Failure handling and coordi-
nated execution of concurrent workflows,” in Proc. 14th Int’l Conf.
Data Eng., 1998, pp. 334-341.
I. Choi, C. Park, and C. Lee, “Task net: Transactional workflow
model based on colored petri net,” Eur. |. Operational Res., vol. 136,
no. 2, pp. 383—402, 2002.
N. Russell, W. M. van der Aalst, and A. H. M. T. Hofstede, “Work-
flow exception patterns,” in Proc. the 18th Int’l Conf. Advanced
Inform. Syst. Eng. (CAiSE’06), 2006, pp. 288-302.
B. S. Lerner, S. Christov, L. J. Osterweil, R. Bendraou, U. Kan-
nengiesser, and A. Wise, “Exception handling patterns for process
modeling,” IEEE Trans. Softw. Eng., vol. 36, no. 2, pp. 162-183, 2010.
M. Adams, A. H. ter Hofstede, W. M. van der Aalst, and D. Ed-
mond, “Dynamic, extensible and context-aware exception han-
dling for workflows,” in Proc. the 2007 OTM Confederated Int’l Conf.
the Move to Meaningful Internet Syst. (OTM’07), 2007, pp. 95-112.
F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi, “Specification and
implementation of exceptions in workflow management systems,”
ACM Trans. Database Syst. (TODS), vol. 24, no. 3, pp. 405451, 1999.
C. ai Sun, E. el Khoury, and M. Aiello, “Transaction management
in service-oriented systems: Requirements and a proposal,” IEEE
Trans. Serv. Comput., vol. 4, no. 2, pp. 167-180, Apr. 2011.

New York,

[37]

[38]

[39]

[40]

[41]

[42]

[43]

14

O. Bushehrian, S. Zare, and N. K. Rad, “A workflow-based failure
recovery in web services composition,” |. Software Eng. and Appl.,
vol. 5, no. 2, pp. 89-95, 2012.

R. Angarita, M. Rukoz, and Y. Cardinale, “Modeling dynamic
recovery strategy for composite web services execution,” World
Wide Web, vol. 19, no. 1, pp. 89-109, 2015.

Y. Cardinale, J. E. Haddad, M. Manouvrier, and M. Rukoz,
“Transactional-aware web service composition: A survey,” in IGI
Global-Advances in Knowledge Manage. (AKM), 2011, pp. 116-141.
S. M. McMenamin and J. F. Palmer, Essential Systems Analysis.
Upper Saddle River, NJ, USA: Yourdon Press, 1984.

D. C. Luckham, The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems. Boston, MA,
USA: Addison-Wesley, 2001.

R. Elmasri and S. B. Navathe, Fundamentals of Database Systems,
5th ed. Boston, MA, USA: Addison-Wesley, 2006.

N. Alexopoulou, M. Nikolaidou, D. Anagnostopoulos, and
D. Martakos, “An event-driven modeling approach for dynamic
human-intensive business processes,” in Proc. the Int’l Conf. Bus.
Process Manage. - Workshops, Ulm, Germany, 2009.

André Luis Schwerz received the PhD degree
from Institute of Mathematics and Statistics at
University of Sao Paulo, Brazil, in 2016. Cur-
rently, he is a professor at the Federal University
of Technology - Parana (UTFPR), Brazil, working
in the Department of Computing. His research
interests are in services computing for data sci-
ence and engeneering.

Rafael Liberato received the PhD degree from
Institute of Mathematics and Statistics at Uni-
versity of Sdo Paulo, Brazil, in 2016. Currently,
he is a professor at the Federal University of
Technology - Parana (UTFPR), Brazil, working
in the Department of Computing.

Calton Pu received the PhD degree from Uni-
versity of Washington, Seattle, WA, in 1986 and
served on the faculty of Columbia University and
Oregon Graduate Institute. Currently, he is hold-
ing the position of Professor and John P. Imlay,
Jr. Chair in Software in the College of Comput-
ing, Georgia Institute of Technology, Atlanta, GA.
He has worked on several projects in systems
and database research. He has published more
than 70 journal papers and book chapters, 200
conference and refereed workshop papers. He

served on more than 120 program committees. His recent research has
focused on big data in Internet of Things, automated N-tier application
deployment and denial of information. He is a fellow member of the
IEEE.

Joao Eduardo Ferreira received the PhD de-
gree from University of Sado Paulo, Sao Carlos,
Brazil. In 2008-2009 he did his posdoc program
in College of Computing at Georgia Tech, At-
lanta USA. He has been researching in very
large database modeling and integration since
1996. His main research interest is focused on
transactions on services computing for data sci-
ence and engeneering. He has published more
than 40 journal papers and book chapters, 80
conference and refereed workshop papers. He

\

served on more than 50 program committees. He is a faculty member
in the Department of Computer Science, Institute of Mathematics and
Statistics, at University of Sao Paulo, Brazil since 1999.

