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1. O PROBLEMA 

Um grafo orientado consiste de um conjunto finito V 

de vértices, um conjunto finito a · de arestas, e funções 

p e n .de . a em V. Um subconjunto X de V é positi-

vo se não existe --ª -em a tal que na E: X e pa E: V - X • 

Um conjunto negativo é definido pela dualidade entre p e 

n. Os conjuntos ~ e V são ditos triviais. 

Urna fonte é um vértice v tal que {v} é um conjunto 

positivo. Um sorvedouro é definido dualmente. O grafo é bi­

partido orientado se cada um de seus vértices é urna fonte 

ou um sorvedouro. 

P~ra todo subconjunto t de - a e todo conjunto posi­

tivo X , seja tX o conjunto {a. E:· t : pa E: X, na E: V-X}. 

Se X é negativo, defina tX dualmente. Os conjuntos da . 

forma aX são charnados · cortes orientados. Urna transversal 

(de cortes orientados) é um subconjunto t de a tal que 

tX ~ ~ para todo conjunto positivo ou negativo não-trivial 

X • 

Urna transversal t é limitada por urna função inteira · 

l 
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positiva u sobre V se lt{v} I ~ u(v) para cada v 

em V. 

Problema: Encontrar condições necessárias e _suficien­

tes para que, num grafo bipartido orientado, um con-

junto 

por u. 

r de arestas inclua uma transver~al limitada 
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Uma solução qo Problema foi proposta pelo autor e por 

Younger [FY2]. O presente trabalho dá uma descrição mais 

simples daquela solução. A simplificação é baseada numa 

variante de uma relação supermodular demonstrada por Frank, 

Sebo· e Tardas [FST]. 

Espera-se que a solução do Problema seja útil para o 

estudo da seguinte conjetura [W,EGJ: Em todo grafo orien­

tado, uma coleção máxima de transversais duas a duas dis­

juntas tem a mesma cardinalidade que um conjunto mínimo da 

forma aX onde X é um conjunto positivo ou negativo não­

trivlal. A identidade já foi demonstrada [S, FYl J -para gra­

fos· dotados. de conexão fonte-sorvedouro·. 

2 . . SOLUÇÃO DO PROBLEMA 

Um apinhamento de conjuntos é uma coleção de conjuntos 

disjuntos dois a dois. Uma partição de um conjunto X -e 

um apinhamento P de subconjuntos não-nulos de X tal que 

UP =X. Uma partiç ão positiva consiste de.conjuntos posi-
. 

tivas; uma partição negativa é definida~ualmente. 
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Uma decomposição de uni conjunto positivo X -e uma co-

leção Y de conjuntos negativos hão-triviais que admite 

uma partição {Y 1 , . . . ' y m} tal que 

para cada i yi - apinhamento , e um e 

a ·coleção {V- UY
1

, ••• , V - UY } é uma partição de X .. 
rn 

Uma decomposição de um conjunto negativo é definida dual­

rnente. Exemplos: Para X negativo não-trivial, qualquer 

partição positiva de V - X ·é urna decomposição de X • 

Para qualquer partição negativa S de X, a coleção 

{V- S : -S E: S} , é urna decomposição de X • 

A seguinte propriedade segue imediatamente da defini­

ção: Para: .toda decomposição. Y. de um conjunto positivo ··x, 

.( 1) aY n aY' = ~ para elementos distintos Y, Y' de Y e 

(2) U{aY : Y E Y} = X • 

Um terno positivo consiste de um conjuntq positivo X, 

uma decomposição Y de X, e wn subconjunto H de V. 

Um terno negativo ê definido dualmente. Um subconjunto r 
1 • 

de a é ,viãvel se, para todo terno (positivo ou negativo) 

X,YiH, a inc1usão rX ~ rH implica a aésigualdàde 

IYI s uH, onde uH = ÍvEV u(v) • 

sal 

Teorema: Para todo grafo bipartido orientado (V,a,p,n) 

e qualquer função inteira positiva u sobre V, um 

subconjunto r de a inclui urna transversal limitada 

por se só 
.. viável • u e se r e 

Prova do "só se": Suponha que r inclui urna transver-

t limitada por u . Seja X,Y,H um terno positivo 

• 



ou negativo tal que rx·c rH. Como - tY n tY' = ~ para 

elementos distintos Y, Y' · de Y , tem-se I Y I s I tX 1 ; 

mas ltxj s l tH I , pois tX ~ tH; e l tHI s uH pois t 

é limitada. Portanto, r é viável.// 
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Redução do "se" aos Lemas ·aa Simetria e Supermodulari­

~: Suponha que r é viável. Seja t um subconjunto 

viãvei minimal de r. Vamos mostrar que t é uma trans­

versal limitada por u 

Seja X um conjunto positivo não-trivial qualquer e 

H um subconjunto de V tal _que tX ~ tH. Como X tem 

uma decomposição não-nula (especificamente,: {V-X}} e t . 

é viável, terros 1 s uH. Assim, H ~~.Portanto, tX ~ 

~. - O raciocínio dual mostra que tX ~ ~ para todo con­

junto negativo não-trivial X. Assim, t é uma trans­

versal. Resta mostrar que t é limitada. 

Uma barreira de uma aresta a é um terno X,Y,H tal 

que tX .!; tH u {a} e . 1 Y 1 > uH Em virtude da minimali-

dade de t, todo a em t tem urna barreira. Na verdade, 

todo a tem duas barreiras, uma positiva e uma negativa, 

como passamos a indicar. Suponha que X,Y,H 'é uma barrei­

ra positiva de a • Pelo Lema da Simetria dado abaixo, 

existe uma decomposição -y de V - X ta 1 que 

Como r(V- X) = rX , o terno · v-x, V ,H é uma barreira ne­

gativa de a • 

Seja v um vértice qualquer, digamos um sorvedouro; 

vamos mostrar que lt{y} I s u(v) • De acordo com o pará­

grafo anterior, toda aresta de t{v} tem uma barreira 
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positiva. Em particular, existe ·urn terno positivo X,Y,H 

tal que 

tX e tH V t{v} e IY I ~ uH + l t{v} n txl (1) 
= 

Escolha X, Y ,H de tal modo que t{v} n tX seja maximal • 

Então 

t{v} e tX ( 2) ... 
como mostraremos no próximo parágrafo. Ademais, 

1 v l s uH + u cv> - < 3) 

·pela condição de viabilidade aplicada ao terno X,Y,Hu{v}. 

De (2), (l). e (3) ,., segue, que · lt{v} I .= lt{v") n tX I s u(v) • 
' . 

Suponha que, ao contrário do que se afirma em (2), 

t { v} - tX contém uma ares ta a' • Esta ares ta tem uma bar- . 

reira positiva. Em particular, existe um terno positivo 

X',Y',H' tal que t{v} n tX' = {a 1 } tX' e tH' u t{v} e 
== 

1 Y ' 1 ~ uH 1 + 1 t { v} n tX' j • Seja H o conJ'unto 
n · 

(H n X 1 ) u 

(H I íl X) U (H íl H I) e H o .conj_unto (H-X') u (H' -X) u 
u 

(H n H') • Note que X n X' e X u X' sao conjuntos posi--. 

ti vos , t ( X n X' ) ,;. tH n u t { v} e 

t(X .u X') ~ tHU u t{v} 

Adernais, t (X n X 1 
) e: ·· til 

-= n 
, 

pois t{v} n tX' = {n'} e a' í tx • 

( 4) 

(5) 

Pelo Lema da Super-

modularidade dado abaixo, existem decomposições 

de XnX' e XuX' respectivamente tais que 

Como t é viável, (5) implica 1 Y· 1 s uH • Logo, 
n n 

~ IYI + IY' ! - IY 1 n 

e · y 
r U 

~ uH + UH 1 
- uH n + 1 t {V} n tx 1 + 1 t {V} n tX 1 1 
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2 uH + uH' - uH + l t{v} n t(XuX') 1 n 
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~ uHu + lt{v} n t(XuX') 1 (6) 
Por (4) e (6), o terno X u X' ,Y u'Hu tem as mesmas propri­
edades que X, Y ,H • Ademais, t{v} n tX é subconjunto pró­
prio de t{v} n t(X u X') o que contradiz a maximalidade de 
X,Y,H A contradição prova (2). // 

Lema da Simetria: Para toda decomposição Y de um 
conjunto positivo X, existe uma decomposição Y de 
V - X tal -- que 1 ~ 1 ~ 1 Y 1 • 

Lema da Supermodularidade: Para decomposições Y e 
Y' de - conjuntos positivos X e X' respectivamente, 
existem deco111J?osições Y n e . Y u de X n X' e X u X' 
respectivamente tais que 1 Y 1 ~ u IYI + IY' I . 

O segundo lema é uma variante de um resultado de Frank, 
SebÕ e Tardes [FST]. A prova que daremos do primeiro lema 
é essencialmente uma versao da prova do Teorema de 
McWhirter e Younger (McWY]. 

3. SIMETRIA 

Seja X um conjunto positivo, A urna partição positi­
va de X e B uma partição negativa de V- X • Um con­
junto positivo D .está espremido entre A e B se, para 

. todo e em A u 8 , ou e n o = (1 ou e - o = Ç:1 • 
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urna cobertura de urna coleção V de conjuntos positi­

vos é um conjunto t de arestas ~al·que tD ~ ~ para to-

do elemento não-trivial D de V. 

Um apinharnento P é mais fino que outro P' se todo 

elemento de P está incluido num elemento de P' • Todo 

conjunto positivo X tem uma partição positiva que é 

mais fina que qualquer outra partição positiva de X 

Prova do Lema da -Simetria: Seja A a partição positiva 

mais fina de X; B a partição negativa mais fina de 

V- X·; V a coleção dos conjuntos positivos espremidos en-

tre A e 8 e t urna cobertura mínima de V. 

Vamos mostrar que I Y I s I tx 1 • Como aY n aY' · = -~ pa-

ra elementos distintos Y,Y' de Y e aY e aX para todo . = 

Y em Y, a desigualdade IYI s l tx l é consequencia da 

inclusão · {V- Y : Y e: Y} ~ V , que passamos a verificar. 

Para todo Y em Y e todo B em 8 , BnY e B-Y -sao 

conjuntos negativos. Como 8 não admite refinamento, um 

dos conjuntos B n Y e B - Y deve ser nu.lo. Um raciocínio 

análogo mostra que A n Y = ~ ou A- Y = ~ para todo A 

em A • Portanto, para todo Y - em Y , V - Y está espre­

mido entre A e 8. 

Nos três parágrafos seguintes vamos mostrar que existe 

uma decomposição Y de V - X tal que I Y 1 = 1 tX 1 • Com 

isto, estará concluída a prova do Lema. 

Sejam A e B elementos de A e 8 respectivamente. 

Como t é uma cobertura de V, existe urna sequência 

• 



(a1 , .•. , ak) de arestas tal que 

pal E: A ' 

nal = na2 ' Pª2 = pa.3 ' • • • ' no.k-2 = nak-1 ' Pªk-1 = po:k ' 

nak E: B e 

' . 
•• ,a2i'""º'ªk-l} • Como 1 t' 1 < 1 t i e t - ~ . e m1n1mo, V 

tem um elemento não-trivial Z tal que t'Z =~.Para 

um tal z tem-se A~- z = ~ , B n z = i e I tz 1 = 1 • 
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Seja A um elemento qualquer de A •. Para cada B em 

B , seja ZB o elemento maximal da coleção {Z E: V: 

A-: Z = f,?J , B n Z = f,?J , 1 tz 1 = 1} • Seja Z a coleção 

·· {z8 : BE: B} • Uma verificação de rotina mostra que z -e 

um api~amento, que A- UZ = f,?J , e que (V - X) n UZ = i . 

Para cada A. em A , seja ZA o mais fino dentre os 

apinhamentos Z que satisfazem as condições: Z e V , -
A- UZ = f,?J , (V - X) n UZ = f,?J , e I tz 1 = 1 para todo Z 

-em Z • Seja Y a coleção U{ZA : A E. A) • Uma verifica-

çao de rotina mostra que {V- UZA : A E: A} é uma parti-

-ça.o de V- X • Portanto y é uma decomposição de v-x . 
í l tZ I ltx l Mas então = -z~Y 

... 
, donde 1 Y 1 = ltx l . li 

4. SUPER.MODULARIDADE 

Lema 1: Sejam Y e Y' conjuntos negativos. Dadas 

partições negativas P e P' de Y e Y' , existem 

partições negativa_s P n e P u de Y n Y' e Y u Y'. 
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Prova: Seja R a família definida pela união disjunta 

de P e P' (isto é, R tem duas cópias de cada elemen­

to de P n P' ) • . Um elemento . R de R cruza outro ele-

mente, R' , se R n R • ;.e ~ , ·R l R' e . R ~ R' • Se R = 
cruza R' , substitua · R ·· por RnR' e R' por RuR' • 

A família assim obtida tem menos cruzamentos que R. Re­

pita a operação até obter uma família R* que não tem 

cruzamentos. S~ja Pn a coleção dos elementos minimais 

de R* , e seja pu o complemento de pn em R* . Veri-

fica-se que Pn e p são partições de X n X' e X u X' • 
u 

Ademais, IP 1 + 1 P 1 - IR*I = IRI = 1 PI + IP' 1 . li n u 

Lema da Supermodularidade: Sejam X e X' conjuntos · 

positivos. Para decomposições Y e Y' de X e X', 

existem .decomposições Y n e Y u de X n X' e X u X' 

tais que 

Prova: Seja {Y 1 , ••• , Y m} a partição que caracteri­

za Y como decomposição de X • Seja {Yi, ... , Y~} a 

partição correspondente de Y' • 

Seja rr a família de apinhamentos definida pela união 

disjunta de {Y1 , .•. ,Ym} e {Yi,···,Y~} • Para cada P 

em TI, considere o conjunto positivo V-UP. Seja Q. a 

familia de todos estes conjuntos positivos. 

Suponha que dois elementos, Q e · Q' , de Q. se cru-

r 

.. 

• 
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zam, e sejam P e P' os elementos correspondentes de n. 
Pelo Lema 1, existem partições negativas P e P tais 

que V- UP n = O ·u Q 1 
, 

1 P 1 + · I P' 1 • S ubs ti tua 

V-UP =QnQ' u 

P, P' por p , p 
n u 

n u 

= 

e Q, Q' por 

Q u Q' , Q n_ Q' • Repita esta operaçao até obter famílias n* 
e Q* tais que Q* não tem cruzamentos. 

Seja Qn a coleção dos elementos minimais de Q * e 

seja Q.u o complemento de Q,n em 2.* • Sejam rr e n n u 
as subcoleções correspondentes de n* . Defina yn e y 

u 
como Uiln e Uilu respectivamente. Verifica-se que 

· {V- UP : P E: nn} = Qn e Q
0 

é uma partição positiva de 

X n X' ;. portanto Y n é uma decomposição de X n X'. Analo-

gamente, yu - decomposição de X u X' • Ademais, e uma 

IY 0 I + IYul = 2 { 1 PI . p E: n*l . 
= }:{ IPI . p E: II } . 
= IY1 I + • ... + IV 1 + IYi l + ... + 1 v' 1 -- m n 
= 1 Y 1 + 1 y 1 1 . li 
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