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Abstract

In the field of social evolution, inclusive fitness theory has been successful in making a wide range of qualitative predictions on
expected patterns of cooperation and conflict. Nevertheless, outside of sex ratio theory, inclusive fithess models that make accurate
quantitative predictions remain relatively rare. Past models dealing with caste fate conflict in insect societies, for example, success-
fully predicted that if female larvae can control their own caste fate, an excess should opt to selfishly develop as queens. Available
models, however, were unable to accurately predict levels of queen production observed in Melipona bees—a genus of stingless bees
where caste is self-determined—as empirically observed levels of queen production are approximately two times lower than the
theoretically predicted ones. Here, we show that this discrepancy can be resolved by explicitly deriving the colony-level cost of queen
overproduction from a dynamic model of colony growth, requiring the incorporation of parameters of colony growth and demogra-
phy, such as the per-capita rate at which new brood cells are built and provisioned, the percentage of the queen’s eggs that are female,
costs linked with worker reproduction and worker mortality. Our revised model predicts queen overproduction to more severely
impact colony productivity, resulting in an evolutionarily stable strategy that is approximately half that of the original model, and is
shown to accurately predict actual levels of queen overproduction observed in different Melipona species. Altogether, this shows how
inclusive fitness models can provide accurate quantitative predictions, provided that costs and benefits are modeled in sufficient
detail and are measured precisely.
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Lay Summary

Bee societies have a strict reproductive division of labor between reproductively active queens and mostly sterile workers. In hon-
eybees and also in most tropical stingless bees, who gets to become a queen is decided by nutrition: only larvae that receive enough
high-quality food can make it into a queen. In one particular group of Melipona stingless bees, however, developing larvae themselves
have been found to have the power to determine their own caste fate. Under such circumstances, the question becomes what pro-
cesses prevent most from selfishly opting to become queens. The present article uses an inclusive fitness model to show that the pro-
portion that develops as a queen (ca. 10%) is such that the individual reproductive benefit of developing as a queen exactly balances
with the collective, indirect fitness costs caused by decreased swarm and male production. This is the first time that such an accurate
match between theoretically predicted and empirically observed levels of queen production is obtained, which was possible thanks
to the use of a dynamic model that determined how overproducing queens would reduce the success of the colony as a whole. Model
predictions were further validated by comparison with other bee species where caste is nutritionally determined, and where queens
were shown to be produced in line with colony needs, at a rate that was two orders of magnitude lower than in Melipona. Overall, this
analysis demonstrates the power of inclusive fitness theory in being able to make accurate quantitative predictions in the field of
social evolution and shows how conflicts between individual and collective interests play out in animal societies.

Introduction outside sex ratio theory (West, 2009), it is still relatively rare for
inclusive fitness models to make accurate quantitative predic-
tions. This is not a limitation of inclusive fitness theory per se, but
rather caused by the difficulty to accurately model and measure
costs and benefits, which is typically much harder than measur-
ing genetic relatedness, and in fact has been achieved in only a
handful of cases (Koenig et al., 2023 and references therein). The

Inclusive fitness theory has become one of the cornerstones of
modern social evolution theory, and has led to a swathe of suc-
cessful predictions, in areas ranging from the study of within-
organism intragenomic conflict (Gardner & Ubeda, 2017) to
understanding patterns of cooperation and conflict in animal
societies (Abbot et al., 2011; Frank, 1998; Marshall, 2015). However,
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consequence is that many inclusive fitness models are abstracted
to a level where predictions are mostly qualitative as opposed to
being formulated at a level where accurate quantitative predic-
tions can be made (Frank, 1998). In some cases, this high level of
abstraction may not be due to the uncertainty over the biologi-
cal specifics, but may be deliberate, for example, if the aim us to
capture the essence of a tradeoff or a basic type of behavior or
phenomenon that exists across a diversity of taxa that vary in
a number of different respects (Abbot et al., 2011), rather than
on modeling any one of those taxa with a great deal of realism
(Frank, 1998; Parker & Maynard Smith, 1990). Nevertheless, we
will argue that this approach also has the downside that it results
in models that do not exactly apply to any particular system,
and that more specific mechanistic models that rely on accurate
empirical data might help improve our understanding of the evo-
lution of specific adaptations and provide more accurate quanti-
tative predictions (Parker & Maynard Smith, 1990).

A good example is provided by models on caste fate conflict
in insect societies (Ratnieks, 2001; Wenseleers et al., 2003, 2004a).
These models predict that if developing larvae can control their
own caste development, an excess should be selected to selfishly
develop as queens rather than as workers (Bourke & Ratnieks,
1999; Ratnieks, 2001; Wenseleers et al., 2003, 2004a). By contrast,
if the adult workers can control caste development through dif-
ferential feeding, the expectation is that new queens would be
reared more sparingly, aligning with the colony’s requirements. In
line with these predictions, only ca. 1 in 10,000 female larvae are
reared as queens in honeybees, where queens are approximately
twice the size of the workers and caste is nutritionally deter-
mined (Wenseleers et al.,, 2003). In contrast, in stingless bees of
the genus Melipona, queens and workers are reared in identically
sized, mass provisioned cells and caste is self-determined (Bourke
& Ratnieks, 1999; Ratnieks, 2001; Wenseleers et al., 2003), result-
ing in a great excess (around 10%) of all female larvae developing
as queens and most being killed or chased out of the colony by
the workers soon after emergence (Bueno et al., 2023; Da Silva
et al., 1972; Imperatriz-Fonseca & Zucchi, 1995; Santos-Filho et
al., 2006; Sommeijer et al., 1994, 2003; Van Oystaeyen et al., 2013;
Wenseleers & Ratnieks, 2004; Wenseleers et al., 2004b; 2011).
Although qualitatively these data support caste conflict theory,
available models have been unable to accurately quantitatively
predict levels of queen production in Melipona bees (Wenseleers &
Ratnieks, 2004). In fact, for most species, the empirically observed
levels of queen production (typically between 5% and 15%) (Kerr,
1950; Wenseleers & Ratnieks, 2004) are significantly lower than
the theoretically predicted ones (14%-20%, depending on male
parentage) (Ratnieks, 2001; Wenseleers et al., 2003).

This discrepancy between theory and observation is likely
caused by the unrealistic and highly idealized cost functions
assumed in the original models, whereby queen overproduction
was posited to cause a directly proportionate, linear reduction in
relative colony productivity, measured by swarm and male pro-
duction (Ratnieks, 2001; Wenseleers et al., 2003). This mirrored
an assumption made earlier in Steve Frank’s generic “tragedy
of the commons” model (Frank, 1994, 1995), where individual
exploitation of common resources was also postulated to cause
a proportionate, linear decrease in the success of the group as a
whole. Assuming a convex cost function improved the fit of the
model (Wenseleers & Ratnieks, 2004; Wenseleers et al., 2003).
Nevertheless, this was also unsatisfactory, as ideally one would
be able to explain what cost function would be expected a priori,
based on a detailed dynamic, microscopic model of how colonies
grow and reproduce. The use of abstracted cost/benefit functions

that are not mechanistically motivated is also common in other
social evolution models (e.g., Dobata, 2012; Lehmann et al., 2008;
Olejarz et al., 2015; Reuter & Keller, 2001; Weyna et al., 2021) and
is in fact a recognized weakness and common criticism of many
published inclusive fitness models (Frank, 1998; Nowak et al.,
2010). More broadly, in ecology and evolution in general, it is com-
mon for models to be formulated at a purely phenomenological
level, and the implied assumptions that are made at a mechanis-
tic level are not always clear (e.g., Brannstrom & Sumpter, 2005;
Stefan et al., 2012).

The aim of this article is twofold. First, we provide a compre-
hensive meta-analysis of levels of queen production in different
Melipona species, where caste is self-determined, and compare it
with levels of queen production seen in other genera of sting-
less bees and honeybees, where queens are reared in special-
ized queen cells and caste is nutritionally determined (Bourke
& Ratnieks, 1999; Ratnieks, 2001; Wenseleers et al., 2003). This
allows for a clear-cut comparison of the individual and collec-
tive optima, enabling us to unambiguously quantify the cost of
selfish manipulation of caste fate as well as providing us with
solid empirical data to test theoretical predictions. Second, in a
theoretical part, we demonstrate how the cost of queen overpro-
duction can be estimated from first principles based on a fully
mechanistic population dynamic model that incorporates details
of how colonies grow and reproduce and show how this leads
to model predictions that match empirical patterns much more
accurately. In doing so, we provide a nice example of the power of
inclusive fitness theory and its ability to make accurate quanti-
tative predictions on the evolution of conflict and cooperation in
biological systems.

Methods

Data compilation

Our meta-analysis comprises data on levels of queen produc-
tion in 43 species of advanced eusocial bees, which includes 21
Melipona stingless bees, where caste is self-determined, and 22
species of trigonine stingless bees and the honeybee, Apis mel-
lifera, where caste is typically nutritionally determined (see
Supplementary Methods for details). To test the model predic-
tions and compute the evolutionarily stable strategy (ESS) levels
of queen overproduction in Melipona, we collected data on male
parentage, the proportion of queen-laid eggs that are female, the
life expectancy of the worker bees, and the per capita rates of
brood cell construction (for details see Supplementary Tables S1-
S5 and Supplementary Methods).

Model
Derivation of the colony-level cost of queen overproduction

To determine the ESS probability with which female larvae
should develop as queens if they could control their own caste
fate, we first calculate the relative colony-level cost of queen
overproduction in terms of reduced swarm and male produc-
tion from a dynamic model of colony growth and reproduction
(for additional background see Supplementary Methods). In line
with the biology of Melipona stingless bees, the idealized life cycle
we consider is one where perennial colonies headed by a single
once-mated and outbred queen grow and evenly split into two
once they hit a critical number of workers, either due to the col-
onies swarming or due to them being split in two by beekeepers
(Griiter, 2020). In reality, queens may occasionally also be super-
seded by a daughter queen, but in our model, the exact mode of
colony foundation is assumed to not have an impact on the exact
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colony-level cost of queen overproduction, i.e., both processes
are assumed to be roughly equivalent. Considering that queens
in Melipona stingless bees are produced all year round (Bueno et
al., 2023; Moo-Valle et al., 2001), let us denote the probability with
which a focal female larva j in a colony i develops as a queen
as g; and the colony and population average probabilities with
which female larvae develop as queens as g, and g. It is clear that
if a female larva would have a higher than average probability of
developing as a queen (g,/g, > 1) that this would translate into a
relative individual benefit, as it would increase its relative chance
of inheriting a new swarm. At the same time, if many female
larvae would develop as queens (high g), the productivity of the
colony in terms of new swarms and males would go down, as
there would be an insufficiently large workforce to sustain the
colony. This shows the “tragedy of the commons” nature of caste
fate conflict: individually, there is a benefit of developing as a
queen, but there would be a cost for all if many did so due to the
overexploitation of the colony’s resources and the depletion of its
workforce (Wenseleers & Ratnieks, 2004; Wenseleers et al., 2003;
2010). Original caste conflict models assumed a linear, directly
proportionate cost, in which the relative colony productivity in
terms of male and swarm production would both be given by (1-
g)/(1-g) (Ratnieks, 2001; Wenseleers et al., 2003). A biologically
more realistic cost function, however, can be derived by explic-
itly modeling the growth and reproduction of the colony using a
dynamic model. If we consider a scenario where a colony headed
by a single once-mated queen will split into two once it hits a crit-
ical number of workers, and if b is the per-capita rate with which
workers build and provision new brood cells, which in Melipona
is roughly constant and largely independent of colony size and
unconstrained by the fecundity of the mother queen (Page & Kerr,
1990), f is the proportion of those cells that contain female eggs,
which is also roughly constant across the year (Bueno et al., 2023;
Moo-Valle et al., 2001), w is the average probability with which a
queen-laid egg is replaced by a male worker-laid egg, g, is the pro-
portion of the female larvae that develop as queens rather than
workers in colony i, and y is the daily worker mortality rate, it is
clear that the per-capita daily growth in the worker population
would be given by rw, = b.f. (1 —w). (1 — g;) — p (the rate at which
new workers are produced minus the rate at which they die) with
W' (t) = 7w, W (), W(t) = W (0).exp (rw,..t) and W(0) =s/2, if we
assume s is the size at which colonies swarm and split in two.
From this, we can see that the doubling time T, of the worker
population of a colony i would be equal to In (2) /7w, and that the
rate at which new swarms could be produced would be given by
S =1/T4. The relative rate of swarm production by a focal colony
i relative to an average colony in the entire population can then
be written as
w,=3@) _mw _bf.(1-w) (1-g0)—p
S@ mw bf(1-w).(1-g)—p (1
Given that the relative probability with which a focal female
larva j in colony i would inherit the colony is g,/g, the mean rela-
tive probability with which that individual would be able to suc-
cessfully inherit a new swarm would be given by
_ w5
Wiy @)
In our model, we are not allowing for female larvae to facul-
tatively adjust their probability of becoming a queen in function
of the state of the colony, e.g., the amount of food deposited into
cells, which might correlate with available food stores and the
likelihood for the colony to swarm, even if there is some evidence
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this might happen (reviewed in Hartfelder et al., 2006). Taking this
into account would likely preclude an analytical solution of our
model, as it would require the fusion of inclusive fitness theory
with optimal control theory (Avila et al., 2021; Day & Taylor, 1997).
We also assume that a sufficient number of virgin queens would
be available at any one time to allow one to mate and head a
daughter swarm and therefore ignore any bet-hedging benefits
of producing new queens (Engels & Imperatriz-Fonseca, 1990;
Michener, 1974; Sommeijer et al., 1994), as this would be expected
to become a significant factor only at much lower rates of queen
production than observed in Melipona.

Like for swarming, we expect that the reduced worker produc-
tion caused by queen overproduction would over the long term
also negatively impact the rearing of new males. To formally
quantify this cost, and considering that males are constantly pro-
duced all year round (Moo-Valle et al., 2001), we can observe that
the per-capita rate at which new males (M) would be produced per
day is given by 7y = b. (W + (1 —w) . (1 —f)), with M’ (t) = 7. W (1).
If we integrate the total number of males M, that would be pro-
duced over the period between a colony being founded and it
swarming (i.e., up to the doubling time T, for an average colony in
the population) we obtain that a focal colony i would produce a
total number of males in that time of

Ty
MT = /TM.W(t) dt = W(O) . (exp (TWde) - 1) . (TM/TWZ)
0 (3)
Hence, the relative rate at which new males would be pro-
duced over this period by a focal colony i relative to an average
colony in the population would be

_ Mr(gi) _ (exp(rw.Ta) = 1) 7w

" Mr(9)  (exp(rw.Ta) — 1) 7w, (4)

with rw, =b.f.(1-w).(1-¢;) —pand 7w =bf. (1-w).(1-9)
.

If we plot these inferred cost functions for swarm and male
production (Equations 1 and 4) and look at the reproductive out-
put of a focal colony producing a given excess of queens relative
to the reproductive output that would be obtained in the opti-
mal situation where queens were not produced in excess (g =0)
(Figure 1), we can observe that for both swarm and male produc-
tion the cost function clearly deviates from the directly propor-
tionate decrease in relative productivity assumed in the earlier
models (Ratnieks, 2001; Wenseleers et al., 2003, 2004a, 2010).

Specifically, for swarm production and for empirically esti-
mated parameter values, the cost of queen overproduction is
found to be approximately twice as severe as originally assumed
(Figure 1A), as swarm production would already be expected
to drop to zero when the rate at which new workers are pro-
duced would balance with the rate at which they die, i.e., when
bf.(1—w).(1-g)=p, which for empirically observed parameter
values (Table 2) would already occur when 45% of all female lar-
vae would develop as queens, instead of at 100% assumed in the
original models (Ratnieks, 2001; Wenseleers et al., 2003, 2004a,
2010). Only in the absence of any worker mortality (1 = 0) or at
very high rates of cell construction (b — ) would the cost func-
tion approach the linear, proportionate decrease assumed in the
earlier models (Figure 1A, green and black dashed lines), but this
would clearly be very unrealistic (Ratnieks, 2001; Wenseleers et
al., 2003, 2004a, 2010). If we plot the cost function using species-
specific parameter estimates (Table 2), we see that a similar
colony-level cost functions apply in species with high (Melipona
favosa) and low levels of worker reproduction (Melipona beecheii)

_ <27w\/7w _ 1) (rw/Tw)
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Figure 1. Modelled colony-level cost of queen overproduction in terms
of reduced swarm (A) and male production (B). Curves were obtained
by plotting expected swarm (W, Equation 1) and male production (W, ,
Equation 4) in function of levels of queen production (g) divided by the
reproductive output if there was no queen overproduction (g = 0). For
swarm production (A) and for empirically observed average parameter
values (Table 2), the cost of queen overproduction is approximately
twice as severe as originally assumed (Ratnieks, 2001; Wenseleers et al.,
2003), with swarm production already dropping to zero when 45% of all
female larvae develop as queens, as opposed to at 100%, assumed in the
original models. Only in the absence of worker mortality (u = 0) or with
extremely high brood cell building rates (b — o) would the colony level
cost in terms of reduced swarm production reduced to that assumed
in the original caste conflict models (Ratnieks, 2001; Wenseleers et al.,
2003), but this is evidently highly unrealistic. A similar cost function
applies for species with high and low levels of worker reproduction

(M. favosa: i = 94.9%, w = 16.39%, and f = 98.9%,; M. beecheii: ¢ = 0.909%,
w = 0.909%, and f = 79.4%), due to the negative covariation between
fand w (Wenseleers et al., 2013). By contrast, for male production,
relative output would drop to a lower level when all females would
develop as queens, but not to zero as was assumed in the original
models (Ratnieks, 2001; Wenseleers et al., 2003), as the original workers
that found a colony would still be able to raise males as long as they
stayed alive. Hence, in the absence of worker mortality (u = 0) or at very
high rates of brood cell construction (b — o), relative male production
would only drop to In(2) instead of to zero. For further details, see
Supplementary Material.

(high and low ¢ and w, Figure 1A, blue and red lines). This is due
to the fact that queens lay relatively more female eggs (higher
f) in species with more worker reproduction, causing f.(1—w)
and the net cost of queen overproduction in terms of reduced
swarm production to stay approximately constant. Earlier, queen-
worker coevolution among these traits (f and w) has been studied
in detail in Wenseleers et al. (2013).

For the cost of queen overproduction on male production, by
contrast, we find that for empirically observed average parameter

values, relative male production would not drop all the way to
zero if all females developed as queens, but that it would still be
47% of the optimal maximal productivity, which is due to the con-
tribution of the workers that would found a colony, and similar
values are obtained if we use species-specific parameter values
for species with high (M. favosa) or low levels of worker reproduc-
tion (M. beecheii) (Figure 1B). This implies that in earlier models
this cost was overestimated (Ratnieks, 2001; Wenseleers et al.,
2003). In the unrealistic case with zero worker mortality (u = 0)
and with all females developing as queens, productivity would
remain at In(2) = 69% of optimal maximal productivity.

ESS level of queen overproduction

With our newly derived functions for Wy and Wi, (Equations 2 and
4), it is straightforward to calculate the selection differential o on
the probability with which females should develop as queens g. In
particular, from kin selection theory, using a neighbor-modulated
fitness framework (Frank, 1998), and assuming that many female
larvae within a given colony would compete to become queens,
the selection differential is given by (cf. Wenseleers et al., 2003,
2010):

oWy ( W oWy
oc=C.—14+C.—=Tr+Cn———Tm X —
7 ag; T og T T ag T dgy
oWy Cm OWp,
+ T+ 2. T
agi 1o ag (5)

where the relatedness of developing female larvae to the
males reared in the colony rm would in presence of worker
reproduction be a weighted average of the relatedness to
queen-produced brothers and worker-produced nephews,
Tm = Torothers- (1 — ¥) + Tnephews ¢, if the proportion of males that are
workers’ sons ¢ = w/ ((1 —w). (1 —f) 4+ w) and where due to hap-
loidy and the fact that colonies are typically headed by a single-
mated queen, and assuming random matting, 1y = Tssers = 3/4,
Torothers = 1/2, Tnephews = Tsisters, and given class-specific reproductive
values of males and females (queens) ¢mand ¢f, cm/cs = 1/ (2 — 7))
(Table 1) (Crozier & Pamilo, 1996). Calculating the partial deriv-
atives in Equation 5, corresponding to the costs and benefits of
developing as a queen with a slightly increased probability in the
limit of weak selection (g5 — g; — g), and solving for the value of g
where the selection differential would equal zero then yields the
ESS probability for female larvae to develop as queens if they can
determine their own caste fate:

5 = (l—rf).(b.f.(l—w)—,u)
b.f (1—w).(1— (cm/Cs) Tm. (1 —1n(4)) (6)

Results

Quantitative fit to empirical data

If we plug empirical estimates of our model parameters obtained
fromeightspeciesof Melipona, wherequeensand workersarereared
from the same types of brood cells and caste is self-determined,
into our ESS equation (Equation 6), we find that the average pre-
dicted ESS is for 9.97% ([4.91%-13.48%] 95% PIs) of the female
larvae to develop as queens. This prediction closely aligns with
the overall average observed percentage of 8.39% ([7.08%—
9.93%] 95% Cls) developing as queens in these eight species
(Table 2), and with the 9.65% ([8.07%—11.50%] 95% Cls) developing
as queens in a larger set of 21 Melipona species (Supplementary
Table S5, Figure 2). These model results therefore fit the empir-
ical data much better than the original caste conflict model,
which predicted that between 14% and 20% of all female larvae
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Table 1. Parameters and terminology used in the model.

Parameters and terminology

t Time in days

W(t) Total number of workers present at time t

M(t) Total number of males present at time t

9; Probability that an individual focal larva j in a focal colony i develops as a queen

g; Average proportion of the individual female larvae that develop as queens in colony i

g9 Proportion of the female larvae that develop as queens on average in the whole population

g* ESS proportion of female larvae that would be expected to develop as queens

b Number of new cells provisioned per worker per day

f Proportion of the queen’s eggs that are female

w Average probability with which a queen-laid egg is replaced by a male worker-laid egg

L Worker life expectancy in days (= 1/u)

u Daily mortality rate of workers (= 1/L)

s Colony size (number of workers) at which a colony would swarm and split in two

P Proportion of the adult males that are workers’ sons (= w/((1 - w).(1 - f) + w))

C, Class-specific reproductive value of males, i.e., product of the stable frequency of males and their individual reproductive value v,
¢ Class-specific reproductive value of females (queens), i.e., product of the stable frequency of females (queens) and their

individual reproductive value v
Regression relatedness to males reared in the colony
Regression relatedness to sister queens reared in the colony

3

=

_Apis melliferq Jmm——— HH .
Trigona hypogeq em—— © queens reared in
Tetra%ona AOrsalis fm— :
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Figure 2. Empirical test of ESS model predictions based on levels of queen production in stingless bees and honeybees with or without individual
control over caste development. In Melipona stingless bee species queens are reared in worker cells, and caste is under individual control, which
contrasts with species where queens are reared in larger royal cells and caste fate is socially enforced via differential feeding. In the group of stingless
bee species shown in the middle, queens can be reared in both worker cells and royal cells, implying caste fate is under mixed control. In support of
caste conflict theory and our new ESS model, self-determination of caste fate results in two orders of magnitude higher levels of queen production
and queens therefore being produced in great excess of colony needs. The black vertical line and dark gray shaded area represent the observed
overall average percentage of female larvae developing as queens in the 21 Melipona species and 95% confidence intervals (9.65% [8.07%-11.50%]).

The gray vertical line and light gray shaded area represent the percentage of female larvae that would be expected to develop as queens, based on
parameter estimates from eight Melipona species (Table 2) and our current ESS model and 95% population prediction intervals (9.97% [4.91%-13.48%)).
Dashed black lines represent the percentage of female larvae that were expected to develop as queens according to the previous model of Ratnieks
(2001) and Wenseleers et al. (2003), which was derived under the assumption of a linear, directly proportionate cost of queen overproduction. Earlier
model predictions overestimated the % of females that should develop as queens by a factor of 2, while our current model, which accurately derives
the expected colony-level cost function, closely matches empirical data. For details see Tables 2 and Supplementary Table S5. Picture credits: Tom
Wenseleers.

should develop as queens, depending on male parentage (18.50% of queen overproduction on swarm production turned out to be
[17.98%-18.88%] 95% PIs given the observed values of ¢, cf. Table 2 approximately twice as severe as originally assumed (Figure 1A).
and Figure 2) (Ratnieks, 2001; Wenseleers et al., 2003). The fact If we compare levels of queen production in Melipona with those
that the predicted ESS is approximately twofold lower than the observed in other trigonine stingless bee genera and in honeybees,

original one is also in line with the fact that the inferred cost where queens are much larger than the workers and caste fate is

202 4990)00 0 Uo Jasn (o1qisul) 1qiS-eUONOY-dSN AG 100 L G2//8E/E/8/9101ME/MB|AS/WOD dNno dlwapede//:sdiy Wwoly papeojumoq


http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad068#supplementary-data

392 | Ferreiraetal

socially enforced via differential feeding, we can unambiguously
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Figure 3. Predicted effect of model parameters on ESS level of queen
production. Curves show the predicted partial effect of varying each
individual parameter, holding constant the remaining parameters;
points are estimates at average parameter values or at parameter
values observed in species with high or low levels of worker
reproduction (cf. Table 2). (A) A higher per capita daily cell building rate
(b) results in a reduced colony-level cost of queen production and hence
a higher ESS queen production, (B) queens laying a higher proportion
of female eggs (f) results in the development of more workers and
leads to a lower colony-level cost of queen overproduction and hence

a higher ESS queen production, but with a more pronounced effect

in species with high levels of worker reproduction, and (C) increased
worker longevity (L = 1/u) leads to a reduced colony-level cost of queen
overproduction and hence a higher ESS queen production.

expected higher level of worker reproduction to result in lower
levels of excess queen production (Figure 3). In practice, the situa-
tion is more complex, however, due to the fact that the proportion
of female eggs laid by the queen (f) negatively covaries with levels
of worker reproduction (Table 2), likely as part of a coevolutionary
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process whereby the queen tries to limit the cost of worker repro-
duction or workers reproduce more when the mother queen lays
more female eggs (Wenseleers et al.,, 2013). This partly compen-
sates the expected increased cost of queen overproduction in
species with higher levels of worker reproduction. Most straight-
forward to analyse are the effects of the other demographic
parameters on the expected ESS, which all influence the expected
colony-level cost of queen overproduction in a simple and intui-
tive way (Figure 3). In particular, a higher per capita rate of brood
cells construction (b), queens laying a higher proportion of female
eggs (f), and workers having a lower mortality (1) would all reduce
the colony-level cost of queen overproduction and hence result
in a higher ESS level of queen production (Figure 3A-C). Detailed
tests of these predictions, however, would require accurate esti-
mates of these parameters for a larger set of species, which are
not straightforward to obtain.

Discussion

Overall, our analysis on caste conflict in insect societies provides
an interesting case study to show how inclusive fitness theory can
be applied to make precise predictions on the balance between
cooperation and conflict in a biological system. While previous
models on this were instructive in demonstrating the basic struc-
ture of caste fate conflict (Ratnieks, 2001; Wenseleers et al., 2003),
they were in many ways mere toy models, due to the unrealistic
linear, directly proportionate cost function that they assumed,
which they shared with Frank’s equally abstract tragedy of the
commons model (Frank, 1995). In the present study, we modeled
this cost function explicitly, based on a fully dynamic model of
colony growth and reproduction, and used it to derive an ESS
result giving the exact expected percentage of females that would
be selected to become queens if they had the power to do so.
Empirical data from Melipona bees, where caste is self-determined
(Bourke & Ratnieks, 1999; Ratnieks, 2001; Wenseleers et al., 2003),
were shown to accurately match these predictions, with observed
levels of queen production closely aligning with the theoretically
predicted values, thereby significantly improving previous mod-
els, which overestimated the actual values by a factor of almost
2 (Figure 2). Presumably, the rearing of queens from worker cells
in Melipona originated as a cheater strategy (Ribeiro et al., 2006;
Wenseleers et al., 2004a), with phylogenetic evidence suggesting
that Melipona secondarily lost the ability to rear regular queens in
royal cells, perhaps because of the numerical advantage of min-
iature queens, which made it no longer worth it for the workers
to invest in the construction of royal cells to rear regular queens
(Rasmussen & Cameron, 2010). Selective elimination of miniature
queens by the workers or preferential storage of regular queens in
imprisonment chambers, however, may act as a policing mecha-
nism that would reduce the incentive for female larvae to develop
as miniature queens, thereby preventing the spread of this selfish
trait and keeping ESS levels of miniature queen production at a
low level (Wenseleers et al., 2004a).

As a whole, accurate quantitative predictions as derived here
are rare in the field of social evolution, and have been mainly
restricted to sex ratio theory (Gardner et al., 2012; West, 2009).
In fact, even in that field it has taken decades to go from simple
models that predicted optimal sex allocation patterns in insect
societies based only on relatedness asymmetries (Trivers & Hare,
1976) to ones that specifically took into account the actual mecha-
nisms and costs of sex ratio manipulation (West, 2009). Our model
should therefore address the common critique that inclusive fit-
ness models frequently lack enough mechanistic detail (Nowak et
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al., 2010). We would also argue that this criticism does not apply
specifically to inclusive fitness models, but rather relates to the
tradeoff that is made between the level of abstraction and real-
ism in any model (Shou et al., 2015). In fact, Ratnieks (2001) had
also assumed a simple linear one-on-one cost function, despite
having used a formal population genetic approach. The motiva-
tion in that case to refrain from making a more complex model
was simply that at the time, it seemed doubtful that the required
demographic parameters that would go into a more detailed
model would be empirically available. As we showed, this was not
entirely warranted, since at least a simple model of colony growth
could be parameterized based on readily available literature data.
In fact, over the last decade, there has been a general trend for
models in the social evolution literature to always become ever
more complex and biologically realistic, e.g., taking into account
the coevolution among several traits (e.g., Quiiones & Pen, 2017;
Quifiones et al.,, 2020; Wenseleers et al., 2013), incorporating
detailed life cycles and preadaptations (Quifiones & Pen, 2017;
Wenseleers et al., 2013), generalizing Hamilton’s rule to stochas-
tic or otherwise dynamic environments (e.g., Kennedy et al., 2018)
or using individual-based simulations to take into account details
of the underlying genetic architecture of the trait under study as
well as critical stochastic aspects of the problem under study (e.g.,
Davies & Gardner, 2018; Kennedy et al., 2021; Kreider et al., 2021).

Usually, the level of detail at which a problem is modeled
is tailored to the level at which parameters can be empirically
measured, however. In that sense, it is worth mentioning that the
approach we used here that allowed us to indirectly quantify the
costs and benefits of queen overproduction based on a dynamic
model of colony growth is much more feasible than if we had
tried to directly quantify those costs empirically, e.g., by compar-
ing the productivity of colonies with more or less queen overpro-
duction or manipulated brood sizes. In that sense, we believe that
it would be a fruitful approach to model many other conflicts in
the field of social evolution in more detail and achieve greater
biological realism.
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