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ABSTRACT Parasites from the Leishmania genus are the causative agents of leishma­
niasis and primarily reside within macrophages during mammalian infection. Their 
ability to establish intracellular infection provides a secure niche for proliferation while 
evading detection. However, successful multiplication within mammalian cells requires 
the orchestration of multiple mechanisms that control host cell viability. In contrast, 
innate immune cells, such as macrophages, can undergo different forms of cell death in 
response to pathogenic intracellular microbes. Thus, modulation of these different forms 
of host cell death is crucial for Leishmaniasis development. The regulation of host cell 
apoptosis, a form of programmed cell death, is crucial for sustaining parasites within 
viable host cells. Accordingly, several studies have demonstrated evasion of apoptosis 
induced by dermotropic and viscerotropic Leishmania species. Conversely, the preven­
tion of pyroptosis, an inflammatory form of cell death, ensures the establishment of 
infection by silencing the release of mediators that could trigger massive proinflamma­
tory responses. This manuscript explores how Leishmania regulates various host cell 
death pathways and overviews seminal studies on regulating host cell apoptosis by 
different Leishmania species.
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L eishmaniasis, a complex vector-borne disease, encompasses a spectrum of clinical 
forms ranging from tegumentary to visceral manifestations. The disease is caused 

by approximately 20 different Leishmania species that infect humans; the global burden 
of this neglected tropical disease remains significant, with an estimated annual count 
of 0.7–1 million new cases each year (1). The intricate life cycle of Leishmania begins 
with the transmission of metacyclic promastigotes by infected sandflies, culminating 
in the differentiation into amastigote form and its establishment within professional 
phagocytes, especially macrophages. This pivotal interaction between the parasite and 
host cell sets the stage for a dynamic interaction within the host [reviewed in reference 
(2)], where the subversion of cell death mechanisms becomes a central theme.

Apoptosis is a type of programmed cell death (PCD) composing a fundamental 
biological process essential for maintaining the balance and health of multicellular 
organisms. Apoptosis is a highly regulated mechanism that occurs in response to specific 
signals or cellular events (Fig. 1). This intricate process involves a series of biochemi­
cal events that lead to the controlled dismantling of a cell, preventing the release of 
harmful substances and ensuring an organized removal without eliciting inflammation. 
Apoptosis plays a crucial role in various physiological processes, including embryonic 
development, tissue homeostasis, immune system regulation, and dysregulation of 
apoptosis, which can contribute to various diseases, including cancer and autoimmune 
disorders [reviewed in reference (3)]. In the context of host responses against obligate 
intracellular microbes, apoptosis takes on particular significance. Macrophages, key 
players in the immune system, can undergo apoptosis as part of the host defense 
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strategy by limiting the replication and spread of intracellular microbes. This control­
led death of infected macrophages not only eliminates the host cells harboring the 
intracellular microbes but also facilitates the efficient clearance of the pathogens by 
other immune cells. The orchestrated interplay between apoptosis and the immune 
system thus underscores its crucial role in defending the host against microbial threats 
and maintaining overall immune homeostasis [reviewed in reference (4)].

In this review article, we explore the intricate and multifaceted aspects of the 
interplay between Leishmania and its host cells, summarizing current knowledge about 
the complex mechanisms employed by Leishmania to manipulate host cell viability (Fig. 
2; Table 1), shedding light on the development of Leishmaniasis and potential therapeu­
tic targets for this challenging infectious disease.

FIG 1 Circular plot illustrating the main signaling pathways and morphological features of cells undergoing apoptosis, 

pyroptosis, necroptosis, or netosis. Apoptosis is characterized by the activation of Caspase-3, Caspase-6, and Caspase-7, 

triggered through extrinsic pathways involving Caspase-8 activation by death receptors such as TNFR and FAS or via intrinsic 

signals leading to Caspase-9 activation via mitochondrial proteins. Pyroptosis involves cleavage of Gasdermin-D (GSDMD) by 

Caspase-1 or Caspase-11, which are activated by the inflammasome, forming N-terminal GSDMD pores in the membrane, 

resulting in cell lysis and release of inflammatory contents. Necroptosis is driven by the activation of MLKL, following signaling 

through RIPK1 and RIPK3, leading to membrane rupture. In NETosis, neutrophils release their DNA and granule proteins, such 

as myeloperoxidase (MPO), in response to reactive oxygen species (ROS), forming neutrophil extracellular traps (NETs). Each 

pathway contributes distinct morphological and biochemical hallmarks of cell death, critical for immune responses and tissue 

homeostasis. Created with BioRender.com
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LEISHMANIA SUBVERSION OF HOST CELL APOPTOSIS AS AN EVASION 
STRATEGY

Apoptosis is characterized by cell shrinkage, membrane blebbing, disturbance of the 
cytoskeleton, and nuclear condensation without plasma membrane disruption. In 
addition to serving as a vital mechanism for maintaining cell homeostasis, apoptosis 
is a defense mechanism against intracellular pathogens [reviewed in reference (4)]. 
Regarding this, pathogen-host cell coevolution has given rise to multiple regulatory roles 
controlling apoptosis upon infection.

As an intracellular microbe that infects and replicates in macrophages, Leishmania 
was shown to subvert macrophage apoptosis to maintain its replicative niche. The first 
demonstration that Leishmania infection can modulate host cell apoptosis was published 
in 1994, showing that L. donovani infection or lipophosphoglycan (LPG) treatment could 
inhibit apoptosis induced by M-CSF depletion in bone marrow-derived macrophages 

TABLE 1 Summary of mechanisms used by Leishmania to control host cell death

Cell death Effect Host cell/species Leishmania species Reference

Apoptosis Reduction of M-CSF-induced apoptosis Macrophage/mice (BMDM) L. donovani (5)

Reduction of actinomycin D-induced apoptosis Monocyte/human (U-937) L. infantum (6)

Reduced cytochrome c release Macrophage/mice (BMDM) L. major (7)

Reduction of cycloheximide-induced apoptosis Macrophage/mice (RAW 264.7) L. major

L. donovani

(8)

Decreased neutrophil spontaneous apoptosis 

decreasing Caspase-3 activation

Neutrophil/mice L. major (9)

LPG-dependent delay of apoptosis Neutrophil L. donovani (10)

Delayed apoptosis Neutrophil/human (peripheral blood) L. major (11)

Reduction of camptothecin-induced apoptosis Dendritic cell (moDCs) L. mexicana (12–15)

Reduction of apoptosis by inhibition of cytochrome c 

release

Neutrophil/human (peripheral blood) L. major (16)

Reduction of apoptosis by inhibition of cytochrome c 

release

Macrophage L. donovani (17)

Reduction of actinomycin D-induced apoptosis Monocyte/human (U-937) L. infantum (18)

Reduction of camptothecin- and actinomycin

D-induced apoptosis

Macrophage/mice (BMDM) L. major, L. pifanoi, and L. 

amazonensis

(19)

Reduction of apoptosis Macrophage/mice (BMDM and RAW 264.7) L. donovani (20–23)

Reduction of CSF-1 depletion- and actinomycin 

D-induced apoptosis

Macrophage/mice (BMDM) L. amazonensis (24)

Induction of apoptosis Macrophage/mice (peritoneal) L. major (25)

Induction of apoptosis Macrophage/mice (BMDM and RAW 264.7) L. amazonensis (26)

Induction of apoptosis Macrophage/mice (peritoneal) L. amazonensis (27)

Induction of apoptosis Macrophage/mice (BMDM) and human 

(hMDM)

Skin lesions

L. major (28)

Pyroptosis Suppression of pyroptosis Macrophage/human (U-937 and THP-1) L. donovani (29)

Pyroptosis-dependent spread of infection Macrophage/mice (BMDM) L. amazonensis (30)

Suppression of pyroptosis Macrophage/mice (BMDM) and ex vivo 

Leishmania-infected macrophages (evLIMs)

L. amazonensis (24)

GSDMD-dependent infection Monocyte/human

(BLaER1-derived monocytes)

L. major (31)

Suppression of pyroptosis Macrophage/mice (BMDM) L. amazonensis (32)

Necroptosis Heme-dependent induction of necroptosis Macrophage/mice (BMDM)/human (THP-1) L. infantum (33)

Neutrophil necrosis-dependent parasite clearance Neutrophil/mice (peritoneal) and human 

(primary)

L. infantum (34)

NETosis NET release Neutrophil L. amazonensis, L. infantum, 

and L. donovani

(35–39)
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(BMDMs) (5). Likewise, L. infantum infection, LPG treatment, or Leishmania supernatant 
inhibited actinomycin D-induced apoptosis of the U-937 human monocytic cell line 
(6). Subsequent investigations revealed that L. major could similarly prevent apoptosis 
in BMDM from both susceptible BALB/c and resistant C57BL/6 mouse models, indicat­
ing that prevention of apoptosis is an intrinsic parasite-induced mechanism reducing 
cytochrome c (CYTC) release independent of host genetic background (7). Collectively, 
these studies proposed the induction of anti-apoptotic mechanisms by both dermo­
tropic and viscerotropic Leishmania species. Further investigation has revealed that 
Leishmania’s ability to prevent cycloheximide-induced apoptosis depends on parasite 
strain. It was demonstrated that L. major V1, Spock, and IR173 prevent apoptosis to a 
much greater degree than LV39 and NIH S strains, while the L. donovani 1S strain presents 
a higher capability to prevent apoptosis than 9515 and Mongi strains (8). Whether these 
differences account for disease severity by these strains remains to be investigated.

Neutrophils are usually short-lived cells that are the initial host cells encountered by 
Leishmania upon mammalian host infection (40). Phagocytosis of viable L. major delays 
spontaneous apoptosis of neutrophils both in vitro and in vivo by decreasing Caspase-3 
activation (9). This mechanism was also observed in L. donovani-infected neutrophils, 
while phagocytosis of parasites lacking LPG (lpg2−/−) could not increase neutrophil 
longevity (10), again suggesting that LPG is involved in the modulation of host cell 
death. Apoptotic cells emit signals that prompt rapid phagocytosis by neighboring 
phagocytic cells without eliciting a pro­inflammatory response, serving as a mechanism 
facilitating parasite establishment [reviewed in reference (4)]. Neutrophils harboring 
Leishmania attract macrophages to the infection site by secreting the chemokine 
Macrophage Inflammatory Protein (MIP)-1β (11). Also, infection of monocyte-derived 

FIG 2 Schematic representation of mechanisms that interfere with host cell death during Leishmania infection. Leishmania modulates host cell death by either 

inducing or blocking specific cell death processes. The figure illustrates how Leishmania can inhibit apoptosis through the downregulation of pro-apoptotic 

signals, while in other scenarios, it may induce apoptotic pathways to evade immune detection. In pyroptosis, Leishmania can interfere with inflammasome 

activation, blocking the process to prevent inflammatory cell death, support parasite replication, and inhibit excessive inflammation. The parasite may also 

inhibit necroptosis, preventing necrotic death to preserve host cells that support parasite replication. Leishmania also influences NETosis by regulating the 

release of neutrophil extracellular traps, putatively promoting this response to favor parasite release from neutrophils. Created with BioRender.com.
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DCs (moDCs) with both L. mexicana promastigotes and amastigotes resulted in a 
decrease in camptothecin-induced apoptosis. The increase in cell viability was accom­
plished by the reduction of Caspase-3 activation (12–14).

MOLECULAR MECHANISMS INVOLVED IN LEISHMANIA INTERFERENCE ON 
APOPTOTIC SIGNALING PATHWAYS

Different apoptosis-activating pathways result in controlled activation of cysteine 
proteases, the caspases, which are synthesized as inert pro-forms. Autocatalytic 
activation of Caspase-9 occurs during intrinsic apoptosis, while extrinsic apoptosis 
initiates with Caspase-8 activation (Fig. 1). Both caspases mediate the activation of 
the executioner Caspase-3, Caspase-6, and Caspase-7, which are the effectors promot­
ing the apoptotic phenotype, such as DNA fragmentation and phosphatidylserine (PS) 
exposure in the outer plasma membrane [reviewed in reference (41)]. The most prevalent 
triggers of caspase-activating cascades are natural killer- and T-cell-secreted granzyme 
and perforin, extrinsic pathway depending on ligands of death receptors of the TNF 
family [such as Fas cell surface death ligand (FasL) and the TNF superfamily member 
10 (TNFSF10)], and the intrinsic pathway, depending on the release of mitochondrial 
CYTC triggered by deprivation of growth factors, DNA damage, reactive oxygen species 
(ROS) production, endoplasmic reticulum (ER) stress, and others [Fig. 1 and reviewed in 
reference (41)]. CYTC release depends on mitochondrial outer membrane permeabiliza­
tion mediated by pro-apoptotic proteins from the B-cell lymphoma 2 (BCL2) family, such 
as BCL2 associated X (BAX), BCL2 antagonist/killer 1 (BAK) and BCL2 family apoptosis 
regulator (BOK), while BCL-2, BCL2-related protein A1 (BCL2A1 or BFL-1), BCL2 like 
1 (BCL2L1 or BCL-XL), and BCL-2 interacting mediator of death (BIM) antagonize this 
process [Fig. 1 and reviewed in reference (41)].

Neutrophil infection with L. major induces upregulation of antiapoptotic Bcl-2 and 
Bfl­1, activating p38 Mitogen-activated Protein Kinase (MAPK) and extracellular signal-
regulated kinase 1/2 (ERK1/2) pathways, but not AKT, resulting in inhibition CYTC release 
(16). L. donovani-infected macrophages present an upregulation of myeloid cell leukemia 
1 (MCL-1) via the induction of the transcription factor CREB. This, in turn, impedes 
BAK-mediated CYTC release, thereby inhibiting apoptosis (17). Further corroborating 
these findings, L. infantum infection protected human U-937 cells from actinomycin 
D-induced apoptosis in a Bcl-2- and inhibitor of apoptosis IAP1/2-dependent manner (6, 
18). It was also demonstrated that Bcl-2 is increased in peripheral blood monocytes from 
visceral leishmaniasis (VL) patients compared to healthy controls (HCs). The increase in 
Bcl-2 was also implicated in preventing nitric oxide (NO) production in mouse peritoneal 
macrophages upon L. donovani infection, while inhibiting this protein reduced parasite 
load both in vitro and in vivo. This finding presented novel functions for a known major 
regulator of apoptosis (42).

Several studies demonstrated the role of PI-3 kinase (PI-3K)/Akt pathways in 
regulating cell survival (43). Indeed, L. major, L. pifanoi, or L. amazonensis infection 
activated these pathways, reducing apoptosis by apoptosis-inducing stimuli (19). 
Activation of PI-3K/Akt also occurs in DCs infected with L. mexicana amastigotes (15). 
This finding was corroborated in L. donovani infection, demonstrating decreased parasite 
survival and increased macrophage apoptosis in vitro by treatment with AKT inhibi­
tors and liver and spleen parasite burden in vivo (21). Mechanistically, further studies 
demonstrated that AKT activation and inhibition of apoptosis depends on programmed 
death-1 receptor (PD-1) downregulation by L. donovani (22). It was shown that AKT 
regulation was also dependent on the cellular response to stress upon L. donovani 
infection. The parasite induces ER stress, resulting in the activation of the unfolded 
protein response (UPR) and the PKR-like ER kinase (PERK) results in phosphorylation 
and activation of AKT in murine RAW macrophages, which in turn mediates delayed 
apoptosis (23). Leishmania-induced activation of AKT mediates inhibition of apopto­
sis by phosphorylation of glycogen synthase kinase 3β (GSK-3β) and transcriptional 
modulation mediated by β-catenin (21). Also, L. donovani infection induces cytokine 
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signaling suppressors (SOCS), important regulators of ROS-elicited apoptosis through 
protein-tyrosine phosphatases (PTPs) activity, leading to decreased apoptosis of infected 
macrophages despite the oxidative burst during infection (20).

A preprint article demonstrated that L. amazonensis amastigotes-infected macro­
phages resist apoptotic signals of both intrinsic and extrinsic pathways by both 
CSF-1 deprivation and actinomycin D treatment, respectively (24). Likewise, infection 
prevented LPS/ATP-induced pyroptosis (to be further discussed in the next topic). This 
led to an increased in vitro macrophage lifespan of over 50 days with over 70 amastigotes 
per macrophage in large vacuoles that resembled those obtained from infected tissue of 
mice (24).

BENEFICIAL EFFECTS OF HOST CELL APOPTOSIS FOR LEISHMANIA INFECTION

Interestingly, multiple studies have also shown that the promotion of apoptosis may be 
beneficial for Leishmania infection. It was demonstrated that Fas-L-mediated apoptosis 
of neutrophils is important for L. major maintenance in susceptible Balb/c mice. This 
process exacerbates parasite replication in neutrophils that are attracted to the site 
of infection by apoptotic resident macrophages (25). The Fas-L-dependent increased 
apoptosis of neutrophils upon L. infantum infection was further enhanced by its 
vector, Lutzomyia longipalpis, salivary components. Apoptosis induction correlated with 
increased parasite burden in neutrophils, while inhibiting caspases in vitro abolished L. 
infantum replication. However, apoptosis is not the only immunomodulatory mechanism 
present in the saliva, and the phenotype may be a consequence of the indirect effects of 
the induction of the COX-2-derived PGE2 and decreased ROS production (44).

L. amazonensis cell-to-cell spreading is also mediated by apoptotic cells (26). In 
addition, it was suggested that increased virulence of L. amazonensis over L. guyanensis 
in both C57BL/6 and BALB/c mice depended on the ability of amastigotes to infect 
new cells by apoptosis induction (27). According to these reports, it was recently shown 
by intravital microscopy of skin lesions that L. major induces apoptotic cell death as a 
transferring mechanism between host cells without exposure in the extracellular milieu 
(28). This finding shows that the induction of apoptosis may be an important mechanism 
for infecting new cells. Also, this study demonstrates that apoptosis is induced by rapidly 
proliferating parasites, while parasites can maintain for more extended periods without 
inducing host cell apoptosis by reducing proliferation rates (28). Despite these reported 
beneficial effects of host cell apoptosis for Leishmania infection, the specific contexts 
in which host cell apoptosis is beneficial or detrimental to parasite establishment and 
survival are still to be clarified.

LEISHMANIA SUBVERSION OF MACROPHAGE PYROPTOSIS

Pyroptosis is a form of programmed cell death characterized by rapid cell lysis and 
the release of pro­inflammatory contents, typically in response to infection or cellular 
damage. The process usually occurs in response to inflammasome activation, which 
leads to activation of inflammatory caspases that in turn promotes the cleavage of a 
pore-forming protein called gasdermin-D (GSDMD). Among the inflammatory caspases 
involved in GSDMD cleavage are Caspase-1, Caspases 4 and 5 in humans, and Caspase-11 
in mice. They promote a GSDMD cleavage generating a 30 kDa N-terminal domain, 
which promotes pore formation in the plasma membrane mediating IL-1β release, ion 
exchange, cell swelling, and cell death (Fig. 1) [reviewed in reference (45)]. However, 
while it has been shown by multiple groups that Leishmania infection induces NLRP3 
inflammasome activation [reviewed in reference (46)], the repertoire of studies exploring 
modulation of pyroptosis by Leishmania remains relatively limited when compared to 
apoptosis.

Dampening of pyroptosis via reduction of macrophage transcriptional activities was 
demonstrated upon L. donovani infection; transcriptional reduction of caspase-1, NLRP3, 
and other inflammasome­related genes was observed in PBMCs from VL patients and 
in macrophage-infection in vitro (29). Mechanistically, L. donovani positively regulates 
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the transcription factor B lymphocyte-induced maturation protein 1 (BLIMP-1), which 
suppresses macrophage pyroptosis by impairing the NF-κB-NLRP3 activation pathway 
(29).

Another study reported that L. amazonensis-infected macrophages reduced 
pyroptosis after NLRP3 activation with LPS/ATP both in vitro and ex vivo. This effect was 
demonstrated at the level of transcriptomic changes upon infection, with a reduction of 
the Nlrp3, Casp1, Pycard, Il1b, and Il18 transcripts of inflammasome activation pathway in 
infected macrophages (24). Interestingly, a previous study demonstrated that BMDMs do 
not require priming and transcriptional regulation of inflammasome components NLRP3, 
ASC, and CASP1 for the inflammasome assembly upon L. amazonensis infection (47). 
These data may explain the reported inflammasome activation in response to Leishmania 
infection despite the inhibitory activity of Leishmania on macrophage proinflammatory 
gene expression (24, 48–50).

Regardless of the magnitude of inflammasome activation in macrophages infected 
with Leishmania, it is clear that inflammasomes are active in response to infection 
[reviewed in reference (46)]. Interestingly, although Leishmania infection in macrophages 
promotes inflammasome activation, Leishmania-infected macrophages remain viable, 
and pyroptosis does not occur. This process was recently investigated, and the mecha­
nisms involve an alternative cleavage of GSDMD. It was demonstrated that the multiple 
species of the parasites induce non-canonical processing of GSDMD into a 25 kDa 
fragment (opposed to the canonical 30 kDa fragment). This alternative cleavage prevents 
the canonical pore formation that mediates pyroptosis (32). The specific proteases 
involved in the non-canonical cleavage have yet to be determined, but the fact that 
host proteases, including Caspase-1, -7, -8, and -11, are dispensable for the non-canonical 
GSDMD cleavage, suggesting that a parasite protease may be involved in this proc­
ess. Alternatively, a recent report indicated that Caspase-3 was involved in generating 
an inactive 23 kDa fragment of GSDMD (51). Whether Caspase-3 is involved in the 
non-canonical GSDMD fragment observed in response to Leishmania is a matter for 
future investigation. Despite the alternative cleavage of GSDMD by Leishmania, this 
molecule is still important for protective immune responses against the parasites. Mice 
and macrophages deficient in Gsdmd are highly susceptive to infection with L. major, 
L. amazonensis, L. mexicana, and L. braziliensis, indicating that GSDMD neutralization by 
Leishmania is not complete and the molecule still contributes to host resistance (32). This 
work also reports active GSDMD in skin biopsy of patients with cutaneous leishmaniasis, 
supporting a key role of GSDMD in human Leishmaniasis (32).

Regardless of the parasite’s inhibitory activity in GSDMD, a study used real-time 
imaging to evaluate pyroptosis using real-time imaging on L. amazonensis-infected 
BMDMs treated with LPS priming and ATP. It was shown that upon cell death induced by 
LPS + ATP, viable amastigotes remain tethered to the parasitophorous vacuole mem­
brane, retaining the capability to infect other macrophages (30). Furthermore, using 
an in vitro model employing BLaER1-derived monocytes, the depletion of GSDMD was 
demonstrated to prevent the release of L. major. The study demonstrated that pyroptosis 
induction of infected macrophages with LPS and nigericin released viable parasites that 
infected non-stimulated macrophage posteriorly added to the culture (31), Collectively, 
these data suggest that even though Leishmania inhibits pyroptosis, in case it happens 
either via GSDMD-mediated pyroptosis or by a CD8-mediated induction of macrophage 
cell death via perforin and granzyme/granulysin (52), Leishmania may bypass this natural 
host defense and remain able to infect additional macrophages. The interference of 
Leishmania in the GSDMD pathway and pyroptosis has only recently been investigated, 
and further investigation of this pathway may reveal important aspects for our under­
standing of complex mechanisms involved in Leishmania-macrophage interaction and its 
importance for the outcome of Leishmaniasis.
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LEISHMANIA MANIPULATION OF ADDITIONAL FORMS OF HOST CELL DEATH

Besides the abovementioned mechanisms of host cell death, some studies also 
demonstrated that Leishmania modulates necroptosis, which is also an inflammatory 
form of cell death characterized by rapid cell swelling and lysis. Necroptosis is regulated 
by key serine/threonine kinases such as receptor-interacting protein kinases 1 and 3 
(RIPK1 and RIPK3) and the mixed lineage kinase domain-like (MLKL), which form pores 
in the plasma membrane (Fig. 1) [reviewed in reference (53)]. Initial speculations about 
necroptosis during Leishmaniasis derived from observations that VL patients present 
higher plasma levels of LDH compared to HC accompanied by classic neutropenia, 
leading to the interrogation of the mechanisms involved in leukocyte death. In vitro 
experiments using primary human and mouse neutrophils detected RIPK1-RIPK3- and 
MLKL-dependent necroptosis of neutrophils upon L. infantum infection when Caspase-8 
is inhibited, along with this pathway requirement to limit Leishmania infection in 
neutrophils (34). Also, high levels of heme in the plasma of VL patients led to the 
interrogation and identification of a mechanism involving heme-mediated stimulation of 
necroptosis and Leishmania control in vitro, while demonstrating the key role of RIPK1 in 
controlling infection in vivo (33)

More evidence at the transcription level points to necroptosis inhibition by dermo­
tropic Leishmania species, but whether this type of cell death presents clinical relevance 
in cutaneous Leishmaniasis remains to be investigated. It was demonstrated that RIPK3 
expression is reduced in skin biopsies of patients infected with L. braziliensis (54). Several 
transcripts were also deregulated upon L. amazonensis infection of murine macrophages, 
consistent with an anti-necroptotic signature, including downregulation of Ripk1, Ripk3, 
and Mlkl and upregulation of Tnfaip3 (24). Whether this results from a global transcrip­
tional inhibition induced by L. amazonensis or a response specific to target host cell 
necroptosis is a matter for future investigation.

NETosis is a type of neutrophil cell death resulting in the extracellular release of DNA 
traps called NETs. The induction of ROS, produced either by mitochondria or NADPH, 
inhibits actin polymerization. This destabilization leads to the release of neutrophil 
elastase (NE) and myeloperoxidase (MPO), which culminates in histone cleavage. 
Additionally, PAD4-mediated histone citrullination promotes chromatin decondensation. 
Both processes induce the extracellular release of DNA (Fig. 1). It was demonstrated that 
L. amazonensis, L. infantum, and L. donovani infection rapidly induce NETosis (35–38). 
The induction is mediated by ERK/PI3K pathway and presented early redox-independent 
mechanisms, while it was sustained at later stages by induction of ROS (38, 39). Although 
LPG is not responsible for signaling for induction of NET formation, it confers resistance 
to leishmanicidal activity of NETs (35). Also, L. infantum avoids killing by NETs by its 
3′ nucleotidase/nuclease (37). Formation of NET structures was confirmed in biopsies 
of cutaneous Leishmaniasis lesions (36) and NET-related proteins were found in sera 
of VL patients (55), confirming the induction of this type of host cell death during 
Leishmaniasis. More investigation will be required to investigate if Leishmania evolved 
specific strategies to manipulate NET formation during infection.

CONCLUSIONS AND PERSPECTIVES

The numerous reports of manipulation of host cell death by different Leishmania 
species highlight these pathways as promising targets for developing host-directed 
therapy for Leishmaniasis treatment. However, which parasite factors drive changes in 
host cell signaling remains largely unknown. Identification of such factors may also 
reveal suitable targets for anti-Leishmania therapy. The demonstration of an induction 
of an anti-cell death transcriptional landscape, mitigating apoptosis, pyroptosis, and 
necroptosis, underscores the significance of transcription factors as promising targets for 
interfering with Leishmania’s rewiring of host cells.

Another point that requires additional investigation is related to in vivo studies. While 
most compiled studies primarily focus on mechanisms in vitro, the complexity of the 
role of cell death during Leishmaniasis in vivo requires a more comprehensive study 
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using animal models of infection and clinical samples. Despite a recent study proposing 
let-7a microRNA inhibitors as an effective tool to enhance apoptosis and necroptosis 
in Leishmania-infected macrophages (56), we still lack evidence regarding the role of 
cell death at each stage of the disease and the contribution of each form of cell death 
in different cell types participating in Leishmaniasis immunopathology. Moreover, while 
inhibiting host cell death is important for maintaining intracellular replication niches, 
the induction of host cell death and membrane rupture at some point of infection may 
be necessary for parasite spreading. In this context, the recently identified mechanisms 
of Leishmania spread upon pyroptotic host cell death (31) add to the complexity of 
understanding the interplay between the parasite and host cells. Further investigation in 
this area may reveal important aspects for understanding the interaction of Leishmania 
with its host cells and its role in the development of Leishmaniasis.
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