Real Semigroups and Rings

MAX DICKMANN AND FRANCISCO MIRAGLIA

ABSTRACT. We show, among other results, that the real semigroup (RS) associated to any preordered ring, $\langle A, T \rangle$, is naturally isomorphic to the RS of reduced bounded inversion ring, canonically and functorially associated to $\langle A, T \rangle$.

Our goal here is to show that the real semigroup (RS) of any preordered ring, $\langle A, T \rangle$, is naturally isomorphic to the RS of a reduced bounded inversion ring (BIR), canonically and functorially associated to $\langle A, T \rangle$. This will be accomplished in section 3. Section 1 contains basic material concerning real semigroups, in particular, those associated to preordered rings, while section 2 describes the relations between the real semigroup associated to a p-ring and to its ring of fractions by a multiplicative set. We also take the opportunity to present interesting examples of RS-congruences in real semigroups associated to rings.

1 Preliminaries

For the theory of real semigroups, the reader is referred to [Dickmann and Petrovich, 2004] and to the more comprehensive [Dickmann and Petrovich, 2011]. For lack of a convenient reference, we give a succinct account of the natural functors from the category of preordered rings to that of real semigroups and from the latter into the category pre-special groups.

- 1.1. Notation and Basic Definitions. In all that follows, "ring" means commutative unitary ring. Let R be a ring.
- a) If $D \subseteq R$:
- (1) $R^{\times} = \{u \in R : a \text{ is a unit in } R\}$ is the (multiplicative) group of units in R;
 - (2) $D^{\times} = D \cap R^{\times};$ (3) $D^2 = \{d^2 \in R : d \in D\};$
 - (3) $\Sigma D^2 = \{\sum_{i=1}^n d_i^2 \in R : n \ge 1 \text{ is an integer and } \{d_1, \ldots, d_n\} \subseteq D\}.$
- b) A preorder on R is a subset P of R, closed under sums and products, containing R^2 and such that $-1 \notin P$. If $-1 \notin \Sigma R^2$, R is said to be semi-real; in this case, ΣR^2 is the least preorder on R.
- c) A preordered ring (p-ring) is a pair $\langle A, T \rangle$, where A is a ring and T is a preorder on A.
- d) A p-ring $\langle A, T \rangle$ is a bounded inversion ring (BIR) if $1 + T \subseteq A^{\times}$.

e) If $\langle A, T \rangle$, $\langle R, P \rangle$ are p-rings, a map $f : \langle A, T \rangle \longrightarrow \langle R, P \rangle$ is a p-ring morphism if it is a morphism of unitary rings, satisfying $f[T] \subseteq P$.

Forthwith, all rings will be assumed to be semi-real.

- 1.2. T-convex and T-radical Ideals. (cf. Chapter 4 of [Bochnak et al., 1998]).
- a) An ideal I in a p-ring $\langle A, T \rangle$ is
- **T-convex** if for all $s, t \in T$, $s + t \in I \implies s, t \in I$;
- T-radical if for all $a \in A$ and $t \in T$, $a^2 + t \in I \implies a \in I$.

A ΣA^2 -radical ideal is called **real**.

By Proposition 4.2.5 in [Bochnak *et al.*, 1998] an ideal of A is T-radical iff it is T-convex and radical. In particular, a prime ideal is T-radical iff it is T-convex.

Note that if $T \subseteq \alpha \in \operatorname{Sper}(A)$, then the prime ideal $\operatorname{supp}(\alpha)$ is T-convex. Conversely,

PROPOSITION 1. ([Bochnak et al., 1998], Prop. 4.3.8, p. 90) If I is a proper prime ideal, T-convex for a given preorder T of A, then there is $\alpha \in \text{Sper}(A, T)$ such that $\text{supp}(\alpha) = \alpha \cap -\alpha = I$.

PROPOSITION 2. a) ([Bochnak et al., 1998], Prop. 4.2.7, p. 87) A preorder T on a ring A is proper iff A has a proper T-convex ideal.

b) If $\langle A, T \rangle$ is a p-ring, any ideal of A, maximal for the property of being T-convex, is prime.

PROPOSITION 3. ([Bochnak et al., 1998], Prop. 4.2.6, p. 87) Given a preorder T of A, every ideal I of A is contained in a smallest T-radical ideal (possibly improper), namely:

 $\sqrt[n]{I} = \{a \in A : \exists m \in \mathbb{N} \text{ and } t \in T \text{ such that } a^{2m} + t \in I\},$

called the T-radical of I, the intersection of all T-convex prime ideals containing I.

REMARK 4. With notation as in 3:

- a) If $a \in A$, write $\sqrt[T]{a}$ for the T-radical of the principal ideal (a). In particular, $\sqrt[T]{0}$ is the T-radical of the zero ideal. By 3, an ideal I is T-radical iff $\sqrt[T]{I} = I$.
- b) If $T = \sum A^2$ and I is an ideal in A, we write $\sqrt[r]{I}$ for $\sqrt[r]{I}$, the real radical of I, equal to the intersection of all real primes of A containing I.
- c) Recall that a ring A is **reduced** if it has no non-zero nilpotent elements, i.e., the intersection of all prime ideals in A is the zero ideal; the analog of this notion in the case of preordered rings appears in the next definition.

DEFINITION 5. A p-ring $\langle A, T \rangle$ is T-reduced if $\sqrt[T]{0} = (0)$. If $T = \sum A^2$, i.e., $\sqrt[T]{0} = (0)$, we say A is a real ring. Clearly, a T-reduced ring is reduced

and semi-real 1.

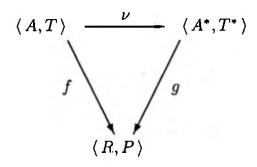
Every p-ring has a BIR hull, as follows:

PROPOSITION 6. (Proposition 6.5.(a), p. 72ff of [Dickmann and Miraglia, 2011]) If $\langle A, T \rangle$ is a p-ring, then S = 1 + T is a proper multiplicative subset of A. Moreover, if $\nu : A \longrightarrow A^* = AS^{-1}$ is the ring of fractions of A by S and

$$T^* = \{t/s^2 \in A^* : t \in T \text{ and } s \in S\},$$

then

- (1) T^* is a proper preorder of A^* and $\langle A^*, T^* \rangle$ is a BIR.
- (2) ν is a p-ring morphism; moreover, if A is T-reduced (cf. 5), then ν is injective.
- (3) If $f: \langle A, T \rangle \longrightarrow \langle R, P \rangle$ is a p-ring morphism and $\langle R, P \rangle$ is a BIR, there is a unique p-ring morphism, $g: \langle A^*, T^* \rangle \longrightarrow \langle R, P \rangle$, such that $g \circ \nu = f$.



1.3. Ternary Semigroups ([Dickmann and Petrovich, 2004], [Dickmann and Petrovich, 2011]). A structure $\langle S, \cdot, 1, 0, -1 \rangle$ is a ternary semigroup (TS) if

[TS 1] $\langle S, \cdot, 1 \rangle$ is an Abelian semigroup (monoid) with identity 1;

[TS 2] $x^3 = x$, for all $x \in S$; [TS 3] $-1 \neq 1$ and (-1)(-1) = 1;

[TS 4] $x \cdot 0 = 0$, for all $x \in S$; [TS 5] For all $x \in S$, $x = -1 \cdot x \implies x = 0$.

If $x \in S$, write -x for $-1 \cdot x$.

b) If S is a TS, $R \subseteq S^3$ is a ternary relation on S and $a, b, c \in S$, write $a \in R(b, c)$ in place of R(a, b, c). Define the **transversal** of R, R^t , by

[t-rep] $a \in R^t$ $(b, c) \Leftrightarrow a \in R(b, c) \land -b \in R(c, -a) \land -c \in R(b, -a)$.

b) If S, S' are TSs, a map, $f: S \longrightarrow S'$ is **TS-morphism** if it preserves product, 0, 1 and -1.

DEFINITION 7. A set-theoretic map, $f: D \longrightarrow E$, induces a map

$$f \times f : D \times D \longrightarrow E \times E$$
, given by $\langle a, b \rangle \longmapsto \langle f(a), f(b) \rangle$.

Define 2,

¹ Since $\sqrt[7]{0} = (0)$, A has a proper real prime ideal, and 2.(a) guarantees that ΣA^2 is a proper preorder of A. Moreover, our definition of real ring coincides with the usual one, i.e. (0) is a real ideal (cf. 4.(a)).

² Sometimes called the fibered product of A over f.

$$\ker f = (f \times f)^{-1}[\Delta_E] = \{\langle a, b \rangle \in D \times D : f(a) = f(b)\},$$

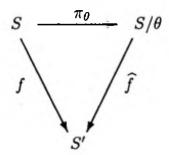
called the **kernel of** f, where Δ_E is the diagonal of $E \times E$. If $D \xrightarrow{f} E \xrightarrow{g} F$ are set-theoretic maps, we clearly have

[ker-comp]
$$\ker (g \circ f) = (f \times f)^{-1} [\ker g].$$

- 1.4. TS-Congruences. For more detailed information on this topic, the reader is referred to section 1 of Chapter I in [Dickmann and Petrovich, 2011] (cf. Definition I.1.9ff).
- a) Let S be TS; an equivalence relation, θ , on S is a **TS-congruence** if it is a congruence with respect to the product in S, i.e, $a \theta a'$ and $b \theta b'$ implies $(ab) \theta (a'b')$.
- Let $S/\theta = \{a/\theta : a \in S\}$ be the set of equivalence classes of elements of S by θ and let $\pi_{\theta} : S \longrightarrow S/\theta$, $a \longmapsto a/\theta$ be the canonical quotient map. Notice that ker $\pi_{\theta} = \theta$. With the operation induced by the product in S, S/θ has a natural structure of ternary semigroup, wherein 1, 0, and -1 are the classes of these constants modulo θ . Moreover, π_{θ} is a TS-morphism and the diagram $S \xrightarrow{\pi_{\theta}} S/\theta$ has the following property:

If $f: S \longrightarrow S'$ is a TS-morphism, such that $\theta \subseteq \ker f$, there is a unique TS-morphism, $\widehat{f}: S/\theta \longrightarrow S'$, making the diagram below left commutative:

[TS-UFP]



Indeed, it is straightforward that $\widehat{f}(a/\theta) = f(a)$, $a \in S$, has the required properties.

- b) If $f: S_1 \to S_2$ is a TS-morphism, then ker f is a TS-congruence on S_1 and there is a unique TS-morphism, $\hat{f}: S_1/\theta \to S_2$ such that $\hat{f} \circ \pi_{\ker f} = f$. Moreover, it is straightforward to show:
 - (1) \hat{f} is injective \Leftrightarrow ker $f = \theta$;
 - (2) \hat{f} is a TS-isomorphism \Leftrightarrow ker $f = \theta$ and f is surjective.
- 1.5. Real Semigroups ([Dickmann and Petrovich, 2004], [Dickmann and Petrovich, 2011]). a) A real semigroup (RS) is:
- A TS, \mathcal{G} , together with a ternary relation, $\mathcal{D}_{\mathcal{G}} = \mathcal{D}$, representation by binary forms, satisfying, for all $a, b, c, d, e \in \mathcal{G}$, (where \mathcal{D}^t is the transversal of \mathcal{D}):

$$[RS 0]: c \in \mathcal{D}(a,b) \Leftrightarrow c \in \mathcal{D}(b,a); \qquad [RS 1]: a \in \mathcal{D}(a,b);$$
$$[RS 2]: a \in \mathcal{D}(b,c) \Rightarrow ad \in \mathcal{D}(bd,cd);$$

[RS 3] (Strong associativity):

 $a \in \mathscr{D}^t(b,c)$ and $c \in \mathscr{D}^t(d,e) \Rightarrow \exists x \in \mathscr{D}^t(b,d)$ so that $a \in \mathscr{D}^t(x,e)$.

 $[RS 4]: e \in \mathcal{D}(c^2a, c^2b) \Rightarrow e \in \mathcal{D}(a, b);$

[RS 5]: ad = bd, ac = be and $c \in \mathcal{D}(d, e) \Rightarrow ac = bc$;

[RS 6]: $c \in \mathcal{D}(a,b) \Rightarrow c \in \mathcal{D}^t(c^2a, c^2b);$

[RS 7] (Reduction) : $\mathscr{D}^t(a, -b) \cap \mathscr{D}^t(-a, b) \neq \emptyset \Rightarrow a = b$:

[RS 8]: $a \in \mathcal{D}(b,c) \Rightarrow a^2 \in \mathcal{D}(b^2,c^2)$.

- b) $L_{RS} = \langle \cdot, \mathcal{D}, 1, 0, -1 \rangle$ is the language of RSs.
- c) If \mathscr{G} is a RS, write $\mathscr{G}^{\times} = \{x \in \mathscr{G} : x^2 = 1\}$ for the group of units in \mathscr{G} .
- d) If \mathcal{G}_1 , \mathcal{G}_2 are RSs, a map, $f: \mathcal{G}_1 \longrightarrow \mathcal{G}_2$, is a **RS-morphism** if it preserves 1, 0, -1, product and representation.

REMARK 8. If \mathcal{G} is a RS, the representation and transversal representation are interdefinable as follows. for $a, b, c \in \mathcal{G}$:

• By [t-rep] in 1.3.(b),

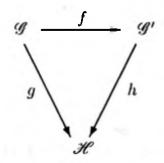
 $a \in \mathscr{D}^t$ $(b, c) \Leftrightarrow a \in \mathscr{D}(b, c) \land -b \in \mathscr{D}(b, -a) \land -c \in \mathscr{D}(b, -a)$:

- The axioms for RSs in 1.5.(a) entail $a \in \mathcal{D}(b, c) \iff a \in \mathcal{D}^t(a^2b, a^2c)$. Hence, if $f: \mathcal{G}_1 \longrightarrow \mathcal{G}_2$ is a TS-morphism and \mathcal{G}_i , i = 1, 2, are RSs, the following are equivalent:
 - (1) f is a RS-morphism (i.e., it preserves representation);
 - (2) f preserves transversal representation, i.e, for all $a, b, c \in \mathcal{G}_1$,

$$a \in \mathscr{D}_{\mathscr{G}_{1}}^{l}(b, c) \Rightarrow f(a) \in \mathscr{D}_{\mathscr{G}_{2}}^{l}(f(b), f(c)).$$

1.6. RS-Congruences. For an extensive discussion of the theme, the reader is referred to Chapter II of [Dickmann and Petrovich, 2011]. We shall here mildly change the presentation, in order to emphasize the importance of the unique factorization property contained in Definition II.2.1 of [Dickmann and Petrovich, 2011]. To keep matters straight, if $\mathscr G$ is a RS, we write $|\mathscr G|$ for the ternary semigroup underlying $\mathscr G$.

DEFINITION 9. A RS-morphism, $f: \mathscr{G} \longrightarrow \mathscr{G}'$ has the **RS-unique factorization property** (**RS-UFP**) if for all RS-morphisms, $g: \mathscr{G} \longrightarrow \mathscr{H}$ such that $\ker f \subseteq \ker g$, there is a *unique* RS-morphism, $h: \mathscr{G}' \longrightarrow \mathscr{H}$ making the following diagram commute:



Notation as in 1.4, we have

DEFINITION 10. (Essentially Def. II.2.1, [Dickmann and Petrovich, 2011]) An equivalence relation θ on a RS \mathcal{G} is a RS-congruence if

[RS-cong 1]: θ is a congruence of ternary semigroups (1.4);

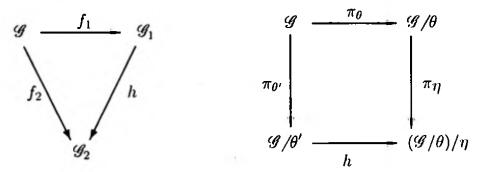
[RS-cong 2]: There is a ternary relation \mathcal{D}_{θ} in the quotient TS, $|\mathcal{G}|/\theta$, such that $\mathcal{G}/\theta := \langle |\mathcal{G}|/\theta, \cdot, \mathcal{D}_{\theta}, -1, 0, 1 \rangle$ is a RS and the canonical projection, $\pi_{\theta} : \mathcal{G} \longrightarrow \mathcal{G}/\theta$, is a RS-morphism;

[RS-cong 3]: The map $\pi_{\theta}: \mathscr{G} \longrightarrow \mathscr{G}/\theta$ has the RS-UFP.

Write $Con_{RS}(\mathcal{G})$ for the set of RS-congruences in \mathcal{G} .

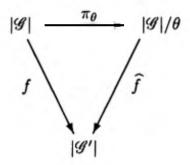
LEMMA 11. a) Let $f_i: \mathcal{G} \longrightarrow \mathcal{G}_i$, i = 1, 2, be RS-morphisms with the RS-UFP. If $\ker f_1 = \ker f_2$, there is a unique RS-isomorphism, $h: \mathcal{G}_1 \longrightarrow \mathcal{G}_2$, making the triangle below left commutative.

b) Let $f: \mathcal{G} \longrightarrow \mathcal{G}'$ be a surjective RS-morphism. If f has the RS-UFP, then $\ker f$ is a RS-congruence in \mathcal{G} .



c) (Double quotient) Let \mathcal{G} be a RS and let θ be a RS-congruence in \mathcal{G} . If η is a RS-congruence on \mathcal{G}/θ , then, with notation as in 10, $\theta' := (\pi_{\theta} \times \pi_{\theta})^{-1}[\eta]$ is a RS-congruence on \mathcal{G} . Moreover, there is a unique RS-isomorphism, $h: \mathcal{G}/\theta' \longrightarrow (\mathcal{G}/\theta)/\eta$ making the square above right commutative.

PROOF. Item (a) is clear. For (b), by 1.4.(b), $\theta := \ker f$ is a TS-congruence on \mathcal{G} . Since f is surjective, the [TS-UFP] in 1.4.(a), together with (2) in 1.4.(b), yield a unique TS-isomorphism, $\hat{f} : |\mathcal{G}|/\theta \longrightarrow |\mathcal{G}'|$, making the following diagram commute:



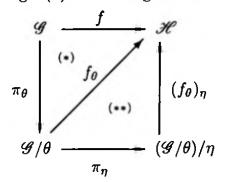
Since \mathscr{G}' is a RS, \widehat{f} may be made into a *RS-isomorphism*, by which $|\mathscr{G}|/\theta$ becomes a RS, \mathscr{G}/θ , and $\pi_{\theta}:\mathscr{G}\longrightarrow\mathscr{G}/\theta$ becomes a RS-morphism. Since, θ = ker f = ker π_{θ} and f has the RS-UFP, the same will be true of $\pi_{\theta}:\mathscr{G}\longrightarrow$

 \mathcal{G}/θ , and θ is a RS-congruence, as claimed.

c) Let $g = \pi_{\eta} \circ \pi_{\theta}$; g is clearly surjective and $\ker g = \theta' = (\pi_{\theta} \times \pi_{\theta})^{-1}[\eta]$. Note that

(I) (i)
$$\theta \subseteq \theta'$$
; (ii) $(\pi_{\theta} \times \pi_{\theta})[\theta'] = \eta = \ker \pi_{\eta}$.

Indeed, (i) follows from $\Delta_{\mathscr{G}/\theta} \subseteq \eta$ (inverse image is increasing), while (ii) from the surjectivity of π_{θ} . We claim that g has the RS-UFP. To see this, let $f:\mathscr{G} \longrightarrow \mathscr{H}$ be a RS-morphism, such that $\theta' \subseteq \ker f$. Because θ is a RS-congruence and $\theta \subseteq \ker f$ (by (I.(i) above), there is a unique RS-morphism, $f_{\theta}:\mathscr{G}/\theta \longrightarrow \mathscr{H}$, making the upper triangle (*) in the diagram below commutative.



Since $f = \pi_{\theta} \circ f_{\theta}$, we have $\theta' \subseteq \ker f = (\pi_{\theta} \times \pi_{\theta})^{-1}[\ker f_{\theta}]$, and the surjectivity of π_{θ} together with (I.(ii)) above, entail $\eta \subseteq \ker f_{\theta}$. Now, the fact that η is a RS-congruence yields a unique RS-morphism, $(f_{\theta})_{\eta} : (\mathcal{G}/\theta)/\eta \longrightarrow \mathcal{H}$, making the lower triangle (**) in the above square commutative, establishing the RS-UFP for $g = \pi_{\eta} \circ \pi_{\theta}$. Now it follows immediately from (b) that θ' is a RS-congruence on \mathcal{G} . Moreover, since both $\pi_{\theta'} : \mathcal{G} \longrightarrow \mathcal{G}/\theta'$ and $g : \mathcal{G} \longrightarrow (\mathcal{G}/\theta)/\eta$ have the the same kernel and the RS-UFP, item (a) yields the unique RS-isomorphism making the displayed square in the statement commute, ending the proof.

In what follows, we shall see applications of the above results to RSs arising from p-rings.

- 1.7. The Real Semigroup of a p-Ring. Let $\langle A, T \rangle$ be a p-ring. For details on the constructions about to be presented, the reader is referred to [Dickmann and Petrovich, 2004], [Dickmann and Petrovich, 2011] and [Marshall, 1996]
- a) Let Sper(A) be the real spectrum of A (cf. Chapter 7 and Chapter 4 in [Bochnak et al., 1998]) and set

$$Sper(A,T) = \{ \alpha \in Sper(A) : T \subseteq \alpha \},$$

called the real spectrum of $\langle A, T \rangle$.

Each $a \in A$ gives rise to map, $\overline{a}_T : \operatorname{Sper}(A,T) \longrightarrow 3 = \{-1,0,1\}$, given by

$$\overline{a}_{T}(\alpha) = \begin{cases} 1 & \text{if } a \in \alpha \setminus -\alpha; \\ 0 & \text{if } a \in \text{supp}(\alpha) = \alpha \cap -\alpha; \\ -1 & \text{if } a \in -\alpha \setminus \alpha. \end{cases}$$

If T is clear from context, we write \bar{a} for \bar{a}_T .

b) Write $\mathscr{G}_{A,T} = \{\overline{a} : a \in A\}$. With the product induced by $A, \mathscr{G}_{A,T}$ is a

ternary semigroup with identity 1 (the constant function 1) and distinguished elements 0 and -1 (the corresponding constant valued maps).

Define a representation relation on $\mathcal{G}_{A,T}$, as follows: for $a, b, c \in A$,

 $(\mathscr{D}) \quad \overline{a} \in \mathscr{D}_{\mathscr{G}_{A,T}}(\overline{b},\overline{c}) \iff \exists \ t, \ t_1, \ t_2 \in T, \ \text{s.t.} \ \overline{at} = \overline{a} \quad \text{and} \quad ta = t_1b + t_2c.$

The corresponding transversal representation relation is given by

$$(\mathscr{D}^t) \qquad \overline{a} \in \mathscr{D}^t_{\mathscr{G}_{A,T}}(\overline{b},\overline{c}) \iff \begin{cases} \exists \ a',\ b',\ c' \in A \text{ so that } \overline{a} = \overline{a'}, \\ \overline{b} = \overline{b'},\ \overline{c} = \overline{c'} \text{ and } a' = b' + c'. \end{cases}$$

With these representation relations, $\mathscr{G}_{A,T}$ is a real semigroup in the sense of [Dickmann and Petrovich, 2004] and [Dickmann and Petrovich, 2011]. As above (1.5.(c)), $\mathscr{G}_{A,T}^{\times} = \{\overline{a_T} \in \mathscr{G}_{A,T} : \overline{a_T}^2 = 1\}$ is the group of units in $\mathscr{G}_{A,T}$.

In the present setting, and with notation as in 1.7.(a), the following result is important:

THEOREM 12. (Thm. 5.4.2, Cor. 5.4.3 (p. 93ff) in [Marshall, 1996]) Let $\langle A, T \rangle$ be a p-ring. For $a, b \in A$:

- a) $\overline{a_T} = 0$ iff there is $k \ge 0$ such that $-a^{2k} \in T$.
- b) $\overline{a_T} = 1$ iff there are s, $t \in T$ such that (1+s)a = 1+t.
- c) $\overline{a_T} \ge 0$ iff there are $s, t \in T$ and $k \ge 0$ so that $(a^{2k} + s)a = a^{2k} + t$.
- d) $\overline{a_T} = \overline{b_T}$ iff there are $s, t \in T$ and $k \ge 0$ so that $sab = (a^2 + b^2)^k + t$.

1.8. The functor \mathcal{G} from p-Rings to RS. Notation as above, let p-Rings and RS be the categories of p-rings and RSs, respectively. If $f: \langle A, T \rangle \longrightarrow \langle A', T' \rangle$ is a p-ring morphism, define

$$\mathscr{G}(f):\mathscr{G}_{A,T}\longrightarrow\mathscr{G}_{A',T'}$$
, given by $\overline{a_T}\longmapsto \overline{f(a)_{T'}}$.

To see that $\mathscr{G}(f)$ is well-defined, let $a, c \in A$ verify $\overline{a_T} = \overline{c_T}$; by Theorem 12.(d), there are $s, t \in T$ and an integer $k \geq 0$ such that

(I)
$$(a^2 + c^2)^k + t = sac.$$

Applying f to both sides of (I) and recalling the inclusion $f[T] \subseteq T'$, obtains

$$(f(a)^2 + f(c)^2)^k + f(t) = f(s)f(a)f(c),$$

with f(t), $f(s) \in T'$; whence, another application of 12.(d) yields $\overline{f(a)_{T'}} = \overline{f(c)_{T'}}$, as needed. It is straightforward that $\mathcal{G}(f)$ is a semigroup morphism, preserving 1, 0 and -1. For $\mathcal{G}(f)$ to be a RS-morphism, it suffices to prove

$$(II) \qquad \overline{a_T} \in \mathscr{D}_{\mathscr{G}_{A,T}}(\overline{b_T}, \overline{c_T}) \quad \Rightarrow \quad \overline{f(a)_{T'}} \in \mathscr{D}_{\mathscr{G}_{A',T'}}(\overline{f(b)_{T'}}, \overline{f(c)_{T'}}),$$

with $a, b, c \in A$. By (\mathcal{D}) in 1.7.(b), the hypothesis in (II) is equivalent to the existence of $t, t_1, t_2 \in T$ such that

(III)
$$ta = t_1b + t_2c \text{ and } \overline{ta} = \overline{t} \cdot \overline{a} = \overline{a}.$$

Applying f to the first equation in (III) yields $f(t)f(a) = f(t_1)f(b) + f(t_2)f(c)$, with f(t), $f(t_1)$, $f(t_2) \in T'$; moreover, since $\mathscr{G}(f)$ is a semigroup morphism, the second equation in (III) entails $\overline{f(a)_{T'}} = \mathscr{G}(f)(\overline{(at)_T}) = \mathscr{G}(f)(\overline{a_T}) = \overline{f(a)_{T'}}$, and the conclusion in (II) is immediately forthcoming

from (2) in 1.7.(b).

Clearly, the maps

$$\left\{ \begin{array}{ccc} \langle A,T \rangle & \longmapsto & \mathscr{G}_{A,T} \\ \langle A,T \rangle & \xrightarrow{f} \langle A',T' \rangle & \longmapsto & \mathscr{G}_{A,T} & \xrightarrow{\mathscr{G}(f)} \mathscr{G}_{A',T'}, \end{array} \right.$$

yield we have a covariant functor from p-Rings to RS.

EXAMPLE 13. Let $\langle A, T \rangle$ be a p-ring. The identity map, $Id_T : \langle A, \Sigma A^2 \rangle \longrightarrow \langle A, T \rangle$ is a p-ring morphism; let $\rho_T = \mathcal{G}(Id_T) : \mathcal{G}_A \longrightarrow \mathcal{G}_{A,T}$ be the induced RS-morphism, as in 1.8. We have

$$\rho_T(\overline{a}) = \overline{a_T} = \overline{a} \upharpoonright \operatorname{Sper}(A, T).$$

Hence, $\ker \rho_T = \{\langle \overline{a}, \overline{b} \rangle \in \mathcal{G}_A \times \mathcal{G}_A : \overline{a_T} = \overline{b_T} \}$ and ρ_T is clearly surjective. Note that the description of $\ker \rho_T$ in $\langle A, T \rangle$ is given by 12.(d).

We claim that ρ_T has the RS-UFP. Indeed, let \mathcal{G} be a RS and let $f:\mathcal{G}_A \to \mathcal{G}$ be a RS-morphism, such that $\ker \rho_T \subseteq \ker f$. Since ρ_T is onto, the uniqueness of the factor RS-morphism – if it exists at all –, is clear. For $a \in A$, define

$$\widehat{f}:\mathscr{G}_{A,T}\longrightarrow\mathscr{G} \ \ \ \ \ \ \ \ \widehat{f}(\overline{a_T})=f(a).$$

Since $\ker \rho_T \subseteq \ker f$, \widehat{f} is well defined; moreover, it is straightforward that \widehat{f} is a TS-morphism, verifying $\widehat{f} \circ \rho_T = f$. It remains to check that \widehat{f} is a RS-morphism. taking into account the definition of \widehat{f} , this amount to showing for $a, b, c \in A$,

$$(I) \overline{a_T} \in \mathscr{D}^t_{\mathscr{G}_{A,T}}(\overline{b_t}, \overline{c_T}) \Rightarrow f(a) \in \mathscr{D}^t_{\mathscr{G}}(f(b), f(c)).$$

and we conclude by the equivalence between (1) and (2) in 8. By (\mathcal{D}^t) in 1.7, the antecedent in (I) is equivalent to the existence of a', b', $c' \in A$ so that

(II) (i)
$$\overline{a'_T} = \overline{a_T}$$
, $\overline{b'_T} = \overline{a_T}$, $\overline{c'_T} = \overline{c_T}$ and (ii) $a' = b' + c'$.

From (II.(i)) and the hypothesis that $\ker \rho_T \subseteq \ker f$ we obtain $f(a) = f(\underline{a}')$, $f(b) = f(\underline{b}')$ and f(c) = f(c'), while (II.(ii)) and (\mathcal{D}^t) in 1.7.(b) entail $\overline{a}' \in \mathcal{D}^t_{\mathscr{G}_A}(\overline{b}', \overline{c}')$. Since f is a RS-morphism, the latter relation implies $f(a') \in \mathcal{D}^t_{\mathscr{G}}(f(b'), f(c'))$, which in turn yields $f(a) \in \mathcal{D}^t_{\mathscr{G}}(f(b), f(c))$, establishing (I), as desired.

By items (a) and (b) of Lemma 11, $\ker \rho_T$ is a RS-congruence on \mathcal{G}_A and the diagram $\rho_T: \mathcal{G}_A \longrightarrow \mathcal{G}_{A,T}$ is naturally isomorphic to the projection of \mathcal{G}_A onto $\mathcal{G}_A/\ker \rho_T$.

1.9. The functor \mathcal{U} from RS to pRSG. Recall that pRSG is the category of reduced pre-special groups (pRSG) and SG-morphisms (cf. Definition 1.2, p. 2 and Definition 1.11, p. 10 in [Dickmann and Miraglia, 2000]).

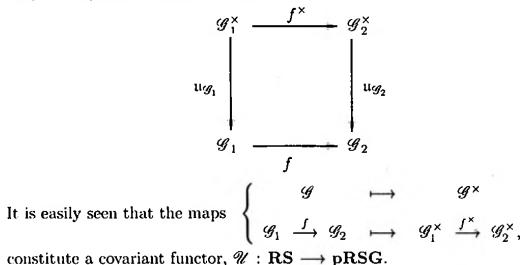
If \mathscr{G} is a RS, then (cf. I.2.10, p. 23 of [Dickmann and Petrovich, 2011]), $\mathscr{G}^{\times} = \{x \in \mathscr{G} : x^2 = 1\}$, the group of units of \mathscr{G} , with the induced representation relation 3, is a p-RSG. The canonical embedding, $u_{\mathscr{G}} : \mathscr{G}^{\times} \longrightarrow \mathscr{G}$, is a semigroup morphism, preserving 1 and -1. In fact, the passage from \mathscr{G} to \mathscr{G}^{\times} constitutes

³ In \mathscr{Y}^{\times} , \mathscr{Y} and \mathscr{L}^t coincide.

a functor, as follows. If $f: \mathscr{G}_1 \longrightarrow \mathscr{G}_2$ is a RS-morphism, clearly we have $f[\mathscr{G}_1^{\times}] \subseteq \mathscr{G}_2^{\times}$. Hence, $f \upharpoonright \mathscr{G}_1^{\times} := f^{\times}$ is a map from \mathscr{G}_1^{\times} into \mathscr{G}_2^{\times} . Moreover,

- f^{\times} takes 1 to 1 and -1 to -1;
- $\forall a, b, c \in \mathscr{G}_1^{\times}, a \in \mathscr{D}_{\mathscr{G}_1}(b, c) \Rightarrow f(a) \in \mathscr{D}_{\mathscr{G}_2}(f(b), f(c)),$

i.e, f^{\times} is a pRSG-morphism and the following diagram commutes:



constitute a covariant functor, $\mathscr{U}: \mathbf{RS} \longrightarrow \mathbf{pRSG}$

2 The Real Semigroup of a Ring of Fractions

We here describe the basic relations between the real semigroups associated to a p-ring and to its ring of fractions by a multiplicative set. Firstly, we register the following (well-known) result:

LEMMA 14. Let (A,T) be a p-ring and let S be a multiplicative subset of A and let $R := AS^{-1}$ be the ring of fractions of A by S and let $\iota_A : A \longrightarrow R$ be canonical ring morphism.

a) The following are equivalent:

(1)
$$P = \left\{ \frac{t}{s^2} \in R : t \in T \text{ and } s \in S \right\}$$
 is a proper preorder of R ;

$$(2) S \cap (T \cap -T) = \emptyset.$$

If these equivalent conditions are met, then S is a proper multiplicative subset of A and ι_A is a morphism of unitary p-rings.

b) If $S \cap \sqrt[T]{0} = \emptyset$, then the set P in (1) of item (a) is a proper preorder and ι_A is a p-ring morphism.

PROOF. Since $(T \cap -T) \subseteq \sqrt[T]{0} = \bigcap \{ \sup (\alpha) : \alpha \in \operatorname{Sper}(A, T) \}$, (b) is follows immediately from (a). For (a), it is clear that ι_A is a p-ring morphism (whether $\langle R, P \rangle$ is proper or not). To prove (1) \Rightarrow (2), assume that (2) fails; hence, there is $s \in S$ so that $s, -s \in T$. Thus, $-s^2 \in S$ and $-1 = \frac{-s^2}{c^2} \in P$, contradicting (1). To show that (2) \Rightarrow (1), if $-1 = \frac{t}{s^2} \in P$, there is $w \in S$ such that $-ws^2 = wt$; multiplying through by w obtains $-w^2s^2 = w^2t$ and so w^2s^2 is in $(T\cap -T)\cap S$, contradicting (2).

THEOREM 15. Let $\langle A, T \rangle$ be a p-ring and let S be a multiplicative subset of A, such that $S \cap (T \cap -T) = \emptyset$. Let $R := AS^{-1}$ be the ring of fractions of A by S and let $\iota_A : A \longrightarrow R$ be the canonical ring morphism.

a) Let $h := \mathcal{G}(\iota_A) : \underline{\mathcal{G}_{A,T}} \longrightarrow \underline{\mathcal{G}_{R,P}}$ be the induced RS-morphism. Then, for all $a \in A$ and $s \in S$, $\overline{\left(\frac{a}{s}\right)} = \overline{\left(\frac{as}{1}\right)}$. In particular, h is surjective.

b) For $a, b \in A$, the following are equivalent:

(1)
$$\overline{\left(\frac{a}{1}\right)} = \overline{\left(\frac{b}{1}\right)} \quad in \, \mathcal{G}_{R,P};$$

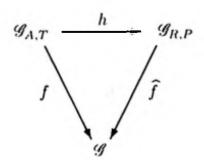
- (2) There is $s \in S$ so that $\overline{as} = \overline{bs}$ in $\mathcal{G}_{A,T}$;
- (3) There is $s \in S$ such that $\overline{as^2} = \overline{bs^2}$ in $\mathcal{G}_{A,T}$.
- c) h is injective \Leftrightarrow $\{\vec{s} \in \mathcal{G}_{A,T} : s \in S\} \subseteq \mathcal{G}_{A,T}^{\times}$.
- d) For $a, b \in A$, the following are equivalent:

$$(1) \ \overline{\left(\frac{a}{1}\right)} \in \mathcal{D}_{g_{H,P}}\left(\overline{\left(\frac{b}{1}\right)}, \overline{\left(\frac{c}{1}\right)}\right);$$

- (2) There are $s_1, s_2, s_3 \in S$ such that, with $a' = s_1^2 a$, $b' = s_2^2 c$ and $c' = s_3^2 c$. we have $\overline{a'} \in \mathcal{D}_{\mathcal{G}_{A,T}}(\overline{b'}, \overline{c'})$.
- e) Suppose \mathcal{G} is a RS, $f:\mathcal{G}_{A,T}\longrightarrow\mathcal{G}$ is a RS-morphism and f verifies the following condition

[ker] For all $a, b \in A$, if there is $s \in S$ such that $\overline{as} = \overline{bs}$, then $f(\overline{a}) = f(\overline{b})$.

Then, there is a unique RS-morphism, $\widehat{f}: \mathcal{G}_{R,P} \longrightarrow \mathcal{G}$, making the following diagram commutative:



- f) ker h is a RS-congruence on $\mathscr{G}_{A,T}$ and the diagram $h:\mathscr{G}_{A,T}\longrightarrow\mathscr{G}_{R,P}$ is canonically RS-isomorphic to the quotient $\pi_{\ker h}:\mathscr{G}_{A,T}\longrightarrow\mathscr{G}_{A,T}/\ker h$.
- g) With notation as in 13, the kernel of the composition $\mathscr{G}_A \xrightarrow{\rho v} \mathscr{G}_{A,T} \xrightarrow{h} \mathscr{G}_{R,P}$ is a RS-congruence, θ , on \mathscr{G}_A , canonically RS-isomorphic to the quotient π_{θ} : $\mathscr{G}_A \longrightarrow \mathscr{G}_A/\theta$.

PROOF. By Lemma 14.(a), $\langle R, P \rangle$ is a proper p-ring and ι_A is a morphism of unitary p-rings.

a) For $a \in A$ and $s \in S$, we have

$$\frac{a^2s^2}{1} + \frac{a^2}{s^2} = \frac{a^2}{1} \left(\frac{s^2}{1} + \frac{1}{s^2} \right) = \frac{a^2}{1} \frac{1 + s^4}{s^2} = \frac{as}{1} \frac{a}{s} \frac{1 + s^4}{s^2}.$$

with $\frac{1+s^4}{s^2} \in P$ and Theorem 12.(d) yields the desired conclusion.

b) Since for all $\xi \in \mathcal{G}_{A,T}$, $\xi^3 = \xi$, (2) and (3) are clearly equivalent. For (2) \Rightarrow (1), suppose $\overline{as} = \overline{bs}$ in $\mathcal{G}_{A,T}$, with $a, b \in A$ and $s \in S$. Then,

$$\overline{\left(\frac{a}{1}\right)} = \overline{\left(\frac{as}{s}\right)} = \overline{\left(\frac{bs}{s}\right)} = \overline{\left(\frac{b}{1}\right)},$$

as needed. It remains to establish (1) \Rightarrow (2). If $\overline{\left(\frac{a}{1}\right)} = \overline{\left(\frac{b}{1}\right)}$ in $\mathscr{G}_{R,P}$, by Theorem 12.(d) there are $t, t_1 \in T, u, v \in S$ and an integer $k \geq 0$ such that, in $R = AS^{-1}$,

(II)
$$\left(\frac{a^2}{1} + \frac{b^2}{1}\right)^k + \frac{t}{u^2} = \frac{t_1}{v^2} \frac{a}{1} \frac{b}{1}.$$

Since $\frac{a^2}{1} + \frac{b^2}{1} \in P$, we may assume that $k \geq 2$ (and in fact, to be any prescribed positive integer greater than to the original k). The definition of ring of fractions yields $w \in S$ so that, after clearing denominators, we obtain ⁴

(III)
$$u^2v^2w^2(a^2+b^2)^k+tv^2w^2=t_1u^2w^2ab.$$

Multiplying (III) by $(uvw)^{2k-2}$, obtains, with $t' = tv^2w^2(uvw)^{2k-2} \in T$, $[(auvw)^2 + (buvw)^2]^k + t' = t_1u^2w^2(uvw)^{2k-2}ab = t_1(uw)^{2k-2}v^{2k-4}$ (auvw) (buvw)

$$= t'' (auvw)(buvw),$$

with $t'' \in T$; setting $s := uvw \in S$, the immediately preceding equality and Theorem 12.(d) entail $\overline{as} = \overline{bs}$ in $\mathcal{G}_{A,T}$, as needed.

c) Suppose h is injective and $s \in S$. Then, (a) yields

$$\overline{1} = \overline{\left(\frac{1}{s}\right)} \overline{\left(\frac{s}{1}\right)} = \overline{\left(\frac{s}{1}\right)} \overline{\left(\frac{s}{1}\right)} = \overline{\left(\frac{s^2}{1}\right)},$$

and the injectivity of h entails $\overline{1} = \overline{s^2}$ in $\mathscr{G}_{A,T}$, i.e, $\overline{s} \in \mathscr{G}_{A,T}^{\times}$. The converse is an immediate consequence of the equivalence in (b).

d) $(1) \Rightarrow (2)$. By (\mathcal{D}) in 1.7.(b), there are $t, t_1, t_2 \in T$ and $x, y, z \in S$ such that, in $R = AS^{-1}$,

(IV)
$$\begin{cases} (i) & \frac{t}{x^2} \frac{a}{1} = \frac{t_1}{y^2} \frac{b}{1} + \frac{t_2}{z^2} \frac{c}{1}, \text{ and} \\ (ii) & \overline{\left(\frac{t}{x^2}\right)\left(\frac{a}{1}\right)} = \overline{\left(\frac{ta}{x^2}\right)} = \overline{\left(\frac{a}{1}\right)}. \end{cases}$$

By (a) above, $\overline{\left(\frac{ta}{x^2}\right)} = \overline{\left(\frac{tax^2}{1}\right)}$ and so IV.(ii) entails $\overline{\left(\frac{tax^2}{1}\right)} = \overline{\left(\frac{a}{1}\right)}$, whence,

by (c), there is $s \in S$ such that

$$\overline{tax^2s^2} = \overline{as^2}.$$

Recall: a/s = a'/s' in R iff there is $w \in S$ so that was' = wsa'; multiplying by w, yields $w^2as' = w^2sa'$.

By IV.(i), there is $w \in S$, so that, after clearing denominators, we get

$$w^2y^2z^2 ta = t_1 (w^2x^2z^2b) + t_2 (w^2x^2y^2c).$$

Multiplying this equality by x^2s^2 yields

(VI)
$$(tx^2)(w^2y^2z^2s^2a) = t_1(w^2x^4z^2s^2b) + t_2(w^2x^4y^2s^2c).$$

Set $s_1=wyzs$, $s_2=wx^2zs$ and $s_3=wx^2ys$; clearly $s_i\in S,\ i=1,\ 2,\ 3.$ Moreover, if $a'=s_1^2a,\ b'=s_2^2b$ and $c'=s_3^2c$, (VI) takes the form

(VII)
$$tx^2 a' = t_1b' + t_2c'.$$

Now note that (V) yields, multiplying by $\overline{w^2y^2z^2}$,

$$\overline{tx^2a'} = \overline{tx^2as^2(w^2y^2z^2)} = \overline{s^2a(w^2y^2z^2)} = \overline{a'},$$

which, together with (VII), entails $\overline{a'} \in \mathscr{D}_{\mathscr{G}_{A,T}}(\overline{b'}, \overline{c'})$, as desired.

 $\underline{(2) \Rightarrow (1)}. \text{ Since } h \text{ is a RS-morphism and } h(\overline{a}) = h(\overline{a'}), \ h(\overline{b}) = h(\overline{b'}) \text{ and } h(\overline{c}) = h(\overline{c'}) \text{ (by (b)), (2) entails, because } h(\overline{c}) = \overline{\left(\frac{c}{1}\right)} \text{ } (c \in A), \ h(\overline{a}) \in \mathscr{D}_{\mathcal{G}_{R,P}}(h(\overline{b}), \ h(\overline{c})), \text{ as needed.}$

e) The uniqueness of a map (if it exists) making the diagram commutative is clear. Define $\hat{f}: \mathcal{G}_{R,P} \longrightarrow \mathcal{G}$ by

$$\widehat{f}\left(\overline{\left(\frac{a}{x}\right)}\right) = f(\overline{ax}).$$

To see \widehat{f} is well-defined, assume $\overline{\left(\frac{a}{x}\right)} = \overline{\left(\frac{b}{y}\right)}$; by (a) we have $\overline{\left(\frac{ax}{1}\right)} = \overline{\left(\frac{by}{1}\right)}$

and so (b) yields $s \in S$ such that $\overline{axs} = \overline{bys}$. Since f verifies [ker] in the statement, we obtain $f(\overline{ax}) = f(\overline{by})$, as needed. It is straightforward that $f = \widehat{f} \circ h$ and \widehat{f} preserves product, as well as the constants 1, 0 and -1. It remains to check that \widehat{f} preserves representation. Since h is surjective, by the definition of \widehat{f} it suffices to prove, for $a, b, c \in A$:

$$(\text{VIII}) \qquad \overline{\left(\frac{a}{1}\right)} \in \mathscr{D}_{\mathscr{G}_{R,P}}\left(\overline{\left(\frac{b}{1}\right)}, \overline{\left(\frac{c}{1}\right)}\right) \quad \Rightarrow \quad f(\overline{a}) \in \mathscr{D}_{\mathscr{G}}(f(\overline{b}), f(\overline{c})).$$

By item (d), the antecedent in (VIII) implies the existence of $s_i \in S$, i = 1, 2, 3, such that

(IX)
$$\overline{as_1^2} \in \mathscr{D}_{\mathscr{G}_{A,T}}(\overline{bs_2^2}, \overline{cs_3^2}).$$

Now, note that for $u \in A$ and $x \in S$, $\overline{ux^2} = \overline{u} \ \overline{x^2}$, and so condition [ker] implies $f(\overline{ux^2}) = f(\overline{u})$; this observation and (IX) entail, because f is a RS-morphism, the conclusion in (VIII), as needed.

f) By item (b),

$$\ker h = \{ \langle \overline{a}, \overline{b} \rangle \in \mathcal{G}_{A,T} \times \mathcal{G}_{A,T} : \exists s \in S \text{ so that } \overline{as} = \overline{bs} \}.$$

Hence, condition [ker] in (e) is equivalent to ker $h \subseteq \ker f$ and the conclusion in (e) shows that h is a surjective RS-morphism with the RS-UFP. The conclusion in (f) then an immediate consequence of Lemma 11.(b), while item (g) follows from (f) and Lemma 11.(c), ending the proof.

3 A Representation Theorem. Applications

Our first step in representing the RS of any p-ring by that of a BIR, is to show that the RS of a p-ring is (naturally) isomorphic to the RS of a reduced p-ring.

PROPOSITION 16. Let $\langle A, T \rangle$ be a p-ring and let $I = \sqrt[T]{0}$ be the T-radical of the zero ideal. Set R = A/I. Then,

- a) $\langle R, T/I \rangle$ is a reduced p-ring and the canonical projection, $\pi_I : \langle A, T \rangle \longrightarrow \langle R, T/I \rangle$ is a p-ring morphism.
- b) The RS-morphism $\mathcal{G}(\pi_I): \mathcal{G}_{A,T} \longrightarrow \mathcal{G}_{R,T/I}$ is an isomorphism of real semigroups.

PROOF. a) Clearly, T/I is closed under sums, products and contains the squares in R; if \mathfrak{p} is a proper T-convex prime ideal in A, then for all $t \in T$, $1 + t \notin \mathfrak{p}$ (otherwise, $1 \in \mathfrak{p}$). By Proposition 3, for all $t \in T$, $1 + t \notin \sqrt[T]{0}$; whence $-1/I \notin T/I$, and T/I is a proper preorder of R. It is clear that π_I is a p-ring morphism. The verification that R is T/I-reduced is the same as that of item (3) in the proof of part (b.3) of Proposition 6.5 (p. 73ff) in [Dickmann and Miraglia, 2011].

- b) To ease notation, we shall write \overline{a} for the elements of $\mathscr{G}_{A,T}$ and $\mathscr{G}_{R,T/I}$, omitting the subscripts T and T/I, respectively. By 1.8, $h := \mathscr{G}(\pi_I)$ is a RS-morphism. To show it to be an isomorphism we must verify:
 - (1) h is bijective;

$$(2)^{5} \text{ For all } a, b, c \in A, \ h(\overline{a}) \in \mathscr{D}^{t}_{\mathscr{G}_{B,T,t}}(h(\overline{b}), h(\overline{c})) \quad \Rightarrow \quad \overline{a} \in \mathscr{D}^{t}_{\mathscr{G}_{A,T}}(\overline{b}, \overline{c}).$$

Note that, because h is a RS-morphism, the converse of (2) also holds.

Proof of (1). It is clear that h is surjective. To show h is injective, let $x, y \in A$ and suppose

$$h(\overline{x}) = \overline{x/I} = \overline{y/I} = h(\overline{y}).$$

By Theorem 12.(d), there are $t, s \in T$ and an integer $k \geq 0$ such that

$$((x/I)^2 + (y/I)^2)^k + t/I = (s/I)(x/I)(y/I),$$

that is, setting $u := (x^2 + y^2)^k + t$, we have $u - sxy \in I = \sqrt[T]{0}$. Note that $u \in T$. By Proposition 3, there are $m \ge 0$ and $t' \in T$ such that

(I)
$$(u - sxy)^{2m} + t' = 0.$$

But we have $(u - sxy)^{2m} = E - F$, where:

$$E = \sum_{k \text{ even }} \binom{n}{k} u^{2m-k} (sxy)^k$$
 and $F = \sum_{k \text{ odd }} \binom{n}{k} u^{2m-k} (sxy)^k$.

Then:

•
$$E = \sum_{k \, even} \binom{n}{k} u^{2m-k} (sxy)^k = u^{2m} + \sum_{k \, even \geq 2} \binom{n}{k} u^{2m-k} (sxy)^k$$
; Since $u \in T$ and k is even, $\sum_{k \, even \geq 2} \binom{n}{k} u^{2m-k} (sxy)^k$ is in T and we may write

Because representation and transversal representation are interdefinable in a RS, \mathscr{G} , with $\mathscr{L}_{g} \subseteq \mathscr{L}_{g}$; see (†), [RS4] and [RS6] in Def. 2.1, p. 106 of [Dickmann and Petrovich, 2004] or [t-rep], [RS4] and [RS6] in Def. 1.2.1, p. 19 of [Dickmann and Petrovich. 2011]

(II)
$$E = u^{2m} + t^*$$
, with $t^* \in T$;

• $F = \sum_{k \text{ odd}} \binom{n}{k} u^{2m-k} (sxy)^k = sxy \sum_{k \text{ odd}} u^{2m-k} (sxy)^{k-1}$; just as above, $\sum_{k \text{ odd}} u^{2m-k} (sxy)^{k-1}$ is in T and we obtain

(III)
$$F = s^*xy, \text{ with } s^* \in T.$$

Substituting (II) and (III) into (I) yields

(IV)
$$u^{2m} + t^* + t' = s^*xy.$$

Now observe that $u^{2m} = [(x^2 + y^2)^k + t]^{2m} = (x^2 + y^2)^{2mk} + s'$, with $s' \in T$. Hence, (IV) entails

$$(x^2 + y^2)^{2mk} + s' + t^* + t' = s^*xy,$$

whence, by Theorem 12.(d), $\overline{x} = \overline{y}$, establishing the injectivity of $h = \mathscr{G}(\pi_I)$.

Proof of (2). By (\mathcal{D}^t) in 1.7.(b), there are $a', b', c' \in A$, such that

(V)
$$\begin{cases} (i) \quad \overline{a/I} = \overline{a'/I}, \quad \overline{b/I} = \overline{b'/I}, \quad \overline{c/I} = \overline{c'/I} \\ & \text{and} \\ (ii) \quad a'/I = b'/I + c'/I. \end{cases}$$

By (V).(ii), there is $r \in I = \sqrt[T]{0}$ such that

(VI)
$$a' = b' + c' + r = b' + (c' + r).$$

We now register the following

FACT 17. Let S be a semi-real ring, let $u, v \in S$ and let $\beta \in \text{Sper}(S)$. If $v - u \in supp(\beta)$, then $\overline{u}(\beta) = \overline{v}(\beta)$.

Proof. Clearly, $u \in \operatorname{supp}(\beta)$ iff $v \in \operatorname{supp}(\beta)$. Next, if $u \in \beta \setminus (-\beta)$, then v = u + (v - u) and so $v \in \beta$. If $-v \in \beta$, then -u = -v + (v - u) implies $-u \in \beta$, which is impossible. Hence, $v \in \beta \setminus (-\beta)$. Because $\operatorname{supp}(\beta)$ is an ideal, the argument is symmetric in u and v and so $u \in \beta \setminus (-\beta)$ iff $v \in \beta \setminus (-\beta)$. Since $(-u - (-v)) = (v - u) \in \operatorname{supp}(\beta)$, the reasoning above applies to yield $-u \in \beta \setminus (-\beta)$ iff $-v \in \beta \setminus (-\beta)$. Hence, $\overline{u}(\beta) = \overline{v}(\beta)$, as desired. \square

Since r is in the intersection of all T-convex ideals in A, Fact 17 yields, with $c^* := c' + r$,

$$(VII) \overline{c'+r} = \overline{c^*} = \overline{c'}.$$

Now the injectivity of h, the equalities in (V).(i), (VI) and (VII) entail

$$\overline{a} = \overline{a'}, \ \overline{b} = \overline{b'}, \ \overline{c^*} = \overline{c'} \text{ and } a' = b' + c^*,$$

which, by (\mathcal{D}^t) in 1.7.(b), guarantee $a \in \mathcal{D}^t_{\mathcal{G}_{A,T}}(b, c)$, establishing (2) and ending the proof.

The next step in our construction is the following

THEOREM 18. Let $\langle A, T \rangle$ be a T-reduced p-ring. Let

$$\mathcal{U} = A \setminus \bigcup_{\alpha \in Spec_R(A,T)} \operatorname{supp}(\alpha)$$

be the complement of the union of all T-convex prime ideals in A. Let S be a multiplicative set contained in U, let $A_S = AS^{-1}$ be the ring of fractions of A

by S and set
$$T_S = \left\{ \frac{t}{s^2} \in A_S : t \in T \text{ and } s \in S \right\}$$
. Then,

- a) $\mathcal U$ is a proper saturated ⁶ multiplicative set in A, whose elements are all non-zero divisors.
- b) $\langle A_S, T_S \rangle$ is a proper p-ring and the canonical morphism, $\iota_S : A \longrightarrow A_S$, is a p-ring embedding.
- c) A_S is T_S -reduced.
- d) The map $\mathscr{G}(\iota_S):\mathscr{G}_{A,T}\longrightarrow\mathscr{G}_{A_S,T_S}$ is a RS-isomorphism.
- e) Consider the following conditions:
- (1) For all $s \in S$ and $t \in T$, $s^2 + t \in S$; (2) $\langle A_S, T_S \rangle$ has bounded inversion.

Then, (1) \Rightarrow (2); if S is saturated, these conditions are equivalent.

REMARK 19. a) If $\langle A, T \rangle$ is a p-ring, the set \mathcal{U} in the statement of Theorem 18 consists of the elements $a \in A$ satisfying $\overline{a}^2 = 1$, i.e., $\mathcal{U} = \{a \in A : \overline{a} \in \mathscr{G}_{A,T}^{\times}\}$, where $\mathscr{G}_{A,T}^{\times}$ is the group of units of the RS $\mathscr{G}_{A,T}$.

b) If $\langle A, T \rangle$ is a BIR, then $\mathcal{U} = A^{\times}$, the group of units in A. Indeed, by Proposition 6.3 (p. 71) of [Dickmann and Miraglia, 2011], every maximal ideal in A is T-convex and so the set of elements outside every T-convex prime ideal in A is A^{\times} . Hence, with notation as in 18, if $\langle A, T \rangle$ is a BIR, $\langle A, T \rangle$ and $\langle A_S, T_S \rangle$ are naturally isomorphic.

Proof of Theorem 18. a) It is well-known that the complement of a union of prime ideals is a proper saturated multiplicative set in A. For $x \in \mathcal{S}$, suppose xu = 0, for some $u \in A$. Since x is outside all T-convex primes in A, we get $u \in \bigcap_{\alpha \in Spec_{H}(A,T)} \operatorname{supp}(\alpha) = \sqrt[T]{0}$ and so u = 0 because A is T-reduced. It now clear that no element of \mathcal{S} is a zero-divisor.

- b) Since $U \cap \sqrt[T]{0} = \emptyset$, we also have $S \cap \sqrt[T]{0} = \emptyset$ and so, by 14.(b), $\langle A_S, T_S \rangle$ is a proper p-ring and ι_S a p-ring morphism. Moreover, since no element of S is a zero-divisor, it is well-known that ι_S is an embedding.
- c) For $a \in A$ and $x \in S$, suppose $\frac{a}{x}$ is in the T_S -radical of 0 in A_S . By

Proposition 3, there are $t \in T$, $y \in S$ and an integer $m \ge 0$ such that $\frac{a^{2m}}{x^{2m}} + \frac{t}{u^2} = 0$. Hence, in A we obtain

$$(1) y^2 a^{2m} + x^{2m} t = 0.$$

Multiplying the equation in (I) by y^{2m-2} yields

$$(ay)^{2m} + y^{2m-2}x^{2m}t = 0,$$

and another application of 3 entails $ay \in \sqrt[T]{0}$ in A. Since $y \in S$ is outside all T-convex primes in A, we get $a \in \sqrt[T]{0}$; whence, the T-reducibility of A implies a = 0 and, in turn, the T_S -reducibility of A_S .

⁶ $xy \in \mathcal{U} \Rightarrow x, y \in \mathcal{U}$.

d) Write \mathscr{G} for $\mathscr{G}_{A,T}$ and \mathscr{G}_S for \mathscr{G}_{A_S,T_S} . By 1.8, $h:=\mathscr{G}(\iota_S)$ is a RS-morphism. To show it is an isomorphism, it suffices to prove:

(1.1) h is surjective;

(4.2) h is injective:

(\$\bar{a}\$) For all $a, b, c \in A$,

$$h(a) = \overline{\left(\frac{a}{1}\right)} \in \mathscr{D}_{\mathscr{G}_{S}}\left(\overline{\left(\frac{b}{1}\right)}, \overline{\left(\frac{c}{1}\right)}\right) \quad \Rightarrow \quad \overline{a} \in \mathscr{D}_{\mathscr{G}}(\overline{b}, \overline{c}).$$

Since h is a RS-morphism, the converse of $(\sharp \sharp)$ is also true. Property $(\sharp .1)$ follows from item (a) in Theorem 15, while $(\sharp .2)$ is a consequence of 15.(c) and 19.(a). By item (d) in Theorem 15, the hypothesis in $(\sharp \sharp)$ yields $s_i \in S$, i = 1, 2, 3, such that $\overline{as_1^2} \in \mathcal{D}_{\mathscr{G}}(\overline{s_2^2b}, \overline{s_3^2c})$, which is equivalent to $\overline{a} \in \mathcal{D}_{\mathscr{G}}(\overline{b}, \overline{c})$, because $\overline{s_i} \in \mathscr{G}^{\times}$, i = 1, 2, 3, as needed.

e) For $s \in S$ and $t \in T$, $1 + \frac{t}{s^2} = \frac{s^2 + t}{s^2} \in A_S^{\times}$ iff there is $u \in S$ such that $u(s^2 + t) \in S$ (recall that ι_S is an embedding). It is now clear that $(1) \Rightarrow (2)$ (with u = 1), while, if S is saturated, the converse is immediately forthcoming.

3.1. Notation. Let $\langle A, T \rangle$ be p-ring and let \mathcal{U} be the complement of the T-convex primes in A, as in 18. Write \mathscr{G}^{\flat} for $\mathscr{G}_{A^{\flat}, T^{\flat}}$, where

- $A^{a} = AU^{-1}$ for the ring of fractions of A by U:
- $T^{\sharp} = \left\{ \frac{t}{s^2} \in AU^{-1} : t \in T \text{ and } s \in U \right\};$
- $\iota^{\natural}: A \longrightarrow A^{\natural}$ for the canonical p-ring embedding.

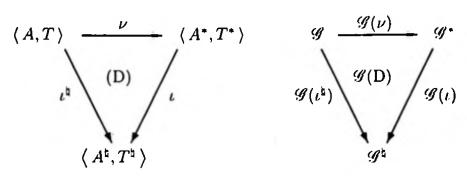
We now have

COROLLARY 20. Notation as above, let (A,T) be a p-ring. Let

- $\nu: \langle A, T \rangle \longrightarrow \langle A^*, T^* \rangle$ be its BIR hull (cf. Proposition 6):
- $\iota^{\natural}: \langle A, T \rangle \longrightarrow \langle A^{\natural}, T^{\natural} \rangle$ be as in 3.1.

Write \mathscr{G} for $\mathscr{G}_{A,T}$ and \mathscr{G}^* for \mathscr{G}_{A^*,T^*} . Then,

a) $\langle A^{\natural}, T^{\natural} \rangle$ is a reduced BIR and $\iota : \langle A^{\bullet}, T^{\bullet} \rangle \longrightarrow \langle A^{\natural}, T^{\natural} \rangle$ is the unique p-ring embedding making the diagram (D) commutative.



b) Diagram $\mathscr{G}(D)$ is commutative and its arrows are RS-isomorphisms.

PROOF. a) By items (a), (c) in 18, $\langle A^{\natural}, T^{\natural} \rangle$ is a T^{\natural} -reduced proper p-ring and ι^{\natural} is an injective p-ring morphism. Note that $s \in \mathcal{U}$ and $t \in T$ implies $s^2 + t$

 $\in \mathcal{U}$; otherwise, $s^2+t\in \mathfrak{p}$, for some T convex prime ideal in A, and so $t,s^2\in \mathfrak{p}$, which entails $s\in \mathfrak{p}$, an impossibility. Hence, by 18.(e), $\langle A^{\natural}, T^{\natural} \rangle$ is a BIR. By the universal property of the BIR hull in 6.(3), there is a unique p-ring morphism, $\langle A^*, T^* \rangle \stackrel{\iota}{\longrightarrow} \langle A^{\natural}, T^{\natural} \rangle$, making diagram (D) commute. Since, in fact, $1+T\subseteq \mathcal{U}^{7}$, ι is an embedding.

b) Diagram $\mathcal{G}(D)$ arises by applying the functor \mathcal{G} to diagram (D), whence it is commutative. As noted above, the multiplicative set $1 + T \subseteq \mathcal{U}$ and so, by 18.(d), $\mathcal{G}(\nu)$ and $\mathcal{G}(\iota^{\natural})$ are both RS-isomorphisms; consequently, the same must be true of $\mathcal{G}(\iota)$, ending the proof.

REMARK 21. a) If $\langle A, T \rangle$ is a proper p-ring, all constructions employed to go from $\langle A, T \rangle$ to $\langle A^{\dagger}, T^{\dagger} \rangle$ — quotients and rings of fractions —, are functorial. In fact, it is well-known that these constructions commute with each other.

b) The isomorphism $\mathscr{G}(\pi_I)$ of 16 yields a conclusion analogous to that of 20 for all proper p-rings. More precisely, given $\langle A, T \rangle$, let $I = \sqrt[r]{0}$ and let $\langle R, P \rangle$ be the BIR hull of $\langle A/I, T/I \rangle$; then, $\mathscr{G}_{A,T}$ is RS-isomorphic to $\mathscr{G}_{R,P}$.

BIBLIOGRAPHY

[Bochnak et al., 1998] J. Bochnak, M. Coste, and M-F. Roy. Real Algebraic Geometry, volume 36 of Ergeb. Math. Springer-Verlag, Berlin, 1998.

[Dickmann and Miraglia, 2000] M. Dickmann and F. Miraglia. Special Groups: Boolean-Theoretic Methods in the Theory of Quadratic Forms, volume 689 of Memoirs Amer. Math. Soc. AMS, Providence, R.I., 2000.

[Dickmann and Miraglia, 2011] M. Dickmann and F. Miraglia. Faithfully quadratic rings. 161pp. To appear, 2011.

[Dickmann and Petrovich, 2004] M. Dickmann and A. Petrovich. Real Semigroups and Abstract Real Spectra, I. Contemporary Math., 344:99-119, 2004. AMS.

[Dickmann and Petrovich, 2011] M. Dickmann and A. Petrovich. Real semigroups and abstract real spectra. 260pp. To appear, 2011.

[Marshall, 1996] M. Marshall. Spaces of Orderings and Abstract Real Spectra, volume 1636 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1996.

Max Dickmann
Équipe de Logique Mathématique
Université de Paris VII
Projet Topologie et Géométrie Algébriques
Institut de Mathématiques de Jussieu
Paris, France
Email: dickmann@logique.jussieu.fr

Francisco Miraglia
Departamento de Matemática
Instituto de Matemática e Estatística
Universidade de São Paulo
São Paulo, Brazil

Email: miraglia@ime.usp.br

 $[\]overline{7(1+t)} = \overline{1}$, for all $t \in T$.