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Meson-meson amplitudes are important on their own and also play key roles in analyses of heavy-meson
and tau decays. In this work we propose a new phenomenological model suited to all SU(3) mesonic two-
body final-state interactions up to energies around 2 GeV. It is aimed at replacing those entering the old
isobar model, produced in the 1960s, long before the development of QCD. The only similarity between
our new proposal and amplitudes used in the isobar model concerns vector resonances in the elastic regime.
In other situations, especially those involving scalar resonances and coupled channels, the isobar model is
not compatible with post-QCD dynamics. In order to support these claims convincingly and to motivate our
approach, we consider applications to the zz amplitude and compare our version with the isobar model in
several different instances. We also show that the new model provides a clear indication of the mechanism
responsible for the sharp rise observed in the 7z phase around 1 GeV. The phenomenological amplitudes
proposed here are suited to any number of resonances in a given channel and rely just on masses and
coupling constants as free parameters. Concerning theory, they incorporate chiral symmetry at low

energies, include coupled channels, and respect unitarity whenever appropriate.
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I. MOTIVATION

In the last decade, a considerable amount of precise data
has been produced from BABAR, Belle, BES, LHCb
experiments on nonleptonic three-body decays of D and
B mesons as well as on tau decays into pseudoscalars. More
comprehensive investigations can be done nowadays, using
the very large and pure samples provided by the LHC
experiments, and still more data is expected in the near
future, including neutral particles, with Belle II, BES III,
and LHCb (Run 2) experiments.

These decays involve two distinct sets of interactions.
They begin with a primary vertex, in which the light SU(3)
quarks produced in the weak reaction disturb the surround-
ing QCD vacuum and give rise to an initial set of mesons.
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This state then evolves by means of purely hadronic
final-state interactions (FSIs), whereby mesons rescatter
many times before being detected. This rich hadronic final-
state structure is an important source of spectroscopic
information about resonances and we recall that the
existence of the controversial scalar states fy(500) [1]
and K{(700) [2] was confirmed in three-body decays.
Final-state interactions are also relevant in the study of CP
violation [3].

The analysis of nonleptonic three-body heavy-meson
decays is technically involved and relies on models. The
standard isobar model (SIM) is by far the most popular
choice among phenomenologists interested in resonance
parameters. It was proposed in the early 1960s, long before
the development of QCD, and fails to incorporate the new
understanding of quark dynamics produced by the theory.
Its basic assumption is that a decay amplitude can be
represented by a coherent sum of both nonresonant and
resonant contributions, with emphasis on the latter. The
amplitude for the decay H(Q) — P,(q,)P»(q,)P.(q.) of a
heavy meson H into three pseudoscalars P is denoted by 7

and depends on the invariant masses m2,=(q,—qy)>

and m%c = (Qa - CIC)Z'
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What we define as the standard isobar model assumes
that 7 can be written as

T(mib’ mglc) = Cannr(mib’ mgc)

i [Z“") + ;c,-mmsc)} G

where k and j are resonance labels that can be the same for
a symmetric decay. The first term in Eq. (1) is nonresonant
and that within square brackets implements the quasi-two-
body or (2 4 1) approximation, in which only the inter-
actions of a pair of particles matter and the third one the
bachelor is just a spectator. The 7.(s) functions, for
s =m2,, m2., represent dynamic two-body amplitudes
and the complex coefficients ¢, = e'% are fitting param-
eters. In the absence of a theory, the first term is usually
taken to be 7, = 1. For each resonance considered, one
uses 7; = [FF] x [angular factor] x [line shape],, where
[FF] stands for form factors, [angular factor] is associated
with spin, and [line shape|, represents a Breit-Wigner (BW)
function depending on a mass m, and a width I';, given by

1

[line shape], — [BW], [s —m2 + im}]

(2)

For some states, variations such as the Flatté and Gounaris-
Sakurai representations are used. In applications, both the
qualities and quantities of resonances employed are regu-
lated ad hoc and the outcome of isobar model analyses are
values for masses, widths, fit fractions, and sometimes
mixing couplings. In particular, fit fractions are associated
with the complex parameters c,, and c;, which are neither
directly related to an underlying dynamics nor allow the
identification of substructures. Important limitations of the
isobar model are presented below.

(1) Even if one overlooks the problem of ascribing
physical meanings to parameters extracted from the
isobar model, there is another issue. Strictly speak-
ing, their numerical values depend on the particular
assumptions underlying how Eq. (1) is used, namely,
the nonresonant term and the number and isospins of
resonances employed. Therefore, the numerical
meaning of the parameters extracted always remains
attached to the specific reaction employed to derive
them. Final-state interactions incorporated into the
decay amplitude 7 include both proper three-body
interactions and a wide range of elastic and inelastic
two-body subamplitudes .4 involving resonances
and coupled channels, as we review in Sec. II. In
a given decay, the main information about resonan-
ces is codified in the A’s and, even if there are
exceptions, it is important to distinguish them from
T. A conspicuous difference between these ampli-
tudes is that the latter includes weak vertices and the
former does not, but this is sometimes bypassed in
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the literature. For instance, there is no justification
for the assumption that the A’s are either identical or
proportional to 7, as found in a partial-wave
analysis of the S-wave K~ z" amplitude from the
decay D — K~z z* produced some time ago [2].
As a matter of fact, the empirical phase is different
from that produced by LASS for Kz scattering data
[4]. As expected, this discrepancy arose because one
was comparing different objects and was later
explained by considering meson loops in the weak
sector of 7 [5-8].

The extraction of information from the isobar
model is hampered by the presence of nonresonant
terms. An important message brought to hadron
physics by QCD is that, provided enough energy is
available, the light-quark condensate does show
up and several pseudoscalars can be produced
in a single vertex. For instance, the process
e~et — 4x involves the multimeson matrix element
(nxnr|JY|0), where J) is the electromagnetic current
[9]. A similar matrix element, with the weak current
(V —A)#, describes the decay 7 — v4z [9]. In a
recent work [10], we studied the doubly Cabibbo-
suppressed decay D™ — K~KTK™ departing from a
nonresonant term based on the axial-current matrix
element (K~ K*TK"|A#|0), describing the annihila-
tion of the D' into a W' which subsequently
hadronizes. In that case, nonresonant terms and
those involving resonances are entangled by a kind
of diagrammatic continuity.

In principle, the functions 7 (s) in Eq. (1) do contain
information about two-body interactions, but
extracting it is difficult, for isospin channels are
not clearly identified. Scattering amplitudes A de-
pend on both the angular momentum J and the
isospin / of the channel considered, whereas just a
J dependence can be extracted from an empirical
decay amplitude 7. Therefore, an attempt to extract

AUD from 7" would amount to an artificial
generation of physical content from the reaction
considered.

For processes requiring several resonances with the
same quantum numbers, SIM amplitudes given by
sums Xc,7; violate unitarity, a criticism raised by
many authors [11-13]. At present, there are solid
conceptual techniques aimed at preserving unitarity
in amplitudes involving several resonances [14], as
discussed in Sec. II. Thus, nowadays, it is difficult to
justify the use of problematic guess functions based
on sums of individual line shapes given by Eq. (2).
Meson-meson isoscalar amplitudes A include im-
portant inelasticities due to couplings of intermedi-
ate states. For instance, in zz scattering the KK
inelastic channel [15] opens at E ~ 1 GeV. So, this
energy represents the upper bound for the validity of
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Eq. (1), since there is no room in the BW-like
representation of functions 7, [Eq. (2)] for the
incorporation of coupled channels. In general, guess
functions better suited for accommodating data
should have structures similar to those used in
meson-meson scattering [15-17]. In the SIM, the
guess functions that are usually employed are not
suited to accommodate coupled channels. The role
of resonances above inelastic thresholds is discussed
in Sec. V.

All of the problems of the standard isobar model
mentioned above tend to corrode the physical meaning
of the parameters it yields from fits. Since it was proposed
more than half a century ago many of the limitations
pointed out above were understood and tamed, especially
owing to the formulation of QCD. As a consequence,
nowadays, serious flaws of the model are already rather
clear, such as that it violates unitarity, does not incorporate
isospin, and especially important is totally unsuited for
dealing with coupled channels. In the SU(3) sector,
scattering amplitudes for pions, kaons, and etas are strongly
coupled and cannot be represented as sums of individual
contributions. At present, as is well known, QCD cannot be
directly applied to heavy meson decays, but their effective
counterparts can. Effective Lagrangians rely only on
hadron masses and coupling constants, ensuring that the
physical meaning of parameters is preserved from process
to process. Thus, guess functions for fitting heavy-meson
decay data departing from Lagrangians deal with the same
free parameters as employed in scattering amplitudes. This
makes the mutual comparison of their values meaningful.

This work is part of a program aimed at constructing
guess functions for heavy-meson decays departing from
effective Lagrangians. Here, we concentrate on the two-
body scattering amplitudes .4, which are directly associated
with observed quantities and also important substructures
of decay amplitudes. We depart from a previous work on
D™ — K~KTK™ where a three-body amplitude was con-
structed based on effective Lagrangians with chiral sym-
metry and contained unitarized scattering subamplitudes
[10]. Although fits to Dalitz plot data were better than those
based on the standard isobar model [18], that work was
performed in the K-matrix approximation. We draw atten-
tion to the fact that this K-matrix approximation is not the
same thing as the K-Matrix approach [19] used in some
amplitude analyses. Here, we propose a model which
allows one to go beyond this approximation and discuss
its implications.

Our presentation is organized as follows. In Sec. II we
review how heavy-meson decay amplitudes are related to
weak vertices, scattering amplitudes, and form factors. This
is intended to provide a broad conceptual framework for
criticisms of the isobar model. The full scattering ampli-
tudes for the SU(3) pseudoscalars in the coupled channel
formalism are presented in the Appendix C, combining

interaction kernels and two-meson propagators given in
Appendices A and B. In Sec. III we present the full
scattering amplitudes and specialize to the zz amplitude,
which is used as a standard for assessing the limitations of
the isobar model. In Sec. IV we discuss these limitations
regarding post-QCD physics and unitarity. In Sec. V we
discuss the impact of coupled channels on the problem and
show that the meaning of a resonance as an independent
contribution is lost in the inelastic region, supporting our
claim that BW line shapes should not be used above 1 GeV.
We also compare coupled and uncoupled amplitudes and
show that the impact of coupling is huge. In Sec. VI we
present our model for the real part of two-meson propa-
gators which allows one to go beyond the K-matrix
approximation. In Sec. VII we add an extra resonance to
each scalar channel using the methodology we developed
and show the potentiality of our model for extensions to
higher energies. Finally, in Sec. VIII we summarize our
conclusions.

II. SCHEMATIC DYNAMICS

The theoretical description of a heavy-meson H decaying
into three light pseudoscalars P,P, P, involves several
classes of entangled problems and is necessarily rather
complicated. Below, we use simple topological arguments,
based on hadronic degrees of freedom, to classify these
problems. We rely on building blocks determined by proper
hadronic interactions, defined as those associated with
diagrams that cannot be separated into two pieces by cutting
hadron lines only. As one is dealing with weak and strong
interactions simultaneously, it is convenient to isolate these
two sectors as much as possible.

The basic weak interactions producing the decay of a
heavy meson involve quarks in the QCD vacuum and were
classified by Chau [20]. At the hadronic level, the primary
weak vertex contains two kinds of proper Feynman dia-
grams (shown in Fig. 1) describing the processes H —
P,P,P. and H - P,R,, where R, is a light resonance
which later decays as R, — P,P.. At this stage, this
resonance is described by a bare pole and does not have
a width yet. The green blob does not include hadronic
degrees of freedom, but can contain strong processes in the
form of quarks and gluon exchanges. In the literature the
primary vertex is described by means of either factorization
techniques [21] or effective Lagrangians [22].

P P
—@
.
(a) (b)

FIG. 1. Contributions to the primary weak vertex: (a) H —
P,P,P. and (b) H — P,R,.
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The mesons produced in diagram (a) of Fig. 1 can go
directly to the detector and give rise to a nonresonant
contribution. Alternatively, it is possible that the hadrons
produced in diagrams (a) and (b) of Fig. 1 and 1(b) have
various forms of strong interactions before reaching the
detector. In this case, one talks about FSIs, which are
necessarily strong.

Nowadays, most approaches tend to organize the FSIs
departing from chiral perturbation theory (ChPT).
Although lattice QCD is improving [23], ChPT still is
the best available effective representation of QCD at low
energies [24-26] and can accommodate resonances [27].
As resonances correspond to nonperturbative states, pre-
dictions from ChPT are precise up to energies below the
p(770) mass. Beyond that point, one has to resort to
extensions of ChPT, which may be performed by means
of either dynamical models [10,16,19,28,29] or dispersion
relations [17,30]. Here we describe the basics of the former
approach, which we find more suited to phenomenological
studies of problems involving several resonances. The idea
is to define a few basic building blocks, as displayed in
Fig. 2, and to construct all relevant interactions departing
from them. The diagram in diagram (a) of Fig. 2 represents
a four-meson contact interaction, predicted by ChPT to be
the single leading contribution at low energies and corre-
sponds to an amplitude given by a second-order polynomial
in momenta and meson masses. The process in diagram (c)
of Fig. 2 is a higher-order term, describing a proper six-
meson vertex. Resonances are also included in the chiral
formalism [27] and the diagrams (b) and (d) of Fig. 2 are
associated with their decay and scattering amplitudes. To
our knowledge, the diagram (c) in Fig. 2 has not yet been
included in realistic calculations of heavy-meson decays,
whereas interactions described by diagram (d) of Fig. 2
were considered in a phenomenological description of the
process oo(pp) — 4x contributing to zz scattering [29].

The diagrams of Fig. 2 resemble interaction potentials V
in quantum mechanics and, to determine the full solution of a
problem, one has to solve a dynamical equation analogous to
that of the Lippmann-Schwinger equation. This is not
feasible in field theory and one has to resort to a piecemeal
evaluation of perturbative corrections. The procedure is
similar to that used in quantum mechanics, where full and
free solutions are related by a series of the form
149V +gVgV +---, where g is the free propagator. In
the present problem, one deals with relativistic propagators

(a) (b) () (d)

FIG. 2. Building blocks in the strong sector: (a) LO four-meson
contact term, (b) NLO two-meson-resonance coupling, (c) six-
meson contact term, and (d) two-meson-two-resonance coupling.

(@) (b) () (d)

FIG. 3.  One-loop corrections to the contact four-meson vertex:
(a) s channel, (b) r and u channels, (c) mass term, and (d) vertex
term.

involving mesonic states, denoted by €. In order to illustrate
this procedure, in Fig. 3 we show some perturbative
corrections involving a single loop to the four-meson contact
term of diagram (a) in Fig. 2. The diagrams (a) and (b) of
Fig. 3 involve propagation between different points, whereas
those in diagrams (c) and (d) of Fig. 3 are local and are
incorporated into actual values of masses and coupling
constants. Our main concern are diagrams (a) and (b)
of Fig. 3.

A particularly important point in this constructive
approach is that the s-channel contribution of Fig. 3(a)
is complex and one writes Q(s) = QR (s) + iQ/(s), where
QR and Q' are the real and imaginary parts. The function
Q/(s) is well behaved and underlies imaginary contribu-
tions to the FSIs, including resonance widths. In field
theory, this kind of imaginary components in some classes
of propagators is of fundamental importance, as it is
associated with unitarity. A far-reaching consequence is
that reliable amplitudes must have a well-defined balance
between real and imaginary parts. If this is not the case,
they fail to conserve probability, as in some instances of the
isobar model. Concerning the real terms QF, explicit
calculations show that they contain infinite contributions
A. Thus, formally, one has QF = QF + A, where QR is
a known regular function. The elimination of A requires
renormalization, bringing unknown real constants into the
problem. The model presented in this work regards QF, the
real part of the two-meson propagator.

The study of FSIs in heavy-meson decays relies on
nonperturbative amplitudes and their derivation requires the
summation of infinite series of perturbative contributions.
We exemplify this procedure in the case of a unitary meson-
meson scattering amplitude, denoting the full result by A
and partial contributions with n loops by .A,. We begin by
defining a kernel K, as the part of A, that cannot be
separated into two pieces by cutting s-channel two-meson
loops only. The first kernel is Ky, associated with the tree
processes displayed in diagrams (a) of Fig. 4, and it is a real
function because at this point we are still dealing with a
bare resonance, described by a pole at its mass. The tree
amplitude is then given by Ay = K, and includes crossing
symmetry.

The single-loop correction is shown in diagrams (a) and
(b) of Fig. 4 and involves three terms in the s, ¢, and u
channels. The first one involves a two-meson s-channel
propagator, whereas the last two do not and are grouped
into a new kernel /C;. The case of two loops is shown in
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FIG. 4. Scattering amplitudes .4 and kernels K: (a) tree level, (b) first perturbative correction, (c) second perturbative correction, and

(d) full amplitude.

diagrams (c) of Fig. 4, where K, is a higher-order kernel
and the s-channel is represented by three successive Xy
interactions. Repeating this indefinitely and adding the
results, we obtain a scattering amplitude of the form

A=K x [1+ (loop x K) + (loop x K)?

+ (loop x K)3 + - -], (3)
loop = QF +iQ!, (4)
K=Ky+K, +K;+---. (5)

The geometric series in Eq. (3) can be summed and one has

a=" (©
D =1- (loop x K). (7)

As discussed in the sequence, 1/D is the post-QCD version
of the BW line shape (2). In practice, the evaluation of the
series given by Eq. (5) is unfeasible and, in the framework
of chiral perturbation theory, even the structure of the next-
to-leading-order (NLO) term /C; is already cumbersome.

So, we keep just the dominant term and rely on the
approximation C =~ /Cy.

A very important feature of this result is that the
amplitude A is unitary, provided /C is real. This property
is quite general and derives from the structure of the
denominator D, which is suitably complex owing to the
well-defined imaginary function Q' in Eq. (4). The forms
adopted for both QF and K are irrelevant for this property
of A, as discussed in Sec. IV. This justifies the widespread
use of the K-matrix approximation, which is implemented
by neglecting QF and writing

(8)

The amplitudes A are key elements in the description of
heavy-meson decays, for they are present in the FSIs which
supplement the weak process of Fig. 1. Strong interactions
involving three bodies can be very complicated. The
simplest class of FSIs corresponds to the (2 + 1) approxi-
mation, represented in Fig. 5, in which the first diagram in
Fig. 5(a) represents the nonresonant contribution and the
other two include particle interactions in the presence of a
final meson acting as a spectator. Diagrams (a) in Fig. 5
represents the heavy-meson decay amplitude in the (2 + 1)

K-matrix — loop = 0 + iQ;.
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FIG. 5.

approximation and the blob indicated by F is usually called
the form factor, which many authors take as the single
contribution to the decay [21]. It is isolated in Fig. 5(b) and,
denoting by g the resonance-pseudoscalar coupling con-
stant, the function F can be related to the meson-meson
scattering amplitude by

F = g[1 + (loop x A)] = g%, 9)
where D is the denominator given in Eq. (7). The imaginary
part of D gives rise to a finite width to the resonance.

In order to go beyond the (2 + 1) approximation, one
would need to tackle a rather complicated three-body
problem, which involves both multiple scattering series
and proper three-body interactions, as indicated in Fig. 6. It
is worth stressing that these FSIs are not a matter of choice,
since they are compulsory contributions to the problem.
Part of this sector can be tackled by means of Faddeev
techniques [5] or the Khuri-Treiman formalism [7,31] and,
in spite of a continuous progress towards a more complete
description of three-meson decay dynamics [32], results are
still incipient for heavy-meson decays. The Khuri-Treiman
formalism, in particular, emphasizes crossing symmetry
and can allow one to quantify the implications of the
K ~ ICy approximation we use, which does not preserve
crossing symmetry.

(a) Decay amplitude in the 2 4 1 approximation and (b) the form factor.

In summary, the decay of a heavy meson into three
light mesons involves two distinct sectors: a weak
primary vertex and a structure of final-state strong inter-
actions. Although the former is not simple, the latter may be
expected to be much more complicated and progress in this
area depends on the definition of a hierarchy among strong
problems. The simplest subset of problems is provided by
the (2 4 1) approximation and depends on meson-meson
scattering amplitudes. Nowadays, even these two-body
interactions are not sufficiently well known for systems
involving pions, kaons, and etas within the phase space
provided by D and B decays.

III. SCATTERING AMPLITUDES

In this work we present a practical model for the inclusion
of any number of resonances in phenomenological meson-
meson scattering amplitudes, so that they can be used as trial
functions in more complicated reactions, such as heavy-
meson or 7 decays. Instead of presenting the model in its full
complexity at once, we choose to construct it gradually, so as
to emphasize possible points of contact with the isobar
model and point out limitations of the latter.

The scattering amplitudes AEiZ\Lb) for the process
PP, - P,P, in a channel with spin J and isospin /
are given in Appendix C and involve four kinds of
ingredients:

FIG. 6. Decay amplitude: 2 + 1 approximation, supplemented by three-body interactions.
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Coupled channels: This sector of the problem is
rather standard and model independent. In our
notation, the coupling among the various channels
is implemented by the mixing matrices M EszJ given
by Egs. (C1)—(Co).

Multiresonance dynamics: The dynamical content of
meson-meson (PP) interactions is incorporated into

the kernels IC k” b given in Appendix B, which are

real functions of masses and coupling constants.
They include crossed amplitudes at tree level, but no
loops in the t and u channels and in the language of
Fig. 4 correspond to the approximation /C =~ K.
While in kernels, resonances have no widths and
are characterized just by their poles. The inclusion
of several resonances is performed by adding
these poles and the reader may want to inspect
Egs. (B31)-(B36) for an example.

Unitarization: We neglect four-meson intermediate
states and the unitarization of amplitudes is directly
associated with the s-channel two-meson propagators
Q that occur in the full scattering amplitude. These
functions, described in Appendix A, contain real and
imaginary parts: Q = QF + iQ/. The latter, given by
Egs. (A14)—(A15), are free from ambiguities and
constitute the only source of imaginary terms in the

kf|) by In particular, resonance widths

are necessarily proportional to Q. The real compo-
nent of QF has infinite components which are
replaced by renormalization constants. The form of
this component in the case of several resonances is the
object of this work.

Free parameters: The parameters entering our am-
plitudes consist basically of masses and coupling
constants and, in principle, are completely free.
Thus, our amplitudes are guess functions with open
parameters, to be determined by fits do data. Most of
the symbols used to label these parameters were
borrowed from chiral perturbation theory, especially
Ref. [27]. Their numerical meanings, however, are
not exactly the same. In chiral perturbation theory,
the values of parameters are extracted by comparing
results from calculations performed to a given order
with observables. As loops are divergent and need to
be renormalized, values for parameters quoted in the
literature also depend on renormalization scales.
This kind of procedure is theoretically consistent
and yields a precise description of low-energy
phenomena. In the case of heavy-meson decays,
this level of precision cannot be reached because a
wider range of energies is involved and perturbation
does not apply. Thus, in decay analyses, free
parameters do not have the same meaning as their
low-energy counterparts, since they are designed to
be used in a different mathematical structure. In our

amplitudes AE

amplitudes, free parameters aim at describing the
physics within the energy ranges defined by Da-
litz plots.

At this point it is worth stressing that the model
dependence incorporated in the amplitudes AEk fl) b) given
in Appendix C is restricted to the kernels K, which depend
on dynamical assumptions, and to the real part Q of two-
meson propagators to be discussed in Sec. VI. As the
imaginary part Q/ is unambiguous, the scattering ampli-
tudes are unitary and comply exactly with coupled-channel
requirements for any choices made for K and QF. In this
sense, the approach tames model dependence as much as
possible.

In order to make the discussion more concrete, we
concentrate on the case of zz scattering, described by

the amplitudes AE]JE;;)M), with (J,7 =1,1)and (J,1 =0,0),
for comparisons with the isobar model and discussion of
the main features of our model. The extension to other

channels is straightforward. Using Eqgs. (C12) and (C21),
we have

l‘_
= U = MK + MK

pzir 2 D(l 1) (nx|zr) (KK|zm
(10)
0.0 1 0.0 0.0
AEmr\Zm) = D(O‘O) {[(1 _MgZ ))(1 _Mg3 ))
0,0 0,0 0,0
_Mg3 )MgZ )]}Cgmz\zm)
0,0 0,0 0,0
+[M( )(1_M( ))+M<13 )M(32 )]KEKK)\HH
+[ )(I—Mzz )+M12 )M23 )]KESS\;)M)}
(11)

where the 7 is represented by 8. In these results, the
complex mixing matrices, given by Eqgs. (C1) and (C6),
have the general structure M = K x Q. The denominators
D contain the pole structure of the theory and have the form

1,1 1.1 1.1 1.1
DD = 1Myt =My - MMyt (1)
0,0 0,0
DOO = 1= M) - M ][1 - M5
0,0 s ,
— =M Mg MG
0,0 0,0 0,0 0,0 0,0 0,0
= (1= My MM = (1 - M v v
0,0 0,0 0.0 0,0 0,0 0,0
- M5 MM - My MMy (13)

At low energies, Mglb’l) — 0 and the amplitudes (10) and
(11) become the real functions
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(1.1) (1.1) (t—wu)

A(Jm|7m) _)(t - u)lc(mﬂim) - J 7 (14)
(0.0) (0.0) (25 — M)

A(im|7m) - K(nﬂ\ﬂn’) - F2 ’ (15)

where F' is the pion decay constant.

As stressed above, these amplitudes are cast in terms of
free parameters, to be obtained from fits to data. Here, in
order to explore their features and, in the want of such fitted
values, we rely on parameters given in Ref. [27].

IV. STANDARD ISOBAR MODEL:
UNCOUPLED CHANNELS

The form of Egs. (10) and (11) is involved owing to
channel coupling. In order to discuss their contact with the
standard isobar model, in this section we pretend that
the 7z state cannot couple to KK and 5. Labeling the
corresponding uncoupled amplitudes with U, we have

(1.1)
AU(l,l) _ (t_ M)K(ﬂlr\lm) (16)
nr|nm 1,1 ’
K 1902
(0.0)
U(0,0) _ K:(mr\zm) (17)
r|nn 0,0 ’
K00 195,/

where Q are the two-pion propagators discussed in
Appendix A. The kernels are given by Egs. (B1) and
(B31) and, in order to simplify the discussion, we assume
the value ¢ = 0 for the mixing parameter in Eqs. (B29) and
(B30). Thus,

2
con _ L [26Y) s Sy (8)
(nz|7m) 2 F4 | s— m/z) 5 — mzl s

(0,0) (25— M?3) [12} 45— (Tq—Tpp)2ME]?

(zr|mm) = jo2 F

~ { 2 } [cas = (cqa—cp)2M2]? _G%f’lﬂﬂ)

F* s—m3, s—m3,’

2
§ =i,

(19)

where Gy, ¢4, C,,, C4, C,, are coupling constants [27] and
mg, and mg, are the SU(3) octet and singlet scalar
resonances. We further simplify these results by consider-
ing just a single resonance in each channel. In the vector
case, using the approximate identity G, = F/+/2, one
recovers the classic vector meson dominance result [27]

Ly m/z;/F2

(zr|mm) 5= m[Z) ’

(20)

whereas for the scalar one writes

o0 _ %)

(zr|nr) T e 20
N mg,

(21)

25— MZ][s —m3, ] + 2[cys — (cq—cp)2ME)?

@2(5') = |~ FZ F4

(22)

Using Eqgs. (20)—(22) with Egs. (16)—(17) and recalling
that the imaginary parts of €, are given by Eqs. (A14) and
(A15), the uncoupled amplitudes can be expressed in terms
of functions M and I" that resemble masses and widths as

(t— u)m2/F?

AV 7 23
i =M iy O
mQER
M} =m3 - éFz . (24)
M2 (s — 4M2)
_ P T
Myly = 967 F? s1/2 ' (25)
2
U@0.0) 0°(s)
(nalmm) = M2 4 iMT (26)
S sls
©°(s)3%
M% = m%o - 2 ’ (27)
O%(s) (s —4M?2)\/?

327 s1/2

These results illustrate a number of features from

constructive descriptions of resonances:

(1) Even if we begin with a bare resonance, it acquires a
dynamical width by means of interactions with
pseudoscalars, whereas the s-channel pole present
in the kernel becomes complex. In the case of the p,
Eq. (25) yields T'p — I', ~ 145 MeV, close to the
Particle Data Group value [33].

(2) The functions M shift the resonance masses from
their nominal m values. As indicated by Egs. (24)
and (27), these are model-dependent effects because
the real parts Q/F of the two-pion propagators
contain undetermined free constants, which are
remnants of renormalization. A popular way to
avoid this problem consists in using the K-matrix
approach, in which this function is set to zero by fiat.
We present our alternative In Sec. VL.

(3) Equations (23) and (26) resemble the Breit-Wigner
line shapes given by Eq. (2), but only superficially.
In fact, they are rather different because the M and I"
are running functions of s. The usual BW expres-
sions, on the other hand, employ masses M5V =
m2, MEW = m}, and widths given by
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(5 — 4M2)32

| A , 29
967 F? (29)
_ 4M2 ) 1/2
rew — cow (8 4Ma) 7 30
32z (30)
where CBV is a coupling constant. Comparing these

expressions with Egs. (25) and (28), we learn that the

BW line shape is a good approximation for vector
resonances but is unsuited for scalar resonances. The

fact that Eq. (25) is identical to the classic Gounaris-
Sakurai result produced in 1968 [34] indicates that

the vector sector has been stable over the last

50 years. However, the scalar sector is different,
because our understanding of it changed signifi-
cantly after the development of QCD. The ground

state of the theory—its vacuum—is not empty and

chiral perturbation theory introduces this feature into
low-energy physics. In the present case, it gives rise

to the incorporation of both contact interactions

and s-dependent couplings of scalar resonances to
pseudoscalars [27] into the function ©(s). In this
exercise, even if we assume C3V = ©*(m3,)/m3,,

the BW approximation for scalars remains unsuited,

for all of the rich s dependence of Eq. (22) is lost.

A very important feature of Egs. (16) and (17) is that they
are automatically unitary, irrespective of the features of the
kernel C employed, provided it is real, and of the real part
of the two-pion propagator Q% In practice, an easy way to
check unitarity is to evaluate the inelasticity #, using the

nonrelativistic amplitudes f glven in Appendix D.

Skipping labels, they are related to the AEM‘)M) by

QI
— AV (31)

where the Q! are the imaginary parts of the two-pion
propagator, given by Egs. (A14) and (A15). Thus, one has
the generic form

1
f=—W+l., (32)
1+ KQR/2
= TKan (33)

Unitarity is ensured because, for any function of the
form (32), irrespective of the value of w, the inelasticity
parameter [given by Eq. (D8)] is always # =1 in the
absence of other channels. So, this is a model-independent
result, valid for any choices of £ and QR

One now considers the case of several resonances in the
same channel. As shown in Appendix B, the kernel for a
channel containing n resonances represented by individual
terms K; is written as

K=K+ K+ +K,, (34)

where IC,. is a contact term. Using Eqgs. (16), (17), and (31),
we write the nonrelativistic amplitude as

Fo o Ko+ K+ -+ K,]Q/2
14+ K.+ Ky + -+ K,][QF +iQ1]/2
1
T owri (35)
Ke+Ki+---+K,]Q'/2

This amplitude is unitary because this property does not
depend on the form of the kernel.

In the standard isobar model, on the other hand, uni-
tarized resonances are treated individually and, for each of
them, one would write

K,Q1/2 1
fi= L KQR Q12w+ (37)
1+ KQR)2
Wi = ’ngl/z (38)

These unitary terms are then added schematically as
sobat — g fo + a1 f1 + -+ + a,f,, where the a are com-
plex functions of s. Thus, one has f # ;;f)%‘gl and learns that
the standard isobar model prescription for adding reso-
nances is not compatible with unitarity. This happens
because it treats each resonance as an individual object,
whereas in the amplitude they are necessarily coupled
among themselves by the intermediate states that they
share. Unitarity is a global property that cannot be split as
sums of individual contributions.
In summary, the addition of resonances and unitarization
does not commute and, after QCD, the SIM structure is suited
just for the case of a single uncoupled vector resonance.

V. RESONANCES: COUPLED CHANNELS

The qualitative features of coupled channels are dis-
cussed just in the case of the scalar-isoscalar amplitude

A0 ) including KK and 55 couplings, given by Eq. (11)

(nr|nm

and cast in the form

(0.0)
0,00 " (ax|an)
A(ﬂﬂ"ﬂﬂ) - Do)’ (39)
0.0)  _ +~(0.0) (0.0) S
N(lmllm) - K(lm\mr) + C nn|KK) QKK/Z
+ Clanss) s/ 2 + Clani|ss) Lk s /4. (40)
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( 0= 1+ VC(ﬂﬂ"]m /2+,C KK|KK Q%K/Z

+ KEsé\sg)Qgs/z} + Clank k) 252k /4

+ C(ﬂ]t\SS)Qﬂang/‘" + C(KK\SS)Q%KQQS/“'
+ C(ra kK [88) Lk g /8. (41)
_ (0.0) 4-~(0.0) 0,0 12
Claalkk) = Kianln) Ktk xixx) = Kiznikry) (42)
_ 4(0.0) (0,0) 0,0) 12
Canss) = K imeln) Kississ) ~ Kianiss)] (43)
_ 4(0.0) (0.0) (0.0) 42
Ckkiss) = ’C(KK|KK)’C(88\88) - [’C(KK\SS)] ) (44)
_+(00)  1~(0.0) (0,0) (0,0) 00) 12
C(””|KK|88> - (Jm\lm),C(KK\KK)IC(SSBS) - IC(IHZ|7[7[)[ (KK|88)}
(0.0) 0.0) 12 (0.0) 00) 12
- IC(KK\KK) [,C(rm|88)] - ’C(ss\ss) [’C(muﬂ()]
(0.0) 4~(0.0)
+ 2’C ﬂn\KK)]C(mr\SS)K (KK|88)" (45)

A Close to the poles

The kernels IC ) involving three bare poles are
displayed in Appendlx B and a naive inspection of
Egs. (40)—(45) could suggest that the amplitude (39) would
be highly singular. However, this is not the case. In order to
simplify the discussion, we assume that the mixing angle

A= (s —m?), (47)

where the B,,,, are finite backgrounds and redundant

indices are skipped. Below, we show that divergent terms
(0.0)

(nx|zr) and

proportional to A~ and A~3 cancel out in both N

D0) and the amplitude A(”'ﬂl)” ) is finite at the pole. Close
to the pole, explicit calculation yields

N(ﬂﬂ.'lll'ﬂ - { [szrﬂ + ABm‘[ﬂﬂ']
+ H(im\KK)Q%K/z + H(fm\88)Qg8/2
H(mr\KK\SS)Q%KQgS/‘" + A[ : ]}7 (48)
1
D(O’()) :K{(S - m2) - (Gzzm + ABﬂﬂﬂﬂ)Qgﬂ/z

— (Gik + ABykkk )Rk /2 — (Gig + ABgggg ) Q5 /2
+ H(ﬂn\KK)QﬁﬂQLIS‘(K/‘" + H(ﬂﬂ|88)gﬁ7zgg8/4

+ H (k38)Q2 Qs /4
H(ﬂﬂ‘KK‘Ss)QgﬂQ%KQgS/S + A[ ’ ]}’ (49)
H(;m\KK) = szBKKKK + G%(KBmmrr - ZGrmGKKBrmKK1
(50)

e = 0 in Egs. (B29) and (B30) and, at the vicinity of apole  H(zz(ss) = GrzBssss + GigBurnr — 2G12GssBrsss.  (51)
(be it S,, Sy, or §') the kernels have the general structure
ol ¢ H ggss) = G Bssss + GisBrxkk — 2GxkGssBikss
0.0 GGy
’Cgaa\)bb) == aaA — Buabp- (46) (52)
|
H(/m|KK|88) = Glzm(BKKKKBSSSS - B%{KSS) + G%(K(BITITJHTBSSSS - Bzzm88) + G%S (BITIZJTT[BKKKK - Bizml(l()
- 2Grm’GKK(38888B7mKK - BJIIT88BKK88) - 2GrmG88 (BKKKKB;'M:SS - BrmKKBKK88>
- 2GKKG88(BIT7IITITBKK88 - BrmKKBﬂn:SS)- (53)
|
These results show that, at the pole, both N Eml)m) and  opposite signs. Using the coupling constants prescribed in

D9 diverge as 1/A and yield a finite amplitude, as
expected. They also shed light on a conceptual limitation
of the isobar model. Since the functions H involve
products of coupling constants G and background con-
tributions B from other channels, resonances no longer
behave as individual objects. This contradicts the tacit
assumption underlying the isobar model, namely, that
background terms can be neglected and resonances can
be isolated.

In order to check the importance of background terms,
we consider the case of a hypothetical single octet
resonance of mass m = 1.05 GeV, between the KK and
88 thresholds, where the finite backgrounds are given just
by the chiral LO contact terms in Eqs. (B31)—(B34), with

Ref. [27], the nonvanishing contributions come from
G, = 8.06 GeV, Ggx =10.76 GeV, B,,,., = —252.69,
B..xx = —110.39, and Bgggx = —191.21, which yield
G2, = 64.93 GeV?, G%x = 115.69 GeV?, and H,xx =
—22513.61 GeV?. We adopt the K-matrix approximation,
which consists in setting QF = 0 and keeping only Q.
Using [Q3,] = —191.78 x 107 and [Q} ;]! = —67.69 x

1074, one finds lem {-64.93 + [i76.20]}/A and

DY) = {i0.62 + i0.39 + [0.73]} /A, where the contribu-
tions involving the background are indicated by [- - -|. They
cannot be neglected, indicating that Breit-Wigner line
shapes [Eq. (2)] are not suited for describing resonances
above a crossing threshold.
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B. K-matrix results

As already stressed, the imaginary component Q' of the
two-meson propagators € is fully determined by theory. In
the widely used K-matrix approach, only this part is kept
and the choice Qf = 0 amounts, in fact, to a disguised
model for the real part. In the case of uncoupled channels,
this choice has the advantage of allowing a clear identi-
fication of the nominal value of the resonance mass. In this
subsection, we present numerical studies for the scalar-
o
expressions for the kernel given in Appendix B, with
resonance masses mys, = 1.37 GeV, mg, = 0.98 GeV, and
coupling parameters fixed in Ref. [27]. Once the value of
QR is fixed, predictions only depend on the models used for
the interaction kernel.

In Fig. 7 we neglect KK and 75 couplings and compare
results from two versions of Eq. (B31), both with ¢ = 0.
One of them keeps just its third term, representing an octet
resonance (R), while the other also includes the first term,
describing a contact chiral interaction (C + R), which is
one of the signatures of post-QCD physics. In the jargon of
the isobar model, the resonant structure corresponds to a
BW line shape, as discussed in Sec. IV. One notes that the
contact term is rather important and the dominance of the
resonance is restricted to a narrow band around its mass
my,. Close to threshold, the chiral contribution yields
Eq. (15) and gives the correct magnitude for the scattering
length.

The opening of the KK channel is studied in Fig. 8, for
the same C+ R case considered before, keeping the
resonance mass fixed at mg, = 0.98 GeV, while adopting
two fake values for Mg, namely, 0.48 and 0.50 GeV, so
as to have the KK threshold both below and above it.

isoscalar amplitude A ) given by Eq. (11) and rely on

100

[
(=}

Amplitude Tt

o

o
=)
T

0.5 1 15
E (GeV)

FIG. 7. Predictions for real (full curves) and imaginary (dashed
curves) parts of the scalar-isoscalar zz amplitude based on a
single resonance (R) and the same resonance superimposed to a
chiral contact term (C + R).

100}~ "o cohpling ' '_ ______ i
— MK=0.48 / \ s _
— MK=0.5 / s T
/ 1, -
E 50 B |I 1 T
) i
g I
= il
= [N/}
= |
< 0opF—
'50 C 1 1 1 ]
0.5 1 1.5
E (GeV)
FIG. 8. Predictions for real (full curves) and imaginary (dashed

curves) parts of the scalar-isoscalar zz amplitude based on a
single resonance superimposed to a nonresonant background
(NR + R) for no coupled channels (black) and a coupled KK
channel with threshold below (blue) and above (red) the reso-
nance mass.

As expected, all curves coincide below the thresholds.
Above them, however, one learns that the impact of the
coupling is important, since the previous C+ R form
provides a very poor representation for the new results,
irrespective of the value of My chosen. At threshold,
one has a usual cusp in the real part of the amplitude
for mg, < 2M and a discontinuity in its imaginary part for
myj, > 2M . Beyond that point, the real curves display the
upward bending associated with the polynomial chiral
background, whereas usual connections between real
and imaginary parts are lost owing to inelastic effects.

100~ €0 -.

p——

—e=11/2
E
= 50t
©
5
=
£
<C

0
0.5 1 15

E (GeV)

FIG. 9. Predictions for real and imaginary parts of the scalar-
isoscalar zz amplitude based on two resonances superimposed to
a nonresonant background (NR+f, + f},) with a coupled KK
channel, for mixing parameter ¢ = 0 (full lines), ¢ = z/4 (dotted
lines), and ¢ = 7 (dashed lines).
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180F e=I0 T : -
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1 T
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0-8 L €=rl/4
—-e=T2
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j=
0.41
0.2r
0.5 1 1.5

E (GeV)

FIG. 10. Predictions for the scalar-isoscalar zz phase shift 5% (left) and inelasticity parameter (> (right) based on two resonances
superimposed to a nonresonant background (C+f, + f,) with a coupled KK channel, for mixing parameters € = O (full lines), € = z/4

(dotted lines), and ¢ = z (dashed lines).

Altogether, the shift in My affects the amplitudes only in a
narrow region of about 200 MeV above threshold.

In the scalar-isoscalar sector, SU(3) gives rise to octet and
singlet states So and S1, which can be combinations of the
observed resonances f, = f(1370) and f, = £(980), with a
mixing angle ¢ defined by Eqgs. (B29) and (B30). The
influence of this parameter on the zz amplitude is shown
in Fig. 9 for two resonances superimposed to the chiral
background, adopting ¢ = 0, z/4, z/2. All curves coincide
up to £ = 0.98 GeV, but become quite different afterwards,
with the most striking feature being the change in the number
of zeros of the real part over the energy range considered. The
influence of the mixing angle over the phase shift 5% and
inelasticity parameter 7(°?) is presented in Fig. 10.

VI. MODEL FOR TWO-MESON PROPAGATOR

The discussion presented here is general and applies to
all meson-meson channels. The amplitudes given in
Appendix C are model dependent through both the kernels
K and the real components QF of the two-meson propa-
gators Q = QF + Q. The dependence on K has a
dynamical character, since it relies on interactions and
parameters from Lagrangians, such as masses and coupling
constants, whereas the QF discussed here is a phenom-
enological model.

The intermediate two-meson propagators for states a and
b are given in Appendix A [Egs. (A11) and (A12)] and their
complex forms for J =0, 1 read

I, (s)
QS = ——4 2 54
ab 167 34)
o = —— b(5), (55)
¢ 48x%s ¢

where 1 is the Kéllén function, and II,, represents the
regular parts of loop integrals, which are determined by
theory and shown in Egs. (A4)-(A9). Owing to

renormalization, the real parts of the functions Q must
be supplemented by arbitrary constants to be fixed by
experiment, and that is why a model dependence comes in.
In the framework of chiral perturbation theory, these
constants are coefficients of polynomials on external
momenta [16].

The model introduced here consists in a generalization
scheme for Egs. (54) and (55) and its explicit form depends
on the number of resonances considered, which are denoted
by Ry, R, R - - - Their masses and coupling constants are
taken as free parameters so that they can be fitted in
phenomenological analyses.

In order to motivate the choices we have made, we
consider the case J = 0 and begin with the case of a single
resonance, which is written as

03,(5) = 103 {[F (), (m2)] = T,y (s)). - (56)

where the term within square brackets is real and corre-

sponds to a subtraction. It generalizes an expression

employed earlier in the study of the Kz amplitude [6].

The function F,(s) is a form factor that satisfies the

following conditions.

(a) F.(s) = 0 for s — 0: This is important to ensure that
loop corrections do not spoil chiral symmetry results at
low energies. In that region, the symmetry predicts
amplitudes that are proportional to the real contact
terms present in the kernels given in Appendix B, and
therefore the functions Q cannot show up there.

(b) F.(s) =1 for s = m2: This condition implies that the
real component satisfies Q3X (m2) = 0 and was chosen
with practical purposes in mind, so that results
coincide with those of the K-matrix approach at
s = m2. In the case of uncoupled channels, this allows
the nominal mass of the resonance to be identified with
a zero of the real part of the scattering amplitude. In
the case of coupled channels, this property is preserved
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FIG. 11.

Behavior of the real (continuous lines) and imaginary (dashed lines) parts of two-meson propagators: (left) functions Q;,

0.01

Q_ab

-0.02¢ 1 1 1 ]

S

QY Q3 QY ¢, QY. and Qg from Eq. (54); (right) model predictions for the isospin-0 channel, based on a single £, resonance of mass

my, = 0.98 GeV, from Eq. (56).

in the elastic regime below the first threshold but
changes afterwards, as shown in Fig. 9. The subtrac-
tion performed at the resonance mass is a conservative
one, intended to prevent the increase of free param-
eters in the model.

(c) F.(s) is finite for s — oo: Chiral symmetry holds at
low energies only, where it requires subtraction terms
as polynomials in s. However, these may become too
important at high energies where the theory is no
longer valid, and this unwanted behavior is avoided by
imposing the form factor to be bound in that limit.

The class of functions satisfying these criteria is, of
course, very large and our choice is

4m2s
T

(57)
which has a maximum at s = m?2. In the left panel of Fig. 11
we show the energy dependence of the two-meson propa-
gators for zz, Kr, 7y, KK, Ky, and nn states given by

100F —Funl’
— K-Matrix

Amplitude mmt
n
o

E (GeV)

Eq. (54), where it is possible to see the different scales
associated with SU(2) and SU(3) sectors. In the right panel
we present model predictions based on Eq. (56) for the
isospin-0 channel, based on a single f;, resonance of mass
my, = 0.98 GeV. We notice that the subtraction makes the

real parts of Q5 vanish at the resonance mass and that the
effects of the form factor F,(s) are more important at low
energies, the very region where the functions Q are less
important owing to chiral symmetry. These combined
features suggest that the overall influence of the specific
choice made in Eq. (57) is expected to be small.

The extensions of Eq. (56) to the case of two and three
resonances read

S — m2
036) = s [ F0) gt )

1672 my — my)
(3 — 5)

T G8)

I3, (m3) — Hab(s)}s

Ration full/K-matrix

0.5 0.5 1 1.5

E (GeV)

FIG. 12. Predictions for the scalar-isoscalar zz amplitude with two resonances f,(1370) and f,(980), with ¢ = 0, superimposed to a
nonresonant background from the model (58) (blue) and the K matrix (red). Left: real (full curve) and imaginary (dashed curve) parts.

Right: ratio of magnitudes.
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Predictions for phase shifts (left) and inelasticity parameter (right) of the scalar-isoscalar zz amplitude with two resonances

f2(1370) and f,(980), with ¢ = 0, superimposed to a nonresonant background: from the model (58) (blue) and the K matrix (red).

1 s—my)(s—m3) .
0 (5) = T { Fu) i ()
m2—s)(s —m?
+Fy(s) (2x )( 2 2 15, (m3)

(3 = m3) (m3 —ms)

m2 — S m2 —S
L) o ) r2) - M)

(59)

The corresponding expressions for the J = 1 case QF, can
be obtained from Egs. (56), (58), and (59) through
multiplication by a factor of 1/3s.

We compare predictions from the model and the K
matrix for the scalar-isoscalar zz amplitude in Fig. 12, for
the case of two resonances f,, = f(1370) and f, = £(980)
with the mixing parameter ¢ = 0. The corresponding phase
shift and inelasticity parameter are shown in Fig. 13. It is
possible to notice that results from the model and the K
matrix are qualitatively similar over the energy range

100F — Ful - Tk S ]
o P tiont
— K-Matrix / // Ir\ N // .........
E 50
(0]
e}
2
g
< o=
-50

E (GeV)

considered, except for a small region around 1 GeV where
effects from the resonance f, and the opening of the KK
channel compete. This can be seen more clearly in the sharp
peak in the figure for the phase, whose tip occurs at
threshold. For slightly lower energies, the resonance tends
to push the phase upwards, whereas the coupled KK
interaction does the opposite afterwards. In order to explore
this picture, we use a slightly lower mass for the octet
resonance, namely, f, = 0.96 GeV, and Figs. 14 and 15
show that effects near threshold become much stronger.
The phase for the model, in particular, has a sharp rise
around 1 GeV, as shown in Fig. 15 and also observed by
experiment [15], but this does not happen for the K matrix.
Another interesting feature of this channel concerns the
second resonance f,(1370). Inspecting Figs. 11-14 around
the corresponding energy, we do not find structures in
either the amplitudes or phase shifts and inelasticities.
As both the KK and nn channels are already open at
the f, mass, its pole occurs in the presence of a background
due to a chiral contact term superimposed to the resonance

0.5r 1

Ration full/K-matrix

0.5 1 15
E (GeV)

FIG. 14. Predictions for the scalar-isoscalar zz amplitude with two resonances f,(1370) and f},(960), with ¢ = 0, superimposed to a
nonresonant background from the model (58) (blue) and the K matrix (red). Left: real (full curve) and imaginary (dashed curve) parts.

Right: ratio of magnitudes.
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o8k — K-matrix

0.4

0.2r

0.5 1 15
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FIG. 15. Predictions for phase shifts (left) and inelasticity parameter (right) of the scalar-isoscalar zz amplitude with two resonances
f2(1370) and f,,(960), with € = 0, superimposed to a nonresonant background from the model (58) (blue) and the K matrix (red).

— Krtfull ' '
— Knt K-matrix
180} 1
[0
(%)
®©
s
90t 1
0 08 12 16

E (GeV)

1 : : :
— Kntfull
— Kt K-matrix
0.95F
= 0.9t
0.85F
0.8 08 1.2 1.6

E (GeV)

FIG. 16. Predictions for phase shifts (left) and inelasticity parameters (right) of the scalar-isovector 7K amplitude with a resonance K
with mass m Ky = 1.33 GeV superimposed to a nonresonant background from the model (C19) (dark blue) and the K matrix (magenta).

fp in which the mechanism discussed in Sec. V is
operating.

For the sake of completeness, in Figs. 16 and 17 we
display results for phase shifts and inelasticity parameters

— nn K-matrix
— nnFull

0.8 12 16
E (GeV)

for scalar 7K and 7z scatterings, predicted by Egs. (C19)
and (C17). The zK process becomes inelastic at the K7
production threshold and includes a Kj with mass
Mg = 1.33 GeV, whereas the zn is coupled to a KK

1 ' ' —]
— nmn K-Matrix
— nm full
08l
06l
-
0.4}
0.2}
0= %8 12 1.6
E (GeV)

FIG. 17. Predictions for phase shifts (left) and inelasticity parameters (right) of the scalar-isovector zx amplitude with a resonance a,
with mass m, = 0.95 GeV superimposed to a nonresonant background from the model (C17) (purple) and the K matrix (pink).
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through the ag, with mass m, = 0.95 GeV. Thus, in the 7z
the resonance is below threshold and the phase passes
through 90° at its mass. On the other hand, in the 7K the
resonance lies in the inelastic region and the influence of
the background in the other channel shows up. Deviations
between the model and the K matrix are noticeable below
1.2 GeV for the former and above that energy for the latter.

While inspecting the results displayed in Figs. 12-17,
one should bear in mind that they rely on the coupling
constants prescribed in Ref. [27] and may change signifi-
cantly if other parameters are adopted.

VII. AN EXTRA RESONANCE

The model proposed here allows for the inclusion of any
number of resonances. In order to illustrate this procedure,
we consider the case of an extra resonance R’ in each scalar
channel and begin by resorting to Eq. (59) in the case of
zrm scattering and to Eq. (58) for / =1/2 and [ =0.
New resonances mean, of course, new masses and coupling

—noR' /

360 a=1B=T : ;
a=1p=0 "
—a=0p=1
270} B N0\
@ A\
()
©
<
S 180f .
90} .
25
_/"
0.4 0.8 12 16 2
E (GeV)

FIG. 18.

constants and, as the number of channels is large, one could
have, in principle, too many new degrees of freedom
to be fitted by data. In order to be conservative, we suggest
that the same forms displayed after the arrows in
Egs. (B13)-(B22) be used, with

[(cq or &4)(s — mass?) + ¢ (gjap)]

— (cq or &y)[a(s — mass?) + Pru?]. (60)

In the case of the s-dependent couplings, this preserves the
SU(3) structure with a scale given by chiral perturbation
theory [27], c; = 0.032 GeV and ¢, = 0.018 GeV, whereas
1 =1 GeV is just a scale. These choices allow both « and
to be dimensionless free parameters and one may guess that
their values will not be far from —1 <, f < 1.

As an illustration, in Figs. 18-20 we display phase shifts
and inelasticity parameters for zz, 7K, and 75 scatterings
including an extra resonance, for a choice of values of « and
p. In all cases one notes that results do depend on the values

— :
—noR'
o a=T1B=
a=13=0
— a=0 B=1
06l
o
0.4}
0.2}
04 08 12 1.6 2

E (GeV)

Predictions for phase shifts (left) and inelasticity parameters (right) for the scalar zz amplitude with an extra resonance of

mass mp = nmy, = 1.7 GeV; the case no R’ corresponds to the blue curve of Fig. 13.

—noR' 77
N _ /
ago =1 PR= r
a=1B=0 //
~ =0 p=1 P
270t et ]
© /
< /
2 180 i .
1
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s~
9ot _ ]
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1 T
—noR'
--a=1B=1
| a= 1B=0
095 o o ocq
jo
0.9
0.85}
08 12 16 2
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FIG. 19. Predictions for phase shifts (left) and inelasticity parameters (right) for the scalar-isovector zK amplitude with an extra a
resonance of mass myg = mg; = 1.7 GeV; the case no R’ corresponds to the dark blue curve of Fig. 16.
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270

90

E (GeV)

E (GeV)

FIG. 20. Predictions for phase shifts (left) and inelasticity parameters (right) for the scalar-isovector zi7 amplitude with an extra a
resonance of mass mp = m,, = 1.5 GeV; the case no R’ corresponds to the purple curve of Fig. 17.

of a and b adopted and also as expected that the high-
energy regions of the curves are more sensitive to the
inclusion of the extra resonance. In all cases, the extra
resonance occurs in the inelastic regime and, as discussed
in Sec. VA, its shape is strongly affected by a background
due to channel coupling.

VIII. SUMMARY AND CONCLUSIONS

The SIM was produced more than 50 years ago and is still
widely used, in spite of its many limitations. In the case of
heavy-meson decays into three mesons, the model relies on
the (2 + 1) approximation, whereby strong final-state inter-
actions involve just a two-body interacting system in the
presence of a spectator. The assumption that meson-meson
amplitudes are strongly dominated by resonances is essential
to the model. We argued that QCD has a strong impact on this
picture and that the SIM may be reliable for vector mesons in
uncoupled channels but is not suited to scalar mesons.
Nowadays, a proper description of low-energy meson-meson
interactions requires contact with chiral perturbation theory,
which implements QCD by means of effective Lagrangians.
Although originally developed for low-energy processes,
this theory can be reliably extended through the inclusion of
resonances and unitarization techniques. In Sec. IV we have
shown that the SIM and its post-QCD version give rise to
rather different predictions for the scalar zz amplitude,
owing to both dynamics and unitarity. Another problem of
the SIM concerns the coupling of channels. This effect is
compulsory whenever possible, and in Sec. VA we have
shown that resonances cannot be considered as dynamically
isolated objects beyond coupling thresholds. This happens
because pole dominance in a given channel is contaminated
by background effects occurring elsewhere. Therefore, BW
line shapes are unsuited for describing resonances in the
inelastic regime, as shown in Sec. V B.

As an alternative to the versions employed in the SIM,
in Appendix C we present a set of phenomenological

meson-meson amplitudes in the SU(3) sector, which is
suitable for amplitude analyses of heavy-meson decays.
Their main features include the following.

(1) Unitarization: All amplitudes are automatically uni-
tary for energies below the first coupling threshold.

(2) Coupled channels: The treatment of coupled chan-
nels is standard and gives rise to the expected
inelasticities.

(3) Dynamics: Interactions are described by chiral
Lagrangians, which include both pure pseudoscalar
vertices and bare resonances, with free masses and
coupling constants. This ensures that chiral symmetry
is obeyed at low energies and also gives rise to fitting
parameters with well-defined physical meanings.

(4) Model for meson loops: Two-meson loops are an
important component of scattering amplitudes. In
the s channel, they are given by real functions below
threshold and acquire an imaginary part above it.
The latter is fully determined by theory, whereas the
former involve unknown renormalization constants.
In Sec. VI we proposed a model for these real parts
that complies with chiral symmetry and can accom-
modate any number of resonances.

(5) Systematic inclusion of resonances: The model can
accommodate any number of resonances in each
given channel.

(6) Free parameters have physical meanings: The free
parameters of the model are resonance masses
and constants describing their couplings to pseudo-
scalar mesons. Thus, their conceptual meaning is
both rather conventional and process independent,
whereas their empirical values can be extracted
from different reactions. This allows one to en-
visage a situation in which one could compare
various sets of values for the same parameters as
determined, for instance, from chiral perturbation
theory, meson-meson scattering up to 2 GeV,
D — gar, D — azK, and other processes.
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This would definitely promote understanding and,
hopefully, much needed progress.

In this constructive approach, all imaginary terms in
the amplitudes can be traced back to loops, which are
also responsible for the finite widths of resonances. The
parameters to be fitted are just resonance masses and
coupling constants, which have a rather transparent physi-
cal meaning. As examples, we have discussed scalar
amplitudes, phase shifts, and inelasticity parameters for
zz, nK, and zn scatterings, employing the low-energy
parameters given in Ref. [27]. In all cases, results from the
model for the real parts of the loop functions were
compared with those from the K matrix, where they are
absent. One notices that the main differences occur close to
the first inelastic threshold, which shows that the new
model provides a clear indication for the mechanism
responsible for the sharp rise observed in the zz phase
around 1 GeV.
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APPENDIX A: TWO-MESON PROPAGATORS
AND FUNCTIONS Q

The conventional expressions presented here are dis-
played for the sake of completeness and rely on results from
Ref. [26]. These integrals do not include symmetry factors,
which are accounted for in the main text. One deals with
both S and P waves and the corresponding two-meson
propagators are associated with

da*¢ {1,007}
Ip: ) = | —g— Al
{ ab» ab} /(271_)4 Dan s ( )
D,=(¢+p/2)*-M%, D,=(¢-p/2)*-M}, (A2)

where p?> =s and both integrals are evaluated using
dimensional-regularization techniques. The function 7,
reads

Iab = [Aab + Hab]7 <A3)

"Ter?

where A, is a function of the renormalization scale ¢ and
the number of dimensions n, which diverges in the limit
n — 4, whereas II is a regular component, given by

§ < (Ma _Mb>2 - Hab

A [M?:+ M? - A
:H°b+£ln it My =5+ V2 (A4)
¢ N 21‘4,11‘417
(M, —Mp)?* <s < (M2+M32) > 1,
V=2 V=2
= Hgb — —tan_l 3 a2 | (AS)
s M, + My, —s

(M5 +Mp) <s < (M, +M,)* — T,

V=1 V=1
=1, ———tan”! | ————F—| + 7,
s M; + My —s
(A6)
s>(Ma+Mb)2_)Hab
2 - M2 - M2+ 2
:H2b—£1ns = Mp+ Vi) VI (A7)
S 2MaMb S
M2+ M2 M M2 -M2 M
ngb:1+7’;+ PIn|—4| - —“—LIn|-%|, (A8)
M2 -M: (M, s M,
A=2s2=2s(M%2+M2) + (M2 -M3)>.  (A9)
For M, = M,, TI%, = 2. The tensor integral is
v |1 p'p* ,
Iﬁb—’@{{ B Aff—g”/\gb}
p'p* A
ey § S S A10
# [P (A10)

where A’ and AY, are divergent quantities.

In the calculation of final-state interactions, it is more
convenient to use the functions €, defined from the regular
parts of Egs. (A3) and (A10) as

1
QS, = i[regular part of /] ﬁQibz—FﬂzHab’ (A11)
1 [p#pH
i {% _ gﬂv] QP = i[regular part of I"}] — QF,
A
-2 11,. Al2
48725 ab ( )

As indicated in Eqgs. (A4)-(A9), the functions Q are real
below the threshold at sy = (M, + M,,)? and acquire an
imaginary component above it. This imaginary part is not
affected by infinities and is a well-defined prediction of the
theory that is necessary to implement unitarity.
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In the c.m. frame the momentum Q,, is given by

VA
Qu = 3T
NG
1 2 2 2 212
:5\/s (M2 M)+ (M2 — M2 )s  (AL3)
and the imaginary components read
Q5] = _ 1% O(s — (M, +M,)?), (Al4)
ab 8 \/E a b >
Pl 1 0% 2
QLN = ———=L9(s— (M, +M Al
QL)) =~ g 2 0ls = (Mu + M,)).  (A15)

where 6 is the Heaviside step function.

APPENDIX B: SCATTERING KERNELS

We consider scattering amplitudes that can have SU(3)
resonances as intermediate states. They depend on inter-
action kernels for channels with angular momentum J = 1,
0 and isospin I = 1, 1/2, 0. All kernels are written as sums
of a LO chiral polynomial and NLO resonance contribu-
tions [27]. In the resonance sector, we consider the standard
SU(3) contributions, supplemented by an extra term R/)
for each channel, with free masses and coupling constants,
denoted by a prime. The usual Mandelstam variables are

s, t, u and the kernels ICEIJb’QC , for the process P, P, — P.P,
are as follows.

Vector sector: In the case J =1, Kkernels are
written ~ without a factor [2¢+s—2(M2%+ M3)+
(M?% — M3)?/s], which becomes (f—u) in the case of
identical particles and reduces to [4Q%cos6)] in the
center-of-mass frame.

isospin 7/ = 1:

sG? sG2

ay b S0 SS9 )
(x|mm) — F2 5 — m[2} 5 — mg[ ’ (Bl)

K:(l'l) \/§

_ V2 5G4ian G pix)
(z|KK) — 2F2

2
p

3G Gk

§s—m

s —m? ’ (B2)

/)/

2 2
i 1 SCuke) 5Gke (83)
(KKIKK) ~ p 2 s—m} s—mﬁ, ’

V2Gy

Glplem) = 7 (B4)
G

Giyikx) = 7+ (BS)

In the framework of resonance ChPT (RChPT), Gy, lies in
the range 53—69 MeV. Of special interest is the relationship

Gy=F/ \/§ ~ 66 MeV, associated with vector-meson
dominance [27].
isospin 7 = 1/2:

2
3 3 SG%K*\;;K) _ SG(K*’W()

(L2 _ 3
(oKleK) ~ Q2 g —md.  s— mi*’ . (B6)
/2 3 SGkax) Gk jsK)
(zK|8K) ~ g 2 s—m%(*
3G O 3 (B7)
s—mZ, ’
P
2 2
i) _ 3 Yk Gk sk (B8)
(KSIK8) —8F2 s —m2. s— mi*, ’
V3Gy
Gipe =—, B9
(K'|xK) = 52 (B9)
V3Gy
G/ =" B10
(K ‘8[() 2F2 ( )
isospin / = 0:
2 2
o _ 3 o SCiwn gy
(KKIKK) 22~ s_ 2 s —m2
¢ ¥
V3Gy sin 6
Gyikk) =~z (B12)

In a previous work [10] we considered a dressed ¢
propagator, which accounts for the partial width of the
decay ¢ — (prm + zznx). This small contribution is techni-
cally involved and here we ignore it for the sake of
simplicity. The partial width for ¢ — KK yields [33]
sin@ = 0.605.

Scalar sector: Chiral perturbation theory accurately
predicts how SU(3)-breaking effects, characterized by
pseudoscalar masses, influence low-energy observables.
The couplings of scalar resonances to two pseudoscalars
involve energy-dependent factors which conserve SU(3),
associated with the constants c¢,; and ¢,, supplemented by
symmetry-breaking terms, proportional to ¢,, and ¢,,. In
this work we need to extend scattering amplitudes up to
energies well beyond the p mass, which is the upper bound
for ChPT, and therefore we keep the SU(3)-invariant parts
of scalar-two-pseudoscalar couplings and allow the sym-
metry-breaking parts to be described by phenomenological
parameters c. Below we denote the resonances by ay —
(J,1=0,1),Ki— (J=0,1/2), So — (J,I =0,0)octet,
S1 — (J,1 =0,0) singlet and list these couplings using the
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standard RChPT notation [27] before the arrow and our
suggested parametrization after it:

2
Gap|n8) = T [ca(s = M7 = M3) + ¢, 2M7]
2
- NeTz [ca(s = M7 = MR) + C(qy/8))-
(B13)
V2
G(”OIKIQ = F {Cds — (Cd - Cm)ZM%(]

V2
>z [ca(s =2M%) + c(qkx)).  (B14)

V3
Gkilak) = —= 5 [€as — (ca — ) (M7 + M7)]

V2F?

-

3
\/EFQ [Cd<S - Mizz - M%{) + C(KS\JIS)L
(B15)
1
Gkilks) = = =5 [Cals = Mg — M)

V6F?
+ Cp(—8M2 + 11M% + 3M3)/3]

(B16)

G(S()\lm) =T [Cds - (Cd - cm)szzr]

V2
_)_F[Cd(s_lezt) +C(So|7m)]v (B17)

V6
G solkk) = Y2 [cas = (ca = ¢n)2MF]

NG
ey [ca(s = 2M%) + c(sojx)]- (B18)

NG
G (s0/88) = W[Cd@ —2M3) +c,,(16M% — 10M7) /3]
NG
—’W[Cd(s—m’fé)*'c(smss)], (B19)
2V3 o
G(s1jan) = §3 (45 — (€4 — ) 2MZ]
2V3
ad=n [a(s —2M2) + ¢(s12m)]- (B20)

4 L
G(Sl|KK) = 7 [Cas — (¢4 — cm)2M%{]
4
—)ﬁ[cd(S—ZM%() +C(S1\KK)]’ (le)
2 . ~ o~ 2
Gsijs8) = 2 [€as — (€4 — C,)2M]
2
e [€a(s —2M3) + c(suss)).  (B22)

In RChPT [27], one has |c4| =0.032 MeV, |c,|=
0.042 MeV, &, = |cql/V/3, and |&,,| = |c,|/V/3.
isospin / = 1:

2M2 quﬂ' Gza/ﬂ
o M Dlams) Py gy

(8|78) 3F2 g — mig 5 — m%z ’

_ (3s—4M3)  Giafss)Gaylkk)

V6F? s — mg,

_ Gaye8) G gy kK)

2 b
S —m,
ay

,C(O-l)

(78/KK)

(B24)

2 2
s Glakx)  Slakr

(0.1)
’C(KK\KK) TR g — mgo

(B25)

s — m%
isospin 7 = 1/2:

(0.1/2)
K(ﬂK\ﬂK)

1
 8F?

3(M2+My)?
[5s—2(M%+M%()+LK) ,
N

2
G2, G’ .
(Ko\lrl() _ (I(0 |zK)
2 2°
S — M« S—m,.
K K;

(B26)

(0.1/2) 1

(zK|8K) = —W |:9S— 16M,21—8M%(

+6M3 +

’

9(M§,+M%<)2]
S

Gy Gigsr) Oy 1)@
s—m%q) s—mg.?
0

(K;'|7K) ™~ (K} [8K)

(B27)
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o120 _ 1
Kiskisx) = ~ 527 [9s +AM2 - 18M>%
M2 M2 2
+ 3M§ _|_ 9( K + 8) :| ,
N

Gleysx) i on)

s—(;nz _s—z(;z 3 (B28)
K(*) KE‘)

isospin 7/ = 0:

We allow for the possibility that the first two observed
resonances in this channel, denoted by f, and f,, can be
mixtures of octet and singlet states So and S1. The mixing
angle ¢ is defined by

|fa) = cose|S1) + sinelSo), (B29)
|f») = —sine|S1) + cose|So), (B30)
and the kernels read
00 _ (25 =M7)  Gfanian)
(zr|zm) — F2 5 — m?
2
_ Gupertan) _ Girian (B31)
S — m}b S — mjzu ’
00 _ V35 _Gyarkk) _ Gisylamikr)
(wrlKK) 2R s—md s—m}
_ GGk (B32)
S — m;/ ’
00 _VIML Gilarlsy)  Gigilenlsy
(am(88) = 32 s — m? s — m?
Ja b
_ G5 Griss) (B33)
S — m?/ ’
00 35 Gulkkike)
(KKIKK) — 52 5 — mj%
G G?,,
_Swlkkise) UK gy
S — mfb S — mf,
00 _(9s=8M%) G lkkpss)
(KK[$8) = gf2 s_mi
G, lkxiss)  Girixk)G(riss)
B Sil’n2 B s—mz, ’ (B35)
b f
00 _ (FTMz+16M%) Gy, ssss)
(8888) — 9F2 5 _ m?
G G2,
518888 7|88
_Stuissisy _ s (B36)

S —m; S — m7
Sb I

with
G(fa|7m‘””) = sin’ €G%S0|mz) + cos’ GG%SH;m)’ (B37)
G(1, lurlkK) = SIN*€G (50/7) G(50/KK)
+ c05*€G 51}z G s11kk).  (B38)
G (1, |nni88) = SinzeG(So\zm)G(So\SS)
+ COSZGG(SI‘,M)G(SI‘%), (B39)
Gy, |kK|Kkk) = Sin® eG%SUlKK) + cos? erSHKK), (B40)
Gi1.ixks8) = SIN* €G (so/xk) G (50[s8)
+C0$2 eG(ZSHKK)G(S”SS)’ (B41)
Gs,jssiss) = sin” €Gls, q) +c0s” €Glg o). (B4A2)
G(fb|””‘””) = cos’ SG(ZSo\mr) + sin? €G%Sl\;m)’ (B43)
G (s, urlkk) = €05 €G (5,122)G (s0/KK)
+ Sin2 €G(S1|7m)G(S1|KK)7 (B44)
G(fb|ﬂ7r\88) = cos’ €G(So\7m)G(So|88)
+ Sin2 €G(S1|mr)G(Sl|88)v (B45)
G(s, kk|kk) = €08 €Glg, ) +sin® €Glgy e (BAO)
G(f,,\KK\SS) = cos’ GG(SU\KK)G(S()\SS)
+ sin* €G sy k) Gsijgs),  (B47)
G(fb‘gglgg) = C()S2 eG%SO‘SS) + Sin2 GG%SI‘SS)' (B48)

APPENDIX C: COUPLED-CHANNEL
SCATTERING AMPLITUDES

In the discussion of schematic dynamics in the main text,
we show that the scattering amplitudes for pseudoscalars
have the general form given by Egs. (3)—(5), reproduced
below:

A=K x[1+ (loop x K) + (loop x k) + (loop x k) +- -],
(loop) = real part+iQ/,
K=K+ K+ K+,

where the functions (loop) involve the Q discussed in
Appendix A and the kernels Ky are given in Appendix B.
Here we present the scattering amplitudes for the process
PP, - P,P, in the coupled-channel formalism. It is
important to stress that, although expressed in terms of
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Q and K, the results displayed are quite general and fully
independent of the specific forms chosen for these func-
tions. They just rely on the well-established techniques for
dealing with coupled-channel problems.

The factor (loop x k) corresponds to mixing matrix
elements M-)), which are given by [10]

1.1 L1) 11
M<11 ):_’Cgﬂ'ﬂ\nn [ /2} M(12 )_ KE ;z\)l(l( [QEK/Z]’
1,1 1 1,1
Mél ):_,CEM\KK [QF-/2], Mg2 )= ICEKK)\KK [Qkx/2].
(C1)
1,1/2 1,1/2 1,1/2 1,1/2
My = _’CEHKW)() Qf ], MY = KE;;K\K?;) [Q%s).
1,1/2 1,1/2 1,1/2 1,1/2)
Mg P~ ICE;:K\/K>8) Q7] Mgz P = ICEK8|/K8) [Qks]-
(C2)
M0 = ’CEKKU(K [QQK/Z] (C3)

and

M<1(i.1) — _jcon)

0,1
E,zsm[ 502, MBY ==Kk (@6 /2],
(
(

0,1 0,1 0,1
MY =-K r[8|KK ) 1€275/2], My = ’CEKK)U(K [Q5k /2]
(C4)
0.1/2 1,1/2 0.1/2 1,1/2
MG =K 105, MY =Kk k).
0,1/2 1,1/2 0,1/2 1,1/2)
M( = ICE;:K\/K>8) Q3] Mgz 2= ICEK8|/K8) [Qs]-

(C5)

0.0 0,0 0,0 0,
M<11 )_ -K x| ) [ ,,,,/2] M(12 >_ K:Emz\)KK [Q%K/Z]’

-
MY = K00 108/2). MY = K00 [95,/2].
M<2%O) - ICEKK)\KK [Qkx/2]. Mgg’ )= ’C(KK)\SS [Q55/2].
My = ’CEH i88)[x/2]. myY = ’CEKK)\SS [Qix /2],
MG = =K i) [Q8/2]. (C6)

The factor 1/2 accounts for the symmetry of intermediate
states. It is also present in the functions M (1(}1) and Mgi’1>
because we use symmetrized 78 intermediate states.

As shown in Egs. (6) and (7), the summation of the
geometric series yields scattering amplitudes based on
denominators given schematically by D = 1 — (loop x K),

DD = 1 - Myt = M - My My, ()

DO/ — [1 =m0 g (E12] (L2 g (L172)

12 21 ’
(C8)
0,1 0,1 0,1
DO = [1 = M1 = MY - M Mg, (C9)
0,1/2 0,1/2 0,1/2 0,1/2
D(O,l/2) — [1 _M( /)Ml _ ( /)] M§2 /)M(21 /)’

(C10)

0,0 0,0 0,0
MG - mMBO) 1 - MY
0,0 0,0 0,0

— 1 =M M

DO =1 -

0.0 0,0) , (0,0 0.0 0.0) 5 ,(0,0
-[1- ( >]M§3' )Mgl )—[1 —Mg3 )]M(u )Mg1 )

(0.0 5 £(0.0) 5 £(0.0) (0.0) 5,4(0.0) 5 7(0.0)
— My My My =My M5 My (CL)
The scattering amplitudes for the process PP, — P,P, in
the various channels are given as follows.
(1) Vector sector:
- isospin I = 1:

ay 1 (1,1)7.~(1,1)
A(zm\uh) - pLn {[1 - M22 ]]C(,m‘a/,)
1.1) (1.1
+ MK -0, (€12)
ay 1 (11) ~(1.1)
A(KK|“b) B p.h {M21 ’C(nﬂ\ab)
(1 1)74~(1.1)
+[1 =My VK kg H (= u). (C13)
- isospin [ = 1/2:
i) 1 (1.1/2)1,-(1,1/2)
(zKlab) ™ p(1,1/2) {[1-M3, ]’C(nK\uh)
(L.1/2) 4~(1.1/2)
+Mi; K(K8|ab)}
MZ_MZ 2
X 2t+s—2(M§+M%()+M ’
N
(C14)
(1.1/2) (1.1/2) 1+(1.1/2)
A(KS\ab) D 1/2 {M K(ﬂK\ab)
11 2)7~(1.1/2
1w )
M2 _M2 2
X 2t+s—2(M§+M%()+M
s
(C15)
- isospin I = 0:
o 1 (1,0)
A(KK\uh) ~ p(lo) ’C(KK|ah)(t —u). (Cl16)
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(2) Scalar sector:
- isospin I = 1:

for isospin channel 7 reads

327 &
MW = —Z (2J + 1)P,(cos Q)fgmfm) (s),

) 2 (D1)

where f MW

(s —4M2)/s.

is the nonrelativistic scattering amplitude and

Our amplitudes are written as

Egi‘)ﬂﬂ') + A<1J) o

(nx|zn)

Al =A

(nx|mr)

(D2)

In the c.m. frame, one has (# — u) = (s — 4M2) cos 6 and

A{;m\zm) = AE(I)WfI)IUZ) + [(S - 4M2) cos e]AEnﬂ\)ﬂﬂ) +-
32n’ (0.1)

X0 (s)+3cos0f ) ()], (D3)

P

with

- isospin I = 1/2:

12 _ L 00/2)14-01/2)
AC) Ly oy wkian) = pyoiz (= Mo opaian
(z8lab) — 1(0.1) 22 (n8|ab) (1,1/2) 1+(0,1/2)
D e + M, IC(Kg‘aw}, (C19)
+ M5 K b (€17)
o2 _ 1 (0.1/2) 3-(0.1/2)
1 (K8lab) — D(o,l/z){ 21 (zK|ab)
1) 1 2 (0.1)4~(0,1)
(KK|ab) —D(o,1){ 21 (a8ab) +[1-M M Uz)]lCE(,)(’él/azg)}. (C20)
_ (o 1)7,~(0.1)
+1 ]IC(KK\ab)}' (C18) - isospin I = 0:
|
00 1 0.0 0.0 0,0)  £(0.0)1,-(0,0 0.0 0.0 0,0) 5 £(0.0)7,~(0.0
Al = Ty (1= M5 (1= M)~ MO MGOUCED a5 (1= M) + MM KGR,
0.0 0,0 0,0) 5 £(0.0)1 (0,0
+ M0 (1= M5 + MG M5, )]’Cﬁsg\fw)}, (C21)
00 1 0.0 0,0 0,0) 5 7(0,0)1,~(0.0 0.0 0,0 0,0) 5 7(0,0)\ 1~(0.0
ko = o (M1 (1= M)+ My MO+ (1= M) (1= M) = M MK
00 0.0 0,0)  £(0.0)1 (0.0
+ [M§3 '(1- M) +M§3 ‘M) ”’%lb)}v (C22)
0.0 1 0.0 0.0 0,0) 5 7(0.0)1,~(0.0 0.0 0.0 0,0)  £(0.0)1,-(0.0
A@@=ajHMNuw@5+MNMJMAWHMJ04AU+MJMHMMW
0.0 0,0) 5 7(0.0)1,~(0.0
[0 =M1 = M5 = MMV - (C23)
FO0 Vs —AM: 400 (D4)
APPENDIX D: 7z PHASE SHIFTS (anlem) = 32/ mnlem)’
Most examples discussed in the main text refer to zz (s — 4M2)32
scattering, and the partial-wave expansion of the amplitude f E}lmll)ﬂ 5 = ~ % El;rl\zrﬂ)' (D5)

967+\/s

From now on, we drop all subscripts and superscripts and
express the amplitude f in terms of phase shifts § and
inelasticity parameters 7 as [15]

1 .
= —[ne*® —1]. D6
f =5l = 1] (Do)
In order to obtain 6 and # from the AYD " one writes

nx|nn’
f =a+ib, with a = Re[f] and b = Im[f] and Eq. (D6)
yields

1 4+ 2if =[1 —2b] + 2ia = n[cos 26 + isin26]. (D7)

Thus,

[1—2b)* +4a?,
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2a
§=tan"! |————|. D9
an [1 - Zb] (D9)
The alternative form
1 sin 26
5 =—tan™! , D10
2 [cos 25] (D10)

1-2b
cos20 = —

p (D11)

2
sin 26 = —a,
n

1s more convenient in numerical calculations because, as
n > 0, the signs of sin 26 and cos 26 in Eq. (D11) are well
defined and the quadrant assignment of 20 is unambiguous.
This yields continuous results in the interval 0 < 6 < 7.
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