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Meson-meson amplitudes are important on their own and also play key roles in analyses of heavy-meson
and tau decays. In this work we propose a new phenomenological model suited to all SUð3Þ mesonic two-
body final-state interactions up to energies around 2 GeV. It is aimed at replacing those entering the old
isobar model, produced in the 1960s, long before the development of QCD. The only similarity between
our new proposal and amplitudes used in the isobar model concerns vector resonances in the elastic regime.
In other situations, especially those involving scalar resonances and coupled channels, the isobar model is
not compatible with post-QCD dynamics. In order to support these claims convincingly and to motivate our
approach, we consider applications to the ππ amplitude and compare our version with the isobar model in
several different instances. We also show that the new model provides a clear indication of the mechanism
responsible for the sharp rise observed in the ππ phase around 1 GeV. The phenomenological amplitudes
proposed here are suited to any number of resonances in a given channel and rely just on masses and
coupling constants as free parameters. Concerning theory, they incorporate chiral symmetry at low
energies, include coupled channels, and respect unitarity whenever appropriate.
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I. MOTIVATION

In the last decade, a considerable amount of precise data
has been produced from BABAR, Belle, BES, LHCb
experiments on nonleptonic three-body decays of D and
Bmesons as well as on tau decays into pseudoscalars. More
comprehensive investigations can be done nowadays, using
the very large and pure samples provided by the LHC
experiments, and still more data is expected in the near
future, including neutral particles, with Belle II, BES III,
and LHCb (Run 2) experiments.
These decays involve two distinct sets of interactions.

They begin with a primary vertex, in which the light SUð3Þ
quarks produced in the weak reaction disturb the surround-
ing QCD vacuum and give rise to an initial set of mesons.

This state then evolves by means of purely hadronic
final-state interactions (FSIs), whereby mesons rescatter
many times before being detected. This rich hadronic final-
state structure is an important source of spectroscopic
information about resonances and we recall that the
existence of the controversial scalar states f0ð500Þ [1]
and K�

0ð700Þ [2] was confirmed in three-body decays.
Final-state interactions are also relevant in the study of CP
violation [3].
The analysis of nonleptonic three-body heavy-meson

decays is technically involved and relies on models. The
standard isobar model (SIM) is by far the most popular
choice among phenomenologists interested in resonance
parameters. It was proposed in the early 1960s, long before
the development of QCD, and fails to incorporate the new
understanding of quark dynamics produced by the theory.
Its basic assumption is that a decay amplitude can be
represented by a coherent sum of both nonresonant and
resonant contributions, with emphasis on the latter. The
amplitude for the decayHðQÞ → PaðqaÞPbðqbÞPcðqcÞ of a
heavy meson H into three pseudoscalars P is denoted by T
and depends on the invariant masses m2

ab¼ðqa−qbÞ2
and m2

ac ¼ ðqa − qcÞ2.
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What we define as the standard isobar model assumes
that T can be written as

T ðm2
ab; m

2
acÞ ¼ cnrτnrðm2

ab; m
2
acÞ

þ
�X

k

ckτkðm2
abÞ þ

X
j

cjτjðm2
acÞ

�
; ð1Þ

where k and j are resonance labels that can be the same for
a symmetric decay. The first term in Eq. (1) is nonresonant
and that within square brackets implements the quasi-two-
body or (2þ 1) approximation, in which only the inter-
actions of a pair of particles matter and the third one the
bachelor is just a spectator. The τkðsÞ functions, for
s ¼ m2

ab, m2
ac, represent dynamic two-body amplitudes

and the complex coefficients ck ¼ eiθk are fitting param-
eters. In the absence of a theory, the first term is usually
taken to be τnr ¼ 1. For each resonance considered, one
uses τk ¼ ½FF� × ½angular factor� × ½line shape�k, where
[FF] stands for form factors, [angular factor] is associated
with spin, and ½line shape�k represents a Breit-Wigner (BW)
function depending on a mass mk and a width Γk, given by

½line shape�k → ½BW�k ¼
1

½s −m2
k þ imkΓk�

: ð2Þ

For some states, variations such as the Flatté and Gounaris-
Sakurai representations are used. In applications, both the
qualities and quantities of resonances employed are regu-
lated ad hoc and the outcome of isobar model analyses are
values for masses, widths, fit fractions, and sometimes
mixing couplings. In particular, fit fractions are associated
with the complex parameters cnr and ck, which are neither
directly related to an underlying dynamics nor allow the
identification of substructures. Important limitations of the
isobar model are presented below.
(1) Even if one overlooks the problem of ascribing

physical meanings to parameters extracted from the
isobar model, there is another issue. Strictly speak-
ing, their numerical values depend on the particular
assumptions underlying how Eq. (1) is used, namely,
the nonresonant term and the number and isospins of
resonances employed. Therefore, the numerical
meaning of the parameters extracted always remains
attached to the specific reaction employed to derive
them. Final-state interactions incorporated into the
decay amplitude T include both proper three-body
interactions and a wide range of elastic and inelastic
two-body subamplitudes A involving resonances
and coupled channels, as we review in Sec. II. In
a given decay, the main information about resonan-
ces is codified in the A’s and, even if there are
exceptions, it is important to distinguish them from
T . A conspicuous difference between these ampli-
tudes is that the latter includes weak vertices and the
former does not, but this is sometimes bypassed in

the literature. For instance, there is no justification
for the assumption that theA’s are either identical or
proportional to T , as found in a partial-wave
analysis of the S-wave K−πþ amplitude from the
decay Dþ → K−πþπþ produced some time ago [2].
As a matter of fact, the empirical phase is different
from that produced by LASS for Kπ scattering data
[4]. As expected, this discrepancy arose because one
was comparing different objects and was later
explained by considering meson loops in the weak
sector of T [5–8].

(2) The extraction of information from the isobar
model is hampered by the presence of nonresonant
terms. An important message brought to hadron
physics by QCD is that, provided enough energy is
available, the light-quark condensate does show
up and several pseudoscalars can be produced
in a single vertex. For instance, the process
e−eþ → 4π involves the multimeson matrix element
hππππjJμγ j0i, where Jμγ is the electromagnetic current
[9]. A similar matrix element, with the weak current
ðV − AÞμ, describes the decay τ → ν4π [9]. In a
recent work [10], we studied the doubly Cabibbo-
suppressed decayDþ → K−KþKþ departing from a
nonresonant term based on the axial-current matrix
element hK−KþKþjAμj0i, describing the annihila-
tion of the Dþ into a Wþ which subsequently
hadronizes. In that case, nonresonant terms and
those involving resonances are entangled by a kind
of diagrammatic continuity.

(3) In principle, the functions τkðsÞ in Eq. (1) do contain
information about two-body interactions, but
extracting it is difficult, for isospin channels are
not clearly identified. Scattering amplitudes A de-
pend on both the angular momentum J and the
isospin I of the channel considered, whereas just a
J dependence can be extracted from an empirical
decay amplitude τk. Therefore, an attempt to extract

AðJ;IÞ from τðJÞk would amount to an artificial
generation of physical content from the reaction
considered.

(4) For processes requiring several resonances with the
same quantum numbers, SIM amplitudes given by
sums Σckτk violate unitarity, a criticism raised by
many authors [11–13]. At present, there are solid
conceptual techniques aimed at preserving unitarity
in amplitudes involving several resonances [14], as
discussed in Sec. II. Thus, nowadays, it is difficult to
justify the use of problematic guess functions based
on sums of individual line shapes given by Eq. (2).

(5) Meson-meson isoscalar amplitudes A include im-
portant inelasticities due to couplings of intermedi-
ate states. For instance, in ππ scattering the KK̄
inelastic channel [15] opens at E ≃ 1 GeV. So, this
energy represents the upper bound for the validity of
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Eq. (1), since there is no room in the BW-like
representation of functions τk [Eq. (2)] for the
incorporation of coupled channels. In general, guess
functions better suited for accommodating data
should have structures similar to those used in
meson-meson scattering [15–17]. In the SIM, the
guess functions that are usually employed are not
suited to accommodate coupled channels. The role
of resonances above inelastic thresholds is discussed
in Sec. V.

All of the problems of the standard isobar model
mentioned above tend to corrode the physical meaning
of the parameters it yields from fits. Since it was proposed
more than half a century ago many of the limitations
pointed out above were understood and tamed, especially
owing to the formulation of QCD. As a consequence,
nowadays, serious flaws of the model are already rather
clear, such as that it violates unitarity, does not incorporate
isospin, and especially important is totally unsuited for
dealing with coupled channels. In the SUð3Þ sector,
scattering amplitudes for pions, kaons, and etas are strongly
coupled and cannot be represented as sums of individual
contributions. At present, as is well known, QCD cannot be
directly applied to heavy meson decays, but their effective
counterparts can. Effective Lagrangians rely only on
hadron masses and coupling constants, ensuring that the
physical meaning of parameters is preserved from process
to process. Thus, guess functions for fitting heavy-meson
decay data departing from Lagrangians deal with the same
free parameters as employed in scattering amplitudes. This
makes the mutual comparison of their values meaningful.
This work is part of a program aimed at constructing

guess functions for heavy-meson decays departing from
effective Lagrangians. Here, we concentrate on the two-
body scattering amplitudesA, which are directly associated
with observed quantities and also important substructures
of decay amplitudes. We depart from a previous work on
Dþ → K−KþKþ where a three-body amplitude was con-
structed based on effective Lagrangians with chiral sym-
metry and contained unitarized scattering subamplitudes
[10]. Although fits to Dalitz plot data were better than those
based on the standard isobar model [18], that work was
performed in the K-matrix approximation. We draw atten-
tion to the fact that this K-matrix approximation is not the
same thing as the K-Matrix approach [19] used in some
amplitude analyses. Here, we propose a model which
allows one to go beyond this approximation and discuss
its implications.
Our presentation is organized as follows. In Sec. II we

review how heavy-meson decay amplitudes are related to
weak vertices, scattering amplitudes, and form factors. This
is intended to provide a broad conceptual framework for
criticisms of the isobar model. The full scattering ampli-
tudes for the SUð3Þ pseudoscalars in the coupled channel
formalism are presented in the Appendix C, combining

interaction kernels and two-meson propagators given in
Appendices A and B. In Sec. III we present the full
scattering amplitudes and specialize to the ππ amplitude,
which is used as a standard for assessing the limitations of
the isobar model. In Sec. IV we discuss these limitations
regarding post-QCD physics and unitarity. In Sec. V we
discuss the impact of coupled channels on the problem and
show that the meaning of a resonance as an independent
contribution is lost in the inelastic region, supporting our
claim that BW line shapes should not be used above 1 GeV.
We also compare coupled and uncoupled amplitudes and
show that the impact of coupling is huge. In Sec. VI we
present our model for the real part of two-meson propa-
gators which allows one to go beyond the K-matrix
approximation. In Sec. VII we add an extra resonance to
each scalar channel using the methodology we developed
and show the potentiality of our model for extensions to
higher energies. Finally, in Sec. VIII we summarize our
conclusions.

II. SCHEMATIC DYNAMICS

The theoretical description of a heavy-mesonH decaying
into three light pseudoscalars PaPbPc involves several
classes of entangled problems and is necessarily rather
complicated. Below, we use simple topological arguments,
based on hadronic degrees of freedom, to classify these
problems. We rely on building blocks determined by proper
hadronic interactions, defined as those associated with
diagrams that cannot be separated into two pieces by cutting
hadron lines only. As one is dealing with weak and strong
interactions simultaneously, it is convenient to isolate these
two sectors as much as possible.
The basic weak interactions producing the decay of a

heavy meson involve quarks in the QCD vacuum and were
classified by Chau [20]. At the hadronic level, the primary
weak vertex contains two kinds of proper Feynman dia-
grams (shown in Fig. 1) describing the processes H →
PaPbPc and H → PaRx, where Rx is a light resonance
which later decays as Rx → PbPc. At this stage, this
resonance is described by a bare pole and does not have
a width yet. The green blob does not include hadronic
degrees of freedom, but can contain strong processes in the
form of quarks and gluon exchanges. In the literature the
primary vertex is described by means of either factorization
techniques [21] or effective Lagrangians [22].

R

H

P

(a) (b)

P

P

P

H W W

FIG. 1. Contributions to the primary weak vertex: (a) H →
PaPbPc and (b) H → PaRx.
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The mesons produced in diagram (a) of Fig. 1 can go
directly to the detector and give rise to a nonresonant
contribution. Alternatively, it is possible that the hadrons
produced in diagrams (a) and (b) of Fig. 1 and 1(b) have
various forms of strong interactions before reaching the
detector. In this case, one talks about FSIs, which are
necessarily strong.
Nowadays, most approaches tend to organize the FSIs

departing from chiral perturbation theory (ChPT).
Although lattice QCD is improving [23], ChPT still is
the best available effective representation of QCD at low
energies [24–26] and can accommodate resonances [27].
As resonances correspond to nonperturbative states, pre-
dictions from ChPT are precise up to energies below the
ρð770Þ mass. Beyond that point, one has to resort to
extensions of ChPT, which may be performed by means
of either dynamical models [10,16,19,28,29] or dispersion
relations [17,30]. Here we describe the basics of the former
approach, which we find more suited to phenomenological
studies of problems involving several resonances. The idea
is to define a few basic building blocks, as displayed in
Fig. 2, and to construct all relevant interactions departing
from them. The diagram in diagram (a) of Fig. 2 represents
a four-meson contact interaction, predicted by ChPT to be
the single leading contribution at low energies and corre-
sponds to an amplitude given by a second-order polynomial
in momenta and meson masses. The process in diagram (c)
of Fig. 2 is a higher-order term, describing a proper six-
meson vertex. Resonances are also included in the chiral
formalism [27] and the diagrams (b) and (d) of Fig. 2 are
associated with their decay and scattering amplitudes. To
our knowledge, the diagram (c) in Fig. 2 has not yet been
included in realistic calculations of heavy-meson decays,
whereas interactions described by diagram (d) of Fig. 2
were considered in a phenomenological description of the
process σσðρρÞ → 4π contributing to ππ scattering [29].
The diagrams of Fig. 2 resemble interaction potentials V

in quantummechanics and, to determine the full solution of a
problem, one has to solve a dynamical equation analogous to
that of the Lippmann-Schwinger equation. This is not
feasible in field theory and one has to resort to a piecemeal
evaluation of perturbative corrections. The procedure is
similar to that used in quantum mechanics, where full and
free solutions are related by a series of the form
1þ gV þ gVgV þ � � �, where g is the free propagator. In
the present problem, one deals with relativistic propagators

involvingmesonic states, denoted byΩ. In order to illustrate
this procedure, in Fig. 3 we show some perturbative
corrections involving a single loop to the four-meson contact
term of diagram (a) in Fig. 2. The diagrams (a) and (b) of
Fig. 3 involve propagation betweendifferent points,whereas
those in diagrams (c) and (d) of Fig. 3 are local and are
incorporated into actual values of masses and coupling
constants. Our main concern are diagrams (a) and (b)
of Fig. 3.
A particularly important point in this constructive

approach is that the s-channel contribution of Fig. 3(a)
is complex and one writes ΩðsÞ ¼ ΩRðsÞ þ iΩIðsÞ, where
ΩR and ΩI are the real and imaginary parts. The function
ΩIðsÞ is well behaved and underlies imaginary contribu-
tions to the FSIs, including resonance widths. In field
theory, this kind of imaginary components in some classes
of propagators is of fundamental importance, as it is
associated with unitarity. A far-reaching consequence is
that reliable amplitudes must have a well-defined balance
between real and imaginary parts. If this is not the case,
they fail to conserve probability, as in some instances of the
isobar model. Concerning the real terms ΩR, explicit
calculations show that they contain infinite contributions
Λ∞. Thus, formally, one has ΩR ¼ ΩR þ Λ∞, where ΩR is
a known regular function. The elimination of Λ∞ requires
renormalization, bringing unknown real constants into the
problem. The model presented in this work regards ΩR, the
real part of the two-meson propagator.
The study of FSIs in heavy-meson decays relies on

nonperturbative amplitudes and their derivation requires the
summation of infinite series of perturbative contributions.
We exemplify this procedure in the case of a unitary meson-
meson scattering amplitude, denoting the full result by A
and partial contributions with n loops by An. We begin by
defining a kernel Kn as the part of An that cannot be
separated into two pieces by cutting s-channel two-meson
loops only. The first kernel is K0, associated with the tree
processes displayed in diagrams (a) of Fig. 4, and it is a real
function because at this point we are still dealing with a
bare resonance, described by a pole at its mass. The tree
amplitude is then given by A0 ¼ K0 and includes crossing
symmetry.
The single-loop correction is shown in diagrams (a) and

(b) of Fig. 4 and involves three terms in the s, t, and u
channels. The first one involves a two-meson s-channel
propagator, whereas the last two do not and are grouped
into a new kernel K1. The case of two loops is shown in

(b)(a) (d)(c)

FIG. 2. Building blocks in the strong sector: (a) LO four-meson
contact term, (b) NLO two-meson-resonance coupling, (c) six-
meson contact term, and (d) two-meson-two-resonance coupling.

(a) (c) (d)(b)

FIG. 3. One-loop corrections to the contact four-meson vertex:
(a) s channel, (b) t and u channels, (c) mass term, and (d) vertex
term.
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diagrams (c) of Fig. 4, where K2 is a higher-order kernel
and the s-channel is represented by three successive K0

interactions. Repeating this indefinitely and adding the
results, we obtain a scattering amplitude of the form

A ¼ K × ½1þ ðloop ×KÞ þ ðloop ×KÞ2
þ ðloop ×KÞ3 þ � � ��; ð3Þ

loop ¼ ΩR þ iΩI; ð4Þ

K ¼ K0 þK1 þK2 þ � � � : ð5Þ

The geometric series in Eq. (3) can be summed and one has

A ¼ K
D
; ð6Þ

D ¼ 1 − ðloop ×KÞ: ð7Þ

As discussed in the sequence, 1=D is the post-QCD version
of the BW line shape (2). In practice, the evaluation of the
series given by Eq. (5) is unfeasible and, in the framework
of chiral perturbation theory, even the structure of the next-
to-leading-order (NLO) term K1 is already cumbersome.

So, we keep just the dominant term and rely on the
approximation K ≃K0.
A very important feature of this result is that the

amplitude A is unitary, provided K is real. This property
is quite general and derives from the structure of the
denominator D, which is suitably complex owing to the
well-defined imaginary function ΩI in Eq. (4). The forms
adopted for both ΩR and K are irrelevant for this property
of A, as discussed in Sec. IV. This justifies the widespread
use of the K-matrix approximation, which is implemented
by neglecting ΩR and writing

K-matrix → loop ¼ 0þ iΩI: ð8Þ

The amplitudes A are key elements in the description of
heavy-meson decays, for they are present in the FSIs which
supplement the weak process of Fig. 1. Strong interactions
involving three bodies can be very complicated. The
simplest class of FSIs corresponds to the (2þ 1) approxi-
mation, represented in Fig. 5, in which the first diagram in
Fig. 5(a) represents the nonresonant contribution and the
other two include particle interactions in the presence of a
final meson acting as a spectator. Diagrams (a) in Fig. 5
represents the heavy-meson decay amplitude in the (2þ 1)
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FIG. 4. Scattering amplitudes A and kernels K: (a) tree level, (b) first perturbative correction, (c) second perturbative correction, and
(d) full amplitude.
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approximation and the blob indicated by F is usually called
the form factor, which many authors take as the single
contribution to the decay [21]. It is isolated in Fig. 5(b) and,
denoting by g the resonance-pseudoscalar coupling con-
stant, the function F can be related to the meson-meson
scattering amplitude by

F ¼ g½1þ ðloop × AÞ� ¼ g
1

D
; ð9Þ

whereD is the denominator given in Eq. (7). The imaginary
part of D gives rise to a finite width to the resonance.
In order to go beyond the (2þ 1) approximation, one

would need to tackle a rather complicated three-body
problem, which involves both multiple scattering series
and proper three-body interactions, as indicated in Fig. 6. It
is worth stressing that these FSIs are not a matter of choice,
since they are compulsory contributions to the problem.
Part of this sector can be tackled by means of Faddeev
techniques [5] or the Khuri-Treiman formalism [7,31] and,
in spite of a continuous progress towards a more complete
description of three-meson decay dynamics [32], results are
still incipient for heavy-meson decays. The Khuri-Treiman
formalism, in particular, emphasizes crossing symmetry
and can allow one to quantify the implications of the
K ≃K0 approximation we use, which does not preserve
crossing symmetry.

In summary, the decay of a heavy meson into three
light mesons involves two distinct sectors: a weak
primary vertex and a structure of final-state strong inter-
actions. Although the former is not simple, the latter may be
expected to be much more complicated and progress in this
area depends on the definition of a hierarchy among strong
problems. The simplest subset of problems is provided by
the (2þ 1) approximation and depends on meson-meson
scattering amplitudes. Nowadays, even these two-body
interactions are not sufficiently well known for systems
involving pions, kaons, and etas within the phase space
provided by D and B decays.

III. SCATTERING AMPLITUDES

In this workwe present a practical model for the inclusion
of any number of resonances in phenomenological meson-
meson scattering amplitudes, so that they can be used as trial
functions in more complicated reactions, such as heavy-
meson or τ decays. Instead of presenting the model in its full
complexity at once, we choose to construct it gradually, so as
to emphasize possible points of contact with the isobar
model and point out limitations of the latter.
The scattering amplitudes AðJ;IÞ

ðkljabÞ for the process
PkPl → PaPb in a channel with spin J and isospin I
are given in Appendix C and involve four kinds of
ingredients:

+=

+=(b)

(a) +T W WW
F

A

AF

FIG. 5. (a) Decay amplitude in the 2þ 1 approximation and (b) the form factor.

= +

++ + ...

T WT

W W
F

A
A

A A

FIG. 6. Decay amplitude: 2þ 1 approximation, supplemented by three-body interactions.
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(1) Coupled channels: This sector of the problem is
rather standard and model independent. In our
notation, the coupling among the various channels
is implemented by the mixing matrices MðJ;IÞ

ab given
by Eqs. (C1)–(C6).

(2) Multiresonance dynamics: The dynamical content of
meson-meson ðPPÞ interactions is incorporated into

the kernels KðJ;IÞ
ðkljabÞ given in Appendix B, which are

real functions of masses and coupling constants.
They include crossed amplitudes at tree level, but no
loops in the t and u channels and in the language of
Fig. 4 correspond to the approximation K ≃K0.
While in kernels, resonances have no widths and
are characterized just by their poles. The inclusion
of several resonances is performed by adding
these poles and the reader may want to inspect
Eqs. (B31)–(B36) for an example.

(3) Unitarization: We neglect four-meson intermediate
states and the unitarization of amplitudes is directly
associatedwith the s-channel two-mesonpropagators
Ω that occur in the full scattering amplitude. These
functions, described in Appendix A, contain real and
imaginary parts: Ω ¼ ΩR þ iΩI . The latter, given by
Eqs. (A14)–(A15), are free from ambiguities and
constitute the only source of imaginary terms in the

amplitudes AðJ;IÞ
ðkljabÞ. In particular, resonance widths

are necessarily proportional to ΩI . The real compo-
nent of ΩR has infinite components which are
replaced by renormalization constants. The form of
this component in the case of several resonances is the
object of this work.

(4) Free parameters: The parameters entering our am-
plitudes consist basically of masses and coupling
constants and, in principle, are completely free.
Thus, our amplitudes are guess functions with open
parameters, to be determined by fits do data. Most of
the symbols used to label these parameters were
borrowed from chiral perturbation theory, especially
Ref. [27]. Their numerical meanings, however, are
not exactly the same. In chiral perturbation theory,
the values of parameters are extracted by comparing
results from calculations performed to a given order
with observables. As loops are divergent and need to
be renormalized, values for parameters quoted in the
literature also depend on renormalization scales.
This kind of procedure is theoretically consistent
and yields a precise description of low-energy
phenomena. In the case of heavy-meson decays,
this level of precision cannot be reached because a
wider range of energies is involved and perturbation
does not apply. Thus, in decay analyses, free
parameters do not have the same meaning as their
low-energy counterparts, since they are designed to
be used in a different mathematical structure. In our

amplitudes, free parameters aim at describing the
physics within the energy ranges defined by Da-
litz plots.

At this point it is worth stressing that the model
dependence incorporated in the amplitudes AðJ;IÞ

ðkljabÞ given
in Appendix C is restricted to the kernels K, which depend
on dynamical assumptions, and to the real part ΩR of two-
meson propagators to be discussed in Sec. VI. As the
imaginary part ΩI is unambiguous, the scattering ampli-
tudes are unitary and comply exactly with coupled-channel
requirements for any choices made for K and ΩR. In this
sense, the approach tames model dependence as much as
possible.
In order to make the discussion more concrete, we

concentrate on the case of ππ scattering, described by

the amplitudes AðJ;IÞ
ðππjππÞ, with ðJ; I ¼ 1; 1Þ and ðJ; I ¼ 0; 0Þ,

for comparisons with the isobar model and discussion of
the main features of our model. The extension to other
channels is straightforward. Using Eqs. (C12) and (C21),
we have

Að1;1Þ
ðππjππÞ ¼

ðt − uÞ
Dð1;1Þ f½1 −Mð1;1Þ

22 �Kð1;1Þ
ðππjππÞ þMð1;1Þ

12 Kð1;1Þ
ðKKjππÞg;

ð10Þ

Að0;0Þ
ðππjππÞ ¼

1

Dð0;0Þ f½ð1 −Mð0;0Þ
22 Þð1 −Mð0;0Þ

33 Þ

−Mð0;0Þ
23 Mð0;0Þ

32 �Kð0;0Þ
ðππjππÞ

þ ½Mð0;0Þ
12 ð1 −Mð0;0Þ

33 Þ þMð0;0Þ
13 Mð0;0Þ

32 �Kð0;0Þ
ðKKjππÞ

þ ½Mð0;0Þ
13 ð1 −Mð0;0Þ

22 Þ þMð0;0Þ
12 Mð0;0Þ

23 �Kð0;0Þ
ð88jππÞg;

ð11Þ

where the η is represented by 8. In these results, the
complex mixing matrices, given by Eqs. (C1) and (C6),
have the general structure M ¼ K ×Ω. The denominators
D contain the pole structure of the theory and have the form

Dð1;1Þ ¼ ½1 −Mð1;1Þ
11 �½1 −Mð1;1Þ

22 � −Mð1;1Þ
12 Mð1;1Þ

21 ; ð12Þ

Dð0;0Þ ¼ ½1−Mð0;0Þ
11 �½1−Mð0;0Þ

22 �½1−Mð0;0Þ
33 �

− ½1−Mð0;0Þ
11 �Mð0;0Þ

23 Mð0;0Þ
32

− ½1−Mð0;0Þ
22 �Mð0;0Þ

13 Mð0;0Þ
31 − ½1−Mð0;0Þ

33 �Mð0;0Þ
12 Mð0;0Þ

21

−Mð0;0Þ
12 Mð0;0Þ

23 Mð0;0Þ
31 −Mð0;0Þ

21 Mð0;0Þ
13 Mð0;0Þ

32 : ð13Þ

At low energies, MðJ;IÞ
ab → 0 and the amplitudes (10) and

(11) become the real functions
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Að1;1Þ
ðππjππÞ →ðt − uÞKð1;1Þ

ðππjππÞ →
ðt − uÞ
F2

; ð14Þ

Að0;0Þ
ðππjππÞ → Kð0;0Þ

ðππjππÞ →
ð2s −M2

πÞ
F2

; ð15Þ

where F is the pion decay constant.
As stressed above, these amplitudes are cast in terms of

free parameters, to be obtained from fits to data. Here, in
order to explore their features and, in the want of such fitted
values, we rely on parameters given in Ref. [27].

IV. STANDARD ISOBAR MODEL:
UNCOUPLED CHANNELS

The form of Eqs. (10) and (11) is involved owing to
channel coupling. In order to discuss their contact with the
standard isobar model, in this section we pretend that
the ππ state cannot couple to KK̄ and ηη. Labeling the
corresponding uncoupled amplitudes with U, we have

AUð1;1Þ
ðππjππÞ ¼

ðt − uÞKð1;1Þ
ðππjππÞ

1þKð1;1Þ
ðππjππÞ½ΩP

ππ=2�
; ð16Þ

AUð0;0Þ
ðππjππÞ ¼

Kð0;0Þ
ðππjππÞ

1þKð0;0Þ
ðππjππÞ½ΩS

ππ=2�
; ð17Þ

where Ω are the two-pion propagators discussed in
Appendix A. The kernels are given by Eqs. (B1) and
(B31) and, in order to simplify the discussion, we assume
the value ϵ ¼ 0 for the mixing parameter in Eqs. (B29) and
(B30). Thus,

Kð1;1Þ
ðππjππÞ ¼

1

F2
−
�
2G2

V

F4

�
s

s −m2
ρ
−
sG2

ðρ0jππÞ
s −m2

ρ0
; ð18Þ

Kð0;0Þ
ðππjππÞ ¼

ð2s−M2
πÞ

F2
−
�
12

F4

� ½c̃ds− ðc̃d− c̃mÞ2M2
π�2

s−m2
S1

−
�
2

F4

� ½cds− ðcd−cmÞ2M2
π�2

s−m2
So

−
G2

ðf0jππÞ
s−m2

f0
; ð19Þ

where GV , c̃d, c̃m, cd, cm are coupling constants [27] and
mSo and mS1 are the SUð3Þ octet and singlet scalar
resonances. We further simplify these results by consider-
ing just a single resonance in each channel. In the vector
case, using the approximate identity GV ¼ F=

ffiffiffi
2

p
, one

recovers the classic vector meson dominance result [27]

Kð1;1Þ
ðππjππÞ → −

m2
ρ=F2

s −m2
ρ
; ð20Þ

whereas for the scalar one writes

Kð0;0Þ
ðππjππÞ → −

Θ2ðsÞ
s −m2

So
; ð21Þ

Θ2ðsÞ¼
�
−
½2s−M2

π�½s−m2
So�

F2
þ2½cds− ðcd−cmÞ2M2

π�2
F4

�
:

ð22Þ

Using Eqs. (20)–(22) with Eqs. (16)–(17) and recalling
that the imaginary parts of Ωππ are given by Eqs. (A14) and
(A15), the uncoupled amplitudes can be expressed in terms
of functions M and Γ that resemble masses and widths as

AUð1;1Þ
ðππjππÞ ¼ −

ðt − uÞm2
ρ=F2

s −M2
V þ iMVΓV

; ð23Þ

M2
V ¼ m2

ρ −
m2

ρΩPR
ππ

2F2
; ð24Þ

MVΓV ¼ m2
ρ

96πF2

ðs − 4M2
πÞ3=2

s1=2
; ð25Þ

AUð0;0Þ
ðππjππÞ ¼ −

Θ2ðsÞ
s −M2

S þ iMSΓS
; ð26Þ

M2
S ¼ m2

So −
Θ2ðsÞΩSR

ππ

2
; ð27Þ

MSΓS ¼
Θ2ðsÞ
32π

ðs − 4M2
πÞ1=2

s1=2
: ð28Þ

These results illustrate a number of features from
constructive descriptions of resonances:
(1) Even if we begin with a bare resonance, it acquires a

dynamical width by means of interactions with
pseudoscalars, whereas the s-channel pole present
in the kernel becomes complex. In the case of the ρ,
Eq. (25) yields ΓP → Γρ ∼ 145 MeV, close to the
Particle Data Group value [33].

(2) The functions M shift the resonance masses from
their nominal m values. As indicated by Eqs. (24)
and (27), these are model-dependent effects because
the real parts ΩJR

ππ of the two-pion propagators
contain undetermined free constants, which are
remnants of renormalization. A popular way to
avoid this problem consists in using the K-matrix
approach, in which this function is set to zero by fiat.
We present our alternative In Sec. VI.

(3) Equations (23) and (26) resemble the Breit-Wigner
line shapes given by Eq. (2), but only superficially.
In fact, they are rather different because theM and Γ
are running functions of s. The usual BW expres-
sions, on the other hand, employ masses MBW

V ¼
m2

ρ, MBW
S ¼ m2

So and widths given by
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ΓBW
V ¼ ðs − 4M2

πÞ3=2
96π F2

; ð29Þ

ΓBW
S ¼ CBW

S
ðs − 4M2

πÞ1=2
32π

; ð30Þ

where CBW
S is a coupling constant. Comparing these

expressions with Eqs. (25) and (28), we learn that the
BW line shape is a good approximation for vector
resonances but is unsuited for scalar resonances. The
fact that Eq. (25) is identical to the classic Gounaris-
Sakurai result produced in 1968 [34] indicates that
the vector sector has been stable over the last
50 years. However, the scalar sector is different,
because our understanding of it changed signifi-
cantly after the development of QCD. The ground
state of the theory—its vacuum—is not empty and
chiral perturbation theory introduces this feature into
low-energy physics. In the present case, it gives rise
to the incorporation of both contact interactions
and s-dependent couplings of scalar resonances to
pseudoscalars [27] into the function ΘðsÞ. In this
exercise, even if we assume CBW

S ¼ Θ2ðm2
SoÞ=m2

So,
the BW approximation for scalars remains unsuited,
for all of the rich s dependence of Eq. (22) is lost.

Avery important feature of Eqs. (16) and (17) is that they
are automatically unitary, irrespective of the features of the
kernel K employed, provided it is real, and of the real part
of the two-pion propagator ΩJR

ππ . In practice, an easy way to
check unitarity is to evaluate the inelasticity η, using the

nonrelativistic amplitudes fðJ;IÞðππjππÞ given in Appendix D.

Skipping labels, they are related to the AðJ;IÞ
ðππjππÞ by

f ¼ −
ΩI

2
AðJ;IÞ
ðππjππÞ; ð31Þ

where the ΩI are the imaginary parts of the two-pion
propagator, given by Eqs. (A14) and (A15). Thus, one has
the generic form

f ¼ −
1

wþ i
; ð32Þ

w ¼ 1þKΩR=2
KΩI=2

: ð33Þ

Unitarity is ensured because, for any function of the
form (32), irrespective of the value of w, the inelasticity
parameter [given by Eq. (D8)] is always η ¼ 1 in the
absence of other channels. So, this is a model-independent
result, valid for any choices of K and ΩR.
One now considers the case of several resonances in the

same channel. As shown in Appendix B, the kernel for a
channel containing n resonances represented by individual
terms Kj is written as

K ¼ Kc þK1 þ � � � þKn; ð34Þ

where Kc is a contact term. Using Eqs. (16), (17), and (31),
we write the nonrelativistic amplitude as

f ¼ −
½Kc þK1 þ � � � þKn�ΩI=2

1þ ½Kc þK1 þ � � � þKn�½ΩR þ iΩI�=2
¼ −

1

wþ i
; ð35Þ

w ¼ 1þ ½Kc þK1 þ � � � þKn�ΩR=2
½Kc þK1 þ � � � þKn�ΩI=2

: ð36Þ

This amplitude is unitary because this property does not
depend on the form of the kernel.
In the standard isobar model, on the other hand, uni-

tarized resonances are treated individually and, for each of
them, one would write

fi ¼ −
KiΩI=2

1þKi½ΩR þ iΩI�=2 ¼ −
1

wj þ i
; ð37Þ

wj ¼
1þKjΩR=2

KjΩI=2
: ð38Þ

These unitary terms are then added schematically as
fisobarmodel ¼ αcfc þ α1f1 þ � � � þ αnfn, where the α are com-
plex functions of s. Thus, one has f ≠ fisobarmodel and learns that
the standard isobar model prescription for adding reso-
nances is not compatible with unitarity. This happens
because it treats each resonance as an individual object,
whereas in the amplitude they are necessarily coupled
among themselves by the intermediate states that they
share. Unitarity is a global property that cannot be split as
sums of individual contributions.
In summary, the addition of resonances and unitarization

does not commute and, afterQCD, theSIMstructure is suited
just for the case of a single uncoupled vector resonance.

V. RESONANCES: COUPLED CHANNELS

The qualitative features of coupled channels are dis-
cussed just in the case of the scalar-isoscalar amplitude

Að0;0Þ
ðππjππÞ, including KK and ηη couplings, given by Eq. (11)

and cast in the form

Að0;0Þ
ðππjππÞ ¼

Nð0;0Þ
ðππjππÞ
Dð0;0Þ ; ð39Þ

Nð0;0Þ
ðππjππÞ ¼ Kð0;0Þ

ðππjππÞ þ Cð0;0Þ
ðππjKKÞΩ

S
KK=2

þ Cðππj88ÞΩS
88=2þ CðππjKKj88ÞΩS

KKΩS
88=4; ð40Þ
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Dð0;0Þ ¼ 1þ½Kð0;0Þ
ðππjππÞΩ

S
ππ=2þKð0;0Þ

ðKKjKKÞΩ
S
KK=2

þKð0;0Þ
ð88j88ÞΩ

S
88=2�þCðππjKKÞΩS

ππΩS
KK=4

þCðππj88ÞΩS
ππΩS

88=4þCðKKj88ÞΩS
KKΩS

88=4

þCðππjKKj88ÞΩS
ππΩS

KKΩS
88=8; ð41Þ

CðππjKKÞ ¼ Kð0;0Þ
ðππjππÞK

ð0;0Þ
ðKKjKKÞ − ½Kð0;0Þ

ðππjKKÞ�
2; ð42Þ

Cðππj88Þ ¼ Kð0;0Þ
ðππjππÞK

ð0;0Þ
ð88j88Þ − ½Kð0;0Þ

ðππj88Þ�
2; ð43Þ

CðKKj88Þ ¼ Kð0;0Þ
ðKKjKKÞK

ð0;0Þ
ð88j88Þ − ½Kð0;0Þ

ðKKj88Þ�
2; ð44Þ

CðππjKKj88Þ ¼ Kð0;0Þ
ðππjππÞK

ð0;0Þ
ðKKjKKÞK

ð0;0Þ
ð88j88Þ −Kð0;0Þ

ðππjππÞ½Kð0;0Þ
ðKKj88Þ�

2

−Kð0;0Þ
ðKKjKKÞ½Kð0;0Þ

ðππj88Þ�
2 −Kð0;0Þ

ð88j88Þ½Kð0;0Þ
ðππjKKÞ�

2

þ 2Kð0;0Þ
ðππjKKÞK

ð0;0Þ
ðππj88ÞK

ð0;0Þ
ðKKj88Þ: ð45Þ

A. Close to the poles

The kernels Kð0;0Þ
ðaajbbÞ involving three bare poles are

displayed in Appendix B and a naive inspection of
Eqs. (40)–(45) could suggest that the amplitude (39) would
be highly singular. However, this is not the case. In order to
simplify the discussion, we assume that the mixing angle
ϵ ¼ 0 in Eqs. (B29) and (B30) and, at the vicinity of a pole
(be it So, S1, or S0) the kernels have the general structure

Kð0;0Þ
ðaajbbÞ ≃ −

GaaGbb

Δ
− Baabb; ð46Þ

Δ ¼ ðs −m2Þ; ð47Þ
where the Baabb are finite backgrounds and redundant
indices are skipped. Below, we show that divergent terms

proportional to Δ−2 and Δ−3 cancel out in both Nð0;0Þ
ðππjππÞ and

Dð0;0Þ and the amplitude Að0;0Þ
ðππjππÞ is finite at the pole. Close

to the pole, explicit calculation yields

Nð0;0Þ
ðππjππÞ ≃

1

Δ
f−½G2

ππ þ ΔBππππ�
þHðππjKKÞΩS

KK=2þHðππj88ÞΩS
88=2

−HðππjKKj88ÞΩS
KKΩS

88=4þ Δ½� � ��g; ð48Þ

Dð0;0Þ≃
1

Δ
fðs−m2Þ− ðG2

ππþΔBππππÞΩS
ππ=2

− ðG2
KKþΔBKKKKÞΩS

KK=2− ðG2
88þΔB8888ÞΩS

88=2

þHðππjKKÞΩS
ππΩS

KK=4þHðππj88ÞΩS
ππΩS

88=4

þHðKKj88ÞΩS
KKΩS

88=4

−HðππjKKj88ÞΩS
ππΩS

KKΩS
88=8þΔ½� � ��g; ð49Þ

HðππjKKÞ ¼ G2
ππBKKKK þ G2

KKBππππ − 2GππGKKBππKK;

ð50Þ
Hðππj88Þ ¼ G2

ππB8888 þ G2
88Bππππ − 2GππG88Bππ88; ð51Þ

HðKKj88Þ ¼ G2
KKB8888 þG2

88BKKKK − 2GKKG88BKK88;

ð52Þ

HðππjKKj88Þ ¼ G2
ππðBKKKKB8888 − B2

KK88Þ þG2
KKðBππππB8888 − B2

ππ88Þ þG2
88ðBππππBKKKK − B2

ππKKÞ
− 2GππGKKðB8888BππKK − Bππ88BKK88Þ − 2GππG88ðBKKKKBππ88 − BππKKBKK88Þ
− 2GKKG88ðBππππBKK88 − BππKKBππ88Þ: ð53Þ

These results show that, at the pole, both Nð0;0Þ
ðππjππÞ and

Dð0;0Þ diverge as 1=Δ and yield a finite amplitude, as
expected. They also shed light on a conceptual limitation
of the isobar model. Since the functions H involve
products of coupling constants G and background con-
tributions B from other channels, resonances no longer
behave as individual objects. This contradicts the tacit
assumption underlying the isobar model, namely, that
background terms can be neglected and resonances can
be isolated.
In order to check the importance of background terms,

we consider the case of a hypothetical single octet
resonance of mass m ¼ 1.05 GeV, between the KK and
88 thresholds, where the finite backgrounds are given just
by the chiral LO contact terms in Eqs. (B31)–(B34), with

opposite signs. Using the coupling constants prescribed in
Ref. [27], the nonvanishing contributions come from
Gππ ¼ 8.06 GeV, GKK ¼ 10.76 GeV, Bππππ ¼ −252.69,
BππKK ¼ −110.39, and BKKKK ¼ −191.21, which yield
G2

ππ ¼ 64.93 GeV2, G2
KK ¼ 115.69 GeV2, and HππKK ¼

−22513.61 GeV2. We adopt the K-matrix approximation,
which consists in setting ΩR ¼ 0 and keeping only ΩI.
Using ½ΩS

ππ�I ¼ −191.78 × 10−4 and ½ΩS
KK�I ¼ −67.69×

10−4, one finds Nð0;0Þ
ðππjππÞ ¼ f−64.93þ ½i76.20�g=Δ and

Dð0;0Þ ¼ fi0.62þ i0.39þ ½0.73�g=Δ, where the contribu-
tions involving the background are indicated by ½� � ��. They
cannot be neglected, indicating that Breit-Wigner line
shapes [Eq. (2)] are not suited for describing resonances
above a crossing threshold.
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B. K-matrix results

As already stressed, the imaginary component ΩI of the
two-meson propagators Ω is fully determined by theory. In
the widely used K-matrix approach, only this part is kept
and the choice ΩR ¼ 0 amounts, in fact, to a disguised
model for the real part. In the case of uncoupled channels,
this choice has the advantage of allowing a clear identi-
fication of the nominal value of the resonance mass. In this
subsection, we present numerical studies for the scalar-

isoscalar amplitude Að0;0Þ
ðππjππÞ given by Eq. (11) and rely on

expressions for the kernel given in Appendix B, with
resonance massesmfa ¼ 1.37 GeV, mfb ¼ 0.98 GeV, and
coupling parameters fixed in Ref. [27]. Once the value of
ΩR is fixed, predictions only depend on the models used for
the interaction kernel.
In Fig. 7 we neglect KK̄ and ηη couplings and compare

results from two versions of Eq. (B31), both with ϵ ¼ 0.
One of them keeps just its third term, representing an octet
resonance (R), while the other also includes the first term,
describing a contact chiral interaction (Cþ R), which is
one of the signatures of post-QCD physics. In the jargon of
the isobar model, the resonant structure corresponds to a
BW line shape, as discussed in Sec. IV. One notes that the
contact term is rather important and the dominance of the
resonance is restricted to a narrow band around its mass
mfb. Close to threshold, the chiral contribution yields
Eq. (15) and gives the correct magnitude for the scattering
length.
The opening of the KK̄ channel is studied in Fig. 8, for

the same Cþ R case considered before, keeping the
resonance mass fixed at mfb ¼ 0.98 GeV, while adopting
two fake values for MK, namely, 0.48 and 0.50 GeV, so
as to have the KK̄ threshold both below and above it.

As expected, all curves coincide below the thresholds.
Above them, however, one learns that the impact of the
coupling is important, since the previous Cþ R form
provides a very poor representation for the new results,
irrespective of the value of MK chosen. At threshold,
one has a usual cusp in the real part of the amplitude
formfb < 2MK and a discontinuity in its imaginary part for
mfb > 2MK . Beyond that point, the real curves display the
upward bending associated with the polynomial chiral
background, whereas usual connections between real
and imaginary parts are lost owing to inelastic effects.

FIG. 7. Predictions for real (full curves) and imaginary (dashed
curves) parts of the scalar-isoscalar ππ amplitude based on a
single resonance (R) and the same resonance superimposed to a
chiral contact term (Cþ R).

FIG. 8. Predictions for real (full curves) and imaginary (dashed
curves) parts of the scalar-isoscalar ππ amplitude based on a
single resonance superimposed to a nonresonant background
(NRþ R) for no coupled channels (black) and a coupled KK̄
channel with threshold below (blue) and above (red) the reso-
nance mass.

FIG. 9. Predictions for real and imaginary parts of the scalar-
isoscalar ππ amplitude based on two resonances superimposed to
a nonresonant background (NR+fa þ fb) with a coupled KK̄
channel, for mixing parameter ϵ ¼ 0 (full lines), ϵ ¼ π=4 (dotted
lines), and ϵ ¼ π (dashed lines).
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Altogether, the shift in MK affects the amplitudes only in a
narrow region of about 200 MeV above threshold.
In the scalar-isoscalar sector, SUð3Þ gives rise to octet and

singlet states So and S1, which can be combinations of the
observed resonances fa ¼ fð1370Þ and fb ¼ fð980Þ, with a
mixing angle ϵ defined by Eqs. (B29) and (B30). The
influence of this parameter on the ππ amplitude is shown
in Fig. 9 for two resonances superimposed to the chiral
background, adopting ϵ ¼ 0; π=4, π=2. All curves coincide
up to E ¼ 0.98 GeV, but become quite different afterwards,
with the most striking feature being the change in the number
of zeros of the real part over the energy range considered. The
influence of the mixing angle over the phase shift δð0;0Þ and
inelasticity parameter ηð0;0Þ is presented in Fig. 10.

VI. MODEL FOR TWO-MESON PROPAGATOR

The discussion presented here is general and applies to
all meson-meson channels. The amplitudes given in
Appendix C are model dependent through both the kernels
K and the real components ΩR of the two-meson propa-
gators Ω ¼ ΩR þ iΩI . The dependence on K has a
dynamical character, since it relies on interactions and
parameters from Lagrangians, such as masses and coupling
constants, whereas the ΩR discussed here is a phenom-
enological model.
The intermediate two-meson propagators for states a and

b are given in Appendix A [Eqs. (A11) and (A12)] and their
complex forms for J ¼ 0, 1 read

ΩS
ab ¼ −

ΠabðsÞ
16π2

; ð54Þ

ΩP
ab ¼ −

λ

48π2s
ΠabðsÞ; ð55Þ

where λ is the Källén function, and Πab represents the
regular parts of loop integrals, which are determined by
theory and shown in Eqs. (A4)–(A9). Owing to

renormalization, the real parts of the functions Ω must
be supplemented by arbitrary constants to be fixed by
experiment, and that is why a model dependence comes in.
In the framework of chiral perturbation theory, these
constants are coefficients of polynomials on external
momenta [16].
The model introduced here consists in a generalization

scheme for Eqs. (54) and (55) and its explicit form depends
on the number of resonances considered, which are denoted
by Rx; Ry; Rz � � �. Their masses and coupling constants are
taken as free parameters so that they can be fitted in
phenomenological analyses.
In order to motivate the choices we have made, we

consider the case J ¼ 0 and begin with the case of a single
resonance, which is written as

ΩS
abðsÞ →

1

16π2
f½FxðsÞΠR

abðm2
xÞ� − ΠabðsÞg; ð56Þ

where the term within square brackets is real and corre-
sponds to a subtraction. It generalizes an expression
employed earlier in the study of the Kπ amplitude [6].
The function FxðsÞ is a form factor that satisfies the
following conditions.
(a) FxðsÞ → 0 for s → 0: This is important to ensure that

loop corrections do not spoil chiral symmetry results at
low energies. In that region, the symmetry predicts
amplitudes that are proportional to the real contact
terms present in the kernels given in Appendix B, and
therefore the functions Ω cannot show up there.

(b) FxðsÞ ¼ 1 for s ¼ m2
x: This condition implies that the

real component satisfiesΩSR
ab ðm2

xÞ ¼ 0 and was chosen
with practical purposes in mind, so that results
coincide with those of the K-matrix approach at
s ¼ m2

x. In the case of uncoupled channels, this allows
the nominal mass of the resonance to be identified with
a zero of the real part of the scattering amplitude. In
the case of coupled channels, this property is preserved

FIG. 10. Predictions for the scalar-isoscalar ππ phase shift δð0;0Þ (left) and inelasticity parameter ηð0;0Þ (right) based on two resonances
superimposed to a nonresonant background (C+fa þ fb) with a coupled KK̄ channel, for mixing parameters ϵ ¼ 0 (full lines), ϵ ¼ π=4
(dotted lines), and ϵ ¼ π (dashed lines).
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in the elastic regime below the first threshold but
changes afterwards, as shown in Fig. 9. The subtrac-
tion performed at the resonance mass is a conservative
one, intended to prevent the increase of free param-
eters in the model.

(c) FxðsÞ is finite for s → ∞: Chiral symmetry holds at
low energies only, where it requires subtraction terms
as polynomials in s. However, these may become too
important at high energies where the theory is no
longer valid, and this unwanted behavior is avoided by
imposing the form factor to be bound in that limit.

The class of functions satisfying these criteria is, of
course, very large and our choice is

FxðsÞ ¼
4m2

xs
ðsþm2

xÞ2
; ð57Þ

which has a maximum at s ¼ m2
x. In the left panel of Fig. 11

we show the energy dependence of the two-meson propa-
gators for ππ, Kπ, πη, KK̄, Kη, and ηη states given by

Eq. (54), where it is possible to see the different scales
associated with SUð2Þ and SUð3Þ sectors. In the right panel
we present model predictions based on Eq. (56) for the
isospin-0 channel, based on a single fb resonance of mass
mfb ¼ 0.98 GeV. We notice that the subtraction makes the
real parts of ΩS vanish at the resonance mass and that the
effects of the form factor FxðsÞ are more important at low
energies, the very region where the functions Ω are less
important owing to chiral symmetry. These combined
features suggest that the overall influence of the specific
choice made in Eq. (57) is expected to be small.
The extensions of Eq. (56) to the case of two and three

resonances read

ΩS
abðsÞ →

1

16π2

�
FxðsÞ

ðs −m2
yÞ

ðm2
x −m2

yÞ
ΠR

abðm2
xÞ

þ FyðsÞ
ðm2

x − sÞ
ðm2

x −m2
yÞ
ΠR

abðm2
yÞ − ΠabðsÞ

�
; ð58Þ

FIG. 11. Behavior of the real (continuous lines) and imaginary (dashed lines) parts of two-meson propagators: (left) functions ΩS
ππ ,

ΩS
Kπ ,ΩS

π8,ΩS
KK ,ΩS

K8, and ΩS
88 from Eq. (54); (right) model predictions for the isospin-0 channel, based on a single fb resonance of mass

mfb ¼ 0.98 GeV, from Eq. (56).

FIG. 12. Predictions for the scalar-isoscalar ππ amplitude with two resonances fað1370Þ and fbð980Þ, with ϵ ¼ 0, superimposed to a
nonresonant background from the model (58) (blue) and the K matrix (red). Left: real (full curve) and imaginary (dashed curve) parts.
Right: ratio of magnitudes.
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ΩS
abðsÞ→

1

16π2

�
FxðsÞ

ðs−m2
yÞðs−m2

zÞ
ðm2

x−m2
yÞðm2

x−m2
zÞ
ΠR

abðm2
xÞ

þFyðsÞ
ðm2

x−sÞðs−m2
zÞ

ðm2
x−m2

yÞðm2
y−m2

zÞ
ΠR

abðm2
yÞ

þFzðsÞ
ðm2

x− sÞðm2
y−sÞ

ðm2
x−m2

zÞðm2
y−m2

zÞ
ΠR

abðm2
zÞ−ΠabðsÞ

�
:

ð59Þ

The corresponding expressions for the J ¼ 1 case ΩP
ab can

be obtained from Eqs. (56), (58), and (59) through
multiplication by a factor of λ=3s.
We compare predictions from the model and the K

matrix for the scalar-isoscalar ππ amplitude in Fig. 12, for
the case of two resonances fa ¼ fð1370Þ and fb ¼ fð980Þ
with the mixing parameter ϵ ¼ 0. The corresponding phase
shift and inelasticity parameter are shown in Fig. 13. It is
possible to notice that results from the model and the K
matrix are qualitatively similar over the energy range

considered, except for a small region around 1 GeV where
effects from the resonance fb and the opening of the KK̄
channel compete. This can be seen more clearly in the sharp
peak in the figure for the phase, whose tip occurs at
threshold. For slightly lower energies, the resonance tends
to push the phase upwards, whereas the coupled KK̄
interaction does the opposite afterwards. In order to explore
this picture, we use a slightly lower mass for the octet
resonance, namely, fb ¼ 0.96 GeV, and Figs. 14 and 15
show that effects near threshold become much stronger.
The phase for the model, in particular, has a sharp rise
around 1 GeV, as shown in Fig. 15 and also observed by
experiment [15], but this does not happen for the K matrix.
Another interesting feature of this channel concerns the
second resonance fað1370Þ. Inspecting Figs. 11–14 around
the corresponding energy, we do not find structures in
either the amplitudes or phase shifts and inelasticities.
As both the KK and ηη channels are already open at
the fa mass, its pole occurs in the presence of a background
due to a chiral contact term superimposed to the resonance

FIG. 13. Predictions for phase shifts (left) and inelasticity parameter (right) of the scalar-isoscalar ππ amplitude with two resonances
fað1370Þ and fbð980Þ, with ϵ ¼ 0, superimposed to a nonresonant background: from the model (58) (blue) and the K matrix (red).

FIG. 14. Predictions for the scalar-isoscalar ππ amplitude with two resonances fað1370Þ and fbð960Þ, with ϵ ¼ 0, superimposed to a
nonresonant background from the model (58) (blue) and the K matrix (red). Left: real (full curve) and imaginary (dashed curve) parts.
Right: ratio of magnitudes.
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fb in which the mechanism discussed in Sec. V is
operating.
For the sake of completeness, in Figs. 16 and 17 we

display results for phase shifts and inelasticity parameters

for scalar πK and πη scatterings, predicted by Eqs. (C19)
and (C17). The πK process becomes inelastic at the Kη
production threshold and includes a K�

0 with mass
mK�

0
¼ 1.33 GeV, whereas the πη is coupled to a KK̄

FIG. 15. Predictions for phase shifts (left) and inelasticity parameter (right) of the scalar-isoscalar ππ amplitude with two resonances
fað1370Þ and fbð960Þ, with ϵ ¼ 0, superimposed to a nonresonant background from the model (58) (blue) and the K matrix (red).

FIG. 16. Predictions for phase shifts (left) and inelasticity parameters (right) of the scalar-isovector πK amplitude with a resonance K�
0

with mass mK�
0
¼ 1.33 GeV superimposed to a nonresonant background from the model (C19) (dark blue) and the K matrix (magenta).

FIG. 17. Predictions for phase shifts (left) and inelasticity parameters (right) of the scalar-isovector πη amplitude with a resonance a0
with mass ma0 ¼ 0.95 GeV superimposed to a nonresonant background from the model (C17) (purple) and the K matrix (pink).

MULTIBODY DECAY ANALYSES: A NEW PHENOMENOLOGICAL … PHYS. REV. D 102, 076012 (2020)

076012-15



through the a0, with massma0 ¼ 0.95 GeV. Thus, in the πη
the resonance is below threshold and the phase passes
through 900 at its mass. On the other hand, in the πK the
resonance lies in the inelastic region and the influence of
the background in the other channel shows up. Deviations
between the model and the K matrix are noticeable below
1.2 GeV for the former and above that energy for the latter.
While inspecting the results displayed in Figs. 12–17,

one should bear in mind that they rely on the coupling
constants prescribed in Ref. [27] and may change signifi-
cantly if other parameters are adopted.

VII. AN EXTRA RESONANCE

The model proposed here allows for the inclusion of any
number of resonances. In order to illustrate this procedure,
we consider the case of an extra resonance R0 in each scalar
channel and begin by resorting to Eq. (59) in the case of
ππ scattering and to Eq. (58) for I ¼ 1=2 and I ¼ 0.
New resonances mean, of course, new masses and coupling

constants and, as the number of channels is large, one could
have, in principle, too many new degrees of freedom
to be fitted by data. In order to be conservative, we suggest
that the same forms displayed after the arrows in
Eqs. (B13)–(B22) be used, with

½ðcd or c̃dÞðs −mass2Þ þ cðRjabÞ�
→ ðcd or c̃dÞ½αðs −mass2Þ þ βR0μ2�: ð60Þ

In the case of the s-dependent couplings, this preserves the
SUð3Þ structure with a scale given by chiral perturbation
theory [27], cd ¼ 0.032 GeVand c̃d ¼ 0.018 GeV,whereas
μ ¼ 1 GeV is just a scale. These choices allow both α and β
to be dimensionless free parameters and one may guess that
their values will not be far from −1 ≤ α, β ≤ 1.
As an illustration, in Figs. 18–20 we display phase shifts

and inelasticity parameters for ππ, πK, and πη scatterings
including an extra resonance, for a choice of values of α and
β. In all cases one notes that results do depend on the values

FIG. 18. Predictions for phase shifts (left) and inelasticity parameters (right) for the scalar ππ amplitude with an extra resonance of
mass mR0 ¼ mf0 ¼ 1.7 GeV; the case no R0 corresponds to the blue curve of Fig. 13.

FIG. 19. Predictions for phase shifts (left) and inelasticity parameters (right) for the scalar-isovector πK amplitude with an extra a
resonance of mass mR0 ¼ mK�

0
¼ 1.7 GeV; the case no R0 corresponds to the dark blue curve of Fig. 16.
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of α and b adopted and also as expected that the high-
energy regions of the curves are more sensitive to the
inclusion of the extra resonance. In all cases, the extra
resonance occurs in the inelastic regime and, as discussed
in Sec. VA, its shape is strongly affected by a background
due to channel coupling.

VIII. SUMMARY AND CONCLUSIONS

The SIMwas produced more than 50 years ago and is still
widely used, in spite of its many limitations. In the case of
heavy-meson decays into three mesons, the model relies on
the (2þ 1) approximation, whereby strong final-state inter-
actions involve just a two-body interacting system in the
presence of a spectator. The assumption that meson-meson
amplitudes are strongly dominated by resonances is essential
to themodel.We argued that QCDhas a strong impact on this
picture and that the SIMmay be reliable for vectormesons in
uncoupled channels but is not suited to scalar mesons.
Nowadays, a proper description of low-energymeson-meson
interactions requires contact with chiral perturbation theory,
which implements QCD by means of effective Lagrangians.
Although originally developed for low-energy processes,
this theory can be reliably extended through the inclusion of
resonances and unitarization techniques. In Sec. IV we have
shown that the SIM and its post-QCD version give rise to
rather different predictions for the scalar ππ amplitude,
owing to both dynamics and unitarity. Another problem of
the SIM concerns the coupling of channels. This effect is
compulsory whenever possible, and in Sec. VA we have
shown that resonances cannot be considered as dynamically
isolated objects beyond coupling thresholds. This happens
because pole dominance in a given channel is contaminated
by background effects occurring elsewhere. Therefore, BW
line shapes are unsuited for describing resonances in the
inelastic regime, as shown in Sec. V B.
As an alternative to the versions employed in the SIM,

in Appendix C we present a set of phenomenological

meson-meson amplitudes in the SUð3Þ sector, which is
suitable for amplitude analyses of heavy-meson decays.
Their main features include the following.
(1) Unitarization: All amplitudes are automatically uni-

tary for energies below the first coupling threshold.
(2) Coupled channels: The treatment of coupled chan-

nels is standard and gives rise to the expected
inelasticities.

(3) Dynamics: Interactions are described by chiral
Lagrangians, which include both pure pseudoscalar
vertices and bare resonances, with free masses and
coupling constants. This ensures that chiral symmetry
is obeyed at low energies and also gives rise to fitting
parameters with well-defined physical meanings.

(4) Model for meson loops: Two-meson loops are an
important component of scattering amplitudes. In
the s channel, they are given by real functions below
threshold and acquire an imaginary part above it.
The latter is fully determined by theory, whereas the
former involve unknown renormalization constants.
In Sec. VI we proposed a model for these real parts
that complies with chiral symmetry and can accom-
modate any number of resonances.

(5) Systematic inclusion of resonances: The model can
accommodate any number of resonances in each
given channel.

(6) Free parameters have physical meanings: The free
parameters of the model are resonance masses
and constants describing their couplings to pseudo-
scalar mesons. Thus, their conceptual meaning is
both rather conventional and process independent,
whereas their empirical values can be extracted
from different reactions. This allows one to en-
visage a situation in which one could compare
various sets of values for the same parameters as
determined, for instance, from chiral perturbation
theory, meson-meson scattering up to 2 GeV,
D → πππ, D → ππK, and other processes.

FIG. 20. Predictions for phase shifts (left) and inelasticity parameters (right) for the scalar-isovector πη amplitude with an extra a
resonance of mass mR0 ¼ ma0 ¼ 1.5 GeV; the case no R0 corresponds to the purple curve of Fig. 17.
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This would definitely promote understanding and,
hopefully, much needed progress.

In this constructive approach, all imaginary terms in
the amplitudes can be traced back to loops, which are
also responsible for the finite widths of resonances. The
parameters to be fitted are just resonance masses and
coupling constants, which have a rather transparent physi-
cal meaning. As examples, we have discussed scalar
amplitudes, phase shifts, and inelasticity parameters for
ππ, πK, and πη scatterings, employing the low-energy
parameters given in Ref. [27]. In all cases, results from the
model for the real parts of the loop functions were
compared with those from the K matrix, where they are
absent. One notices that the main differences occur close to
the first inelastic threshold, which shows that the new
model provides a clear indication for the mechanism
responsible for the sharp rise observed in the ππ phase
around 1 GeV.
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APPENDIX A: TWO-MESON PROPAGATORS
AND FUNCTIONS Ω

The conventional expressions presented here are dis-
played for the sake of completeness and rely on results from
Ref. [26]. These integrals do not include symmetry factors,
which are accounted for in the main text. One deals with
both S and P waves and the corresponding two-meson
propagators are associated with

fIab; Iμνabg ¼
Z

d4l
ð2πÞ4

f1;lμlνg
DaDb

; ðA1Þ

Da ¼ðlþp=2Þ2−M2
a; Db ¼ðl−p=2Þ2−M2

b; ðA2Þ

where p2 ¼ s and both integrals are evaluated using
dimensional-regularization techniques. The function Iab
reads

Iab ¼ i
1

16π2
½Λab þ Πab�; ðA3Þ

where Λab is a function of the renormalization scale μ and
the number of dimensions n, which diverges in the limit
n → 4, whereas Π is a regular component, given by

s < ðMa −MbÞ2 → Πab

¼ Π0
ab þ

ffiffiffi
λ

p

s
ln

�
M2

a þM2
b − sþ ffiffiffi

λ
p

2MaMb

�
; ðA4Þ

ðMa −MbÞ2 < s < ðM2
a þM2

bÞ → Πab

¼ Π0
ab −

ffiffiffiffiffiffi
−λ

p

s
tan−1

� ffiffiffiffiffiffi
−λ

p

M2
a þM2

b − s

�
; ðA5Þ

ðM2
a þM2

bÞ < s < ðMa þMbÞ2 → Πab

¼ Π0
ab −

ffiffiffiffiffiffi
−λ

p

s

�
tan−1

� ffiffiffiffiffiffi
−λ

p

M2
a þM2

b − s

�
þ π

�
;

ðA6Þ

s > ðMa þMbÞ2 → Πab

¼ Π0
ab −

ffiffiffi
λ

p

s
ln

�
s −M2

a −M2
b þ

ffiffiffi
λ

p

2MaMb

�
þ iπ

ffiffiffi
λ

p

s
; ðA7Þ

Π0
ab ¼ 1þM2

a þM2
b

M2
a −M2

b

ln
�
Ma

Mb

�
−
M2

a −M2
b

s
ln
�
Ma

Mb

�
; ðA8Þ

λ ¼ s2 − 2sðM2
a þM2

bÞ þ ðM2
a −M2

bÞ2: ðA9Þ

For Ma ¼ Mb, Π0
aa ¼ 2. The tensor integral is

Iμνab ¼ i
1

16π2

��
pμpν

s
Λpp
ab − gμνΛg

ab

�

þ
�
pμpν

s
− gμν

�
λ

12s
Πab

�
; ðA10Þ

where Λpp
ab and Λg

ab are divergent quantities.
In the calculation of final-state interactions, it is more

convenient to use the functions Ω, defined from the regular
parts of Eqs. (A3) and (A10) as

ΩS
ab ¼ i½regular part of Iab�→ΩS

ab¼−
1

16π2
Πab; ðA11Þ

1

4

�
pμpμ

s
− gμν

�
ΩP

ab ¼ i½regular part of Iμνab� → ΩP
ab

¼ −
λ

48π2s
Πab: ðA12Þ

As indicated in Eqs. (A4)–(A9), the functions Ω are real
below the threshold at sth ¼ ðMa þMbÞ2 and acquire an
imaginary component above it. This imaginary part is not
affected by infinities and is a well-defined prediction of the
theory that is necessary to implement unitarity.
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In the c.m. frame the momentum Qab is given by

Qab ¼
ffiffiffi
λ

p

2
ffiffiffi
s

p

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 2ðM2

a þM2
bÞ þ ðM2

a −M2
bÞ2=s

q
ðA13Þ

and the imaginary components read

½ΩS
ab�I ¼ −

1

8π

Qabffiffiffi
s

p θðs − ðMa þMbÞ2Þ; ðA14Þ

½ΩP
ab�I ¼ −

1

6π

Q3
abffiffiffi
s

p θðs − ðMa þMbÞ2Þ; ðA15Þ

where θ is the Heaviside step function.

APPENDIX B: SCATTERING KERNELS

We consider scattering amplitudes that can have SUð3Þ
resonances as intermediate states. They depend on inter-
action kernels for channels with angular momentum J ¼ 1,
0 and isospin I ¼ 1, 1=2, 0. All kernels are written as sums
of a LO chiral polynomial and NLO resonance contribu-
tions [27]. In the resonance sector, we consider the standard
SUð3Þ contributions, supplemented by an extra term RðJ;IÞ
for each channel, with free masses and coupling constants,
denoted by a prime. The usual Mandelstam variables are

s, t, u and the kernelsKðJ;IÞ
ab→cd for the process PaPb → PcPd

are as follows.
Vector sector: In the case J ¼ 1, kernels are

written without a factor ½2tþ s − 2ðM2
a þM2

bÞ þ
ðM2

a −M2
bÞ2=s�, which becomes (t − u) in the case of

identical particles and reduces to ½4Q2 cos θ� in the
center-of-mass frame.
isospin I ¼ 1:

Kð1;1Þ
ðππjππÞ ¼

1

F2
−
sG2

ðρjππÞ
s −m2

ρ
−
sG2

ðρ0jππÞ
s −m2

ρ0
; ðB1Þ

Kð1;1Þ
ðππjKKÞ ¼

ffiffiffi
2

p

2F2
−
sGðρjππÞGðρjKKÞ

s −m2
ρ

−
sGðρ0jππÞGðρ0jKKÞ

s −m2
ρ0

; ðB2Þ

Kð1;1Þ
ðKKjKKÞ ¼

1

2F2
−
sG2

ðρjKKÞ
s −m2

ρ
−
sG2

ðρ0jKKÞ
s −m2

ρ0
; ðB3Þ

GðρjππÞ ¼
ffiffiffi
2

p
GV

F2
; ðB4Þ

GðρjKKÞ ¼
GV

F2
: ðB5Þ

In the framework of resonance ChPT (RChPT), GV lies in
the range 53–69 MeV. Of special interest is the relationship
GV ¼ F=

ffiffiffi
2

p
≃ 66 MeV, associated with vector-meson

dominance [27].
isospin I ¼ 1=2:

Kð1;1=2Þ
ðπKjπKÞ ¼

3

8F2
−
sG2

ðK�jπKÞ
s −m2

K�
−
sG2

ðK�0 jπKÞ
s −m2

K�0
; ðB6Þ

Kð1;1=2Þ
ðπKj8KÞ ¼

3

8F2
−
sGðK�jπKÞGðK�j8KÞ

s−m2
K�

−
sGðK�0 jπKÞGðK�0 j8KÞ

s−m2

K�0
; ðB7Þ

Kð1;1=2Þ
ðK8jK8Þ ¼

3

8F2
−
sG2

ðK�j8KÞ
s −m2

K�
−
sG2

ðK�0 j8KÞ
s −m2

K�0
; ðB8Þ

GðK�jπKÞ ¼
ffiffiffi
3

p
GV

2F2
: ðB9Þ

GðK�j8KÞ ¼ −
ffiffiffi
3

p
GV

2F2
: ðB10Þ

isospin I ¼ 0:

Kð1;0Þ
ðKKjKKÞ ¼

3

2F2
−
sG2

ðϕjKKÞ
s−m2

ϕ

−
sG2

ðϕ0jKKÞ
s−m2

ϕ0
; ðB11Þ

GðϕjKKÞ ¼
ffiffiffi
3

p
GV sin θ
F2

: ðB12Þ

In a previous work [10] we considered a dressed ϕ
propagator, which accounts for the partial width of the
decay ϕ → ðρπ þ πππÞ. This small contribution is techni-
cally involved and here we ignore it for the sake of
simplicity. The partial width for ϕ → KK̄ yields [33]
sin θ ¼ 0.605.
Scalar sector: Chiral perturbation theory accurately

predicts how SUð3Þ-breaking effects, characterized by
pseudoscalar masses, influence low-energy observables.
The couplings of scalar resonances to two pseudoscalars
involve energy-dependent factors which conserve SUð3Þ,
associated with the constants cd and c̃d, supplemented by
symmetry-breaking terms, proportional to cm and c̃m. In
this work we need to extend scattering amplitudes up to
energies well beyond the ρ mass, which is the upper bound
for ChPT, and therefore we keep the SUð3Þ-invariant parts
of scalar-two-pseudoscalar couplings and allow the sym-
metry-breaking parts to be described by phenomenological
parameters c. Below we denote the resonances by a0 →
ðJ; I ¼ 0; 1Þ, K�

0 → ðJ ¼ 0; 1=2Þ, So → ðJ; I ¼ 0; 0Þoctet,
S1 → ðJ; I ¼ 0; 0Þ singlet and list these couplings using the
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standard RChPT notation [27] before the arrow and our
suggested parametrization after it:

Gða0jπ8Þ ¼
2ffiffiffi
3

p
F2

½cdðs −M2
π −M2

8Þ þ cm2M2
π�

→
2ffiffiffi
3

p
F2

½cdðs −M2
π −M2

8Þ þ cða0jπ8Þ�;

ðB13Þ

Gða0jKKÞ ¼
ffiffiffi
2

p

F2
½cds − ðcd − cmÞ2M2

K�

→

ffiffiffi
2

p

F2
½cdðs − 2M2

KÞ þ cða0jKKÞ�; ðB14Þ

GðK�
0
jπKÞ ¼

ffiffiffi
3

p
ffiffiffi
2

p
F2

½cds − ðcd − cmÞðM2
π þM2

KÞ�

→

ffiffiffi
3

p
ffiffiffi
2

p
F2

½cdðs −M2
π −M2

KÞ þ cðK�
0
jπ8Þ�;

ðB15Þ
GðK�

0
jK8Þ ¼ −

1ffiffiffi
6

p
F2

½cdðs −M2
K −M2

8Þ

þ cmð−8M2
π þ 11M2

K þ 3M2
8Þ=3�

→ −
1ffiffiffi
6

p
F2

½cdðs −M2
π −M2

8Þ

þ cðK�
0
jK8Þ�; ðB16Þ

GðSojππÞ ¼−
ffiffiffi
2

p

F2
½cds− ðcd−cmÞ2M2

π�

→−
ffiffiffi
2

p

F2
½cdðs−2M2

πÞþcðSojππÞ�; ðB17Þ

GðSojKKÞ ¼
ffiffiffi
6

p

3F2
½cds − ðcd − cmÞ2M2

K�

→

ffiffiffi
6

p

3F2
½cdðs − 2M2

KÞ þ cðSojKKÞ�; ðB18Þ

GðSoj88Þ ¼
ffiffiffi
6

p

3F2
½cdðs−2M2

8Þþcmð16M2
K −10M2

πÞ=3�

→

ffiffiffi
6

p

3F2
½cdðs−2M2

8ÞþcðSoj88Þ�; ðB19Þ

GðS1jππÞ ¼
2

ffiffiffi
3

p

F2
½c̃ds − ðc̃d − c̃mÞ2M2

π�

→
2

ffiffiffi
3

p

F2
½c̃dðs − 2M2

πÞ þ cðS1jππÞ�; ðB20Þ

GðS1jKKÞ ¼
4

F2
½c̃ds − ðc̃d − c̃mÞ2M2

K�

→
4

F2
½c̃dðs − 2M2

KÞ þ cðS1jKKÞ�; ðB21Þ

GðS1j88Þ ¼
2

F2
½c̃ds − ðc̃d − c̃mÞ2M2

8�

→
2

F2
½c̃dðs − 2M2

8Þ þ cðS1j88Þ�: ðB22Þ

In RChPT [27], one has jcdj ¼ 0.032 MeV, jcmj ¼
0.042 MeV, jc̃dj ¼ jcdj=

ffiffiffi
3

p
, and jc̃mj ¼ jcmj=

ffiffiffi
3

p
.

isospin I ¼ 1:

Kð0;1Þ
ðπ8jπ8Þ ¼

2M2
π

3F2
−
G2

ða0jπ8Þ
s −m2

a0

−
G2

ða0
0
jπ8Þ

s −ma0
0

2
; ðB23Þ

Kð0;1Þ
ðπ8jKKÞ ¼

ð3s − 4M2
KÞffiffiffi

6
p

F2
−
Gða0jπ8ÞGða0jKKÞ

s −m2
a0

−
Gða0

0
jπ8ÞGða0

0
jKKÞ

s −ma0
0

2
; ðB24Þ

Kð0;1Þ
ðKKjKKÞ ¼

s
2F2

−
G2

ða0jKKÞ
s −m2

a0

−
G2

ða0
0
jKKÞ

s −ma0
0

2
: ðB25Þ

isospin I ¼ 1=2:

Kð0;1=2Þ
ðπKjπKÞ

¼−
1

8F2

�
5s−2ðM2

πþM2
KÞþ

3ðM2
πþM2

KÞ2
s

�
;

−
G2

ðK�
0
jπKÞ

s−m2
K�

0

−
G2

ðK�0
0
jπKÞ

s−mK�0
0

2
: ðB26Þ

Kð0;1=2Þ
ðπKj8KÞ ¼−

1

24F2

�
9s−16M2

π −8M2
K

þ6M2
8þ

9ðM2
πþM2

KÞ2
s

�
;

−
GðK�

0
jπKÞGðK�

0
j8KÞ

s−m2
K�

0

−
GðK�0

0
jπKÞGðK�0

0
j8KÞ

s−mK�0
0

2
:

ðB27Þ
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Kð0;1=2Þ
ð8Kj8KÞ ¼ −

1

24F2

�
9sþ 4M2

π − 18M2
K

þ 3M2
8 þ

9ðM2
K þM2

8Þ2
s

�
;

−
G2

ðK�
0
j8KÞ

s −m2
K�

0

−
G2

ðK�0
0
j8KÞ

s −mK�0
0

2
: ðB28Þ

isospin I ¼ 0:
We allow for the possibility that the first two observed

resonances in this channel, denoted by fa and fb, can be
mixtures of octet and singlet states So and S1. The mixing
angle ϵ is defined by

jfai ¼ cos ϵjS1i þ sin ϵjSoi; ðB29Þ
jfbi ¼ − sin ϵjS1i þ cos ϵjSoi; ðB30Þ

and the kernels read

Kð0;0Þ
ðππjππÞ ¼

ð2s −M2
πÞ

F2
−
GðfajππjππÞ
s −m2

fa

−
GðfbjππjππÞ
s −m2

fb

−
G2

ðf0jππÞ
s −m2

f0
; ðB31Þ

Kð0;0Þ
ðππjKKÞ ¼

ffiffiffi
3

p
s

2F2
−
GðfajππjKKÞ
s −m2

fa

−
GðfbjππjKKÞ
s −m2

fb

−
Gðf0jππÞGðf0jKKÞ

s −m2
f0

; ðB32Þ

Kð0;0Þ
ðππj88Þ ¼

ffiffiffi
3

p
M2

π

3F2
−
Gðfajππj88Þ
s −m2

fa

−
Gðfbjππj88Þ
s −m2

fb

−
Gðf0jππÞGðf0j88Þ

s −m2
f0

; ðB33Þ

Kð0;0Þ
ðKKjKKÞ ¼

3s
2F2

−
GðfajKKjKKÞ
s −m2

fa

−
GðfbjKKjKKÞ
s −m2

fb

−
G2

ðf0jKKÞ
s −m2

f0
; ðB34Þ

Kð0;0Þ
ðKKj88Þ ¼

ð9s−8M2
KÞ

6F2
−
GðfajKKj88Þ
s−m2

fa

−
GðfbjKKj88Þ
s−m2

fb

−
Gðf0jKKÞGðf0j88Þ

s−m2
f0

; ðB35Þ

Kð0;0Þ
ð88j88Þ ¼

ð−7M2
π þ 16M2

KÞ
9F2

−
Gðfaj88j88Þ
s −m2

fa

−
Gðfbj88j88Þ
s −m2

fb

−
G2

ðf0j88Þ
s −m2

f0
; ðB36Þ

with

GðfajππjππÞ ¼ sin2 ϵG2
ðSojππÞ þ cos2 ϵG2

ðS1jππÞ; ðB37Þ

GðfajππjKKÞ ¼ sin2ϵGðSojππÞGðSojKKÞ
þ cos2ϵGðS1jππÞGðS1jKKÞ; ðB38Þ

Gðfajππj88Þ ¼ sin2ϵGðSojππÞGðSoj88Þ

þ cos2ϵGðS1jππÞGðS1j88Þ; ðB39Þ

GðfajKKjKKÞ ¼ sin2 ϵG2
ðSojKKÞ þ cos2 ϵG2

ðS1jKKÞ; ðB40Þ

GðfajKKj88Þ ¼ sin2 ϵGðSojKKÞGðSoj88Þ

þ cos2 ϵG2
ðS1jKKÞGðS1j88Þ; ðB41Þ

Gðfaj88j88Þ ¼ sin2 ϵG2
ðSoj88Þ þ cos2 ϵG2

ðS1j88Þ; ðB42Þ

GðfbjππjππÞ ¼ cos2 ϵG2
ðSojππÞ þ sin2 ϵG2

ðS1jππÞ; ðB43Þ

GðfbjππjKKÞ ¼ cos2 ϵGðSojππÞGðSojKKÞ
þ sin2 ϵGðS1jππÞGðS1jKKÞ; ðB44Þ

Gðfbjππj88Þ ¼ cos2 ϵGðSojππÞGðSoj88Þ
þ sin2 ϵGðS1jππÞGðS1j88Þ; ðB45Þ

GðfbjKKjKKÞ ¼ cos2 ϵG2
ðSojKKÞ þ sin2 ϵG2

ðS1jKKÞ; ðB46Þ

GðfbjKKj88Þ ¼ cos2 ϵGðSojKKÞGðSoj88Þ

þ sin2 ϵGðS1jKKÞGðS1j88Þ; ðB47Þ

Gðfbj88j88Þ ¼ cos2 ϵG2
ðSoj88Þ þ sin2 ϵG2

ðS1j88Þ: ðB48Þ

APPENDIX C: COUPLED-CHANNEL
SCATTERING AMPLITUDES

In the discussion of schematic dynamics in the main text,
we show that the scattering amplitudes for pseudoscalars
have the general form given by Eqs. (3)–(5), reproduced
below:

A¼K× ½1þðloop×KÞþðloop×KÞ2þðloop×KÞ3þ����;
ðloopÞ¼ real partþ iΩI;

K¼K0þK1þK2þ���;

where the functions (loop) involve the Ω discussed in
Appendix A and the kernels K0 are given in Appendix B.
Here we present the scattering amplitudes for the process
PkPl → PaPb in the coupled-channel formalism. It is
important to stress that, although expressed in terms of
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Ω and K, the results displayed are quite general and fully
independent of the specific forms chosen for these func-
tions. They just rely on the well-established techniques for
dealing with coupled-channel problems.
The factor ðloop ×KÞ corresponds to mixing matrix

elements MðJ;IÞ, which are given by [10]

Mð1;1Þ
11 ¼−Kð1;1Þ

ðππjππÞ½ΩP
ππ=2�; Mð1;1Þ

12 ¼−Kð1;1Þ
ðππjKKÞ½ΩP

KK=2�;
Mð1;1Þ

21 ¼−Kð1;1Þ
ðππjKKÞ½ΩP

ππ=2�; Mð1;1Þ
22 ¼−Kð1;1Þ

ðKKjKKÞ½ΩP
KK=2�:
ðC1Þ

Mð1;1=2Þ
11 ¼−Kð1;1=2Þ

ðπKjπKÞ½ΩP
πK�; Mð1;1=2Þ

12 ¼−Kð1;1=2Þ
ðπKjK8Þ½ΩP

K8�;
Mð1;1=2Þ

21 ¼−Kð1;1=2Þ
ðπKjK8Þ½ΩP

πK�; Mð1;1=2Þ
22 ¼−Kð1;1=2Þ

ðK8jK8Þ½ΩP
K8�:
ðC2Þ

Mð1;0Þ ¼ −Kð1;0Þ
ðKKjKKÞ½ΩP

KK=2�; ðC3Þ

and

Mð0;1Þ
11 ¼−Kð0;1Þ

ðπ8jπ8Þ½ΩS
π8=2�; Mð0;1Þ

12 ¼−Kð0;1Þ
ðπ8jKKÞ½ΩS

KK=2�;
Mð0;1Þ

21 ¼−Kð0;1Þ
ðπ8jKKÞ½ΩS

π8=2�; Mð0;1Þ
22 ¼−Kð0;1Þ

ðKKjKKÞ½ΩS
KK=2�:
ðC4Þ

Mð0;1=2Þ
11 ¼−Kð1;1=2Þ

ðπKjπKÞ½ΩS
πK�; Mð0;1=2Þ

12 ¼−Kð1;1=2Þ
ðπKjK8Þ½ΩS

K8�;
Mð0;1=2Þ

21 ¼−Kð1;1=2Þ
ðπKjK8Þ½ΩS

πK�; Mð0;1=2Þ
22 ¼−Kð1;1=2Þ

ðK8jK8Þ½ΩS
K8�:
ðC5Þ

Mð0;0Þ
11 ¼−Kð0;0Þ

ðππjππÞ½ΩS
ππ=2�; Mð0;0Þ

12 ¼−Kð0;0Þ
ðππjKKÞ½ΩS

KK=2�;
Mð0;0Þ

13 ¼−Kð0;0Þ
ðππj88Þ½ΩS

88=2�; Mð0;0Þ
21 ¼−Kð0;0Þ

ðππjKKÞ½ΩS
ππ=2�;

Mð0;0Þ
22 ¼−Kð0;0Þ

ðKKjKKÞ½ΩS
KK=2�; Mð0;0Þ

23 ¼−Kð0;0Þ
ðKKj88Þ½ΩS

88=2�;
Mð0;0Þ

31 ¼−Kð0;0Þ
ðππj88Þ½ΩS

ππ=2�; Mð0;0Þ
32 ¼−Kð0;0Þ

ðKKj88Þ½ΩS
KK=2�;

Mð0;0Þ
33 ¼−Kð0;0Þ

ð88j88Þ½ΩS
88=2�: ðC6Þ

The factor 1=2 accounts for the symmetry of intermediate

states. It is also present in the functions Mð0;1Þ
11 and Mð0;1Þ

21

because we use symmetrized π8 intermediate states.
As shown in Eqs. (6) and (7), the summation of the

geometric series yields scattering amplitudes based on
denominators given schematically by D ¼ 1 − ðloop ×KÞ,

Dð1;1Þ ¼ ½1 −Mð1;1Þ
11 �½1 −Mð1;1Þ

22 � −Mð1;1Þ
12 Mð1;1Þ

21 ; ðC7Þ

Dð1;1=2Þ ¼ ½1 −Mð1;1=2Þ
11 �½1 −Mð1;1=2Þ

22 � −Mð1;1=2Þ
12 Mð1;1=2Þ

21 ;

ðC8Þ

Dð0;1Þ ¼ ½1 −Mð0;1Þ
11 �½1 −Mð0;1Þ

22 � −Mð0;1Þ
12 Mð0;1Þ

21 ; ðC9Þ

Dð0;1=2Þ ¼ ½1 −Mð0;1=2Þ
11 �½1 −Mð0;1=2Þ

22 � −Mð0;1=2Þ
12 Mð0;1=2Þ

21 ;

ðC10Þ

Dð0;0Þ ¼ ½1−Mð0;0Þ
11 �½1−Mð0;0Þ

22 �½1−Mð0;0Þ
33 �

− ½1−Mð0;0Þ
11 �Mð0;0Þ

23 Mð0;0Þ
32

− ½1−Mð0;0Þ
22 �Mð0;0Þ

13 Mð0;0Þ
31 − ½1−Mð0;0Þ

33 �Mð0;0Þ
12 Mð0;0Þ

21

−Mð0;0Þ
12 Mð0;0Þ

23 Mð0;0Þ
31 −Mð0;0Þ

21 Mð0;0Þ
13 Mð0;0Þ

32 : ðC11Þ

The scattering amplitudes for the process PkPl → PaPb in
the various channels are given as follows.
(1) Vector sector:
- isospin I ¼ 1:

Að1;1Þ
ðππjabÞ ¼

1

Dð1;1Þ f½1 −Mð1;1Þ
22 �Kð1;1Þ

ðππjabÞ

þMð1;1Þ
12 Kð1;1Þ

ðKKjabÞgðt − uÞ; ðC12Þ

Að1;1Þ
ðKKjabÞ ¼

1

Dð1;1Þ fM
ð1;1Þ
21 Kð1;1Þ

ðππjabÞ

þ ½1 −Mð1;1Þ
11 �Kð1;1Þ

ðKKjabÞgðt − uÞ: ðC13Þ

- isospin I ¼ 1=2:

Að1;1=2Þ
ðπKjabÞ ¼

1

Dð1;1=2Þ f½1−Mð1;1=2Þ
22 �Kð1;1=2Þ

ðπKjabÞ

þMð1;1=2Þ
12 Kð1;1=2Þ

ðK8jabÞg

×

�
2tþ s−2ðM2

πþM2
KÞþ

ðM2
π −M2

KÞ2
s

�
;

ðC14Þ

Að1;1=2Þ
ðK8jabÞ ¼

1

Dð1;1=2Þ fM
ð1;1=2Þ
21 Kð1;1=2Þ

ðπKjabÞ

þ ½1−Mð1;1=2Þ
11 �Kð1;1=2Þ

ðK8jabÞg

×

�
2tþ s− 2ðM2

π þM2
KÞþ

ðM2
π −M2

KÞ2
s

�
:

ðC15Þ

- isospin I ¼ 0:

Að1;0Þ
ðKKjabÞ ¼

1

Dð1;0Þ K
ð1;0Þ
ðKKjabÞðt − uÞ: ðC16Þ
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(2) Scalar sector:
- isospin I ¼ 1:

Að0;1Þ
ðπ8jabÞ ¼

1

Dð0;1Þ f½1 −Mð0;1Þ
22 �Kð0;1Þ

ðπ8jabÞ

þMð0;1Þ
12 Kð0;1Þ

ðKKjabÞg; ðC17Þ

Að0;1Þ
ðKKjabÞ ¼

1

Dð0;1Þ fM
ð0;1Þ
21 Kð0;1Þ

ðπ8jabÞ

þ ½1 −Mð0;1Þ
11 �Kð0;1Þ

ðKKjabÞg: ðC18Þ

- isospin I ¼ 1=2:

Að0;1=2Þ
ðπKjabÞ ¼

1

Dð0;1=2Þ f½1 −Mð0;1=2Þ
22 �Kð0;1=2Þ

ðπKjabÞ

þMð1;1=2Þ
12 Kð0;1=2Þ

ðK8jabÞg; ðC19Þ

Að0;1=2Þ
ðK8jabÞ ¼

1

Dð0;1=2Þ fM
ð0;1=2Þ
21 Kð0;1=2Þ

ðπKjabÞ

þ ½1 −Mð0;1=2Þ
11 �Kð0;1=2Þ

ðK8jabÞg: ðC20Þ

- isospin I ¼ 0:

Að0;0Þ
ðππjabÞ ¼

1

Dð0;0Þ f½ð1 −Mð0;0Þ
22 Þð1 −Mð0;0Þ

33 Þ −Mð0;0Þ
23 Mð0;0Þ

32 �Kð0;0Þ
ðππjabÞ þ ½Mð0;0Þ

12 ð1 −Mð0;0Þ
33 Þ þMð0;0Þ

13 Mð0;0Þ
32 �Kð0;0Þ

ðKKjabÞ

þ ½Mð0;0Þ
13 ð1 −Mð0;0Þ

22 Þ þMð0;0Þ
12 Mð0;0Þ

23 �Kð0;0Þ
ð88jabÞg; ðC21Þ

Að0;0Þ
ðKKjabÞ ¼

1

Dð0;0Þ f½M
ð0;0Þ
21 ð1 −Mð0;0Þ

33 Þ þMð0;0Þ
23 Mð0;0Þ

31 �Kð0;0Þ
ðππjabÞ þ ½ð1 −Mð0;0Þ

11 Þð1 −Mð0;0Þ
33 Þ −Mð0;0Þ

13 Mð0;0Þ
31 ÞKð0;0Þ

ðKKjabÞ

þ ½Mð0;0Þ
23 ð1 −Mð0;0Þ

11 Þ þMð0;0Þ
13 Mð0;0Þ

21 �Kð0;0Þ
ð88jabÞg; ðC22Þ

Að0;0Þ
ð88jabÞ ¼

1

Dð0;0Þ f½M
ð0;0Þ
31 ð1 −Mð0;0Þ

22 Þ þMð0;0Þ
21 Mð0;0Þ

32 �Kð0;0Þ
ðππjabÞ þ ½Mð0;0Þ

32 ð1 −Mð0;0Þ
11 Þ þMð0;0Þ

12 Mð0;0Þ
31 �Kð0;0Þ

ðKKjabÞ

þ ½ð1 −Mð0;0Þ
11 Þ½1 −Mð0;0Þ

22 Þ −Mð0;0Þ
12 Mð0;0Þ

21 �Kð0;0Þ
ð88jabÞg: ðC23Þ

APPENDIX D: ππ PHASE SHIFTS

Most examples discussed in the main text refer to ππ
scattering, and the partial-wave expansion of the amplitude
for isospin channel I reads

AI
ðππjππÞ ¼

32π

ρ

X∞
J¼0

ð2J þ 1ÞPJðcos θÞfðJ;IÞðππjππÞðsÞ; ðD1Þ

where fðJ;IÞðππjππÞ is the nonrelativistic scattering amplitude and

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − 4M2

πÞ=s
p

. Our amplitudes are written as

AI
ðππjππÞ ¼ Að0;IÞ

ðππjππÞ þ Að1;IÞ
ðππjππÞ þ � � � : ðD2Þ

In the c.m. frame, one has ðt − uÞ ¼ ðs − 4M2
πÞ cos θ and

AI
ðππjππÞ ¼Að0;IÞ

ðππjππÞ þ ½ðs−4M2
πÞcosθ�Að1;IÞ

ðππjππÞ þ �� �

¼ 32π

ρ
½fð0;IÞðππjππÞðsÞþ3cosθfð1;IÞðππjππÞðsÞþ �� ��; ðD3Þ

with

fð0;0ÞðππjππÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4M2

π

p
32π

ffiffiffi
s

p Að0;0Þ
ðππjππÞ; ðD4Þ

fð1;1ÞðππjππÞ ¼
ðs − 4M2

πÞ3=2
96π

ffiffiffi
s

p Að1;1Þ
ðππjππÞ: ðD5Þ

From now on, we drop all subscripts and superscripts and
express the amplitude f in terms of phase shifts δ and
inelasticity parameters η as [15]

f ¼ 1

2i
½ηe2iδ − 1�: ðD6Þ

In order to obtain δ and η from the AðJ;IÞ
ππjππ , one writes

f ¼ aþ ib, with a ¼ Re½f� and b ¼ Im½f� and Eq. (D6)
yields

1þ 2if ¼½1 − 2b� þ 2ia ¼ η½cos 2δþ i sin 2δ�: ðD7Þ

Thus,

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1 − 2b�2 þ 4a2

q
; ðD8Þ
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δ ¼ tan−1
�

2a
1þ η − 2b

�
: ðD9Þ

The alternative form

δ ¼ 1

2
tan−1

�
sin 2δ
cos 2δ

�
; ðD10Þ

sin 2δ ¼ 2a
η
; cos 2δ ¼ 1 − 2b

η
ðD11Þ

is more convenient in numerical calculations because, as
η > 0, the signs of sin 2δ and cos 2δ in Eq. (D11) are well
defined and the quadrant assignment of 2δ is unambiguous.
This yields continuous results in the interval 0 ≤ δ ≤ π.
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