'.) Check for updates

J. London Math. Soc. (2) 00 (2020) 1-19 doi:10.1112/jlms.12408

The size-Ramsey number of powers of bounded degree trees

Soren Berger, Yoshiharu Kohayakawa, Giulia Satiko Maesaka, Taisa Martins,
Walner Mendonga, Guilherme Oliveira Mota and Olaf Parczyk

Dedicated to Endre Szemerédi on the occasion of his 80th birthday

ABSTRACT

Given a positive integer s, the s-colour size-Ramsey number of a graph H is the smallest integer
m such that there exists a graph G with m edges with the property that, in any colouring of E(G)
with s colours, there is a monochromatic copy of H. We prove that, for any positive integers k
and s, the s-colour size-Ramsey number of the kth power of any n-vertex bounded degree tree is
linear in n. As a corollary, we obtain that the s-colour size-Ramsey number of n-vertex graphs
with bounded treewidth and bounded degree is linear in n, which answers a question raised by
Kamcev, Liebenau, Wood and Yepremyan.

1. Introduction

Given graphs G and H and a positive integer s, we denote by G — (H)s the property that
any s-colouring of the edges of G contains a monochromatic copy of H. We are interested in
the problem proposed by Erdés et al. [13] of determining the minimum integer m for which
there is a graph G with m edges such that property G — (H )2 holds. Formally, the s-colour
size-Ramsey number 74(H) of a graph H is defined as follows:

7o(H) = min{e(G): G — (H),}.

Answering a question posed by Erdds [12], Beck [3] showed that 75(P,,) = O(n) by means of a
probabilistic proof. Alon and Chung [1] proved the same fact by explicitly constructing a graph
G with O(n) edges such that G — (P,)2. In the last decades, many successive improvements
were obtained in order to determine the size-Ramsey number of paths (see, for example, [3, 5,
11] for lower bounds, and [3, 10, 11, 25] for upper bounds). The best-known bounds for paths
are 5n/2 — 15/2 < #9(P,) < 74n from [11]. For any s > 2 colours, Dudek and Pralat [11] and
Krivelevich [24] proved that there are positive constants ¢ and C' such that cs?n < 74(P,) <
Cs%(log s)n.

Moving away from paths, Beck [3] asked whether 7o(H) is linear for any bounded degree
graph. This question was later answered negatively by Rodl and Szemerédi [30], who
constructed a family {H,},en of n-vertex graphs of maximum degree A(H,) < 3 such that
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Po(H,) = Q(nlog'/%n). The current best upper bound for the size-Ramsey number of graphs
with bounded degree was obtained in [22] by Kohayakawa, Rodl, Schacht and Szemerédi, who
proved that for any positive integer A there is a constant ¢ such that, for any graph H with n
vertices and maximum degree A, we have

Fo(H) < en? /A logl/A n.

For more results on the size-Ramsey number of bounded degree graphs, see [8, 14, 16, 17,
20, 21].

Let us turn our attention to powers of bounded degree graphs. Let H be a graph with n
vertices and let k be a positive integer. The kth power H* of H is the graph with vertex set
V(H) in which there is an edge between distinct vertices v and v if and only if u and v are
at distance at most k in H. Recently it was proved that the 2-colour size-Ramsey number of
powers of paths and cycles is linear [6]. This result was extended to any fixed number s of
colours in [15], that is,

Fs(P¥) = Op s(n) and 7,(CF) = Oy (). (1)

In our main result (Theorem 1), we extend (1) to bounded powers of bounded degree trees.
We prove that for any positive integers k and s, the s-colour size-Ramsey number of the kth
power of any n-vertex bounded degree tree is linear in n.

THEOREM 1. For any positive integers k, A and s and any n-vertex tree T with A(T) < A,

we have
fe(Tk) = Ok,A,s(n)'

We remark that Theorem 1 is equivalent to the following result for the ‘general’ or
‘off-diagonal’ size-Ramsey number #(H, ..., Hy) = min{e(G): G — (Hy, ..., H,)}: if H; = TF
for i =1,...,s where Ty,...,Ts are bounded degree trees, then 7#(Hy,...,Hs) is linear in
maxi<;<s V(H;). To see this, it is sufficient to apply Theorem 1 to a tree containing the disjoint
union of T3, ..., 7.

The graph that we present to prove Theorem 1 does not depend on T, but only on A, k
and n. Moreover, our proof not only gives a monochromatic copy of T* for a given T, but
a monochromatic subgraph that contains a copy of the kth power of every n-vertex tree
with maximum degree at most A. That is, we prove the existence of so called ‘partition
universal graphs’ with Oj A s(n) edges for the family of powers T* of n-vertex trees with
A(T) < A.

Theorem 1 was announced in the extended abstract [4]. While finalising this paper, we
learned that Kamcev et al. [19] proved, among other things, that the 2-colour size-Ramsey
number of an n-vertex graph with bounded degree and bounded treewidth is O(n)f. This is
equivalent to our result for s = 2. Indeed, any graph with bounded treewidth and bounded
maximum degree is contained in a suitable blow-up of some bounded degree tree [9, 31]
and a blow-up of a bounded degree tree is contained in the power of another bounded
degree tree. Conversely, bounded powers of bounded degree trees have bounded treewidth
and bounded degree. Therefore, we obtain the following equivalent version of Theorem 1,
which generalises the result from [19] and answers one of their main open questions ([19,
Question 5.2]).

COROLLARY 2. For any positive integers k, A and s and any n-vertex graph H with
treewidth k and A(H) < A, we have

fS(H) = Ok7A7s(n).

TThey in fact formulate this for the general 2-colour size-Ramsey number 7#(H1, H2).
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The proof of Theorem 1 follows the strategy developed in [15], proving the result by
induction on the number of colours s. Very roughly speaking, we start with a graph G with
suitable properties and, given any s-colouring of the edges of G (s > 2), either we obtain a
monochromatic copy of the power of the desired tree in G, or we obtain a large subgraph H of
G that is coloured with at most s — 1 colours; moreover, the graph H that we obtain is such
that we can apply the induction hypothesis on it. Naturally, we design the requirements on
our graphs in such a way that this induction goes through. As it turns out, the graph G will
be a certain blow-up of a random-like graph. While this approach seems uncomplicated upon
first glance, the proof requires a variety of additional ideas and technical details.

To implement the above strategy, we need, among other results, two new and key ingredients
which are interesting on their own: (i) a result that states that for any sufficiently large graph
G, either G contains a large expanding subgraph or there is a given number of reasonably large
disjoint subsets of V(G) without any edge between any two of them (see Lemma 9); (ii) an
embedding result that states that in order to embed a power T% of a tree T in a certain blow-up
of a graph G it is enough to find an embedding of an auxiliary tree 77 in G (see Lemma 11).

2. Auxiliary results

In this section, we state a few results which will be needed in the proof of our main theorem.
The first lemma guarantees that, in a graph G that has edges between large subsets of vertices,
there exists a long ‘transversal’ path along a constant number of large subsets of vertices of G.
Denote by e (X,Y) the number of edges between two disjoint sets X and Y in a graph G.

LEMMA 3 [6, Lemma 3.5]. For every integer £ > 1 and every v > 0, there exists dy = 2 +
4/(y(¢ + 1)) such that the following holds for any d > dy. Let G be a graph on dn vertices such
that for every pair of disjoint sets X, Y C V(G) with | X|,|Y| = yn we have e¢(X,Y) > 0. Then
for every family Vi, ..., V, C V(G) of pairwise disjoint sets each of size at least vdn, there is a
path P, = (z1,...,2,) in G with x; € V; for all 1 < i < n, where j = ¢ (mod {).

We will also use the classical Chernoff’s inequality and K6vari-Sés—Turan theorem.

THEOREM 4 (Chernofl’s inequality). Let 0 < e < 3/2. If X is a sum of independent Bernoulli
random variables, then

P(|X — E[X]| > eE[X]) < 2 e~ /D]

THEOREM 5 [23]. Let k > 1 and let G be a bipartite graph with x vertices in each vertex
class. If G contains no copy of Koy 21, then G has at most 421/ (2F) edges.

3. Bijumbledness, expansion and embedding of trees

In this section, we provide the necessary tools to obtain the desired monochromatic embedding
of a power of a tree in the proof of Theorem 1. We start by defining the expanding property
of a graph.

PRrROPERTY 6 (Expanding). A graph G is (n, a,b)-expanding if for all X C V(G) with | X| <
a(n — 1), we have |[Ng(X)| = b|X]|.

TWe are grateful to the authors of [19], who pointed out to us that similar lemmas have been proved in [28,
29].
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Here Ng(X) is the set of neighbours of X, that is, all vertices in V(G) that share an edge
with some vertex from X. The following embedding result due to Friedman and Pippenger [14]
guarantees the existence of copies of bounded degree trees in expanding graphs.

LEMMA 7. Let n and A be positive integers and G a non-empty graph. If G is (n,2, A +
1)-expanding, then G contains any n-vertex tree with maximum degree A as a subgraph.

Owing to Lemma 7, we are interested in graph properties that guarantee expansion. One
such property is bijumbledness, defined below.

PROPERTY 8 (Bijumbledness). A graph G on N vertices is (p,0)-bijumbled if, for all
disjoint sets X andY C V(G) with0/p < |X| < |Y| < pN|X|, we have leq(X,Y) — p|X||Y]| <

0V IX]Y].

We remark that, in the definition above, we restrict our sets X and Y not to be too small;
such a restriction is not usually imposed when defining bijumbledness, but we have to do so
here for certain technical reasons.

Note that bijumbledness immediately implies that

for all disjoint sets X, Y C V(G) with | X]|, [Y| > 0/p we have eq(X,Y) > 0. (2)

Moreover, a simple averaging argument guarantees that in a (p, d)-bijumbled graph G on N
vertices, we have

() —p(ZD‘ < ON. 3)

We now state the first main novel ingredient in the proof of our main result (Theorem 1).
The following lemma ensures that in a sufficiently large graph we get an expanding subgraph
with appropriate parameters or we get reasonably large disjoint subsets of vertices that span no
edges between them. This result was inspired by [27, Theorem 1.5]. Furthermore, we remark
that similar results have been proved in [28, 29].

LEMMA 9. Let f >0,D >0,¢>2andn >0 be given and let A= ({ —1)(D+1)(n+ f) +

7.
If G is a graph on at least An vertices, then:

(i) there is a non-empty set Z C V(QG) such that G[Z] is (n, f, D)-expanding; or
(ii) there exist Vi,...,Vy C V(G) such that |V;| > nn for 1 <i < { and eq(V;,V;) =0 for
1<i<j<l.

Proof. Let us assume that (i) does not hold. Since G is not (n, f, D)-expanding, we can take
Vi C V(G) of maximum size satisfying that |Vi| < (n+ f)n and |Ng(Vi)| < D|Vi|. We claim
that |V1| = nn. Assume, for the sake of contradiction that |V;| < nn. Let

Wi =V(G)\ (Vi UNa(V1)).

Then |W;| > An — (D + 1)nn > 0. Applying that (i) does not hold, we get X C W; such that
|X] < f(n—1) and |Ngw,)(X)| < D|X|. Note that Ng(X) € Ngmw,(X) U Ng(V1). Thus

[Na(XUV1)| = [New, ) (X) U Ne (V1)
< D(I X[+ [Wi])-
Also | XUV;| < (n+ f)n, deriving a contradiction to the maximality of V.
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Let 1 < k < £ — 2 and suppose we have (V1,...,V}) such that:
@) |Vi] =2 nn, for 1 <@ < k;

(I1) e( Z,V)—O,f0r1<i<j<k;

() [UiZ, (Vi U NG(V))| < K(D +1)(n+ f)n.

We can increase this sequence in the following way. Let W, = V(G) \ Ule(VZ- U Ng(V;)) and
note that

Wi > An— (£ =2)(D+1)(n+ f)n
= (D+1)(n+ fln+nn
> 0.

Since (i) does not hold, there exists Vi1 € W), of maximum size with |Vi11] < (7 + f)n such
that |[Ngw,](Vii1)| < D|Viy1]. Note that eq(Vi, Viy1) < eq(Vi, Wii1) =0, for every 1 <i <
k. Therefore we have that (IT) holds for the sequence (Vi,. .., Vji41). Furthermore, note that

k

Ne(Vis1) € U Ng(Vi) U Namw,)(Vit1) - (4)
=1

This gives us (III) for the sequence (V1, ..., Vii1), since

k
J (Vi UNG(VA)) U Viesr U N (Vi r)

i=1
< (k+1)(D+1)(n+ f)n.
To see that (Vi,..., Viy1) satisfies (I), define

k+1
Wi = VG J Vi UNa(7) € Wi\ (Vi1 U Nopw, (Vign)-

i=1

k+1

Vi uNc(Vi)

=1

)

Assume that |Vi41| < nn and derive a contradiction as before.
Therefore, when k = ¢ — 2, we generate a sequence (V1, ..., Vy_1) with the properties required
by (ii). To complete the sequence, note that (IIT) gives that [Wy_1| = nn and set V, = Wy_y. O

As a corollary of the previous lemma, we get the following lemma that says that sufficiently
large bijumbled graphs contain a non-empty expanding subgraph.

LEMMA 10 (Bijumbledness implies expansion). Let f, 8, D and ¢ > 1 be positive numbers
with ¢ > 4(D +2)0 and a > 2(D+1)f. If G is a (¢/(an), ) bijumbled graph with an vertices,
then there exists a non-empty subgraph H of G that is (n, f, D)-expanding.

Proof. Let p=c/(an) and let G be a (p,0)-bijumbled graph. Suppose for a contradiction
that no subgraph of G is (n, f, D)-expanding. We apply Lemma 9 with £ =2 and n = 20a/c.
Note that, since a > 2(D + 1)f and ¢ > 4(D + 2)6, from the choice of 1 we have

2(D + 2)0a
c

a>(D+1f+5>D+1f+ > (D+1)f +(D+2n=(D+1)(f+n) +n.

Then, we get two disjoint sets Vi,Vo C V(G) with [Vi| =|Va| =nn >0/p such that
e (Vh,V2) = 0. On the other hand, by (2), we have eg(V1, V2) > 0, a contradiction. Therefore,
there is some subgraph of G that is (n, f, D)-expanding. O



6 SOREN BERGER ET AL.

The next lemma is crucial for embedding the desired power of a tree. Let G be a graph and
£ = r be positive integers. An (¢, r)-blow-up of G is a graph obtained from G by replacing each
vertex of G by a clique of size £ and for every edge of G arbitrarily adding a complete bipartite
graph K, , between the cliques corresponding to the vertices of this edge.

LEMMA 11 (Embedding lemma for powers of trees). Given positive integers k and A, there
exists rg such that the following holds for every n-vertex tree T with maximum degree A.
There is a tree T' = T'(T, k) on at most n + 1 vertices and with maximum degree at most A%
such that for every graph J with T' C J and any (¢,r)-blow-up J' of J with ¢ > r > ro, we
have TF C J'.

Proof. Given positive integers k, A, take ro = A**. Let T be an n-vertex tree with maximum
degree A. Let zy be any vertex in V(T') and consider T as rooted at z(. For each vertex
v € V(T), let D(v) denote the set of descendants of v in T (including v itself). Let D’(v) be
the set of vertices u € D(v) at distance at most ¢ from v in T.

Let T” be a tree with vertex set consisting of a special vertex x* and the vertices z € V(T')
such that the distance between x and xzq is a multiple of 2k. The edge set of T” consists of the
edge x*zo and the pairs of vertices x,y € V(T") \ {z*} for which x € D?*!(y) or y € D?*(x).
That is,

V(T") = {x € V(T): disty(zo,z) =0 (mod 2k)} U {z*}

! *
E(T') = {xy € <V(T )2\ {z }> cx e D¥(y)ory e D%(x)} U{z" 2o}
In particular, note that A(T') < A?* and |V(T")| < n + 1. Let us consider 7" as a tree rooted
at x*.

Now suppose that J is a graph such that 77 C J and J' is an (¢,7)-blow-up of J with
¢ > 1 >ry. Our goal is to show that T% C J'. First, since J' is an (¢, 7)-blow-up of J, there is
a collection {K(z):z € V(J)} of disjoint ¢-cliques in J’ such that for each edge xy € E(J),
there is a copy of K, , between the vertices of K(z) and K (y). Let us denote by K (z,y) such
copy of K. ..

For each z € V(1) \ {x*},let D* (x) = D*~!(z) and D~ (x) = D?**~!(z) \ D*~!(z). In order
to fix the notation, it helps to think in D (z) and D~ (z) as the upper and lower half of close
descendants of z, respectively. We denote by =™ the parent of z in 7”. Suppose that there
exists an injective map ¢ : V(T') — V(J') such that for every z € V(T") \ {z*}, we have:

(1) ¢(D*(x)) € K(z,a™) N K(a");
(2) ¢(D™(2)) € K(z,2%) N K().

Then we claim that such map is in fact an embedding of T* into J’. Figure 1 should help to
visualise the concepts developed so far.

Cram 12. If ¢ : V(T) — V(J') is an injective map such that for all x € V(T') \ {z*} the
properties (1) and (2) hold, then ¢ is an embedding of T* into J'.

Proof. We want to show that if v and v are distinct vertices in T' at distance at most k,
then ¢(u)é(v) is an edge in J'. Let @ and ¥ be vertices in V(T") \ {z*} with u € D*~1(%)
and v € D?71(%). If & = ©, then by properties (1) and (2), we have ¢(u) and ¢(v) adjacent in
J', once all the vertices in ¢(D?*~1(@1)) are adjacent in J' either by edges from K (@), K(a™")
or K(u,a"). If « = 0", then we must have u € D~ (@) and v € D" (0) and properties (1) and
(2) give us ¢(u), p(v) € K(a). Analogously, if o =a™, then v € D™ (0) and u € DT (a) and
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T9
D (29)

20

D (z11) (B) Corresponding T”.

K (29)

K (30)

(¢) Embedding T* into an (¢,7)-blow-up of T".

FIGURE 1 (colour online). Ilustration of the concepts and notation used throughout the proof of
Lemma 11 when A = 3 and k = 2.
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properties (1) and (2) imply that ¢(u), ¢(v) € K(0). If u* = o+ (with @ # ), then we have
u € D (u) and v € DT (0) and property (1) give us ¢(u), ¢p(v) € K(a™).

Therefore we may assume that @ and © are at distance at least 2 in 7" and do not share a
parent. But this implies

min{distr(z,y) : « € D*"Y(a),y € D*71(8)} > 2k +1,

contradicting the fact that u and v are at distance at most k in 7. (I
We conclude the proof by showing that such a map exists.

CramM 13. There is an injective map ¢ : V(T') — V(J') for which (1) and (2) hold for every
z e V(IN\ {z*}.

Proof. We just need to show that for every x € V(T”), there is enough room in K(z) and in
K(z,2T) to guarantee that (1) and (2) hold. In order to do so, K(x) should be large enough
to accommodate the set

v |J D). ()
yeV(T")
y =z
Since 7' has maximum degree at most A?* and T has maximum degree A, we have that the
set in (5) has at most A** vertices. Since |K(x)| = £ > ro = A**| the set K( ) is indeed large
enough to accommodate the set in (5). Finally, since |K (z, ) N K( ) =|K(x,z") N K(z)| =
r > 1y = A% the set K(z,x") is also large enough to accommodate D~ (z) or D¥(z) as in
properties (1) and (2). O

We end this section discussing a graph property that needs to be inherited by some subgraphs
when running the induction in the proof of Theorem 1.

DEFINITION 14. For positive numbers n, a, b, ¢, £ and 0, let P, (a,b, ¢, £,0) denote the class
of all graphs G with the following properties, where p = ¢/(an).

(i) V(G )| = an.

(ii) A(G) <

(iii) G has no cycles of length at most 2£.
(iv) G is (p,0)-bijumbled.

Only mild conditions on a, b, ¢, £ and 6 are necessary to guarantee the existence of a graph in
Pnla,b,c, £,0) for sufficiently large n. These conditions can be seen in (i)—(iii) in Definition 15.
In order to keep the induction going in our main proof, we also need a condition relating k£ and
A, which represents, respectively, the power of the tree T' we want to embed and the maximum
degree of T' (see (iv) in the next definition).

DEFINITION 15. A 7-tuple (a,b, ¢, ¢,0,A k) is good if:

(i) a>3;
) ¢ =04

(iii) b > 9¢;

(iv) € > 21A%.

Next we prove that conditions (i)—(iii) in Definition 15 together with 8 > 32,/c are enough to
guarantee that there are graphs in P, (a, b, ¢, £,0) as long as n is large enough. We remark that
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next lemma is stated for a good 7-tuple, but condition (iv) of Definition 15 is not necessary
and, therefore, also A and k are irrelevant.

LEMMA 16. If (a,b,c, 4,0, A k) is a good T-tuple with 6 > 32\/c, then for sufficiently large
n, the family P, (a,b,c,£,0) is non-empty.

Proof. Let (a,b,c,?,0,A, k) be a good 7-tuple with 6 > 32./c and let n be sufficiently large.
Put N = an and let G* = G(3N, p) be the binomial random graph with 3N vertices and edge
probability p = ¢/N. From Chernoff’s inequality (Theorem 4), we know that almost surely

e(G*) < 2p <3§7 ) < 9cN. (6)

From [17, Lemma 8], we know that almost surely G* is (p,e?1/6p(3N))-bijumbled, that is,
the following holds almost surely: for all disjoint sets X and Y C V(G*) with V18N /\/p <
|X| < Y] < p(BN)|X]|, we have

e+ (X, Y) = p|X[|Y]| < (€*V6)/pBN)|X]|Y]. (7)

The expected number of cycles of length at most 2¢ in G* is given by E(C«a/) = Zfig E(C;),
where C; is the number of cycles of length i. Then,

20 . 20
E(Ces) =Y (W) ( _21)! <Y (30) < 20(3¢)%.

: 1 :
=3 =3

Then, from Markov’s inequality, we have

P(C<ae > 46(3c)*) < 1

. 8
: (®)
Since (6) and (7) hold almost surely and the probability in (8) is at most 1/2, for sufficiently
large n, there exists a (p, e2v/18¢)-bijumbled graph G’ with 3N vertices that contains less than
40(3c)?* cycles of length at most 2¢ and e(G') < 2p(3év) < 9¢N. Then, by removing 4/(3c)%
vertices, we obtain a graph G’ with no such cycles such that

[V(G")| = 3an — 4£(3¢)** > 2an  and e(G”) < 9cN.

To obtain the desired graph G in P,(a,b,c, ¢, 60), we repeatedly remove vertices of highest
degree in G” until N vertices are left, obtaining a subgraph G C G” such that A(G) < 9¢ < b,
as otherwise we would have deleted more than e(G") edges. Note that deleting vertices preserves
the bijumbledness. Therefore, for all disjoint sets X and Y C V(G) with V18N //p < | X| <
Y| < p(3N)|X]|, we have

le(X,Y) —p|X[[Y ]| < (¢*VE)VPBN)IXIY] < 32¢/pN)VIXIIY < OVIXIY]. (9

We obtained a graph G on N vertices and maximum degree A(G) < b such that G contains
no cycles of length at most 2¢ and is (p, #)-bijumbled, for p = ¢/N. Therefore, the proof of the
lemma is complete. O

4. Proof of the main result

We derive Theorem 1 from Proposition 17. Before continuing, given an integer ¢ > 1, let us
define what we mean by a sheared complete blow-up H{¢} of a graph H: this is any graph
obtained by replacing each vertex v in V/(H) by a complete graph C(v) with ¢ vertices, and
by adding all edges but a perfect matching between C(u) and C(v), for each wv € E(H). We
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also define the complete blow-up H(¢) of a graph H analogously, but by adding all the edges
between C(u) and C(v), for each uv € E(H).

PROPOSITION 17. For all integersk > 1, A > 2 and s > 1, there exists ry and a good T-tuple
(as,bs, s, 05,05, A k) with 8, > 32,/cg for which the following holds. If n is sufficiently large
and G € P, (as,bs, cs, s, 05), then for any tree T on n vertices with A(T) < A, we have

G {t.}y — (TF),.

Theorem 1 follows from Proposition 17 applied to a certain subgraph of a random graph.

Proof of Theorem 1. Fix positive integers k, A and s and let T' be an n-vertex tree with
maximum degree A. Proposition 17 applied with parameters k, A and s gives r5 and a good
7-tuple (as, by, ¢, ls, 05, A k) with 6, > 32,/cs.

Let n be sufficiently large. By Lemma 16, since 8, > 32,/c,, there exists a graph G €
Pr(as,bs,cs, ls,05). Let x be an arbitrary s-colouring of E(G"={{¢s}). Then, Proposition 17
gives that G™{l,} — (T*),. Since |V (G)| = asn, the maximum degree of G is bounded by
the constant bs, and since rs and ¢, are constants, we have e(G"*{l;}) = Oy a s(n), which
concludes the proof of Theorem 1. O

The proof of Proposition 17 follows by induction in the number of colours. Before we give
this proof, let us state the results for the base case and the induction step.

LEMMA 18 (Base Case). For all integers h > 1, k > 1 and A > 2, there is an integer r and a
good T-tuple (a,b,c,€,0, A, k) with § > 2"=132,/c such that if n is sufficiently large, then the
following holds for any G € P, (a,b,c,¢,0). For any n-vertex tree T with A(T) < A, the graph
G"{¢} contains a copy of T*.

LEMMA 19 (Induction Step). For any positive integers A > 2, s > 2, k, r, h > 1 and any
good T-tuple (a,b,c,?,0, A k) with 6 > 2"32./c, there is a positive integer r' and a good 7-
tuple (a/,b', ¢/, 0,0, A, k) with 6 > 2"=132\/¢/ such that the following holds. If n is sufficiently
large, then for any graph G € P,,(a/,b/,¢/,¢',0') and any s-colouring x of E(G" {{'}) :

(i) there is a monochromatic copy of T* in G™ {'} for any n-vertex tree T with A(T) < A;
or

(ii) there is H € P,(a,b,c,,0) such that H™{¢} C G {¢'} and H"{¢} is coloured with at
most s — 1 colours under x.

Now we are ready to prove Proposition 17.

Proof of Proposition 17. Fix integers k> 1, A > 2 and s > 1 and define h; = s — ¢ for
1 <i<s. Let 71 and a good 7-tuple (a1,b1,c1,01,601, A k) with 6; > 2"132,/c1 be given by
Lemma 18 applied with s, k£ and A.

We will prove the proposition by induction on the number of colours i € {1,..., s} with the
additional property that if the colouring has i colours then 6; > 2hi32\/07- .

Note that Lemma 18 implies that for sufficiently large n, if G € P,(a1,b1,¢1,¢1,01), then
G {1} — (T*),. Therefore, since 0; > 2}“32\/67 if : = 1, we are done.

Assume 2 < 7 < s and suppose the statement holds for ¢ — 1 colours with the additional prop-
erty that 6;_, > 2}”*132m, where r;_1 and a good 7-tuple (a;—1,b;—1,¢i—1,4i—1,0;—1, A k)
are given by the induction hypothesis. Therefore, for any tree T on n vertices with A(T') < A,
we know that for a sufficiently large n

H”fl{gifl} — (Tk)i,1 for any H e 'Pn(ai,hbs,176¢,1,6i7179i,1). (10)



THE SIZE-RAMSEY NUMBER OF POWERS OF BOUNDED DEGREE TREES 11

Note that since i < s, we have h;_1 = s — (i — 1) > 1. Then, since 6;_1 > 2}“*132\/m, we
can apply Lemma 19 with parameters A, s, k,r;—1,h;—1 and (a;—1,bi—1,¢i—1,%i—1,0i-1, A, k),
obtaining r; and (a4, b;, ¢;, €;,0;, A, k) with 6; > 2’“32\/07-.

Let G € Py(a;, bi,ci,¢;,0;) and let n be sufficiently large. Now let x be an arbitrary i-
colouring of E(G"{¢;}). From Lemma 19, we conclude that either (i) there is a monochromatic
copy of TF in G"i{¢;} for any tree T on n vertices with A(T) < A, in which case the
proof is finished, or (ii) there exists a graph H € P,(a;-1,b;—1,¢i—1,%;i—1,0;—1) such that
Hri-v{l;_1} CG"{4;} and H"-*{l;_1} is coloured with at most ¢ — 1 colours under x. In
case (ii), the induction hypothesis (10) implies that we find the desired monochromatic copy
of Tk in HT"_l{éi_l} - Gr’{&} U

The proof of Lemma 18 follows by proving that for a good 7-tuple (a,b,c,?,0, A k) with
6 > 2"~132,/c, large graphs G in P, (a,b,c,/,0) are expanding (using Lemma 10). Then, we
use Lemma 7 to conclude that G contains the desired tree T'. After this step, we greedily find
an embedding of T% in G{/}*.

Proof of the base case (Lemma 18). Let h > 1, k > 1 and A > 2 be integers. Let
r=k, (=21A% 0=4"256¢, c=60 b=09c
and put D = A + 1. Note that § > 2"~132,/c and let
a>4(D+1).

Since ¢ > 4(A + 3), we have ¢ > 4(D + 2)6. From the lower bounds on ¢ and a, we know that
we can use the conclusion of Lemma 10 applying it with f =2,0, D= A+ 1 and c.

Note that from our choice of constants, (a,b,c,¢,0, A, k) is a good tuple. Let n be sufficiently
large and let T be a tree on n vertices with A(T) < A. Let G € Py(a,b, ¢, ¢, 0). From Lemma 10,
we know that G has an (n,2, A 4+ 1)-expanding subgraph and, therefore, from Lemma 7 we
conclude that G contains a copy of T. Clearly, the graph G* contains a copy of T%. It remains
to prove that the graph G*{¢} also contains a copy of T*.

Let {vi,...,v,} be the vertices of T, and denote by T} the subgraph of T' induced by
{v1,...,v;}. Given a vertex v € V(G), let C(v) denote the {-clique in G¥{¢} that corresponds
to v. Suppose that for some 1 < j < k we have embedded T} in G*{¢} where, for each 1 < i < j,
the vertex v; was mapped to some w; € C(v;).

By the definition of G*{¢}, every neighbour v of Vit in G* is adjacent to all but one vertex
of C(vj41). Therefore, since A(T*) < A* and |C(vj41)| =€ > AF + 1, we may thus find a
vertex w;41 € C(v;41) such that w;;; is adjacent in G*{¢} to every w; with 1 <4 < j such
that v;vj41 € E(Tfﬂ). From that we obtain a copy of T;"H in G*{¢}, where w; € C(v;) for
1 <4 < j + 1. Therefore, starting with any vertex w; in C(v1), we may obtain a copy of T* in
G*{¢} inductively, which proves the lemma. O

The core of the proof of Theorem 1 is the induction step (Lemma 19). We start by presenting
a sketch of its proof.

Sketch of the induction step (Lemma 19). We start by fixing suitable constants 7/, a’, ¥/,
c, ¢ and 6. Let n be sufficiently large and let G € P, (a’,V',c/,¢',0") be given. Consider an
arbitrary colouring y of the edges of a sheared complete blow-up GT/{K’ } of G with s colours.
We shall prove that either there is a monochromatic copy of T in G”/{K' }, or there is a graph
H € P,(a,b,c,,0) such that a sheared complete blow-up H"{{} of H" is a subgraph of G"/{E’}
and this copy of H"{¢} is coloured with at most s — 1 colours under x.

First, note that, by Ramsey’s theorem, if ¢ is large, then each ¢'-clique C(v) of Grl{ﬁ'}
contains a large monochromatic clique. Let us say that blue is the most common colour of
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these monochromatic cliques. Let these blue cliques be C’(v) C C(v). Then we consider a
graph J C G induced by the vertices v corresponding to the blue cliques C’(v) and having
only the edges {u,v} such that there is a blue copy of a large complete bipartite graph under
x in the bipartite graph induced between the blue cliques C’(u) and C’(v) in G {¢'}.

Then, by Lemma 9 applied to .J, either there is a set @ # Z C V(J) such that J[Z] is
expanding, or there are large disjoint sets Vi,...,Vy with no edges between them in J. In the
first case, Lemma 11 guarantees that there is a tree T” such that, if 7" C J[Z], then there is a
blue copy of T* in G™' {¢'}. To prove that T" C J[Z], we recall that J[Z] is expanding and use
Lemma 7. This finishes the proof of the first case.

Now let us consider the second case, in which there are large disjoint sets Vi,...,V, with
no edges between them in J. The idea is to obtain a graph H € P,(a,b,c,?,6) such that
H"™{¢} C G"'{'} and, moreover, H"{¢} does not have any blue edge. For that we first obtain a
path @ in G with vertices (1, ..., Z2q¢n) such that x; € Vj for all § where ¢ = j mod ¢. Then we
partition @ into 2an paths Q1, ..., Q2., with £ vertices each, and consider an auxiliary graph
H on V(H)={Q1,...,Q2n} with Q;Q; € E(H') if and only Eq(V(Q,),V(Q;)) # @. To
ensure that H' inherits properties from G, we use that there can be at most one edge between
Q; and @); in G, because there are no cycles of length less than 2/ in G.

We obtain a subgraph H” C H' by choosing edges of H’ uniformly at random with a suitable
probability p. Then, successively removing vertices of high degree, we obtain a graph H C H”
with H € P, (a,b,c,¢,8). It now remains to find a copy of H"{¢} in GT/{E’} with no blue edges.
To do so, we first observe that the paths Q; € V(H') give rise to f-cliques in G* (1 > £). One
can then prove that there is a copy of H"{¢} in G" that avoids the edges of J. By applying
the Lovész local lemma, we can further deduce that there is a copy of H"{¢} in G™ {¢'} with
no blue edges.

Proof of the induction step (Lemma 19). We start by fixing positive integers A > 2, s > 2,
k, r, h and a good 7-tuple (a,b,c, 2,0, A, k) with
6 > 2"32./c.
Recall that from the definition of good 7-tuple, we have
b>9c.

Let dy be obtained from Lemma 3 applied with ¢ and v = 1/(2¢) (note that dy < 10). Further
let

a’ =A% +2)(2a - dy + 2).

Note that a” is an upper bound on the value A given by Lemma 9 applied with f =2, D =
A% 11, ¢ and n = 2a - d.

Let ¢ be given by Lemma 11 on input A and k. We may assume 1 is even. Furthermore,
let

t = max{ro, (40(b"™ +£))""} and ¢ = max{4sf?,r(t)},

where r4(t) =r(t,...,t) = r(K;,...,K;) denotes the s-colour Ramsey number for cliques of
order t. Let ' = ¢'a and note that a’/s > 2a” because ¢ > 21A%*. Define constants c*, ¢/ and
r’ as follows.

V4 [/2
ct=2lc, = ﬁc* =75 r’ =0 (11)
Put . v
I ald r_ € _
b'=9¢ and 9_4069_266'

Cram 20. (a/,b,c,¢',0', A k) is a good T-tuple and ' > 2"~132+/¢.
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Proof. We have to check all conditions in Definition 15. Clearly a’ > 3, ¥’ > 9¢' and ¢ >
? > 21A%% . Below we prove that the other conditions hold.

o >0
d = %c §9—20£' > 00,
o 0 >2/132\/¢:
0 = %9 —2h32f— 2" =132/¢. O

Let G be a graph in P, (a’, 0, ¢',0"). Assume
Ng=ad'n and pg=c/Ng

and let T be an arbitrary tree with n vertices and maximum degree A and consider an arbitrary
s-colouring x: E(G™ {¢'}) — [s] of the edges of G" {¢'}. We shall prove that either there is a
monochromatic copy of T% in G™ {¢'}, or there is a graph H € P,(a,b,c,¢,0) such that a
sheared complete blow-up H"{¢} of H" is a subgraph of G"' {{'} and this copy of H"{¢} is
coloured with at most s — 1 colours under Y.

By Ramsey’s theorem (see, for example, [7]), since £' > ,(t), each £'-clique C(w) in G {¢'}
(for w € V(G)) contains a monochromatic clique of size at least . Without lost of generality,
let us assume that most of those monochromatic cliques are blue. Let W C V(G) be the set of
vertices w such that there is a blue t-clique C'(w) C C(w). We have

!
W\ > M _an > 2a''n. (12)
S

Define J as the subgraph of G with vertex set W and edge set
E(J) = {uv € E(G"'[W]) : there is a blue copy of K, ,, in G" {'}[C" (u), C’(v)}}.

That is, J is the subgraph of G induced by W and the edges uv such that there is a blue
copy of K,, ,, under x in the bipartite graph induced by G"' {¢'} between the vertex sets of
the blue cliques C’(u) and C'(v).

We now apply Lemma 9 with f =2, D = A?! 41, £ and 1 = 2a - dy to the graph J (note
that [V (J)| > 2a”n is large enough so we can apply Lemma 9), splitting the proof into two
cases.

(i) Thereis @ # Z C V(J) such that J[Z] is (n + 1,2, A% + 1)-expanding.
(ii) There exist V,...,V, C V(J) such that |V;| > 2adon for 1 < i < ¢ and J[V;, V;] is empty
forany 1 <i<j <UL

In case J[Z] is (n+ 1,2, A% + 1)-expanding, we first note that Lemma 11 applied to the
graph J[Z] implies the existence of a tree 7' = T'(T, A, k) of maximum degree at most A%
with at most n + 1 vertices such that if J[Z] contains 7", then T* C J’ for any (rg,70)-blow-up
J' of J. But since J[Z] is (n + 1,2, A?! + 1)-expanding, Lemma 7 implies that .J[Z] contains a
copy of T". Therefore, the graph G"/{ﬁ’ } contains a blue copy of T%, as we can consider J' as
the subgraph of G™ {'} containing only edges inside the blue cliques C’(u) (which have size
t > ro) and the edges of the complete blue bipartite graphs K, ,, between the blue cliques
C’(u). This finishes the proof of the first case.

We may now assume that there are subsets V1,...,V; C V(J) with |V;| > 2adon for 1 <i < £
and J[V;,Vj] is empty for any 1 <7< j </{ We Want to obtain a graph H € P,(a,b,c, E 9)

such that H"{¢} C G" {¢'} and contains no blue edges.
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Let J/ = JWViU---UV], G'=G[V1 U---UV,] and note that |V (G")| = |V (J')| = do - 2afn,
where we recall that dy is the constant obtained by applying Lemma 3 with ¢ and v = 1/(2¢).
We want to use the assertion of Lemma 3 to obtain a transversal path of length 2afn in G’
and so we have to check the conditions adjusted to this parameter.

First note that we have |V;| > 2adon = vdy - 2aln for 1 < i < ¢. Moreover, since G’ is an
induced subgraph of G and G € P, (a’,V,,£,0"), we know by (2) that for all X, Y C V(G’)
with | X|,|Y] > 0'a’n/c, we have eq/(X,Y) > 0. Observe that 8'a’n/c’ < an =~ -2afn once
a' =/{a and ¢ > 0'¢'. Therefore, we may use Lemma 3 to conclude that G’ contains a path
Poypn, = (21, ..., T2aen) with x; € V; for all ¢, where j =4 (mod ¢).

We split the obtained path Ps,p, of G’ into consecutive paths Q1, ..., Q2qn each on £ vertices.
More precisely, we let Q; = (¥(;_1)¢41,-- -, i) fori = 1,...,2an. The following auxiliary graph
is the base of our desired graph H € P,(a,b,c,{,0).

H' is the graph on V(H') = {Q1,..., Q2 } such that Q;Q; € E(H') if and only if

there is an edge in G between the vertex sets of @; and Q.

CLamv 21. H' € P, (2a, 00, c*, 0,00").

Proof. We verify the conditions of Definition 14. Since H’ has 2an vertices, condition (i)
clearly holds. Since A(G) < b’ and for any Q; € V(H’), we have |Q;| = ¢ (as a subset of V(G)),
there are at most £b’ edges in G with an endpoint in Q;. Then, A(H') < ¢b'.

For condition (iii), recall that any vertex of H’ corresponds to a path on ¢ vertices in G.
Thus, a cycle of length at most 2¢ in H’ implies the existence of a cycle of length at most 2¢2
in G. Since 2¢ > 2¢? and G has no cycles of length at most 2¢, we conclude that H’ contains
no cycle of length at most 2¢, which verifies condition (iii).

Let Ny = 2an and

* *

¢ c
Ny 2an’
Let us verify condition (iv), that is, we shall prove that H' is (pg, £0’)-bijumbled.
Consider arbitrary sets X and Y of V(H') with 0’ /py < |X| < |Y| < puNp/|X|. For
simplicity, we may assume that X ={Q1,...,Q;} and Y = {Qqu41,...,Quyy}. Let Xg =
Uj—1 @ S V(G) and Y5 = Uj;fﬂ Q; CV(G). Note that |Xg| =¢|X| and |Yg|=€]Y]. As
there are no cycles of length smaller than 2¢ in G, we only have at most one edge between the
vertex sets of @; and ;. Therefore we have

eq (X, Y) = 6g(Xg,Yg). (14)
We shall prove that |eqy (X,Y) — py/ | X||Y|| < £6’+/|X]||Y]. From the choice of ¢/, we have

pH = (13)

c* c c
p | XY= —[X|[Y| = - X|]Y| = ——|Xc|[Yc| = pcl| Xc||[Yal- (15)
n a'n a'n

2a
From the choice of ¢', ¢’ and py, since 00’ /py < |X| < Y| < puNu/|X|, we obtain

/

0
P | Xcl < Ye| < paNc|Xcl-

Combining (15) with (14) and the fact that G is (pg, 0')-bijumbled, we get that
len (X, Y) —pw | X[|Y]] = lec(Xa, Ya) — palXcl|Yell < 0'VI|Xc|lYa| = 00'V/[X][Y]. (16)

Therefore, H' is (py+, £0")-bijumbled, which verifies condition (iv). O

The parameters for P, (2a, fb', c*, £, £0") are tightly fitted such that we can find the following
subgraph of H'.
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CLAIM 22. There exists H C H' such that H € P,(a,b,c,,0).

Proof. We first obtain H” C H' by picking each edge of H' with probability
2c 1

c*_?

independently at random. Note that p < 1/2.
From (3), we get

2 /
e(H') < pH/( ;m) + 40" 2an < (¢* + 260" )an < <c* + 25;/) an < 2c*an
From Chernoff’s inequality, we then know that almost surely we have

2
e(H"Y<2p-e(H')<2- (f) - 2¢*an < 8acn < abn. (17)
c
Let Ng» = 2an and
c
pHr =P par = —.
an
We shall prove that H” is (pg+,6)-bijumbled almost surely. For that, we will first prove by
using Chernoff’s inequality (Theorem 4) that, for any disjoint sets X and Y of V(H') with
0/prr < |X| <|Y| < pr Np/| X|, we have

0
ler(X,Y) —p-em (X, V)| < S VIX]Y]. (18)
Note that for such sets X and Y, since | X| > 0/py = €0’ /py/, we can use (16).

Since |X|,|Y|> 0/pu~, we have +/|X||Y|> 6an/c. From +/|X||Y|> 0an/c, we obtain
that £'6 < %/027 W from which we can conclude that 200’ < py/+/|X||Y|. Thus, we get
00" \/|X||Y] < pu/|X||Y|/2. Therefore, combining this with (16), we have

pu | X[|Y]
2

Let e =0+/|X||Y|/(2p-en/(X,Y)) and note that from (19) we have ¢ < 1. Since 6 > 10+/c,
also from (19) we obtain

< GH/(X, Y) < 2pH/|X||Y| (19)

elp e (X,Y)  |X||[Y]0'0?
3 N 12‘€H/(X,Y)

> 4an.

Therefore, by using Chernoff’s inequality, since there are at most 24" choices of pairs of sets
{X,Y}, almost surely we have that for any disjoint subsets X and Y of vertices of H"” with
0/pur < |X| < Y| < paNg/|X|, inequality (18) holds.

Observe that py» Ny»|X| = 2¢|X| < ¢*|X| = paNg/|X|. Therefore, H” is almost surely
(pgr,0)-bijumbled, as by (16) and (18), we get

ler (X,Y) = par | XY < lea(X,Y) —=p-en/ (X, Y)| + |p-eq (X,Y) — pur | X[|Y]|
(18) 9
< SVIXIYT+p(ler (X,Y) = prr | XY 1)
(16) g 09
< SVIXIYI+ - vIXIIY]
= 0/ X[]Y].
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Therefore, there exists a (pgr, 6)-bijumbled graph H” as above. We fix such a graph and
construct the desired graph H from this H” by sequentially removing the an vertices of highest
degree. Note that H has maximum degree at most b, otherwise this would imply that H’ has
more than abn edges, contradicting (17). Since H is a subgraph of H', and H’ does not contain
cycles of length at most 2¢, the same holds for H. Finally, since deleting vertices preserves the
bijumbledness property, we conclude that H € P, (a,b,c,?,0). a

Recall that .J is the subgraph of G”" induced by W, with [W| > a/n/s and edges uv such that
there is a blue copy of K, ,, under x in the bipartite graph induced by the vertex sets of blue
cliques C’(u) and C’(v) in G {¢'}. Furthermore, recall that there are subsets Vi, ..., V; C V(J)
with |Vi| > 2adon for 1 <i < ¢ and J[V;,V;] is empty for any 1 <i < j < ¢, and we defined
J'=JWViu---uV]and G' = G[Vy U---U V. Finally, recall that Q; = (z(;i—1)¢+1, - - -, Tie) for

i=1,...,2an, where the vertices z; belong to G’. Assume, without loss of generality, V(H) =
{Q1,...,Qun}. In what follows, when considering the graph H"(¢), the ¢-clique corresponding
to Q; is composed of the vertices x(;_1)¢41,...,2i, and hence one can view V(H"({)) as a

subset of V(G’).

CLAIM 23. H"(¢) C G"'. Moreover, G" contains a copy of H"{{} that avoids the edges of
J.

Proof. We will prove that H” (£) C G* where Q1 ..., Qan C V(J) are the l-cliques of H” ().
Suppose that @); and Q; are at distance at most 7 in the graph H. Without loss of generality, let
Q; = Q1 and Q; = @, for some m < r. Moreover, let (Q1,Q2,..., Q) be a path in H. Note
that there exist vertices uq,...,uy,—1 and uj,...,u,, in V(G’) such that u; € Q1, ul,, € Qm,
uj,uf € Qj forall j =2,...,m —1and {u;,uj,} is an edge of G’ for i = 1,...,m — 1.

Let v} € Q1 and u,, € Q,, be arbitrary vertices. Since for any j, the set Q; is spanned by
a path on £ vertices in G, it follows that u; and uj are at distance at most £ —1 in G’ for
all 1 < 7 < m. Therefore, v} and w,, are at distance at most ({ — )m + (m — 1) < fr <71’ in
G’ and hence uju,, is an edge in G[V; U...U Vg]’“' C G™'. Since the vertices u} and u,, were
arbitrary, we have shown that if @; and @Q; are adjacent in H" (that is, Q; and Q; are at
distance at most r in H), then (Q;,Q;) gives a complete bipartite graph C(Q;,@;) in G
Moreover, taking i = j we see that each Q; in G” must be complete. This implies that H” (¢)
is a subgraph of G

For the second part of the claim, we consider which of the edges of this copy of H"({) can
also be edges of .J. Recall from the definition of J’ that we found subsets V1,...,V, C J such
that no edge of J lies between different parts. Moreover each set @); C J takes precisely one
vertex from each set Vi,...,V;. It follows that each @; is independent in J. Now let us say we
have z € Q; and y € Q; (i # j) that are adjacent in J. We cannot have = and y in different
parts of the partition {Vi,...,V;}. Thus = and y lie in the same part. Therefore edges from J
between @); and (); must form a matching. Then we can find a copy of H"{¢} that avoids J
by removing a matching between the I-cliques from H"(£). |

To complete the proof of Lemma 19, we will embed a copy of the graph H"{¢} C G" found
in Claim 23 in G™ {{'} in such a way that H"{{} uses at most s — 1 colours.

CLAIM 24. G {{'} contains a copy of H"{¢} with no blue edges.
Proof. Recall that each vertex u in J corresponds to a clique C'(u) € G™ {'} of size t and

that this clique is monochromatic in blue in the original colouring x of E(G" {£'}). Recall also
that if an edge {u,v} of G" [W] is not in J, then there is no blue copy of K, ,, in the bipartite
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graph between C’(u) and C’(v) in G” {¢'}. By the Kévari-Sés-Turén theorem (Theorem 5),
there are at most 4¢>~1/70 blue edges between C’(u) and C’(v). Recall further that C’(u) and
C'(v) are, respectively, subcliques of the ¢'-cliques C(u) and C(v) in G™ {¢'}. Since {u, v} is an
edge of G’”/, there is a complete bipartite graph with a matching removed between C(u) and
C(v) in G" {¢'} and so there is a complete bipartite graph with at most a matching removed
for C'(u) and C'(v). It follows that there are at least

2 —t — 4¢2 /o

non-blue edges between C'(u) and C’(v).

Using the copy of H"{¢} C G" avoiding edges of J obtained in Claim 23 as a ‘template’, we
will embed a copy of H"{¢} in G" {¢’} with no blue edges. For each vertex u € V(H"{{}) C
V(J), we will pick precisely one vertex from C’(u) € G"' {¢'} in our embedding. The argument
proceeds by the Lovasz Local Lemma.

For each w € V(H"{¢}) C V(J), let us choose x, € C'(u) uniformly and independently at
random. Let e = {u,v} be an edge of our copy of H"{{} in G"' that is not in J. As pointed
out above, we know that there are at least t> — ¢t — 4¢>~ /70 non-blue edges between C’(u) and
C’(v). Letting A, be the event that {a,,z,} is a blue edge or a non-edge in G" {¢'}, we have
that

2—1/r
PlA,] < % < 5t
t

The events A, are not independent, but we can define a dependency graph D for the collection
of events A, by adding an edge between A, and Ay if and only if e N f # @. Then, A = A(D) <
2A(H™{£}) < 2(b""1¢ + ). From our choice of ¢, we get that

4AP[A.] < 400"+ 02yt <1

for all e. Then the Local Lemma [2, Lemma 5.1.1] tells us that P[)_A.] >0, and hence a
simultaneous choice of the vertices z,, (v € V(H"{{})) is possible, as required. This concludes
the proof of Claim 24. (|

The proof of Lemma 19 is now complete. O

5. Concluding remarks

To construct our graphs, we need that P,(a,b,c,¢,6) is non-empty given a good 7-tuple
(a,b,c, 0,0, A k) with 0 > 32,/c. We prove this in Lemma 16 using the binomial random
graph. Alternatively, it is possible to replace this by using explicit constructions of high girth
expanders. For example, the Ramanujan graphs constructed by Lubotzky, Phillips, and Sarnak
[26] can be used to prove Lemma 16.

We now discuss further connections between powers of trees and graph parameters related
to treewidth. As pointed out in the introduction, every graph with maximum degree and
bounded treewidth is contained in some bounded power of a bounded degree tree and vice
versa. This implies that Corollary 2 is equivalent to Theorem 1. For bounded degree graphs,
bounded treewidth is equivalent to bounded cliquewidth and also to bounded rankwidth [18].
Therefore, Corollary 2 also holds with treewidth replaced by any of these parameters. Finally,
an obvious direction for further research is to investigate the size-Ramsey number of powers
T* of trees T when k and A(T) are no longer bounded.

Acknowledgement. The authors are most grateful to the anonymous referee for his or her
very careful reading of the proof and for many useful comments.
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