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Abstract

Given a positive integer s, the s-colour size-Ramsey number of a graph H is the smallest integer
m such that there exists a graph G with m edges with the property that, in any colouring of E(G)
with s colours, there is a monochromatic copy of H. We prove that, for any positive integers k
and s, the s-colour size-Ramsey number of the kth power of any n-vertex bounded degree tree is
linear in n. As a corollary, we obtain that the s-colour size-Ramsey number of n-vertex graphs
with bounded treewidth and bounded degree is linear in n, which answers a question raised by
Kamčev, Liebenau, Wood and Yepremyan.

1. Introduction

Given graphs G and H and a positive integer s, we denote by G → (H)s the property that
any s-colouring of the edges of G contains a monochromatic copy of H. We are interested in
the problem proposed by Erdős et al. [13] of determining the minimum integer m for which
there is a graph G with m edges such that property G → (H)2 holds. Formally, the s-colour
size-Ramsey number r̂s(H) of a graph H is defined as follows:

r̂s(H) = min{e(G) : G → (H)s}.
Answering a question posed by Erdős [12], Beck [3] showed that r̂2(Pn) = O(n) by means of a

probabilistic proof. Alon and Chung [1] proved the same fact by explicitly constructing a graph
G with O(n) edges such that G → (Pn)2. In the last decades, many successive improvements
were obtained in order to determine the size-Ramsey number of paths (see, for example, [3, 5,
11] for lower bounds, and [3, 10, 11, 25] for upper bounds). The best-known bounds for paths
are 5n/2 − 15/2 � r̂2(Pn) � 74n from [11]. For any s � 2 colours, Dudek and Pra�lat [11] and
Krivelevich [24] proved that there are positive constants c and C such that cs2n � r̂s(Pn) �
Cs2(log s)n.

Moving away from paths, Beck [3] asked whether r̂2(H) is linear for any bounded degree
graph. This question was later answered negatively by Rödl and Szemerédi [30], who
constructed a family {Hn}n∈N of n-vertex graphs of maximum degree Δ(Hn) � 3 such that
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r̂2(Hn) = Ω(n log1/60 n). The current best upper bound for the size-Ramsey number of graphs
with bounded degree was obtained in [22] by Kohayakawa, Rödl, Schacht and Szemerédi, who
proved that for any positive integer Δ there is a constant c such that, for any graph H with n
vertices and maximum degree Δ, we have

r̂2(H) � cn2−1/Δ log1/Δ n.

For more results on the size-Ramsey number of bounded degree graphs, see [8, 14, 16, 17,
20, 21].

Let us turn our attention to powers of bounded degree graphs. Let H be a graph with n
vertices and let k be a positive integer. The kth power Hk of H is the graph with vertex set
V (H) in which there is an edge between distinct vertices u and v if and only if u and v are
at distance at most k in H. Recently it was proved that the 2-colour size-Ramsey number of
powers of paths and cycles is linear [6]. This result was extended to any fixed number s of
colours in [15], that is,

r̂s(P k
n ) = Ok,s(n) and r̂s(Ck

n) = Ok,s(n). (1)

In our main result (Theorem 1), we extend (1) to bounded powers of bounded degree trees.
We prove that for any positive integers k and s, the s-colour size-Ramsey number of the kth
power of any n-vertex bounded degree tree is linear in n.

Theorem 1. For any positive integers k, Δ and s and any n-vertex tree T with Δ(T ) � Δ,
we have

r̂s(T k) = Ok,Δ,s(n).

We remark that Theorem 1 is equivalent to the following result for the ‘general’ or
‘off-diagonal’ size-Ramsey number r̂(H1, . . . , Hs) = min{e(G) : G → (H1, . . . , Hs)}: if Hi = T k

i

for i = 1, . . . , s where T1, . . . , Ts are bounded degree trees, then r̂(H1, . . . , Hs) is linear in
max1�i�s v(Hi). To see this, it is sufficient to apply Theorem 1 to a tree containing the disjoint
union of T1, . . . , Ts.

The graph that we present to prove Theorem 1 does not depend on T , but only on Δ, k
and n. Moreover, our proof not only gives a monochromatic copy of T k for a given T , but
a monochromatic subgraph that contains a copy of the kth power of every n-vertex tree
with maximum degree at most Δ. That is, we prove the existence of so called ‘partition
universal graphs’ with Ok,Δ,s(n) edges for the family of powers T k of n-vertex trees with
Δ(T ) � Δ.

Theorem 1 was announced in the extended abstract [4]. While finalising this paper, we
learned that Kamčev et al. [19] proved, among other things, that the 2-colour size-Ramsey
number of an n-vertex graph with bounded degree and bounded treewidth is O(n)†. This is
equivalent to our result for s = 2. Indeed, any graph with bounded treewidth and bounded
maximum degree is contained in a suitable blow-up of some bounded degree tree [9, 31]
and a blow-up of a bounded degree tree is contained in the power of another bounded
degree tree. Conversely, bounded powers of bounded degree trees have bounded treewidth
and bounded degree. Therefore, we obtain the following equivalent version of Theorem 1,
which generalises the result from [19] and answers one of their main open questions ([19,
Question 5.2]).

Corollary 2. For any positive integers k, Δ and s and any n-vertex graph H with
treewidth k and Δ(H) � Δ, we have

r̂s(H) = Ok,Δ,s(n).

†They in fact formulate this for the general 2-colour size-Ramsey number r̂(H1, H2).



THE SIZE-RAMSEY NUMBER OF POWERS OF BOUNDED DEGREE TREES 3

The proof of Theorem 1 follows the strategy developed in [15], proving the result by
induction on the number of colours s. Very roughly speaking, we start with a graph G with
suitable properties and, given any s-colouring of the edges of G (s � 2), either we obtain a
monochromatic copy of the power of the desired tree in G, or we obtain a large subgraph H of
G that is coloured with at most s− 1 colours; moreover, the graph H that we obtain is such
that we can apply the induction hypothesis on it. Naturally, we design the requirements on
our graphs in such a way that this induction goes through. As it turns out, the graph G will
be a certain blow-up of a random-like graph. While this approach seems uncomplicated upon
first glance, the proof requires a variety of additional ideas and technical details.

To implement the above strategy, we need, among other results, two new and key ingredients
which are interesting on their own: (i) a result that states that for any sufficiently large graph
G, either G contains a large expanding subgraph or there is a given number of reasonably large
disjoint subsets of V (G) without any edge between any two of them (see Lemma 9†); (ii) an
embedding result that states that in order to embed a power T k of a tree T in a certain blow-up
of a graph G it is enough to find an embedding of an auxiliary tree T ′ in G (see Lemma 11).

2. Auxiliary results

In this section, we state a few results which will be needed in the proof of our main theorem.
The first lemma guarantees that, in a graph G that has edges between large subsets of vertices,
there exists a long ‘transversal’ path along a constant number of large subsets of vertices of G.
Denote by eG(X,Y ) the number of edges between two disjoint sets X and Y in a graph G.

Lemma 3 [6, Lemma 3.5]. For every integer � � 1 and every γ > 0, there exists d0 = 2 +
4/(γ(� + 1)) such that the following holds for any d � d0. Let G be a graph on dn vertices such
that for every pair of disjoint sets X,Y ⊆ V (G) with |X|, |Y | � γn we have eG(X,Y ) > 0. Then
for every family V1, . . . , V� ⊆ V (G) of pairwise disjoint sets each of size at least γdn, there is a
path Pn = (x1, . . . , xn) in G with xi ∈ Vj for all 1 � i � n, where j ≡ i (mod �).

We will also use the classical Chernoff’s inequality and Kővári–Sós–Turán theorem.

Theorem 4 (Chernoff’s inequality). Let 0 < ε � 3/2. If X is a sum of independent Bernoulli
random variables, then

P(|X − E[X]| > εE[X]) � 2 · e−(ε2/3)E[X] .

Theorem 5 [23]. Let k � 1 and let G be a bipartite graph with x vertices in each vertex
class. If G contains no copy of K2k,2k, then G has at most 4x2−1/(2k) edges.

3. Bijumbledness, expansion and embedding of trees

In this section, we provide the necessary tools to obtain the desired monochromatic embedding
of a power of a tree in the proof of Theorem 1. We start by defining the expanding property
of a graph.

Property 6 (Expanding). A graph G is (n, a, b)-expanding if for all X ⊆ V (G) with |X| �
a(n− 1), we have |NG(X)| � b|X|.

†We are grateful to the authors of [19], who pointed out to us that similar lemmas have been proved in [28,
29].
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Here NG(X) is the set of neighbours of X, that is, all vertices in V (G) that share an edge
with some vertex from X. The following embedding result due to Friedman and Pippenger [14]
guarantees the existence of copies of bounded degree trees in expanding graphs.

Lemma 7. Let n and Δ be positive integers and G a non-empty graph. If G is (n, 2,Δ +
1)-expanding, then G contains any n-vertex tree with maximum degree Δ as a subgraph.

Owing to Lemma 7, we are interested in graph properties that guarantee expansion. One
such property is bijumbledness, defined below.

Property 8 (Bijumbledness). A graph G on N vertices is (p, θ)-bijumbled if, for all
disjoint sets X and Y ⊆ V (G) with θ/p < |X| � |Y | � pN |X|, we have |eG(X,Y ) − p|X||Y || �
θ
√|X||Y |.

We remark that, in the definition above, we restrict our sets X and Y not to be too small;
such a restriction is not usually imposed when defining bijumbledness, but we have to do so
here for certain technical reasons.

Note that bijumbledness immediately implies that

for all disjoint sets X, Y ⊆ V (G) with |X|, |Y | > θ/p we have eG(X,Y ) > 0. (2)

Moreover, a simple averaging argument guarantees that in a (p, θ)-bijumbled graph G on N
vertices, we have ∣∣∣∣e(G) − p

(
N

2

)∣∣∣∣ � θN. (3)

We now state the first main novel ingredient in the proof of our main result (Theorem 1).
The following lemma ensures that in a sufficiently large graph we get an expanding subgraph
with appropriate parameters or we get reasonably large disjoint subsets of vertices that span no
edges between them. This result was inspired by [27, Theorem 1.5]. Furthermore, we remark
that similar results have been proved in [28, 29].

Lemma 9. Let f � 0, D � 0, � � 2 and η > 0 be given and let A = (�− 1)(D + 1)(η + f) +
η.

If G is a graph on at least An vertices, then:

(i) there is a non-empty set Z ⊆ V (G) such that G[Z] is (n, f,D)-expanding; or
(ii) there exist V1, . . . , V� ⊆ V (G) such that |Vi| � ηn for 1 � i � � and eG(Vi, Vj) = 0 for

1 � i < j � �.

Proof. Let us assume that (i) does not hold. Since G is not (n, f,D)-expanding, we can take
V1 ⊆ V (G) of maximum size satisfying that |V1| � (η + f)n and |NG(V1)| < D|V1|. We claim
that |V1| � ηn. Assume, for the sake of contradiction that |V1| < ηn. Let

W1 = V (G) \ (V1 ∪NG(V1)).

Then |W1| > An− (D + 1)ηn > 0. Applying that (i) does not hold, we get X ⊆ W1 such that
|X| � f(n− 1) and |NG[W1](X)| < D|X|. Note that NG(X) ⊆ NG[W1](X) ∪NG(V1). Thus

|NG(X∪̇V1)| = |NG[W1](X) ∪NG(V1)|
< D(|X| + |V1|).

Also |X∪̇V1| � (η + f)n, deriving a contradiction to the maximality of V1.
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Let 1 � k � �− 2 and suppose we have (V1, . . . , Vk) such that:

(I) |Vi| � ηn, for 1 � i � k;
(II) e(Vi, Vj) = 0, for 1 � i < j � k;

(III) |⋃k
i=1(Vi ∪NG(Vi))| < k(D + 1)(η + f)n.

We can increase this sequence in the following way. Let Wk = V (G) \⋃k
i=1(Vi ∪NG(Vi)) and

note that

|Wk|
(III)

� An− (�− 2)(D + 1)(η + f)n

� (D + 1)(η + f)n + ηn

> 0.

Since (i) does not hold, there exists Vk+1 ⊆ Wk of maximum size with |Vk+1| � (η + f)n such
that |NG[Wk](Vk+1)| < D|Vk+1|. Note that eG(Vi, Vk+1) � eG(Vi,Wk+1) = 0, for every 1 � i �
k. Therefore we have that (II) holds for the sequence (V1, . . . , Vk+1). Furthermore, note that

NG(Vk+1) ⊆
k⋃

i=1

NG(Vi) ∪NG[Wk](Vk+1) . (4)

This gives us (III) for the sequence (V1, . . . , Vk+1), since∣∣∣∣∣
k+1⋃
i=1

(Vi ∪NG(Vi))

∣∣∣∣∣
(4)
=

∣∣∣∣∣
k⋃

i=1

(Vi ∪NG(Vi)) ∪ Vk+1 ∪NG[Wk](Vk+1)

∣∣∣∣∣
< (k + 1)(D + 1)(η + f)n.

To see that (V1, . . . , Vk+1) satisfies (I), define

Wk+1 = V (G) \
k+1⋃
i=1

(Vi ∪NG(Vi))
(4)
= Wk \ (Vk+1 ∪NG[Wk](Vk+1)).

Assume that |Vk+1| < ηn and derive a contradiction as before.
Therefore, when k = �− 2, we generate a sequence (V1, . . . , V�−1) with the properties required

by (ii). To complete the sequence, note that (III) gives that |W�−1| � ηn and set V� = W�−1. �

As a corollary of the previous lemma, we get the following lemma that says that sufficiently
large bijumbled graphs contain a non-empty expanding subgraph.

Lemma 10 (Bijumbledness implies expansion). Let f , θ, D and c � 1 be positive numbers
with c � 4(D + 2)θ and a � 2(D + 1)f . If G is a (c/(an), θ)-bijumbled graph with an vertices,
then there exists a non-empty subgraph H of G that is (n, f,D)-expanding.

Proof. Let p = c/(an) and let G be a (p, θ)-bijumbled graph. Suppose for a contradiction
that no subgraph of G is (n, f,D)-expanding. We apply Lemma 9 with � = 2 and η = 2θa/c.
Note that, since a � 2(D + 1)f and c � 4(D + 2)θ, from the choice of η we have

a � (D + 1)f +
a

2
� (D + 1)f +

2(D + 2)θa
c

� (D + 1)f + (D + 2)η = (D + 1)(f + η) + η.

Then, we get two disjoint sets V1, V2 ⊆ V (G) with |V1| = |V2| = ηn > θ/p such that
eG(V1, V2) = 0. On the other hand, by (2), we have eG(V1, V2) > 0, a contradiction. Therefore,
there is some subgraph of G that is (n, f,D)-expanding. �
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The next lemma is crucial for embedding the desired power of a tree. Let G be a graph and
� � r be positive integers. An (�, r)-blow-up of G is a graph obtained from G by replacing each
vertex of G by a clique of size � and for every edge of G arbitrarily adding a complete bipartite
graph Kr,r between the cliques corresponding to the vertices of this edge.

Lemma 11 (Embedding lemma for powers of trees). Given positive integers k and Δ, there
exists r0 such that the following holds for every n-vertex tree T with maximum degree Δ.
There is a tree T ′ = T ′(T, k) on at most n + 1 vertices and with maximum degree at most Δ2k

such that for every graph J with T ′ ⊆ J and any (�, r)-blow-up J ′ of J with � � r � r0, we
have T k ⊆ J ′.

Proof. Given positive integers k, Δ, take r0 = Δ4k. Let T be an n-vertex tree with maximum
degree Δ. Let x0 be any vertex in V (T ) and consider T as rooted at x0. For each vertex
v ∈ V (T ), let D(v) denote the set of descendants of v in T (including v itself). Let Di(v) be
the set of vertices u ∈ D(v) at distance at most i from v in T .

Let T ′ be a tree with vertex set consisting of a special vertex x∗ and the vertices x ∈ V (T )
such that the distance between x and x0 is a multiple of 2k. The edge set of T ′ consists of the
edge x∗x0 and the pairs of vertices x, y ∈ V (T ′) \ {x∗} for which x ∈ D2k(y) or y ∈ D2k(x).
That is,

V (T ′) = {x ∈ V (T ) : distT (x0, x) ≡ 0 (mod 2k)} ∪ {x∗}

E(T ′) =
{
xy ∈

(
V (T ′) \ {x∗}

2

)
: x ∈ D2k(y) or y ∈ D2k(x)

}
∪ {x∗x0}.

In particular, note that Δ(T ′) � Δ2k and |V (T ′)| � n + 1. Let us consider T ′ as a tree rooted
at x∗.

Now suppose that J is a graph such that T ′ ⊆ J and J ′ is an (�, r)-blow-up of J with
� � r � r0. Our goal is to show that T k ⊆ J ′. First, since J ′ is an (�, r)-blow-up of J , there is
a collection {K(x) : x ∈ V (J)} of disjoint �-cliques in J ′ such that for each edge xy ∈ E(J),
there is a copy of Kr,r between the vertices of K(x) and K(y). Let us denote by K(x, y) such
copy of Kr,r.

For each x ∈ V (T ′) \ {x∗}, let D+(x) = Dk−1(x) and D−(x) = D2k−1(x) \Dk−1(x). In order
to fix the notation, it helps to think in D+(x) and D−(x) as the upper and lower half of close
descendants of x, respectively. We denote by x+ the parent of x in T ′. Suppose that there
exists an injective map φ : V (T ) → V (J ′) such that for every x ∈ V (T ′) \ {x∗}, we have:

(1) φ(D+(x)) ⊆ K(x, x+) ∩K(x+);
(2) φ(D−(x)) ⊆ K(x, x+) ∩K(x).

Then we claim that such map is in fact an embedding of T k into J ′. Figure 1 should help to
visualise the concepts developed so far.

Claim 12. If φ : V (T ) → V (J ′) is an injective map such that for all x ∈ V (T ′) \ {x∗} the
properties (1) and (2) hold, then φ is an embedding of T k into J ′.

Proof. We want to show that if u and v are distinct vertices in T at distance at most k,
then φ(u)φ(v) is an edge in J ′. Let ũ and ṽ be vertices in V (T ′) \ {x∗} with u ∈ D2k−1(ũ)
and v ∈ D2k−1(ṽ). If ũ = ṽ, then by properties (1) and (2), we have φ(u) and φ(v) adjacent in
J ′, once all the vertices in φ(D2k−1(ũ)) are adjacent in J ′ either by edges from K(ũ), K(ũ+)
or K(ũ, ũ+). If ũ = ṽ+, then we must have u ∈ D−(ũ) and v ∈ D+(ṽ) and properties (1) and
(2) give us φ(u), φ(v) ∈ K(ũ). Analogously, if ṽ = ũ+, then v ∈ D−(ṽ) and u ∈ D+(ũ) and
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Figure 1 (colour online). Illustration of the concepts and notation used throughout the proof of
Lemma 11 when Δ = 3 and k = 2.
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properties (1) and (2) imply that φ(u), φ(v) ∈ K(ṽ). If ũ+ = ṽ+ (with ũ �= ṽ), then we have
u ∈ D+(ũ) and v ∈ D+(ṽ) and property (1) give us φ(u), φ(v) ∈ K(ũ+).

Therefore we may assume that ũ and ṽ are at distance at least 2 in T ′ and do not share a
parent. But this implies

min{distT (x, y) : x ∈ D2k−1(ũ), y ∈ D2k−1(ṽ)} � 2k + 1,

contradicting the fact that u and v are at distance at most k in T . �

We conclude the proof by showing that such a map exists.

Claim 13. There is an injective map φ : V (T ) → V (J ′) for which (1) and (2) hold for every
x ∈ V (T ′) \ {x∗}.

Proof. We just need to show that for every x ∈ V (T ′), there is enough room in K(x) and in
K(x, x+) to guarantee that (1) and (2) hold. In order to do so, K(x) should be large enough
to accommodate the set

D−(x) ∪
⋃

y∈V (T ′)
y+=x

D+(y). (5)

Since T ′ has maximum degree at most Δ2k and T has maximum degree Δ, we have that the
set in (5) has at most Δ4k vertices. Since |K(x)| = � � r0 = Δ4k, the set K(x) is indeed large
enough to accommodate the set in (5). Finally, since |K(x, x+) ∩K(x)| = |K(x, x+) ∩K(x)| =
r � r0 = Δ4k, the set K(x, x+) is also large enough to accommodate D−(x) or D+(x) as in
properties (1) and (2). �

We end this section discussing a graph property that needs to be inherited by some subgraphs
when running the induction in the proof of Theorem 1.

Definition 14. For positive numbers n, a, b, c, � and θ, let Pn(a, b, c, �, θ) denote the class
of all graphs G with the following properties, where p = c/(an).

(i) |V (G)| = an.
(ii) Δ(G) � b.
(iii) G has no cycles of length at most 2�.
(iv) G is (p, θ)-bijumbled.

Only mild conditions on a, b, c, � and θ are necessary to guarantee the existence of a graph in
Pn(a, b, c, �, θ) for sufficiently large n. These conditions can be seen in (i)–(iii) in Definition 15.
In order to keep the induction going in our main proof, we also need a condition relating k and
Δ, which represents, respectively, the power of the tree T we want to embed and the maximum
degree of T (see (iv) in the next definition).

Definition 15. A 7-tuple (a, b, c, �, θ,Δ, k) is good if:

(i) a � 3;
(ii) c � θ�;
(iii) b � 9c;
(iv) � � 21Δ2k.

Next we prove that conditions (i)–(iii) in Definition 15 together with θ � 32
√
c are enough to

guarantee that there are graphs in Pn(a, b, c, �, θ) as long as n is large enough. We remark that
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next lemma is stated for a good 7-tuple, but condition (iv) of Definition 15 is not necessary
and, therefore, also Δ and k are irrelevant.

Lemma 16. If (a, b, c, �, θ,Δ, k) is a good 7-tuple with θ � 32
√
c, then for sufficiently large

n, the family Pn(a, b, c, �, θ) is non-empty.

Proof. Let (a, b, c, �, θ,Δ, k) be a good 7-tuple with θ � 32
√
c and let n be sufficiently large.

Put N = an and let G∗ = G(3N, p) be the binomial random graph with 3N vertices and edge
probability p = c/N . From Chernoff’s inequality (Theorem 4), we know that almost surely

e(G∗) � 2p
(

3N
2

)
� 9cN. (6)

From [17, Lemma 8], we know that almost surely G∗ is (p, e2
√

6p(3N))-bijumbled, that is,
the following holds almost surely: for all disjoint sets X and Y ⊆ V (G∗) with e2

√
18N/

√
p <

|X| � |Y | � p(3N)|X|, we have∣∣eG∗(X,Y ) − p|X||Y |∣∣ � (e2
√

6)
√

p(3N)|X||Y |. (7)

The expected number of cycles of length at most 2� in G∗ is given by E(C�2�) =
∑2�

i=3 E(Ci),
where Ci is the number of cycles of length i. Then,

E(C�2�) =
2�∑
i=3

(
3an
i

)
(i− 1)!

2
pi �

2�∑
i=3

(3c)i � 2�(3c)2�.

Then, from Markov’s inequality, we have

P
(
C�2� � 4�(3c)2�

)
� 1

2
. (8)

Since (6) and (7) hold almost surely and the probability in (8) is at most 1/2, for sufficiently
large n, there exists a (p, e2

√
18c)-bijumbled graph G′ with 3N vertices that contains less than

4�(3c)2� cycles of length at most 2� and e(G′) � 2p
(
3N
2

)
� 9cN . Then, by removing 4�(3c)2�

vertices, we obtain a graph G′′ with no such cycles such that

|V (G′′)| = 3an− 4�(3c)2� � 2an and e(G′′) � 9cN.

To obtain the desired graph G in Pn(a, b, c, �, θ), we repeatedly remove vertices of highest
degree in G′′ until N vertices are left, obtaining a subgraph G ⊆ G′′ such that Δ(G) � 9c � b,
as otherwise we would have deleted more than e(G′′) edges. Note that deleting vertices preserves
the bijumbledness. Therefore, for all disjoint sets X and Y ⊆ V (G) with e2

√
18N/

√
p < |X| �

|Y | � p(3N)|X|, we have∣∣eG(X,Y ) − p|X||Y |∣∣ � (e2
√

6)
√

p(3N)|X||Y | � (32
√

pN)
√

|X||Y | � θ
√
|X||Y |. (9)

We obtained a graph G on N vertices and maximum degree Δ(G) � b such that G contains
no cycles of length at most 2� and is (p, θ)-bijumbled, for p = c/N . Therefore, the proof of the
lemma is complete. �

4. Proof of the main result

We derive Theorem 1 from Proposition 17. Before continuing, given an integer � � 1, let us
define what we mean by a sheared complete blow-up H{�} of a graph H: this is any graph
obtained by replacing each vertex v in V (H) by a complete graph C(v) with � vertices, and
by adding all edges but a perfect matching between C(u) and C(v), for each uv ∈ E(H). We



10 SÖREN BERGER ET AL.

also define the complete blow-up H(�) of a graph H analogously, but by adding all the edges
between C(u) and C(v), for each uv ∈ E(H).

Proposition 17. For all integers k � 1, Δ � 2 and s � 1, there exists rs and a good 7-tuple
(as, bs, cs, �s, θs,Δ, k) with θs � 32

√
cs for which the following holds. If n is sufficiently large

and G ∈ Pn(as, bs, cs, �s, θs), then for any tree T on n vertices with Δ(T ) � Δ, we have

Grs{�s} → (T k)s.

Theorem 1 follows from Proposition 17 applied to a certain subgraph of a random graph.

Proof of Theorem 1. Fix positive integers k, Δ and s and let T be an n-vertex tree with
maximum degree Δ. Proposition 17 applied with parameters k, Δ and s gives rs and a good
7-tuple (as, bs, cs, �s, θs,Δ, k) with θs � 32

√
cs.

Let n be sufficiently large. By Lemma 16, since θs � 32
√
cs, there exists a graph G ∈

Pn(as, bs, cs, �s, θs). Let χ be an arbitrary s-colouring of E(Grs{�s}). Then, Proposition 17
gives that Grs{�s} → (T k)s. Since |V (G)| = asn, the maximum degree of G is bounded by
the constant bs, and since rs and �s are constants, we have e(Grs{�s}) = Ok,Δ,s(n), which
concludes the proof of Theorem 1. �

The proof of Proposition 17 follows by induction in the number of colours. Before we give
this proof, let us state the results for the base case and the induction step.

Lemma 18 (Base Case). For all integers h � 1, k � 1 and Δ � 2, there is an integer r and a
good 7-tuple (a, b, c, �, θ,Δ, k) with θ � 2h−132

√
c such that if n is sufficiently large, then the

following holds for any G ∈ Pn(a, b, c, �, θ). For any n-vertex tree T with Δ(T ) � Δ, the graph
Gr{�} contains a copy of T k.

Lemma 19 (Induction Step). For any positive integers Δ � 2, s � 2, k, r, h � 1 and any
good 7-tuple (a, b, c, �, θ,Δ, k) with θ � 2h32

√
c, there is a positive integer r′ and a good 7-

tuple (a′, b′, c′, �′, θ′,Δ, k) with θ′ � 2h−132
√
c′ such that the following holds. If n is sufficiently

large, then for any graph G ∈ Pn(a′, b′, c′, �′, θ′) and any s-colouring χ of E(Gr′{�′}) :

(i) there is a monochromatic copy of T k in Gr′{�′} for any n-vertex tree T with Δ(T ) � Δ;
or

(ii) there is H ∈ Pn(a, b, c, �, θ) such that Hr{�} ⊆ Gr′{�′} and Hr{�} is coloured with at
most s− 1 colours under χ.

Now we are ready to prove Proposition 17.

Proof of Proposition 17. Fix integers k � 1, Δ � 2 and s � 1 and define hi = s− i for
1 � i � s. Let r1 and a good 7-tuple (a1, b1, c1, �1, θ1,Δ, k) with θ1 � 2h132

√
c1 be given by

Lemma 18 applied with s, k and Δ.
We will prove the proposition by induction on the number of colours i ∈ {1, . . . , s} with the

additional property that if the colouring has i colours then θi � 2hi32
√
ci.

Note that Lemma 18 implies that for sufficiently large n, if G ∈ Pn(a1, b1, c1, �1, θ1), then
Gr1{�1} → (T k)1. Therefore, since θ1 � 2h132

√
c1, if i = 1, we are done.

Assume 2 � i � s and suppose the statement holds for i− 1 colours with the additional prop-
erty that θi−1 � 2hi−132√ci−1, where ri−1 and a good 7-tuple (ai−1, bi−1, ci−1, �i−1, θi−1,Δ, k)
are given by the induction hypothesis. Therefore, for any tree T on n vertices with Δ(T ) � Δ,
we know that for a sufficiently large n

Hri−1{�i−1} → (T k)i−1 for any H ∈ Pn(ai−1, bs−1, ci−1, �i−1, θi−1). (10)
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Note that since i � s, we have hi−1 = s− (i− 1) � 1. Then, since θi−1 � 2hi−132√ci−1, we
can apply Lemma 19 with parameters Δ, s, k, ri−1, hi−1 and (ai−1, bi−1, ci−1, �i−1, θi−1,Δ, k),
obtaining ri and (ai, bi, ci, �i, θi,Δ, k) with θi � 2hi32

√
ci.

Let G ∈ Pn(ai, bi, ci, �i, θi) and let n be sufficiently large. Now let χ be an arbitrary i-
colouring of E(Gri{�i}). From Lemma 19, we conclude that either (i) there is a monochromatic
copy of T k in Gri{�i} for any tree T on n vertices with Δ(T ) � Δ, in which case the
proof is finished, or (ii) there exists a graph H ∈ Pn(ai−1, bi−1, ci−1, �i−1, θi−1) such that
Hri−1{�i−1} ⊆ Gri{�i} and Hri−1{�i−1} is coloured with at most i− 1 colours under χ. In
case (ii), the induction hypothesis (10) implies that we find the desired monochromatic copy
of T k in Hri−1{�i−1} ⊆ Gri{�i}. �

The proof of Lemma 18 follows by proving that for a good 7-tuple (a, b, c, �, θ,Δ, k) with
θ � 2h−132

√
c, large graphs G in Pn(a, b, c, �, θ) are expanding (using Lemma 10). Then, we

use Lemma 7 to conclude that G contains the desired tree T . After this step, we greedily find
an embedding of T k in G{�}k.

Proof of the base case (Lemma 18). Let h � 1, k � 1 and Δ � 2 be integers. Let

r = k, � = 21Δ2k, θ = 4h256�, c = θ�, b = 9c

and put D = Δ + 1. Note that θ � 2h−132
√
c and let

a � 4(D + 1).

Since � � 4(Δ + 3), we have c � 4(D + 2)θ. From the lower bounds on c and a, we know that
we can use the conclusion of Lemma 10 applying it with f = 2, θ, D = Δ + 1 and c.

Note that from our choice of constants, (a, b, c, �, θ,Δ, k) is a good tuple. Let n be sufficiently
large and let T be a tree on n vertices with Δ(T ) � Δ. Let G ∈ Pn(a, b, c, �, θ). From Lemma 10,
we know that G has an (n, 2,Δ + 1)-expanding subgraph and, therefore, from Lemma 7 we
conclude that G contains a copy of T . Clearly, the graph Gk contains a copy of T k. It remains
to prove that the graph Gk{�} also contains a copy of T k.

Let {v1, . . . , vn} be the vertices of Tn and denote by Tj the subgraph of T induced by
{v1, . . . , vj}. Given a vertex v ∈ V (G), let C(v) denote the �-clique in Gk{�} that corresponds
to v. Suppose that for some 1 � j < k we have embedded T k

j in Gk{�} where, for each 1 � i � j,
the vertex vi was mapped to some wi ∈ C(vi).

By the definition of Gk{�}, every neighbour v of vj+1 in Gk is adjacent to all but one vertex
of C(vj+1). Therefore, since Δ(T k) � Δk and |C(vj+1)| = � � Δk + 1, we may thus find a
vertex wj+1 ∈ C(vj+1) such that wj+1 is adjacent in Gk{�} to every wi with 1 � i � j such
that vivj+1 ∈ E(T k

j+1). From that we obtain a copy of T k
j+1 in Gk{�}, where wi ∈ C(vi) for

1 � i � j + 1. Therefore, starting with any vertex w1 in C(v1), we may obtain a copy of T k in
Gk{�} inductively, which proves the lemma. �

The core of the proof of Theorem 1 is the induction step (Lemma 19). We start by presenting
a sketch of its proof.

Sketch of the induction step (Lemma 19). We start by fixing suitable constants r′, a′, b′,
c′, �′ and θ′. Let n be sufficiently large and let G ∈ Pn(a′, b′, c′, �′, θ′) be given. Consider an
arbitrary colouring χ of the edges of a sheared complete blow-up Gr′{�′} of Gr′ with s colours.
We shall prove that either there is a monochromatic copy of T k in Gr′{�′}, or there is a graph
H ∈ Pn(a, b, c, �, θ) such that a sheared complete blow-up Hr{�} of Hr is a subgraph of Gr′{�′}
and this copy of Hr{�} is coloured with at most s− 1 colours under χ.

First, note that, by Ramsey’s theorem, if �′ is large, then each �′-clique C(v) of Gr′{�′}
contains a large monochromatic clique. Let us say that blue is the most common colour of
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these monochromatic cliques. Let these blue cliques be C ′(v) ⊆ C(v). Then we consider a
graph J ⊆ Gr′ induced by the vertices v corresponding to the blue cliques C ′(v) and having
only the edges {u, v} such that there is a blue copy of a large complete bipartite graph under
χ in the bipartite graph induced between the blue cliques C ′(u) and C ′(v) in Gr′{�′}.

Then, by Lemma 9 applied to J , either there is a set ∅ �= Z ⊆ V (J) such that J [Z] is
expanding, or there are large disjoint sets V1, . . . , V� with no edges between them in J . In the
first case, Lemma 11 guarantees that there is a tree T ′ such that, if T ′ ⊆ J [Z], then there is a
blue copy of T k in Gr′{�′}. To prove that T ′ ⊆ J [Z], we recall that J [Z] is expanding and use
Lemma 7. This finishes the proof of the first case.

Now let us consider the second case, in which there are large disjoint sets V1, . . . , V� with
no edges between them in J . The idea is to obtain a graph H ∈ Pn(a, b, c, �, θ) such that
Hr{�} ⊆ Gr′{�′} and, moreover, Hr{�} does not have any blue edge. For that we first obtain a
path Q in G with vertices (x1, . . . , x2a�n) such that xi ∈ Vj for all i where i ≡ j mod �. Then we
partition Q into 2an paths Q1, . . . , Q2an with � vertices each, and consider an auxiliary graph
H ′ on V (H ′) = {Q1, . . . , Q2an} with QiQj ∈ E(H ′) if and only EG(V (Qi), V (Qj)) �= ∅. To
ensure that H ′ inherits properties from G, we use that there can be at most one edge between
Qi and Qj in G, because there are no cycles of length less than 2� in G.

We obtain a subgraph H ′′ ⊆ H ′ by choosing edges of H ′ uniformly at random with a suitable
probability p. Then, successively removing vertices of high degree, we obtain a graph H ⊆ H ′′

with H ∈ Pn(a, b, c, �, θ). It now remains to find a copy of Hr{�} in Gr′{�′} with no blue edges.
To do so, we first observe that the paths Qi ∈ V (H ′) give rise to �-cliques in Gr′ (r′ � �). One
can then prove that there is a copy of Hr{�} in Gr′ that avoids the edges of J . By applying
the Lovász local lemma, we can further deduce that there is a copy of Hr{�} in Gr′{�′} with
no blue edges.

Proof of the induction step (Lemma 19). We start by fixing positive integers Δ � 2, s � 2,
k, r, h and a good 7-tuple (a, b, c, �, θ,Δ, k) with

θ � 2h32
√
c.

Recall that from the definition of good 7-tuple, we have

b � 9c.

Let d0 be obtained from Lemma 3 applied with � and γ = 1/(2�) (note that d0 � 10). Further
let

a′′ = �(Δ2k + 2)(2a · d0 + 2).

Note that a′′ is an upper bound on the value A given by Lemma 9 applied with f = 2, D =
Δ2k + 1, � and η = 2a · d0.

Let r0 be given by Lemma 11 on input Δ and k. We may assume r0 is even. Furthermore,
let

t = max{r0,
(
40(�br+1 + �)

)r0} and �′ = max{4s�2, rs(t)},
where rs(t) = r(t, . . . , t) = r(Kt, . . . ,Kt) denotes the s-colour Ramsey number for cliques of
order t. Let a′ = �′a and note that a′/s � 2a′′ because � � 21Δ2k. Define constants c∗, c′ and
r′ as follows.

c∗ = 2�′c, c′ =
�′

2�2
c∗ =

�′2

�2
c, r′ = �r. (11)

Put

b′ = 9c′ and θ′ =
c∗

4c�
θ =

�′

2�
θ.

Claim 20. (a′, b′, c′, �′, θ′,Δ, k) is a good 7-tuple and θ′ � 2h−132
√
c′.
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Proof. We have to check all conditions in Definition 15. Clearly a′ � 3, b′ � 9c′ and �′ �
� � 21Δ2k. Below we prove that the other conditions hold.

• c′ � θ′�′:

c′ =
�′2

�2
c � �′2

�
θ = 2θ′�′ > θ′�′.

• θ′ � 2h−132
√
c′:

θ′ =
�′

2�
θ � �′

2�
2h32

√
c = 2h−132

√
c′. �

Let G be a graph in Pn(a′, b′, c′, �′, θ′). Assume

NG = a′n and pG = c′/NG

and let T be an arbitrary tree with n vertices and maximum degree Δ and consider an arbitrary
s-colouring χ : E(Gr′{�′}) → [s] of the edges of Gr′{�′}. We shall prove that either there is a
monochromatic copy of T k in Gr′{�′}, or there is a graph H ∈ Pn(a, b, c, �, θ) such that a
sheared complete blow-up Hr{�} of Hr is a subgraph of Gr′{�′} and this copy of Hr{�} is
coloured with at most s− 1 colours under χ.

By Ramsey’s theorem (see, for example, [7]), since �′ � rs(t), each �′-clique C(w) in Gr′{�′}
(for w ∈ V (G)) contains a monochromatic clique of size at least t. Without lost of generality,
let us assume that most of those monochromatic cliques are blue. Let W ⊆ V (G) be the set of
vertices w such that there is a blue t-clique C ′(w) ⊆ C(w). We have

|W | � |V (G)|
s

=
a′n
s

� 2a′′n. (12)

Define J as the subgraph of Gr′ with vertex set W and edge set

E(J) =
{
uv ∈ E(Gr′ [W ]) : there is a blue copy of Kr0,r0 in Gr′{�′}[C ′(u), C ′(v)]

}
.

That is, J is the subgraph of Gr′ induced by W and the edges uv such that there is a blue
copy of Kr0,r0 under χ in the bipartite graph induced by Gr′{�′} between the vertex sets of
the blue cliques C ′(u) and C ′(v).

We now apply Lemma 9 with f = 2, D = Δ2k + 1, � and η = 2a · d0 to the graph J (note
that |V (J)| � 2a′′n is large enough so we can apply Lemma 9), splitting the proof into two
cases.

(i) There is ∅ �= Z ⊆ V (J) such that J [Z] is (n + 1, 2,Δ2k + 1)-expanding.
(ii) There exist V1, . . . , V� ⊆ V (J) such that |Vi| � 2ad0n for 1 � i � � and J [Vi, Vj ] is empty

for any 1 � i < j � �.

In case J [Z] is (n + 1, 2,Δ2k + 1)-expanding, we first note that Lemma 11 applied to the
graph J [Z] implies the existence of a tree T ′ = T ′(T,Δ, k) of maximum degree at most Δ2k

with at most n + 1 vertices such that if J [Z] contains T ′, then T k ⊆ J ′ for any (r0, r0)-blow-up
J ′ of J . But since J [Z] is (n + 1, 2,Δ2k + 1)-expanding, Lemma 7 implies that J [Z] contains a
copy of T ′. Therefore, the graph Gr′{�′} contains a blue copy of T k, as we can consider J ′ as
the subgraph of Gr′{�′} containing only edges inside the blue cliques C ′(u) (which have size
t � r0) and the edges of the complete blue bipartite graphs Kr0,r0 between the blue cliques
C ′(u). This finishes the proof of the first case.

We may now assume that there are subsets V1, . . . , V� ⊆ V (J) with |Vi| � 2ad0n for 1 � i � �
and J [Vi, Vj ] is empty for any 1 � i < j � �. We want to obtain a graph H ∈ Pn(a, b, c, �, θ)
such that Hr{�} ⊆ Gr′{�′} and contains no blue edges.
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Let J ′ = J [V1 ∪ · · · ∪ V�], G′ = G[V1 ∪ · · · ∪ V�] and note that |V (G′)| = |V (J ′)| � d0 · 2a�n,
where we recall that d0 is the constant obtained by applying Lemma 3 with � and γ = 1/(2�).
We want to use the assertion of Lemma 3 to obtain a transversal path of length 2a�n in G′

and so we have to check the conditions adjusted to this parameter.
First note that we have |Vi| � 2ad0n � γd0 · 2a�n for 1 � i � �. Moreover, since G′ is an

induced subgraph of G and G ∈ Pn(a′, b′, c′, �, θ′), we know by (2) that for all X,Y ⊆ V (G′)
with |X|, |Y | > θ′a′n/c′, we have eG′(X,Y ) > 0. Observe that θ′a′n/c′ < an = γ · 2a�n once
a′ = �′a and c′ > θ′�′. Therefore, we may use Lemma 3 to conclude that G′ contains a path
P2a�n = (x1, . . . , x2a�n) with xi ∈ Vj for all i, where j ≡ i (mod �).

We split the obtained path P2a�n of G′ into consecutive paths Q1, . . . , Q2an each on � vertices.
More precisely, we let Qi = (x(i−1)�+1, . . . , xi�) for i = 1, . . . , 2an. The following auxiliary graph
is the base of our desired graph H ∈ Pn(a, b, c, �, θ).

H ′ is the graph on V (H ′) = {Q1, . . . , Q2an} such that QiQj ∈ E(H ′) if and only if

there is an edge in G between the vertex sets of Qi and Qj .

Claim 21. H ′ ∈ Pn(2a, �b′, c∗, �, �θ′).

Proof. We verify the conditions of Definition 14. Since H ′ has 2an vertices, condition (i)
clearly holds. Since Δ(G) � b′ and for any Qi ∈ V (H ′), we have |Qi| = � (as a subset of V (G)),
there are at most �b′ edges in G with an endpoint in Qi. Then, Δ(H ′) � �b′.

For condition (iii), recall that any vertex of H ′ corresponds to a path on � vertices in G.
Thus, a cycle of length at most 2� in H ′ implies the existence of a cycle of length at most 2�2

in G. Since 2�′ � 2�2 and G has no cycles of length at most 2�′, we conclude that H ′ contains
no cycle of length at most 2�, which verifies condition (iii).

Let NH′ = 2an and

pH′ =
c∗

NH′
=

c∗

2an
. (13)

Let us verify condition (iv), that is, we shall prove that H ′ is (pH′ , �θ′)-bijumbled.
Consider arbitrary sets X and Y of V (H ′) with �θ′/pH′ < |X| � |Y | � pH′NH′ |X|. For

simplicity, we may assume that X = {Q1, . . . , Qx} and Y = {Qx+1, . . . , Qx+y}. Let XG =⋃x
j=1 Qj ⊆ V (G) and YG =

⋃x+y
j=x+1 Qj ⊆ V (G). Note that |XG| = �|X| and |YG| = �|Y |. As

there are no cycles of length smaller than 2� in G, we only have at most one edge between the
vertex sets of Qi and Qj . Therefore we have

eH′(X,Y ) = eG(XG, YG). (14)

We shall prove that |eH′(X,Y ) − pH′ |X||Y || � �θ′
√|X||Y |. From the choice of c′, we have

pH′ |X||Y | =
c∗

2an
|X||Y | =

c′

a′n
�|X|�|Y | =

c′

a′n
|XG||YG| = pG|XG||YG|. (15)

From the choice of θ′, c′ and pH′ , since �θ′/pH′ < |X| � |Y | � pH′NH′ |X|, we obtain

θ′

pG
< |XG| � |YG| � pGNG|XG|.

Combining (15) with (14) and the fact that G is (pG, θ′)-bijumbled, we get that

|eH′(X,Y ) − pH′ |X||Y || = |eG(XG, YG) − pG|XG||YG|| � θ′
√

|XG||YG| = �θ′
√

|X||Y |. (16)

Therefore, H ′ is (pH′ , �θ′)-bijumbled, which verifies condition (iv). �

The parameters for Pn(2a, �b′, c∗, �, �θ′) are tightly fitted such that we can find the following
subgraph of H ′.
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Claim 22. There exists H ⊆ H ′ such that H ∈ Pn(a, b, c, �, θ).

Proof. We first obtain H ′′ ⊆ H ′ by picking each edge of H ′ with probability

p =
2c
c∗

=
1
�′

independently at random. Note that p � 1/2.
From (3), we get

e(H ′) � pH′

(
2an
2

)
+ �θ′2an � (c∗ + 2�θ′)an �

(
c∗ + 2�

c′

�′

)
an � 2c∗an

From Chernoff’s inequality, we then know that almost surely we have

e(H ′′) � 2p · e(H ′) � 2 ·
(

2c
c∗

)
· 2c∗an � 8acn � abn. (17)

Let NH′′ = 2an and

pH′′ = p · pH′ =
c

an
.

We shall prove that H ′′ is (pH′′ , θ)-bijumbled almost surely. For that, we will first prove by
using Chernoff’s inequality (Theorem 4) that, for any disjoint sets X and Y of V (H ′) with
θ/pH′′ < |X| � |Y | � pH′NH′ |X|, we have

|eH′′(X,Y ) − p · eH′(X,Y )| � θ

2

√
|X||Y |. (18)

Note that for such sets X and Y , since |X| > θ/pH′′ � �θ′/pH′ , we can use (16).
Since |X|, |Y | > θ/pH′′ , we have

√|X||Y | > θan/c. From
√|X||Y | > θan/c, we obtain

that �′θ <
2�′c

√
|X||Y |

2an from which we can conclude that 2�θ′ < pH′
√|X||Y |. Thus, we get

�θ′
√|X||Y | < pH′ |X||Y |/2. Therefore, combining this with (16), we have

pH′ |X||Y |
2

< eH′(X,Y ) < 2pH′ |X||Y |. (19)

Let ε = θ
√|X||Y |/(2p · eH′(X,Y )) and note that from (19) we have ε < 1. Since θ � 10

√
c,

also from (19) we obtain

ε2p · eH′(X,Y )
3

=
|X||Y |�′θ2

12 · eH′(X,Y )
> 4an.

Therefore, by using Chernoff’s inequality, since there are at most 24an choices of pairs of sets
{X,Y }, almost surely we have that for any disjoint subsets X and Y of vertices of H ′′ with
θ/pH′′ < |X| � |Y | � pH′NH′ |X|, inequality (18) holds.

Observe that pH′′NH′′ |X| = 2c|X| � c∗|X| = pH′NH′ |X|. Therefore, H ′′ is almost surely
(pH′′ , θ)-bijumbled, as by (16) and (18), we get

|eH′′(X,Y ) − pH′′ |X||Y || � |eH′′(X,Y ) − p · eH′(X,Y )| + |p · eH′(X,Y ) − pH′′ |X||Y ||
(18)

� θ

2

√
|X||Y | + p(|eH′(X,Y ) − pH′ |X||Y ||)

(16)

� θ

2

√
|X||Y | + �θ′

�′
√

|X||Y |

= θ
√

|X||Y |.
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Therefore, there exists a (pH′′ , θ)-bijumbled graph H ′′ as above. We fix such a graph and
construct the desired graph H from this H ′′ by sequentially removing the an vertices of highest
degree. Note that H has maximum degree at most b, otherwise this would imply that H ′′ has
more than abn edges, contradicting (17). Since H is a subgraph of H ′, and H ′ does not contain
cycles of length at most 2�, the same holds for H. Finally, since deleting vertices preserves the
bijumbledness property, we conclude that H ∈ Pn(a, b, c, �, θ). �

Recall that J is the subgraph of Gr′ induced by W , with |W | � a′n/s and edges uv such that
there is a blue copy of Kr0,r0 under χ in the bipartite graph induced by the vertex sets of blue
cliques C ′(u) and C ′(v) in Gr′{�′}. Furthermore, recall that there are subsets V1, . . . , V� ⊆ V (J)
with |Vi| � 2ad0n for 1 � i � � and J [Vi, Vj ] is empty for any 1 � i < j � �, and we defined
J ′ = J [V1 ∪ · · · ∪ V�] and G′ = G[V1 ∪ · · · ∪ V�]. Finally, recall that Qi = (x(i−1)�+1, . . . , xi�) for
i = 1, . . . , 2an, where the vertices xi belong to G′. Assume, without loss of generality, V (H) =
{Q1, . . . , Qan}. In what follows, when considering the graph Hr(�), the �-clique corresponding
to Qi is composed of the vertices x(i−1)�+1, . . . , xi�, and hence one can view V (Hr(�)) as a
subset of V (G′).

Claim 23. Hr(�) ⊆ Gr′ . Moreover, Gr′ contains a copy of Hr{�} that avoids the edges of
J .

Proof. We will prove that Hr(�) ⊆ Gr′ where Q1, . . . , Qan ⊆ V (J) are the �-cliques of Hr(�).
Suppose that Qi and Qj are at distance at most r in the graph H. Without loss of generality, let
Qi = Q1 and Qj = Qm for some m � r. Moreover, let (Q1, Q2, . . . , Qm) be a path in H. Note
that there exist vertices u1, . . . , um−1 and u′

2, . . . , u
′
m in V (G′) such that u1 ∈ Q1, u′

m ∈ Qm,
uj , u

′
j ∈ Qj for all j = 2, . . . ,m− 1 and {ui, u

′
i+1} is an edge of G′ for i = 1, . . . ,m− 1.

Let u′
1 ∈ Q1 and um ∈ Qm be arbitrary vertices. Since for any j, the set Qj is spanned by

a path on � vertices in G′, it follows that uj and u′
j are at distance at most �− 1 in G′ for

all 1 � j � m. Therefore, u′
1 and um are at distance at most (�− 1)m + (m− 1) < �r � r′ in

G′ and hence u′
1um is an edge in G[V1 ∪ . . . ∪ V�]r

′ ⊆ Gr′ . Since the vertices u′
1 and um were

arbitrary, we have shown that if Qi and Qj are adjacent in Hr (that is, Qi and Qj are at
distance at most r in H), then (Qi, Qj) gives a complete bipartite graph C(Qi, Qj) in Gr′ .
Moreover, taking i = j we see that each Qi in Gr′ must be complete. This implies that Hr(�)
is a subgraph of Gr′ .

For the second part of the claim, we consider which of the edges of this copy of Hr(�) can
also be edges of J . Recall from the definition of J ′ that we found subsets V1, . . . , V� ⊆ J such
that no edge of J lies between different parts. Moreover each set Qi ⊆ J takes precisely one
vertex from each set V1, . . . , V�. It follows that each Qi is independent in J . Now let us say we
have x ∈ Qi and y ∈ Qj (i �= j) that are adjacent in J . We cannot have x and y in different
parts of the partition {V1, . . . , V�}. Thus x and y lie in the same part. Therefore edges from J
between Qi and Qj must form a matching. Then we can find a copy of Hr{�} that avoids J
by removing a matching between the l-cliques from Hr(�). �

To complete the proof of Lemma 19, we will embed a copy of the graph Hr{�} ⊆ Gr′ found
in Claim 23 in Gr′{�′} in such a way that Hr{�} uses at most s− 1 colours.

Claim 24. Gr′{�′} contains a copy of Hr{�} with no blue edges.

Proof. Recall that each vertex u in J corresponds to a clique C ′(u) ⊆ Gr′{�′} of size t and
that this clique is monochromatic in blue in the original colouring χ of E(Gr′{�′}). Recall also
that if an edge {u, v} of Gr′ [W ] is not in J , then there is no blue copy of Kr0,r0 in the bipartite
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graph between C ′(u) and C ′(v) in Gr′{�′}. By the Kővári–Sós–Turán theorem (Theorem 5),
there are at most 4t2−1/r0 blue edges between C ′(u) and C ′(v). Recall further that C ′(u) and
C ′(v) are, respectively, subcliques of the �′-cliques C(u) and C(v) in Gr′{�′}. Since {u, v} is an
edge of Gr′ , there is a complete bipartite graph with a matching removed between C(u) and
C(v) in Gr′{�′} and so there is a complete bipartite graph with at most a matching removed
for C ′(u) and C ′(v). It follows that there are at least

t2 − t− 4t2−1/r0

non-blue edges between C ′(u) and C ′(v).
Using the copy of Hr{�} ⊆ Gr′ avoiding edges of J obtained in Claim 23 as a ‘template’, we

will embed a copy of Hr{�} in Gr′{�′} with no blue edges. For each vertex u ∈ V (Hr{�}) ⊆
V (J), we will pick precisely one vertex from C ′(u) ⊆ Gr′{�′} in our embedding. The argument
proceeds by the Lovász Local Lemma.

For each u ∈ V (Hr{�}) ⊆ V (J), let us choose xu ∈ C ′(u) uniformly and independently at
random. Let e = {u, v} be an edge of our copy of Hr{�} in Gr′ that is not in J . As pointed
out above, we know that there are at least t2 − t− 4t2−1/r0 non-blue edges between C ′(u) and
C ′(v). Letting Ae be the event that {xu, xv} is a blue edge or a non-edge in Gr′{�′}, we have
that

P[Ae] �
t + 4t2−1/r0

t2
� 5t−1/r0 .

The events Ae are not independent, but we can define a dependency graph D for the collection
of events Ae by adding an edge between Ae and Af if and only if e ∩ f �= ∅. Then, Δ = Δ(D) �
2Δ(Hr{�}) � 2(br+1� + �). From our choice of t, we get that

4ΔP[Ae] � 40(br+1� + �2)t−1/r0 � 1

for all e. Then the Local Lemma [2, Lemma 5.1.1] tells us that P[
⋂

e Āe] > 0, and hence a
simultaneous choice of the vertices xu (u ∈ V (Hr{�})) is possible, as required. This concludes
the proof of Claim 24. �

The proof of Lemma 19 is now complete. �

5. Concluding remarks

To construct our graphs, we need that Pn(a, b, c, �, θ) is non-empty given a good 7-tuple
(a, b, c, �, θ,Δ, k) with θ � 32

√
c. We prove this in Lemma 16 using the binomial random

graph. Alternatively, it is possible to replace this by using explicit constructions of high girth
expanders. For example, the Ramanujan graphs constructed by Lubotzky, Phillips, and Sarnak
[26] can be used to prove Lemma 16.

We now discuss further connections between powers of trees and graph parameters related
to treewidth. As pointed out in the introduction, every graph with maximum degree and
bounded treewidth is contained in some bounded power of a bounded degree tree and vice
versa. This implies that Corollary 2 is equivalent to Theorem 1. For bounded degree graphs,
bounded treewidth is equivalent to bounded cliquewidth and also to bounded rankwidth [18].
Therefore, Corollary 2 also holds with treewidth replaced by any of these parameters. Finally,
an obvious direction for further research is to investigate the size-Ramsey number of powers
T k of trees T when k and Δ(T ) are no longer bounded.

Acknowledgement. The authors are most grateful to the anonymous referee for his or her
very careful reading of the proof and for many useful comments.
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30. V. Rödl and E. Szemerédi, ‘On size Ramsey numbers of graphs with bounded degree’, Combinatorica

20 (2000) 257–262.
31. D. R. Wood, ‘On tree-partition-width’, European J. Combin. 30 (2009) 1245–1253.



THE SIZE-RAMSEY NUMBER OF POWERS OF BOUNDED DEGREE TREES 19
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