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PREAMBULO

Este trabalho € o segundo de uma serie de quatro, abaixo relacionados, que os au
tores desenvolveram no Departamento de Engenharia de Estruturas e Fundagoes da
Escola Politecnica da Universidade de Sao Paulo:

. Estado Plano de Tensao. Residuos Ponderados e Elementos Finitos
. Estudo das Placas. Residuos Ponderados e Elementos Finitos
. Teoria de Segunda Ordem das Placas. Estudo da Rigidez Secante

. Teoria de Segunda Ordem das Placas. Estudo da Rigidez Tangente

Nos quatro artigos, intimamente ligados entre si, procura-se mostrar, de forma
simples e precisa, a natural afinidade que existe entre as formulagoes diferen-
cial e integral - incluida nesta ultima a discretizagao por elementos finitos -
no que diz respeito ao problema das placas elasticas delgadas de compor tamento
geometricamente nao-linear.

No primeiro boletim e deduzida a matriz de rigidez das chapas, em teoria de pri-
meira ordem.

0 segundo boletim e dedicado a obtengao da matriz de rigidez das placas delgadas
de comportamento linear.

No terceiro se mostra como chegar a matriz de rigidez secante das placas, sob as
hipoteses de uma teoria de segunda ordem de carater simplificado.Tambem se fala
algo a respeito do fenomeno da flambagem de chapas.

Finalmente, no ultimo boletim se obtem a matriz de rigidez tangente das placas,
a partir da matriz de rigidez secante deduzida no boletim anterior. Alem disso,
uma sugestao e feita, no que concerne as forgas de membrana, no sentido de faci-
litar consideravelmente a construgao da matriz de rigidez tangente, em cada in-
cremento (ou iteragao).

Na introdugao do Metcdo dos Elementos Finitos, utiliza-se sempre a formulagao in
tegral que corresponde a 1nterpretagao dada por Galerkin ao Metodo dos Re51duos
Ponderados. Tal conduta permlte, como se sabe, o _ataque dlreto das equagoes dife
renclals regentes do fenomeno, quer existam ou nao principios variacionais llga—
dos a questao. Trata-se, portanto, de um procedimento de largo espectro, e os
conceitos correlatos tem aplicagao praticamente ilimitada.

1. Equacionamento Diferencial

Para uma placa construida de material homogeneo e isotropo, as relagoes momento-
curvatura sao dadas por (usa-se a notagao usualj veja-se por exemplo [ 3 ]):

M = —n(—-g-32 + v_zaZw) )
X ax ay

= 32w 32w
My = DGz Vo) @)
ny D(l-—u)axay (3)

Nas expressoes acima o parametro D = Eh3/ [12(1—v2) ] e conhecido como  rigidez
da placa.

0 equilibrio de forgas na vertical do elemento infinitesimal da figura 1 fornece:
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Figura 1 - Forgas cortantes por unidade de comprimento

0 equilibrio de momentos em tormo dos eixos Ox e Oy (figura 2) se escreve, res—
pectivamente, como:

oM BMx
_Y_.-.._.l:Q (5)
3y ox v
aMx oM
Tax B ay - Qx
Sendo M = - M__, a ultima equagao fica:
yx xy
M oM
2. .
ax Ay Qx (6)
0 ¥
M
*yx
M
—_— 7
o
X
M
Xy
ot ——— l-———.ﬂ—
gl
‘ l
X

Figura 2 - Momentos por unidade de comprimento

Combinando—-se adequadamente as expressoes (4), (5) e (6), chega-se a:

32Mx azuxy 32M
= 3oy | oy2 P (7)
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Introduzindo-se (1), (2) e (3) em (7), obtem-se finalmente a equagao de Lagrange:

3w 34w ol P
axt ZBxZBy? T D (8)

Quanto as condigoes de contorno da equagao de Lagrange, considere-se a fronteira
da placa dividida em duas partes, Cd e Co’ conforme se indica na figura 3:

e,
7 7
t =-senbi+cos§] -+

n= cosé§4seﬂ5§
r tange
| (versor tangente) (normal externa)

Figura 3
Em Cy (regiao de apoio da placa) sao conhecidos:
w=uw (recalque de apoio) (9)
(d3w/3n) = § (rotagao forgada de apoio) (10)

Essas sao as condigoes de contorno essenciais (ou geometricas).,

Em C0 (borda livre) sao conhecidos:

Hn = ﬁ; (momento aplicado) (11)
LV ?ﬁ (carga vertical aplicada) : - (12)
aM
ndo V_ = Q - —ot (13)
RE n Qn 3s

Ha ainda duas forgas verticais concentradas, aplicadas nos pontos P e T:
Rp = (M)p € Rp = (edr

As expressoes (11) e (12) representam as condigoes de contorno naturais (ou esta
ticas).

Ha ainda a considerar a chamada condicao mista de contorno, Existem dois casos
possiveis: o apoio simples, caracterizado pelas expressoes (9) e (11), e a situa
cao definida pelas condicoes (10) e (12), util quando ha de se tirar proveito de
eventual simetria existente no problema.

. - - - -~
Para finalizar este 1tem, escrevem-se a seguir algumas expressoes Que se revela-
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rao uteis logo adiante. Assim, isolando-se um trecho infinitesimal ds do cpntor-
no (figura 4), o equilibrio de forgas na vertical gera:

Qn = Qxcosﬁ + stenﬁ

Introduzindo-se na formula acima as expressoes (5) e (6), vem:

(14)

dy/ds
~dx/ds

Qn send

|
y Figura 4

Ainda com referencia a figura 4, o equilibrio de momentos em torno dos eixos Ox
e Oy indica, respectivamente, que:

MntCOSG - MnsenG = Mxycosﬁ - Mysena (15)

anosé + Mntsenﬁ chosé - Mxysenﬁ (16)

2. Método dos Residuos Ponderados

Considere-se uma fungao arbitraria ¢ = ¢(x,y), contInua e duas vezes derivavel
no dominio da placa, tal que:

¢ =0 e (3¢/an) = 0 em C,
Das condigoes acima resulta, imediatamente, que em Cd:

(3¢/8x) = (3¢/3y) =

Multipliquem-se ambos 0s membros de (7) pela fungdo ¢. Em seguida, por integra-
¢ao na placa, obtem-se:

32M 32M 32M
JJ X
Q

o x —
¢ (=7 * ay§ = 9 BxEy + p)dxdy = 0 (17)

Demonstra-s se F 11 que se a equagao integral acima se cumpre para qualquer ¢, en-—
tao a equagao d1ferenc1al (7) sera cumprida em todo e qualquer ponto da placa. A
reciproca e imediata.
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Suponha-se agora a existencia de uma solugao aproximada w(x.y), com a qual, fa-
zendo-se uso das formulas (1), (2) e (3), se determinam M_(x,y), M (x,y) e
H (x,y) A injegao destes ultimos em (7) acarreta: x y

azﬁx aZEY azﬁxz
ax2 | ayZ . %3y 8 L

0 primeiro membro da des1gua1dade acima representa o erro (ou residuo) obtido ao
se introduzir a solugao aproximada na equagao diferencial de equilibrio.
Portanto, o primeiro membro de (17), com M =M %’ M =M eM =M , se cons-
titui na 1ntegral de tais residuos, 7 y e & ponderados
pela funcao ¢ . E Obvio que essa integral nao sera necessariamente igual a zero.
Entretanto, considerando-se que, para a solugao exata do problema, a 1ntegra1 em
questao e de fato igual a zero, obtem-se, conforme sera esclarecido mais adiante,
interessantes conclusoes a respeito da solugao aproximada, quando se forga tal
integral a se anular.

Continuando, integre-se duas vezes por partes, consecutivamente, o primeiro mem-
bro de (17):

%M M, [ 36 M
Jl ¢ T dxdy = I ¢ e cosd ds - JJ 5;-—§E-dxdy =
§ C0 Q2
oM 36 2¢
= JC ¢ cosdé ds - }C 3;—M cosf ds + IJ w—r M_ dxdy
o o
( 32M M 2 M
de:-———%dxdy*:J q;—--zsenéds-” 8 dxdy =
Q 9 c % Q 8y 9y
o

3)7 d Byz
(o} o
azuxy oM_ 36 M
J ¢ T dxdy = J ¢ -—E% cosé ds - JJ E;-——Ez dxdy =
g C, Q

Observe-se que as integrais de contorno acima deveriam ser desenvolvidas ao lon-
go de toda a fronteira da placa, mas como ¢ = 0 e (36/3x) = (2¢/3y) = 0 em Cd’
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elas serao calculadas apenas em C .

As duas Gltimas expressoes, somadas, dao:

a2nx oM oM
ZIJQ¢-§§§§Z dxdy = i C¢(—3;1 cosd + —3;1 send)ds +

E 34 24 8%
Ic ny(ax send + 3y cosg)ds + 2 o Fxdy Mxy dxdy

o

Substituindo-se em (17) os resultados oriundos das integragoes por partes, resul
ta:

2 2 2
H Aty + 28y —2—MMy)dxdy+
Q

X2 X oy y 9X3y X
( BMx M BMx oM
+ ¢ (—— cosf + —L sens - — X coss - ol send)ds +
c ax y oy 0%

o

- EQ(M cos§ - M__ send)ds +
C X X Xy

o]

<
« =

(
—J 9¢(M sens - M__ cos8)ds = -JJ ¢p dxdy
c y = Q

o]

Injetando-se na equagao acima as expressoes (14), (15) e (16), obtém-se:

2 2 2 (

] 3%y - 298

JJQ(3x2 Mx * dy2 My & axay Mxy)dxdy ¥ JC¢Qn s #
o)

-| 3¢
Jc Bx(Mn cosd + M_. sené)ds +
o

(

| 3¢ = - -
JC ay(Mn senf = M_. cosd)ds JJQ¢p dxdy

o]

Reorganizando-se 0s termos da expressao acima, vem:

f 2 2 2
94¢ ¢ . 8¢
JJQ(_—_BXZ MX + —a';z M}' 2 -———Bxay M )dxdy +

- 8¢ 3¢
¥ JC $Q ds J Mn(ax cos§ + 3y send)ds +

C
9] o

ot ad

SR — = - ,d

+ Jc Hnt( e send + == cosé)ds JJQ¢P xdy
o]
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Sendo:

b g +
n = cosb 1 + senb )

resultam as seguintes expressoes:

% - S e 2F
0 grad ¢ xn

3¢

= cosé + 3y send

.Ji = - S ) ge
grad ¢ x t e send + 3y cosé

1;_,|

que, substituidas na equagEo integral anterior, produzem
(EEQ.M + iiﬂ M D ik 3% M )dxdy + [ ¢ ds +
Q 9x2 x ay2 'y X3y Xy Jc Qn
o}
3 [ 29 ‘
=l 35 Hn ds + } EE'Mnt ds = = J ¢p dxdy
CU Cc Q

Integrando se por partes, na regiao C_ do contorno, a ultima das integrais
primeiro membro da equagao acima, vem:

oM
T nt
| Mo e 1P -JC =35 ds
o o
Mas | oM |T = 0, pois ¢ =
nt 'P ?

=0emPeT .
Portanto:

[{ ,32¢ 32¢ 324
LRS- L

g 523y Mxy)dxdy +
aM
Ll J nt _
- M ds + $(Q - ——)ds = —JJ ¢pdxdy
&Ccan CU Qn as Q

Em virtude de (13), a expressao anterior fica:

g

- g 2%

x aye 'y X3y ”x Jaxiy
= [ 29 M ds -
JCBn

[ oy en- ]

¢pdxdy
}g
C
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Finalmente, injetando-se Sll) e (12) na equagao anterior, consegue-se introduzir
naturalmente, na formulagao do problema, as condigoes de contorno naturais, fi-
cando-se com:

32¢ M | 329 M 2 329 M 1xd
JJQ(ax5 X By2 Yy Bxay Ky) b
(18)

s, - | w0
= —~ M _ ds - ¢V_ ds - ¢p dxdy
Jccan = Cc B 9/

A expressgo (18) e conhecida como a forma fraca de (17), por ser mais permissiva,
isto e, ela admite uma menor ordem de continuidade na determinagao das fungoes
Mx’ M e M , embora exija, por outro lado, uma maior ordem de continuidade ao se

y definirem as fungoes ¢.
Até aqui nao houve aproximagoes. Admita-se agora a seguinte solugao aproximada:
. n
w=w_+ Ic.¢. (19)
o j=1 J ]

onde a fungao w_ & arbitraria, mas satisfaz as condigbes de contorno essenciais:

wo=w e (Bwolan) =9 em C,

que sao assim chamadas por que devem ser forgosamente consideradas, na escolha
da fungao de ponderagao ¢, sob a forma:

¢ =0 e (3¢/%n) =0 em Cd

como foi visto.
As demais fungoes ¢ sao fungoes arbitrarias, tais que:

d. =0 e (3¢j/3n) =0 enmC

3j d

e sao conhecidas como funcoes coordenadas. Tanto ¢. quanto w_ devem ser conti-
nuas e duas vezes derivaveis em Q. ]

Galerkin propds que as fungGes de ponderagao ¢ (x,y) fOossem as mesmas que as usa-

das para as fungoes coordenadas ¢.(X,y).

Em assim sendo, introduz-se a solugao aproximada (19) nas expressoes (1), (2) e
(3), e o resultado desta operacao na forma fraca (18), na qual se faz, sucessiva
mente, a funcao de ponderagao ¢ igual a cada uma das n funcGes coordenadas ¢..
Obtem-se com tal procedimento um sistema de n equagoes algebricas lineares, o
qual, depois de resolvido, levanta as incognitas do problema, que Sao 0s n para-
metros c, da solugao aproximada.

A aplicagao pratica do Metodo dos Residuos Ponderados esbarra, entretanto, em va
rias dificuldades. As principais sao:

a) as fungoes coordenadas ¢. sao definidas em todo o dominio da placa. Isso res-
tringe a utilidade do J metodo as placas de formato geometricamente simples,
como por exemplo aquelas retangulares.
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b) mesmo nas placas de formato simples, a fungao v pode se tornar dificil de ob
ter, se as condlgoes de contorno essenciais forem complicadas,

c) a 1ntrodu;ao de condigoes de contorno de natureza mista (apoio livre, por e-
xemplo) exige certos artificios [1] .

d) os parametros 1ncogn1tos da solugao aproximada nao podem ser interpretados fi
sicamente. Embora nao seja essa uma dificuldade matematica, merece ser levada
em conta.

0 Metodo dos Elementos Finitos surge exatamente _para superar, de forma admiravel,

as dificuldades enunc1adas. No proxlmo item serao apresentadas, resumidamente,
as peculiaridades de tal metodo na resolugao do problema das placas.

3. Metodo dos Elementos Finitos

Ambos os metodos (Galerkin e elementos flnltOS) seguem a mesma formulagao. A uni
ca dlferenga reside na escolha das fungoes coordenadas $.. A extrema versatlllda
de do Méetodo dos Elementos Finitos se deve a utlllzagao das chamadas fungoes
de forma, ou de 1nterpola;ao, cujas caracteristicas nao cabe aqui ressaltar, por.
quanto o assunto Ja tem sido extensamente irradiado. Apenas se deve dizer que,
em virtude do carater localizado das fungoes de interpolagao, as quais sao defi-
nidas no interior dos elementos, ficam removidas as barreiras, descritas no fi-
nal do Item anterior, mo tocante a aplicagao pratica do Metodo de Galerkin.

Com efeito, gragas a esse carater localizado das funcoes de forma, a restricao a
formatos geometrlcamente simples se da agora apenas para o elemento finito em
51, e nao mais para a placa em estudo. Assim, placas de geometria complicada nao
sao mais dificeis de se resolver que as retangulares,

Alem disso, as fungoes de forma, como se sabe, permitem a interpretacao dos para
metros da solugao aproximada como sendo exatamente os deslocamentos (e rotagoes)
dos chamados pontos nodais. Isso, além de tornar o metodo extremamente popular,
faz com que o tratamento das condlgoes de contorno essenciais (e, por extensao,
da proprla condlgao mista de apoio livre), se torne cristalinamente simples e i-
mediato, como sera visto.

Como e sabido, a soluggo aproximada (19) assume, no Metodo dos Elementos Finitos,
o seguinte aspecto:

n
W : I (w.¢. + a.0. + B.7m.) (20)
: 5 | J ] J ] j=n'+1 Jid 33 113 :

Na expressao acima, ;l, a. e B. sao, respectivamente, o deslocamento transversal
e as rotagoes, 4 ] conhecidos, de n' pontos nodais P. dispostos

ao longo da fronteira C,. Por outro lado, w., @. e B. sao o desloca’mento e as
rotagoes, desconhecidos, de n - n' pontos J nodais P. espalhados pelo
dominio @ ‘e sobre a fronteira Cg_(figura 5). Alem disso, ¢., v.de n. s3o fungoes
de interpolagao, de classe C [ZJ s relativas ao no P., e J associadas,

respectivamente, ao deslocamento e as rotagoes.

Na pratica, entretanto, numeram-se indistintamente todos os nos, de 1 a n, As-
sim, (20) fica:

n
w=_r b ¥ sl ¥ Baoma 21
w sy (ees + sty + Byngd ekl

Agora, iy g e Bj representam os parametros, conhecidos ou nao, dos n pontos
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X
z a. = (3w/3x). EN.
J J ’
B. = (3w/3y). SV
/ 5 ( Y Y
K .
y
Figura 5 - Parametros nodais relativos a Pj
nodais.
A interpolagao (21) pode ser posta sob forma matricial:
v=a£-£a (22)
com
t _ t t £ . ”
_3; — [-a_l n-o.--EnJ e ij [Wj Cf-j BjJ (23)
Tambem:
t t t t
= SR ndo . = . : : 24
e=lg g1 e o= Log vy ny ] (24)
Portanto, com o uso de (22), em vez de (19), o sistema de equagoes obtido, em
formato matricial, e o seguinte:
Ka=£% : (25)
onde K e a matriz de rigidez da placa, e e dada por:
[ 82g 32__11 32f a2¢" 32g 32_§_t 32¢ a2¢t
= DjJQ [ %2 oxZ | dyZ dy2 : U(sz 3y 2 ¥ 3y2 552
¢ (26)
a2k g%
+ 2(1 -v) Tx3y Bx3y ] dxdy
0 vetor £ e o vetor dos esforcos nodais equivalentes:
o] g our |, - | Ery
; o o

Em resumo, ha n equagoes matriciais, das quais a i-esima se escreve como:
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sendo:
22g, a2(t  a2p. a2t a2p. 82;  a2f. a2l
K.. = DJJ 1 1 4 = L4 y(—= 4 ) 4
1] Q ax2 ax? ay? 3y ax2 ay? ay?  3x?
93E; e
+ 2(1 =v) 1 7 dxdy
9XJy 9xoy
Note-se a simetria de K, ja que:
K.. = K,
—-ij =i
Por outro lado (figura 6):
p fJ s aii o z
T = _E_.pdxdy+J BV ds—J — M ds = F.
1 } Q 1 C 1 0 C 3‘[‘1 kol 1
o o
M)
i
M
1

Figura 6 - Esforgos nodais equivalentes aplicados ao no P,

(28)

(29)

(30$)

Cada equagao matricial (28) se desdobra em tres equagoes comuns. O produto fi-
nal consiste, pois, num sistema de 3n equagoes a 3n incognitas (estas ultimas

contidas no vetor a).

Resta apenas introduzir as condigoes de contorno geometricas. Reorganizando-se
os graus de liberdade do problema, de modo a se colocarem em ultimo lugar aque-

les que correspondem acs deslocamentos e rotagoes impostos (na fronteira C
numa eventual parte do contorno onde reine uma condigao mista), o sistema

sofre a seguinte partigao:

ou
(25)
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=
fo
—7
]

ab - a — a
.

bb EbJ £n

——
e
o
b
|=

A primeira das equagoes matriciais acima fornece os parametros nodais desconheci

dos contidos em a _ . Em seguida, a segunda possibilita a determinagzo das rea-
coes de apoio contidas em E-b -
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