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PREÂMBULO

Este trabalho E o segundo de uma sirie de quatro, abaixo relacionados, que os au
tores desenvolveram no Departamento de Engenharia de Estruturas e Fundaç8es di
Escola Politécnica da Universidade de São Paylo:
. Estado Plano de Tensão, Residuos Ponder8dos e Elementos Finitos
e Estudo das Placas , Residuos Ponderados e Elementos Finitos

n•

4

Teoria de Seguwla Ordem das Placas . Estudo da Rigidez Secante
Teoria de Segunda Ordem das Placas , Estudo da Rigidez T8ngente

Nos quatro artigos , intimamente ligados entre si, procura-se mostrar , de forma
simples e precisa, a natural afinidade que existe entre as formulaçÕes d iferen-
cia1 e integral - incluída nesta Ültima a discretização por elementos finitos -
no que diz respeito ao problema das placas elásticas delgadas de comportamento
geometricamente nao-linear ,

No primeiro boletim ; deduzida a matriz de rigidez das chapas , em teoria de pri-
meira ordem,

O segundo boletim é dedicado à obtenção da matriz de rigidez das placas delgadas
de comportamento linear ,

No terceiro se mostra como chegar à matriz de rigidez secante das placas , sob as
hipóteses de uma teoria de segunda ordem de caráter simplificado ,Tamb&n se fala
algo a respeito do fen8meno da flambagw de chapas .

Finalmente, no ;ltimo boletim se obtZm a matriz de rigidez tangente das placas ,
a partir da matriz de rigidez secante deduzida no boletim anterior . Além disso ,
uma sugestao é feita , no que concerne às forças de mmbrana , no sentido de faci-
litar consideravelmente a construçao da matriz de rigidez tangente , em cada in-
cremento (ou iteraçao) ,

Na introduçãQ do Mitodo dos Elementos _?initos , uFiliza-se _Fçmpre a foTpyl_ação in
tegral q}re corresponde à interpretaçao dada por Galerkin ao Método dos ResÍduos
Ponder_pd_QS ,_ Tal conduta permite , com se sabe, o ataque direto das equaç8es dife
renciais regentes do fenameno 1 quer existam ou nao princípios variacionais liga-
dos à questao . Trata-se, portanto , de um proc«iimento de largo espectTO , e os _
conceitos corrçlgtos têm aplicaçao praFicamente ilimitada!

>
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1. Equacionamento Diferencial

Para uma placa construida de material homog ineo e isÕtropo , as relaçaes momento-
curvatura são dadas por (usa-se a notação usuà1 ; veja-se por exemplo [ 3 ] ) :

M, = -D (à; + \#)

My = -D(A + \8)
(1 )

(2)

1N|[ x y = ]D1 ( 1 » v ) # (3)

Nas expressoes acima o parâmetro D = Eh3/ [12 (1-v2) ] ; conhecido como
da placa.

rigidez

O equilÍbrio de forças na vertical do elemento infinitesimal da figura 1 fornece :
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7; ' - p (4)

.Figura 1 - Forças cortantes por unidade de comprimento

O equilibrio de momentos em torno dos eixos Ox e Oy (figura 2) se escreve, res-
pec tivamente, como :

ay
aM

x+ax

Sendo

-ã= =Qy (5)

By

M =
yx

aM
xy

ay

0

Qx

n 1 1X 111 9
a {;ltima equaçao fica:

Q,. (6)

X

Figura 2 - Momentos por unidade de comprimento

Combinando-se adequadamente as express8es (4) , (5) e (6) , chega-se a:
82M a2Mx a xy
ax2 6 axay - ay2 (7)
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Introduzindo-se (1) , (2) e (3) em (7) , obtêm-se finalmente 8 equação de Lagrange:

a + 2 a : 2 : y 2 + 8 B 4 (8)

Quanto às condiç8es de contorno da equaçao de Lagrange, considere-se a fronteira
da placa dividida em duas prtes, Cd e Ca, conforme se indica na figura 3 :

Bq

eB

0 X

+

s e n 6 ?+ c o s 6 3t f=

(versor tangente)
+ _t _+
n = cos 61+senôj
(normal externa)

y
Figura 3

. Em Cd (regiao de apoio da placa) são conhecidos :

(recalque de apoio) ( 9)

(10)(aw/ an) = R (rotação forçada de apoio)

Essas são as condiçÕes de contorno essenciais (ou geom;tricas) .

Em Cn (borda livre) são conhecidos :

(momento aplicado) (11)

(carga vertica1 aplicada)
aM

selHo Vn = Qn - #

(12)

(13)
'd

4

Sn

Hã ainda duas forças verticais concentradas , aplicadas nos pontos P e T:

Rp = (Mnt)P e RT = (Mnt)T

As expressoes (11) e (12) representam. as cond iç8es de contorno naturais (ou está
ticas) ,

Há ainda a considerar a chamada condiçao mista de contorno . Existem dois casos
possiveis : o apoio simples , caracterizado pelas expressaes (9) e (11) , e a situa
ção definida pelas condiçoes (10) e (12) , ;til quando há de se tirar proveito d-;
eventual simetria existente no problema .

Para finalizar este Ítem, escrevem-se a seguir algumas express8es que se revela-
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rio ;tei6 logo adiante. Assim, i80lando-se um trecho inf initesima1 ds do contor-
no (figura 4) , o equilÍbrio de forças na vertical gera:

Qa = q.cos6 + Qy8en6

Introduzindo-se na f8rmula acima as expressÕes (5) e (6) , vem:
aM aM aM aM

QR B ( a: - a; )cosÔ + (d - axy)senô (14)

0 X

+P

cos 6 = dy/ds

senô = -dx/dsQn

y Figura 4

Ainda com refer;ncia ã figura 4 , o equilÍbrio de momentos em torno dos eixos Ox
e Oy indica, respectivamente, que:

M .cosô - M seatS = M costS - M seatSnt a xy y (15)

MncosÔ + Mntsenô = Mxcosô - Mxysenô (16)

2 , Mgtodo dos ResÍduos Poixierados

Considere-se uma funçao arbitrãria + = e (x,y) , continua e duas vizeé derivãvel
no domÍnio da placa, tal que:hq

'4

+ = 0 e (a$/ an) = 0 em Cd

Das condiçoes acima resulta, imediatamente, que em Cd :
(a$/ax) = (a+/By) = o

Multipliquem-se ambos os membros de (7) pela função +. Em seguida , por integra-
çao na placa, obtÍm-se:

r a2M a2M a2M

J o + ( a + # 2 e + P ) d xd y = oJ (17)

Demonstra-se [ 1 ] que se a equação integral acima se cumpre para qualquer + , en-
tão a equação dif-erencial (7) será cumprida em todo e qualquer ponto da placa . A
recíproca é imediata ,
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Suponha-se agora 8 exist inela de uma 80luçio aproximada a(x,y) , com g qual,

i : : 1 : : ; ; 8 u : o i : : : ç ; : 1F:1: : : : s ( à : : i 1 : : : m ( 1 ) 5 : : : : : : ::1 inamMx ( x 9 y ) 9 My ( x Py )

1 a-

e

P\+b A#b nbdllh
a 2M a 2M a 2M

d + # - 2 axa; + P #- 0
O primeiro membro da desigualdade acima representa o =tre (ou residuo) obtido ao
se introduzir 8 80luçio aproximada na equação diferencial de em1Tio ,

: : : : ?n: : 9 i : t : : : = : i : : 1: ::1 : 1 : e : ; d : : : ? p com MX = MX 9 My = My eMxy = Mk y 9 p ; ; 4 e;: : : :
pela função + , É Óbvio que essa integral não será necessariamente igual a zero,
Entretanto, considerando-se que, para a solução exata do problma , a integral m
questão é de fato igual a zero, obtim-se , conforme será esclarecido mais adiante ,
interessantes conclusoes a respeito da soluçao aproximada, quando se força tal
integral a se anular,

Continuando, integre-se duas v=zes por partes , consecutivamente, o primeiro meu-
bro de (17) :

= J. . ;:: ..;' '; - 1. a~ ..;' .; . JJ.8~ „~
a a

e

= J. . % ;.-' '; - J. #", ;-' '' ' JJ. é“, -,
a a

c + ;:' ;..Ô d; - Jc t M,, ..;6 d; * JIG é“,.,, d*dy1
a a

Observe-se que as integrais de contorno acima deveriam ser desenvolvidas ao Ion-
go de tcxla a fronteira da placa, mas como 4 = 0 e (a$/ax) = (a+/ay) = O em Cd ,
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apenas em Ca,calculad88elas Bet 80

As duas Gltim8s express 8es , somadas , dão

= JJ.. ;::;’ .*', . J ..';:;* ..;' . ;:y '.-',';a

» J C Mx y ({! s e n 6 + {} c o s 6 ) d s + 2 J | Q é M 2b)7 d x dy
a

J Q ( é|$ Mx + €:4 My w 2 à} M x y ) d x d y +
+ 3 c + ( e c o s 6 + 311$ s e 11 6 M a ; X c o s 6 » d11E $ e n 6 ) ds +

a

1 C 8 ( M x c o s 6 M E1r • s e n 6 ) d s +
a

J C €{( M y s e n 6 w M };bl\11 c o s 6 ) d s = J J 9 $ p d x dya

Inj etando-se na equação acima as expressaes (14) , (15) e (16) , obté

1 2 ( É! Mx + g! My = 2 A M x y ) d x d y + J C + Q n d s +
a

1 r ã ( ]P1[n c o s 6 + M n t s e n 6 ) 9 s +JCa

-J. e'"„ ;"' - “.' '';'''; = -JJ.', '*',
a

J

Substituindo-se em (17) os resultados oriundos das integraç8es por partes , resul
ta :

f aM aM_ aM.p_ aM._+

+ | C + Q n d s = | C M n ( à c o s 6 + $ s e n 6 ) d s

J | o ( 8 M x + 9 My 2 # M }1b111 ) d x d y +
+

Reorganizando-se os termos da expressao acima, vem

a a

J

+ | C M n t ( w à s e n 6 + t c o s 6 ) d s = = | | o + p d x d y

+

En-se

a
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Sendo :

: = cos 6 ? + sen6 i
i B -sen6 ? + cosô 3

gta $ ' 8 ? + e 3

resultam as seguintes express8es ;

8 = grad + x: ' $ cosô + $ senô

4 = grad + x : = - : senó + g cosô

que, substituÍdas na equação integral anterior , produzem:

1 | 2 (à} Mx + g My n 2 é Mx y ) d x d y

-J. â„. '; ' J. :! „.. '; = - JJ..' „',a –a

Integrando-se por partes , na região Cn do contorno, a Última das integrais
primeiro mwbro da equaçao acima, venT

do

Mas | +Mnt 1: = O, pois $ = O em P e T.

Portanto :

JJ,é „* *;$ „y - = é„*y’'«’ 'T+

+

Em virtude de (13) , a expressao anterior fica:

Q ( à} M x + ++ M y M 2 é$ Mx y ) d x d y =11
= Jc +S 'n ” - J C ''a '' - | jn”''d,

0 a
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Finalmente , injet8ndo-se (11) e (12) na equação anterior, consegue-se introduzir
naturalmente, na forwlação do problma, as condiçÕes de contorno naturais, fi-
cando- se com:

J O (}:4 MX + g|} M y » 2 à} M X y ) d xd y nj

= | C g Rn d s n | C + \ d s = J J Q + p d xd ya a

(18)

À expressão (18) ; conhecida como a forma fraca de (17) , por ser mais permissiva,
isto é, ela admite uma menor ordem di contTluidade na determinaçao das funç8es
Me,, M_ e Mn,_, embora exija , por outro lado, uma maior ordem de continuidade ao se

7 AY def inirem as funç8es $ ,

AtE aqui nao houve aproximaçoes , Admita-se agora a seguinte solução aproximada :
n

w = w_ + E c . $ .
o j=1 J ' J

(19)

onde a função Wa é arbitrãria, mas satisfaz às condiçÕes de contorno essenciais :
nnlB

w = w e
0 (avo/an) = 7 w Cd

que sao assim chamadas por que devem ser forçosamente consideradas , na escolha
da funçao de ponderaçao + , sob a forma:

+ = 0 e (84/an) = 0 em Cd

como foi visto ,

As demais funçoes + 1 sao funçÕes arbitrárias , tais que:

$j = 0 e (a$4/a11) = o em Cd

: sa' c:nh''iqas como.' Tant' + j qua”t' wo d'v'm s',nuas e duas vêzes derivàveis em O , J
contÍ-

Galerkin prop8s __sue as funçoes de ponderação + (x,y) fassem as mesmas que as usa-
{eE_para as funçLe_q _ çq91cLçnadas_$_1 (x,y) ,

Em assim sendo, introduz-se a soluçao aproximada (19) nas expressães (1) , (2) e
(3) , e o resultado desta operaçao na torna fraca (18 ) , na qual se faz , sucessiva
mente , a funçao de ponderaçao $ igual a cada uma das n funçaes coordenadas + . .
Obtem-se com tal procedimento um sistema de n equaçoes algêbricas lineares , J o
qual, depois de resolvido , levanta as inc8gnitas do problema , que são os n parâ-
metros c 4 da soluçao aproximada .

A aplicaçao prãtica do M;tcxío dos ResÍduos Ponderados esbarra , entretanto , em vá
rias dificuldades . As principais sao :

a) qs funçoe§ coordenadas +: sao definidas m todo o domÍnio da_pjaca , Is_s_o {es:
tringe a utilidade do J mEtodo às placas de foB+to _&eomgEIQqpg_nte s{gp}__e3,
como por exemplo aquelas retangulares ,

[
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b) ne6mo nas placas de formato simples, a função w_ pode se tornar difÍcil de ob
eRIn=

ter, se as condiçÕes de contorno essenciais - forem complicadas ,
c) a introdução de condiçies de couçolno de natureza mista

xemplo) exige certos artif :elos LII ,
(apoio livre , por e-

d) os parâmetros incõgnitos da solução aproximada não podm ser interpretados fi
6icamente. Embora não seja essa uma dificuldade matemãtic8, merece ser levadi
ein conta e

Qygtod9 4os Elepento? F{qitos s_u:gf _el3tWn_te_paI+jupçraI , dp €Qrn4 adpirãvçl
as dificuldades enunciadas + No proxim ite9 serao_ q_presentg{as,_r]Fpmidam_ente ,
as PFCXliplidades de tal método na resoluçao do_ problema daf plac41,

3 . Mitodo dos Elwentos Finitos

Ambos os métodos (Galerkin e elementos finitos) segura a mesma formulação , A Úni
ca diferença reside na escolha das funções coordenadas $ 4 , A extrema versatilidi
de do Matado dos Elemaltos Finitos se deve à utilização J das chamadas funçÕes -
de .{orma, ou de intsrpolação , cujas caracterÍsticas não cabe aqui ressaltar, por
quanto o assunto já tem sido extensamente irradiado , Âpenas se deve dizer que ,
em virtude do carãter localizado das funçoe8 de interpolaçao , as quais são def i-
nidas no interior dos elementos , ficam removidas as barreiras , descritas no fi-
naI do Ítem anterior, no tocante à aplicaçao prática do Método de Galerkin.

Com efeito, graças a esse caráter localizado das funç8es de forma , a restrição a
formatos geometricamente simples se da agora apenas para o elemento finito m
si , e não mais para a placa em estudo , Assim, placas de geometria complicada não
sao mais difÍceis de se resolver que as retangulares ,

AI'ém disso , as funçoes de forma , como se sabe, permitem a interpretação dos parâ
metros da soluçao aproximada como sendo exatamente os deslocamentos (e rotaç8es}
dos chamados pontos nodais , Isso, além de tornar o método extremamente popular ,
faz com que o tratamento das condiçoes de contorno essenciais (e, por extensão ,
da pr8pria candiçao mista de apoio livre) , se torne cristalinamente simples e i-
mediato, como será visto ,

Como ; sabido $ a solução aproximada (19)
o seguinte aspecto :

as sume 9 no MZtodo dos Elementos Finitos ,

w=
nt

j : 1 ( \17j + j + aj 0j + Bjnj)
n

j : 1 + 1 1H17 j + j
+

+ aj$j + Bj nj ) ( 20)

+1
+

Na expressao acima, w: , a: e 64 sao, respectivamente , o deslocamento trangversal
e as rotaçães , J J J conhecidos, de nt pontos nodais P= dispostos
ao longo da fronteira cJ . Por outro lado, w: , a . e 8= sao o deslocaJmento e as
rotaçoes, desconhecidos: de n - n1 pontos J J J ncxlais P . espalhados pelo
domÍnio Q ;-sTrTa-Tr–inteira Ca (figura 5) . Além disso, $ : , Ü 4 Je n . são funçÕes
de interpolação , de classe Cl [21 ,_relativ es ao n6 P1, e J J J associadas ,
respectivamente , ao deslocamênto e às rotaçoes . ’

Na prática, entretanto , numeram-se índistintamente todos os nBs , de 1 a n , As-
sim, (20) fica:

(wj oj + o'j\bj + ejnj) (21)

a; e 81 representam os par;metros, conhecidos ou não , dos n pontos

pag. 9



• 9



j Ox „,:
a = (aw/ax)J
B = (aw/ay)j j 0

.1

Figura 5 + Par;metros nodais relativos a P1

nodais ,

A interpolação (21) pode ser posta sob forma matricial :

coin :

[ if + + 8 © e e $1 1 e 1: = [ 1|#11r j |c11 j B j ] ( 2
T amb;m :

it = ts.F ...... 3.1t ;“”' &} = [ +j 0j nj ] (2

::::::oiai gc:a::o id: :::2;11:::vez de (19) ’ o sistema de equaçoes obtido’

52 = f . (2
onde E ; a matriz de rigidez da placa , e ; dada por:

J
a2E 82Et

+ 2(1 -v) Fm a ] dxdy

O vetor ! ; o vetor pos .esforç,o,s nodai.s equivale

1
a a

Em resrrmo , há a equaçoes matriciais , das quais a

K = D
r r 32& a2lt a21 a2lt 321 a2ât a2€ a2ct

1 Q [ A + + # + + v ( e + + # ü ) +

E = J j 2&P d xd y +

(22)

_ r DE _

3)

4)

5)

C Jn d s = | C â Rn d s

ein

nt es

i'-'eslma se escreve

r

(26)

(27

COID O :
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(28)

sendo :

'= j =» JJ. [ ;::! ;:t: . ;:t: ;::: . „';:t: ;:t: . ;:t:----IJ JJ o ax2 ax2 ay2 ay 2 ax2 ay2 ay2 (29)

+ 2(1 _v) 32li a2l}
axay axay

] dxdy

Note-se a simetria de K, já que :

Por outro lado (figura 6) :

= í J.'="*', ' J. ':’. '; - J.
a a

F?
1

MY
1

MII
1

(30)

Figura 6 - Esforços nodais equiva1 entes aplicados ao n 3 P .

Cada equaç io matricial (28) se desdobra em tris equaç8es comuns . O produto fi-
naI consiste, pois , num sistema de 311 equaç8es a 3n inc6gnitas (estas ãltimas
contidas no vetor a) .

Resta apenas introduzir as condiçoes de contorno geom;tricas . Reorganizando-se
os graus de liberdade do problema, de modo a se colocarem em 61 timo lugar aque-
les que correspondem aos deslocamentos e rotaçÕes impostos (na fronteira C, ou
numa eventual parte do contorno onde reine uma cond içao mista) , o sistema u (25)
sofre a seguinte partiçao:

pág . 11
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!

L ::]. (31)
1 ba

À primeira das equaçÕes matriciais acima fornece os parimetros nodais desconheci
dos contidos em a a , Em seguida, a segunda possibilita a determinaçao das rea-
çÕes de apoio – u contidas em { b
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