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Abstract:

This study evaluated the use of double-pulse laser-induced breakdown spectroscopy (DP-LIBS) combined with

machine learning to detect Escherichia coli in grape tomatoes. A total of 216 samples were analyzed, with spectral data

from elements like , and  used as input features for classification. The Multilayer Perceptron (MLP) neural

network achieved 92.4% accuracy in the test set, outperforming the Random Forest model. The results demonstrate the

potential of DP-LIBS as a rapid, non-destructive, and accurate method for food safety monitoring, paving the way for

broader applications in the detection of other pathogens in agricultural products.
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Brazil
This study evaluated the use of double-pulse laser-induced
breakdown spectroscopy (DP-LIBS) combined with
machine learning to detect Escherichia coli in grape
tomatoes. A total of 216 samples were analyzed, with
spectral data from elements like Mg, Zn, and P used as
input features for classification. The Multilayer Perceptron
(MLP) neural network achieved 92.4% accuracy in the test
set, outperforming the Random Forest model. The results
demonstrate the potential of DP-LIBS as a rapid, non-
destructive, and accurate method for food safety
monitoring, paving the way for broader applications in the
detection of other pathogens in agricultural products.

Keywords—LIBS, grape tomatoes, Escherichia coli,
machine learning

I.INTRODUCTION

In 2024, agribusiness in Brazil was a key driver of
the national economy, contributing 23.2% to the Gross
Domestic Product (GDP) [1]. This underscores the sector's
significance in both economic and social development,
largely fueled by advancements in technology and research.
However, increasing concerns about environmental
quality, public health, and food safety, particularly
regarding the quality of water used in irrigation, are gaining
attention. Contaminated water can harbor harmful
microorganisms such as Escherichia coli (E. coli), which is
a well-known pathogen responsible for severe
gastrointestinal infections. The contamination of
vegetables by E. coli is a widespread concern, occurring
both pre-harvest through irrigation and post-harvest due to
improper cleaning and storage practices that facilitate
bacterial proliferation [2].

Tomatoes, one of the most important agricultural
crops globally [2], are the second most consumed vegetable
worldwide, both fresh and processed. Given the difficulty
in completely eradicating contaminants from food,
regulatory agencies establish tolerance limits for each type.
In Brazil, the National Health Surveillance Agency
(ANVISA), following World Health Organization (WHO)
guidelines, stipulates that the presence of E. coli in food
should not exceed 102 CFU/g.

Ensuring compliance with these limits is crucial,
yet traditional methods for controlling contamination are
often slow, costly, and waste-intensive. This scenario
highlights the urgent need for innovative analytical
techniques that are faster, more accurate, and economically

viable. Optical techniques like double-pulse laser-induced
breakdown spectroscopy (DP-LIBS) have gained
prominence in scientific research due to their high
sensitivity, precision, and capacity for real-time analysis
[3]. DP-LIBS, which analyzes emissions generated by
plasma formation on the sample surface, has proven
especially effective for identifying and characterizing
bacterial cells. In recent years, LIBS has established itself
as a powerful tool for rapid detection and analysis,
providing unmatched precision in bacteriological studies
[4], [5].

This study explores the potential and accuracy of
the DP-LIBS technique in detecting biological
contamination by E. coli in grape tomatoes using machine
learning algorithms. The findings demonstrate the
technique's capability to accurately identify the presence of
the bacterium, paving the way for more efficient methods
in food quality control.

II. SAMPLE PREPARATION

Grape tomatoes were purchased from a local
market, packaged in 150g polyethylene trays. The tomatoes
were initially selected based on size and firmness, resulting
in a final selection of 216 tomatoes. These selected
tomatoes were then carefully washed with a sponge and
neutral detergent, followed by a 20-minute disinfection in
a 150 ppm sodium hypochlorite solution. After drying, the
tomatoes were randomly divided into two groups with 108
fruits each.

In this study, we utilized the Escherichia coli
strain ATCC 25922, obtained from Embrapa. Two saline
solutions were prepared: one containing the bacterium at a
concentration of 102 CFU/g and another without the
bacterium. Then, considering the two groups with 108
tomatoes, one group was immersed in the saline solution
containing E. coli (inoculated treatment) and the other in
the solution without the bacterium (control), for 3min in
each solution. After immersion, the tomatoes were air-dried
for 24 hours on trays maintained at 23°C and 71% relative
humidity. Subsequently, the tomatoes were sliced and
stored in beakers for lyophilization. The samples were first
ultra-frozen at -80°C for 12 hours and then lyophilized for
3 days. This lyophilization process removed moisture from
the samples, facilitating the preparation of pellets for
analysis using the DP-LIBS technique.

The lyophilized samples were first ground using a
ball mill at 30 Hz for 60 seconds. After grinding, the
samples were weighed and pressed into pellets using a
hydraulic press at 2.4 kBar for 60 seconds, forming pellets

This work was supported by CNPq (grants 440226/2021-0,
308339/2021-5, 384173/2024-1 and 162231/2024-5) and FAPESP (grant
2013/07276-1 and 2022/05451-0).
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with a diameter of 12.5 mm each. A total of 108 pellets
were produced for each treatment, resulting in 216 samples
in total. The samples were then stored in a freezer at -10°C
until analysis by the DP-LIBS technique.

III. LIBS TECHNIQUE
LIBS is a multi-elemental analytical technique

based on atomic, ionic, and molecular emission
spectroscopy [6]. It involves focusing a high-energy laser
pulse on the sample's surface to create a plasma and
resolving the atomic, ionic, and molecular emissions using
a spectrometer with appropriate resolution. In addition to
its versatility in analyzing solid, liquid, and gaseous
materials, LIBS offers both qualitative and quantitative
capabilities for elemental analysis [7], [8]. The technique is
extremely fast, precise, cost-effective, and does not
generate polluting waste. In recent years, the international
scientific community has reported the use of LIBS as an
effective analytical tool not only for detection but also for
rapid analysis and characterization of the elemental
composition of specimens [5]. It has been described as an
extremely precise technique for a wide range of
bacteriological investigations. LIBS spectra have been used
to identify different bacterial species through the
concentrations observed in the spectral emission lines of
elements such as Mg, P, K, Ca, and the CN molecular band,
serving as spectral markers for bacterial identification and
discrimination [4].

IV. LIBSMEASUREMENTS

The samples were analyzed using a Q-switched
Nd-YAG laser (Quantel, Brilliant) equipped with a second-
harmonic generator operating at 532 nm, delivering a pulse
duration of 4 ns, pulse energy of 60 mJ, and a fluence of
950 J/cm². Additionally, a Q-switched Nd-YAG laser
(Quantel, Ultra) operating at 1064 nm (infrared) with an 8
ns pulse duration, 20 Hz repetition rate, 50 mJ pulse energy,
and 510 J/cm² fluence was employed. For spectral analysis,
an LTB Echelle spectrometer (Arielle model) with a
resolution of 21–37 pm and a spectral range of 275 to 770
nm, coupled with an ICCD, was utilized. The spectra were
collected with a 500 ns delay time, 750 ns interpulse delay,
and a 10 μs gate width. A total of 30 laser shots were fired
at different points on one side of each pellet using an
automated XY linear stage, each spectrum was generated
by accumulating ten laser shots at each position.

V. DATA PROCESSING AND ANALYSIS

The evaluation of the DP-LIBS spectra was
carried out by quantifying the spectral areas corresponding
to the elements Si, P, C, Mg, Zn, Al, K, Ca, and the CN
molecular band, selected based on previous related studies
[4]. For magnesium (Mg), two emission lines were
considered (Fig 1), and for zinc (Zn), three emission lines
were used. In total, the DP-LIBS analysis was based on 12
emission lines, representing 9 chemical elements
(including the CN molecule), resulting in 12 evaluation
parameters.

Data processing was performed using machine
learning algorithms, specifically an artificial neural
network (ANN) and a random forest model, both
implemented in python within the Google Colab
environment. The workflow included two main steps: data

standardization and classification. The standardization step
prepared the dataset for classification algorithms by
adjusting the scale and applying appropriate normalization
techniques. The classification step aimed to identify sample
classes (control and inoculated) using supervised learning
models, determining how well the samples could be
differentiated [9].

Fig. 1: LIBS spectrum with the Mg emissions used

The original dataset contained 216 samples and
was split into two groups: 70% (150 samples) used to train
the models, while the remaining 30% served as the test set
(66 samples). Since the data were labeled, the task was a
supervised classification. Model training was validated
using 10-fold cross-validation to ensure robustness and
reliability.

VI. RESULTS AND DISCUSSION
First, the elements present in the LIBS spectra of

tomato samples were identified, including Si, P, C, Mg, Zn,
Al, K, Ca, and the molecular CN band. Spectral areas
corresponding to these elements were calculated, and the
dataset was constructed with all calculated areas for the 216
samples. Related studies have employed these elements as
features for both the detection and differentiation of E. coli
using the LIBS technique [4]. These elements are integral
components of bacterial cells, and contamination by E. coli
can modify their concentrations within tomato tissues. Such
alterations can be accurately detected through the high-
resolution analytical capabilities of LIBS.

In the search for the best accuracy in
distinguishing between control and inoculated classes,
several classification algorithms were tested. Initially, the
models were trained using 150 samples (training set),
followed by evaluation using 66 samples (test set). The
performance metrics used included accuracy, which
measures the percentage of correctly classified samples,
and the confusion matrix, which provides detailed insight
into the correct and incorrect classifications for each class
(control and inoculated), in both training and test datasets.

The most effective algorithms were the multilayer
perceptron (MLP) and random forest. The MLP, a
feedforward neural network with hidden layers of 100
neurons, captures complex nonlinear patterns through
weighted inputs and activation functions. Random Forest is
an ensemble learning method that builds multiple decision
trees and combines their outputs to improve classification
accuracy.

The MLP model achieved the highest accuracy in
classifying the control and E. coli-inoculated samples, with
99.3% accuracy in the training set and 92.4% in the test set
(Table 1). The confusion matrix for the MLPmodel showed
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high sensitivity in identifying E. coli-inoculated samples,
with 31 correct predictions and only 2 misclassifications.
In contrast, the Random Forest model showed signs of
overfitting, with 100% accuracy in training but only 84.8%
in testing, indicating the model may have memorized the
training data and struggled to accurately classify new
samples (test data).

TABLE I. STATISTICAL METRICS OF PREDICTED RESULTS

Metrics Multilayer Perceptron Random Forest

Correctly classified 61 56

Accuracy (%) 92.4 84.8

The strong performance of the MLP model
highlights the potential of the DP-LIBS technique in
detecting elemental alterations due to biological
contamination by E. coli in tomatoes. In particular, the
elements Mg, Zn, and P (Figure 2) were key discriminators
between the control and inoculated groups.

These results hold significant value for the
scientific community and for real-world applications. The
demonstrated effectiveness of the DP-LIBS technique,
especially when combined with robust machine learning
models like the MLP neural network, reinforces its
potential as a rapid, non-destructive, and reagent-free
method for detecting biological contamination in food
products. In practical terms, this approach could be
integrated into quality control workflows in the food
industry, improving early detection of pathogens such as E.
coli, and reducing the risk of contaminated products
reaching consumers. From a scientific perspective, the
ability to differentiate sample classes with high accuracy
using elemental composition alone highlights the
sensitivity of LIBS and opens new avenues for its
application in microbiological diagnostics, precision
agriculture, and environmental monitoring.

Fig. 2: Correlation of areas between two elements in test samples.

VII. CONCLUSION
The proposed methodology using DP-LIBS

demonstrated high effectiveness in identifying and
classifying Escherichia coli contamination in tomato
samples. By analyzing elemental spectral data, the
technique enabled clear differentiation between control and
inoculated groups, achieving impressive classification
performance. Among the tested algorithms, the Multilayer
Perceptron (MLP) neural network provided the highest
accuracy, with 99.3% in training and 92.4% in testing,
while Random Forest reached 100% accuracy in training
but exhibited signs of overfitting, with reduced
performance on the test set (84.8% accuracy). These
findings highlight the sensitivity of DP-LIBS to elemental

changes associated with biological contamination,
particularly involving key elements such as Mg, Zn, and P.

The results underscore the potential of DP-LIBS
as a powerful, fast, non-destructive, and reagent-free tool
for food safety applications, capable of detecting
contamination through elemental signatures. Its integration
with machine learning models enhances classification
performance, making it suitable for implementation in
quality control systems in the food industry.

This study represents a preliminary step toward
the broader use of DP-LIBS in microbiological diagnostics.
Future research will focus on extending the methodology to
other pathogens, such as Salmonella spp., commonly found
in contaminated produce. Additionally, the feasibility of
identifying bacterial genera based on elemental patterns
will be explored, further advancing the use of LIBS as a
diagnostic tool in agri-food and environmental monitoring.
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