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POSITIVE DEFINITENESS: FROM SCALAR TO
OPERATOR-VALUED KERNELS

V. A. Menegatto

Abstract. In this paper we present a short overview of results that provide relationships among

scalar, matrix-valued and certain operator-valued positive definite kernels. We refine and extend

some of them in order that they may be applied for strict positive definiteness as well. This is a

topic not well explored in the literature but that has potential usefulness in the characterization of

several classes of positive definite and strictly positive definite kernels. This is ratified in the paper

with the inclusion of a number of applications and examples.

1 Introduction

The target in this paper is to revisit several results that deal with the interrelationship
among some notions of positive definiteness. After expanding some of these results
in such a way that the statements cover the stronger notion of strict positive
definiteness, we implement the analysis of independent applications to demonstrate
the power of the results.

Positive definite kernels, also known as reproducing kernels, are functions defined
on a cartesian product X ×X, in which X is a nonempty set, and taking values in
either C, or the spaceMp(C) of all p×pmatrices with complex entries and sometimes
in a space of linear operators acting on an inner product space. The famous Moore-
Aronszajin Theorem ([1]) and its generalizations state that if f is positive definite
kernel with domain X ×X, then there is a unique reproducing kernel Hilbert space
associated to it and vice versa. And these Hilbert spaces can be used in a variety
of instances: deformation analysis ([12]), approximation of functions ([22]), machine
learning ([11]), etc. We also mention [19] for a modern analysis and a number of
applications, [20] for a special treatment of vector-valued reproducing kernel Hilbert
spaces and [3] for applications in probability and statistics. The theory of scalar
positive definite and related kernels can be found in [2]. Here, we will focus on the
kernels only making no mention to reproducing properties.
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340 V. A. Menegatto

We will close this introduction presenting two of the three definitions of (strict)
positive definiteness we intend to make use of.

A matrix function F : X × X → Mp(C) is said to be a positive definite kernel
if for n ≥ 1 and points x1, . . . , xn in X, the matrix [F (xµ, xν)]

n
µ,ν=1 of order np is

positive semi-definite, that is,

n∑
µ,ν=1

cµF (xµ, xν)c
∗
ν ≥ 0, (1.1)

whenever c1, . . . , cn are (line) vectors in Cp. As usual, the ∗ notation stands for
conjugate transpose of a vector. A positive definite matrix function F is a strictly
positive definite kernel if the matrices in the definition above are all positive definite.
Thus, it requires the quadratic forms in (1.1) to be positive when the xµ are distinct
and not all the cµ are zero. The usual notion of (strict) positive definiteness of a
kernel on X is recovered when we set p = 1 and identify M1(C) with C. In particular,
the quadratic forms in (1.1) take the form

n∑
µ,ν=1

cµcνF (xµ, xν) ≥ 0

where the cµ are now complex numbers. The operator-valued (strictly) positive
definite kernels that pertain to the scope of this paper will be introduced in Section
5.

The paper proceeds as follows. In Section 2, we discuss alternative formulations
for the definition of matrix-valued (strictly) positive definite kernels. We include two
examples where the usefulness of these alternative formulations is evidenced. Section
3 describes results that point how one can go from matrix-valued (strictly) positive
definite kernels to scalar (strictly) positive definite kernels and vice versa, without
altering the set X too much. The relevancy of results of this nature is corroborated
in Section 4, where we apply the results of Section 3 in the characterization of the
(strict) positive definiteness of isotropic matrix-valued kernels on the unit sphere
Sd in Rd+1 and of kernels on X × Sd which are isotropic with respect to the Sd

component, where X is a nonempty set. In both cases, the sphere Sd can be replaced
with the unit sphere in ℓ2. Finally, in Section 5, we introduce the notion of operator-
valued kernel we intend to use and establish results that allows one go from operator-
valued positive definite kernels to scalar positive definite kernels and vice versa along
the lines of the results described in Section 3.

2 Reformulating matrix-valued positive definiteness

The purpose of this section is to provide an equivalence for the concept of matrix-
valued (strict) positive definiteness and show how it can be used in practice.
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Positive definiteness with applications 341

Lemma 1 is a known result in the statistical literature, a version of which
appeared in [17]. Roughly speaking, it shows that one can deal with usual matrices
instead of block matrices in the definition of matrix-valued positive definiteness.

Lemma 1. Let F : X ×X → Mp(C) be a matrix function. The following assertions
are equivalent:

(i) F is a positive definite kernel.

(ii) If n is a positive integer, x1, . . . , xn are points in X and c1, . . . , cn are vectors
in Cp, then the matrix [cµF (xµ, xν)c

∗
ν ]

n
µ,ν=1 ∈ Mn(C) is positive semi-definite.

Proof. If n, the xµ and the cµ are as in (ii), then

n∑
µ,ν=1

dµdν cµF (xµ, xν)c
∗
ν =

n∑
µ,ν=1

(dµcµ)F (xµ, xν)(dνcν)
∗, (2.1)

whenever d1, . . . , dn are complex numbers. Thus, (i) implies (ii). If y1, . . . , ym are
points in X and d1, . . . ,dm are vectors in Cp, then

m∑
µ,ν=1

dµF (yµ, yν)d
∗
ν =

m∑
µ,ν=1

cµcν dµF (yµ, yν)d
∗
ν ,

where cµ = 1, µ = 1, . . . ,m. Thus, (ii) implies (i).

Proposition 2 complements Lemma 1 once it establishes a similar equivalence in
the case of the strict positive definiteness.

Theorem 2. Let F : X ×X → Mp(C) be a positive definite matrix function. The
following assertions are equivalent:

(i) F is a strictly positive definite kernel.

(ii) If n ≥ 1, x1, . . . , xn are distinct points on X and c1, . . . , cn are nonzero vectors
in Cp, then the matrix [cµF (xµ, xν)c

∗
ν ]

n
µ,ν=1 ∈ Mn(C) is positive definite.

Proof. If d1, . . . , dn are complex numbers not all zero and c1, . . . , cn are nonzero
vectors in Cp, then the vectors d1c1, . . . , dncn are not all zero. Thus, (2.1) justifies
that (i) implies (ii). Conversely, if y1, . . . , yn are distinct points in X and d1, . . . ,dn

vectors in Cp, not all zero, then we can write

dµF (yµ, yν)d
∗
ν = (cµcµ)F (yµ, yν)(cνcν)

∗,

where cµ = dµ/∥dµ∥ and cµ = ∥dµ∥ if dµ ̸= 0 while cµ = (1, . . . , p) and cµ = 0,
otherwise. In particular, the cµ are not all zero and the cµ are all nonzero vectors in
Cp. Thus, if (ii) holds,

n∑
µ,ν=1

dµF (yµ, yν)d
∗
ν =

n∑
µ,ν=1

cµ [cµF (yµ, yν)cν)
∗] cν > 0.

This argument shows that F is strictly positive definite.
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Here are two examples where Lemma 1 and Theorem 2 can be applied.

Example 3. Let H be a real inner product space of dimension at least 2 with inner
product ⟨·, ·⟩, SR its unit sphere of radius R centered at 0, that is,

SR = {v ∈ H : ⟨v, v⟩ = R2},

and f a scalar positive definite kernel on SR. Set G : SR×SR → Mp(C) through the
formula

G(x, x′) =

∞∑
k=0

Ak⟨x, x′⟩k, x, x′ ∈ SR,

where each Ak is a positive semi-definite matrix in Mp(C) and the series
∑∞

k=0AkR
2k

is convergent. If n is a positive integer, x1, . . . , xn are points in SR and c1, . . . , cn
are vectors in Cp, then

[
cµG(xµ, xν)c

∗
µ

]n
µ,ν=1

=

∞∑
k=0

[cµAkc
∗
ν ]

n
µ,ν=1 •

[
⟨xµ, xν⟩k

]n
µ,ν=1

,

where • stands for the Hadamard product of matrices. Hence, G is positive definite
by the Schur Product Theorem ([10, P. 477]) and Lemma 1. Since

[cµf(xµ, xν)G(xµ, xν)c
∗
ν ]

n
µ,ν=1 = [f(xµ, xν)]

n
µ,ν=1 • [cµG(xµ, xν)c

∗
ν ]

n
µ,ν=1 ,

a similar reasoning implies that the matrix [cµf(xµ, xν)G(xµ, xν)c
∗
ν ]

n
µ,ν=1 is positive

semi-definite. These arguments along with Lemma 1 show that the kernel

(x, x′) ∈ SR × SR → f(x, x′)G(x, x′) (2.2)

is positive definite. We also have that

cµG(xµ, xµ)c
∗
µ =

∞∑
k=0

cµAkc
∗
µ ⟨xµ, xµ⟩k =

∞∑
k=0

R2k
p∑

i,j=1

ciµc
j
µA

ij
k , µ = 1, . . . , n,

where we are writing cµ = (c1µ, . . . , c
p
µ) and Ak = [Aij

k ]
p
i,j=1. So, if the cµ are nonzero

and Ak is positive definite for at least one k, then

cµG(xµ, xµ)c
∗
µ > 0, µ = 1, . . . , n,

that is, the entries in the main diagonal of [cµG(xµ, xν)c
∗
ν ]

n
µ,ν=1 are all positive.

Recalling Oppenheim’s inequality ([10, P.509]), it is now promptly seen that if f is
strictly positive definite, the xµ are distinct, and Ak is positive definite for at least
one k, then the matrix [cµf(xµ, xν)G(xµ, xν)c

∗
ν ]

n
µ,ν=1 is actually positive definite.

Thus, by applying Theorem 2, we can see that the kernel (2.2) is strictly positive
definite whenever f is so and Ak is positive definite for at least one k.
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Positive definiteness with applications 343

Example 4. Let H be a (nontrivial) complex inner product space with inner product
⟨·, ·⟩. According to [15], if f : H ×H → C is of the form

f(x, x′) =

∞∑
k,l=1

ak,l⟨x, x′⟩k⟨x, x′⟩
l

where each ak,l is nonnegative and the series is convergent for all x and x′, then
(x, x′) ∈ H × H → f(x, x′) is positive definite. Hence, if G : H × H → Mp(C)
is positive definite, Lemma 1 implies that (x, x′) ∈ H × H → f(x, x′)G(x, x′) is
positive definite as well. Indeed, if n is a positive integer, x1, . . . , xn are points in H
and c1, . . . , cn are vectors in Cp, then, as before,

[cµf(xµ, xν)G(xµ, xν)c
∗
ν ]

n
µ,ν=1 = [f(xµ, xν)]

n
µ,ν=1 • [cµG(xµ, xν)c

∗
ν ]

n
µ,ν=1 .

But, the first matrix in the Hadamard product above is obviously positive semi-
definite while the other one is positive semi-definite by Lemma 1. Another result
in [15] reveals that (x, x′) ∈ H ×H → f(x, x′) is strictly positive definite if and only
if a0,0 > 0 and {k − l : ak,l > 0} intersects every full arithmetic progression in Z.
If this is the case and cµG(xµ, xµ)c

∗
µ > 0 whenever n ≥ 1, the xµ are distinct and

the cµ are nonzero, then Oppenheim’s inequality implies that (x, x′) ∈ H × H →
f(x, x′)G(x, x′) is actually strictly positive definite. If G is strictly positive definite
and ak,l > 0 for just one pair (k, l), then a similar reasoning shows that (x, x′) ∈
(H \ {0}) × (H \ {0}) → f(x, x′)G(x, x′) is strictly positive definite. Implicitly, we
are using the fact that if a kernel (x, x′) ∈ X×X → f(x, x′) ∈ C is positive definite,
then so is (y, y′) ∈ Y × Y → f(y, y′) ∈ C for any nonempty subset Y of X.

Needless to say that Example 3 can be reformulated for spheres in complex inner
product spaces while Example 4 can be adapted to hold for real inner product spaces
via results described in [16]. Details will be left to the readers.

3 From matrix-valued to scalar kernels and vice-versa

No matter the setting, to characterize matrix-valued (strictly) positive definiteness
is usually more difficult than to characterize its scalar cousin. In some cases, the
characterizations for matrix-valued (strict) positive definiteness available in the
literature either resemble or follow from the corresponding characterization in the
scalar (strict) positive definiteness. In this perspective, methods that allows one
to construct matrix-valued (strictly) positive definite kernels from scalar (strictly)
positive definite kernels and vice versa, without the introduction of foreign players,
become quite relevant. The objective in this section is to discuss some results fitting
into this role.

Theorem 5 below provides a method to construct Mp(C)-valued positive definite
matrix functions on a single set X from positive definite scalar kernels on the
cartesian product of X with a nonempty set Y of cardinality p.
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Theorem 5. Let X be a nonempty set, Y = {y1, . . . , yp} a set of cardinality p, and
f : (X × Y )2 → C a kernel. Set F : X ×X → Mp(C) through the formula

F (x, x′) =
[
f((x, yi), (x

′, yj))
]p
i,j=1

, x, x′ ∈ X.

If f is a (strictly) positive definite kernel, then F is a (strictly) positive definite
kernel as well.

Proof. If x1, . . . , xn are n points in X and c1, . . . , cn are vectors in Cp, then it is
easily seen that

n∑
µ,ν=1

cµF (xµ, xν)c
∗
ν =

p∑
i,j=1

n∑
µ,ν=1

ciµc
j
νf((xµ, yi), (xν , yj)),

in which cµ = (c1µ, . . . , c
p
µ), µ = 1, . . . , n. Now observe that we can re-index the

quadratic form in the right-hand side so that

n∑
µ,ν=1

cµF (xµ, xν)c
∗
ν =

np∑
α,β=1

cαcβf(zα, zβ),

where

cα =

⎧⎨⎩
cα1 if α ∈ {1, . . . , p}
...................................................

c
α−(n−1)p
n if α ∈ {(n− 1)p+ 1, . . . , np}

and

zα =

⎧⎨⎩
(x1, yα) if α ∈ {1, . . . , p}
...................................................
(xn, yα−(n−1)p) if α ∈ {(n− 1)p+ 1, . . . , np}.

This is all that is needed in order to see that (i) implies (ii). Keeping the notation
above, if the xi are distinct, then so are the zj . On the other hand, if the cµ are not
all zero, then at least on cα is nonzero. Thus, if f is strictly positive definite, then
for distinct xi and the cµ not all zero, we actually have that

n∑
µ,ν=1

cµF (xµ, xν)c
∗
ν =

np∑
α,β=1

cαcβf(zα, zβ) > 0.

This shows that F is strictly positive definite as well.

The reader is advised that the assertion in Theorem 5 regarding the equivalence
in the non strict case still holds if the yi are not distinct. This fact justifies one
implication in the following extension of Theorem 5 in which we replace the finite
set Y with an arbitrary set.
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Theorem 6. Let X and Y be nonempty sets and f : X × Y → C a kernel. If X is
infinite, then the following assertions are equivalent:

(i) f is positive definite.

(ii) If p ≥ 1 and y1, . . . , yp are points in Y , then the matrix function F : X×X →
Mp(C) given by

F (x, x′) =
[
f((x, yi), (x

′, yj))
]p
i,j=1

, x, x′ ∈ X.

is a positive definite kernel.

Proof. It suffices to prove that (ii) implies (i). Let (x1, y1), . . . , (xm, ym) be points
in X×Y and c1, . . . , cm complex numbers. We may assume there are p ≤ m distinct
yj being used in this point distribution which we will call P . Since X is infinite,
we may enhance P by adding additional points to it, but still using the same yj
as second components and reach, for some n, a point distribution {zα} having the
same block structure defined in the proof of Theorem 5. Finally, for µ ∈ {1, . . . , n},
we set

cαµ =

{
cµ if (xµ, yα) ∈ P
0 if (xµ, yα) ̸∈ P .

Under this settings, it is now clear that

np∑
α,β=1

cαcβf(zα, zβ) =

p∑
i,j=1

n∑
µ,ν=1

ciµc
j
νf((xµ, yi), (xν , yj))

=
n∑

µ,ν=1

cµF (xµ, xν)c
∗
ν ,

where cµ = (c1µ, . . . , c
p
µ) for µ = 1, . . . , n and F is as in (ii). If (ii) holds, we may

conclude that
∑np

α,β=1 cαcβf(zα, zβ) ≥ 0. Since the cα are arbitrary, we end up

concluding that [f(zα, zβ)]
np
α,β=1 is positive semi-definite. It follows that its principal

minor [f((xµ, yµ), (xν , yν))]
m
µ,ν=1 is positive semi-definite as well. Thus, (i) holds.

A version of Theorem 7 for strict positive definiteness is as follows. Details will
be left to the readers.

Theorem 7. Let X and Y be nonempty sets and f : X × Y → C a positive definite
kernel. If X is infinite, then the following assertions are equivalent:

(i) f is strictly positive definite.

(ii) If p ≥ 1 and y1, . . . , yp are distinct points in Y , then the matrix function
F : X ×X → Mp(C) given by

F (x, x′) =
[
f((x, yi), (x

′, yj))
]p
i,j=1

, x, x′ ∈ X

is a strictly positive definite kernel.
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Next, we reverse the process and go from positive definite matrix kernels to scalar
kernels.

Theorem 8. Let F = [fij ]
p
i,j=1 : X × X → Mp(C) be a matrix function. Define a

complex function f on (X × {1, . . . , p})2 by the formula

f((x, i), (x′, j)) = fij(x, y), x, x′ ∈ X, i, j ∈ {1, . . . , p}.

The following assertions are equivalent:

(i) F is a positive definite kernel.

(ii) f is a scalar positive definite kernel.

Proof. Let (x1, i1), . . . , (xn, in) be points in X × {1, . . . , p} and pick the distinct
elements among the xµ, say, x

′
1, . . . , x

′
m, m ≤ n. It is easily seen that the n × n

matrix [f((xj , ij), (xk, ik))]
n
j,k=1 = [fijik(xj , xk)]

n
j,k=1 is a principal minor of the

mp×mp matrix [F (x′µ, x
′
ν)]

m
µ,ν=1 = [[fij(x

′
µ, x

′
ν)]

p
i,j=1]

m
µ,ν=1. Thus, the positive semi-

definiteness of the matrix [F (x′µ, x
′
ν)]

m
µ,ν=1 implies the positive semi-definiteness of

the matrix [f((xj , ij), (xk, ik))]
n
j,k=1. This shows that (i) implies (ii). Conversely,

if x1, . . . , xm are points in X, c1, . . . , cm are vectors in Cp and we write cµ =
(c1µ, . . . , c

p
µ) for µ = 1, . . . ,m, then

m∑
µ,ν=1

cµF (xµ, xν)c
∗
ν =

m∑
µ,ν=1

p∑
i,j=1

ciµc
j
νf((xµ, i), (xν , j)).

Obviously, the double sum appearing above is of the form
∑mp

α,β cαcβf(zα, zβ) where
z1, . . . , zmp are points in X×{1, . . . , p} and c1, . . . , cmp are complex numbers. Thus,
if (ii) holds,

∑m
µ,ν=1 cµF (xµ, xν)c

∗
ν ≥ 0. Since the xj are arbitrary, (i) holds as

well.

A review of the arguments employed in the proof of Theorem 8 leads to the
following additional result.

Theorem 9. Let F and f be as in Theorem 8. If F is a strictly positive definite
kernel, then f is a scalar strictly positive definite kernel, and conversely.

4 Typifying matrix-valued (strict) positive definiteness

This separated section contains applications of the results described in Section 3. As
a matter of fact, the reader will notice that what is really behind the examples we
have chosen is a solid method to describe matrix-valued (strictly) positive definite
kernels when the scalar kernels under the same setting are known and given by
special series expansions. In particular, it is reasonable to expect that results of the
same nature of the ones presented here will hold in other contexts.
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Positive definiteness with applications 347

4.1 Kernels on X × Sd

We begin with the characterization of matrix valued (strictly) positive definite
kernels on X × Sd which are isotropic with respect to the spherical component.
Precisely, we will provide a characterization for the positive definiteness and strict
positive definiteness of a matrix kernel F : (X × Sd)2 → Mp(C) of the form

F ((x, u), (x′, v)) = f(x, y, ⟨u, v⟩), x, x′ ∈ X;u, v ∈ Sd,

in which X is a nonempty set, Sd is the unit sphere in Rd+1, if d < ∞ and in ℓ2
if p = ∞, ⟨·, ·⟩ is the usual inner product in Rd+1, while f = [fij ]

p
i,j=1 : X × X ×

[−1, 1] → Mp(C) is a matrix function for which every section function fij(x, y, ·) is
continuous on [−1, 1].

The characterizations in the case p = 1 was achieved in [7], along with some
other important particularities of the case. These accomplishments are outlined in
Propositions 10 and 11 below. We write P d

k to denote the Gegenbauer polynomial of
degree k associated with the rational number (d−1)/2 if d < ∞ while P∞

k (t) = cosk t,
t ∈ [−1, 1]. No special normalization for them is needed. The basics on the analysis
on spheres can be found in [13].

Proposition 10. Let f : X × X × [−1, 1] → C be a function with all its section
functions f(x, y, ·) continuous on [−1, 1]. The following assertions for the kernel F
given by

F ((x, u), (x′, v)) = f(x, x′, ⟨u, v⟩), x, x′ ∈ X;u, v ∈ Sd,

are equivalent:

(i) F is positive definite.

(ii) For each pair (x, x′) ∈ X×X fixed, the section function f(x, x′, ·) has a series
representation in the form

f(x, x′, s) =
∞∑
k=0

adk(x, x
′)P d

k (s), s ∈ [−1, 1],

where adk(x, x
′) ∈ C, for k ∈ Z+ and x, x′ ∈ X, each kernel (x, x′) ∈ X ×X ↦→

adk(x, x
′) is positive definite and

∑∞
k=0 a

d
k(x, x)P

d
k (1) < ∞, for all x ∈ X.

Proposition 11. Under the assumptions and notation in Proposition 10, assume
F is positive definite. If d ≥ 2, then the following assertions are equivalent:

(i) F is strictly positive definite.

(ii) If m is a positive integer, x1, . . . , xm are distinct points in X, and c is a vector
in Cm, then the set {

k ∈ Z+ : c
[
adk(xµ, xν)

]m
µ,ν=1

c∗ > 0

}
contains infinitely many even and infinitely many odd integers.
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(iii) If m is a nonnegative integer, then the kernels

(x, x′) ∈ X ×X ↦→
∑
k≥m

ad2k+1(x, x
′) and (x, x′) ∈ X ×X ↦→

∑
k≥m

ad2k(x, x
′)

are strictly positive definite.

The following lemma provides simple examples of matrix-valued positive definite
kernels on X × Sd.

Lemma 12. Let h : X ×X → Mp(C) be a positive definite kernel. If k ∈ Z+, then
the matrix function ((x, u), (x′, v)) ∈ (X × Sd)2 ↦→ f(x, x′, ⟨u, v⟩) in which

f(x, x′, s) = h(x, y)P d
k (s), x, x′ ∈ X; s ∈ [−1, 1],

is a positive definite kernel.

Proof. We sketch the proof in the case p < ∞ only. The addition theorem for
spherical harmonics asserts the existence of a positive constant C = C(k, d) > 0
such that

CP d
k (u, ·v) =

δ∑
α=1

Sd
k,α(u)S

d
k,α(v), u, v ∈ Sd,

in which δ = δ(k, d) is the dimension of the space of all spherical harmonics of
degree k in d + 1 dimensions while {Sd

k,1, . . . , S
d
k,δ} is an orthonormal basis of the

same space with respect to the usual inner product of the space L2(Sd) (see [13, P.19]
for details). Looking at the quadratic form pertaining to the definition of positive
definiteness, we can see that

C
n∑

µ,ν=1

cµf(xµ, yν , ⟨uµ, uµ⟩)c∗ν =
δ∑

α=1

n∑
µ,ν=1

(
Sd
k,α(uµ)cµ

)
h(xµ, yν)

(
Sd
k,α(uν)cν

)∗
.

The positive definiteness of h : X × X → Mp(C) reveals that the last expression
above is nonnegative.

As an application of Theorems 5 and 8 we now prove a matrix version of Theorem
10.

Theorem 13. Let f = [fij ] : X × X × [−1, 1] → Mp(C) be a matrix function.
Assume all the section functions fij(x, x

′, ·) are continuous on [−1, 1]. The following
assertions are equivalent:

(i) The kernel F : (X × Sd)2 → Mp(C) given by

F ((x, u), (x′, v)) = f(x, x′, ⟨u, v⟩), x, x′ ∈ X;u, v ∈ Sd,

is positive definite.
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(ii) For each pair (x, x′) ∈ X2, the section function f(x, x′, ·) has a matrix representation
in the form

f(x, x′, s) =
∞∑
k=0

Ad
k(x, x

′)P d
k (s), s ∈ [−1, 1],

where Ad
k(x, x

′) ∈ Mp(C), x, x′ ∈ X, every kernel (x, x′) ∈ X2 ↦→ Ad
k(x, x

′) ∈
Mp(C) is positive definite, and

∑∞
k=0A

d
k(x, x)P

d
k (1) < ∞ for all x ∈ X.

Proof. Lemma 12 along with the fact that positive definiteness is preserved under
pointwise limits show that (ii) implies (i). In order to prove (i) implies (ii), we will
apply Theorem 8. If F is positive definite, then the theorem asserts that the formula

g(((x, u), i), ((x′, v), j)) = fij(x, x
′, ⟨u, v⟩), x, x′ ∈ X;u, v ∈ Sd; 1 ≤ i, j ≤ p,

defines a positive definite kernel g : [(X × Sd)× {1, . . . , p}]2 → C. Equivalently, the
formula

h((x, i), u)), (x′, j), v))) = fij(x, x
′, ⟨u, v⟩), x, x′ ∈ X; 1 ≤ i, j ≤ p;u, v ∈ Sd,

defines a positive definite kernel h : [(X × {1, . . . , l})]2 × Sd → C. Reporting to
Theorem 10, we can infer that for each pair ((x, i), (x′, j)) ∈ (X × {1, . . . , l})2, the
section function fij(x, x

′, ·) has a series representation in the form

fij(x, x
′, s) =

∞∑
k=0

adk((x, i), (x
′, j))P d

k (s), s ∈ [−1, 1],

in which all the coefficients adk((x, i), (x
′, j)) are complex numbers, every kernel

((x, i), (x′, j) ∈ (X × {1, 2, . . . , l})2 ↦→ adk((x, i), (x
′, j))

is positive definite, and

∞∑
k=0

adk((x, i), (x, i))P
d
k (1) < ∞, (4.1)

for all (x, i) ∈ X × {1, . . . , p}. It is now clear that

f(x, x′, s) =

∞∑
k=0

Ad
k(x, x

′)P d
k (s), x, x′ ∈ X, s ∈ [−1, 1],

in which
Ad

k(x, x
′) =

[
adk((x, i), (x

′, j))
]p
i,j=1

, x, x′ ∈ X.

Theorem 5 asserts the positive definiteness of the matrix function (x, y) ∈ X2 →
Ad

k(x, x
′) ∈ Mp(C) while the convergence of

∑∞
k=0A

d
k(x, x)Pk(1) for all x ∈ X follows

from (4.1). Thus, (ii) holds.
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In Theorem 14 we go one step further and derive a characterization for strict
positive definiteness in the setting of Theorem 13 but restricted to the case d > 1.

Theorem 14. (d ≥ 2) Let f = [fij ] : X×X×[−1, 1] → Mp(C) be a matrix function.
Assume all the section functions fij(x, x

′, ·) are continuous on [−1, 1] and that the
matrix function F : (X × Sd)2 → Mp(C) given by

F ((x, u), (x′, v)) = f(x, x′, ⟨u, v⟩), x, x′ ∈ X;u, v ∈ Sd,

is positive definite. The following assertions are equivalent:
(i) The kernel F is strictly positive definite;
(ii) For every nonnegative integer m, the matrix kernels

(x, x′) ∈ X ×X ↦→
∑
k≥m

Ad
2k+1(x, x

′),
∑
k≥m

Ad
2k(x, x

′)

are strictly positive definite.

Proof. If F is strictly positive definite, then Theorem 9 reveals that the formula

g(((x, i), u), ((x′, j), v)) = fij(x, x
′, ⟨u, v⟩), x, x′ ∈ X;u, v ∈ Sd; 1 ≤ i, j ≤ p,

defines a strictly positive definite kernel g : [(X×{1, . . . , p})×Sd]2 → C. By Theorem
10, we can write

fij(x, x
′, s) =

∞∑
k=0

bdk((x, i), (x
′, j))P d

k (s), s ∈ [−1, 1];x, x′ ∈ X; 1 ≤ i, j ≤ p,

where bdk((x, i), (x
′, j)) ∈ C, k ∈ Z+, x, x

′ ∈ X, each kernel ((x, i), (x′, j)) ∈ X×X ↦→
bdk((x, i), (x

′, j)) is positive definite,
∑∞

k=0 b
d
k((x, i), (x, i))P

d
k (1) < ∞, for (x, i) ∈

X × {1, . . . , p}, and for each nonnegative integer m, the kernels

((x, i), (x′, j)) ∈ (X × {1, . . . , p})2 ↦→
∑
k≥m

bd2k+1((x, i), (x
′, j))

and
((x, i), (x′, j)) ∈ (X × {1, 2, . . . , p})2 ↦→

∑
k≥m

bd2k((x, i), (x
′, j))

are strictly positive definite. However, Theorem 5 implies that, for each m ≥ 0, the
matrix functions

(x, x′) ∈ X2 →
∑
k≥m

[bd2k+1((x, i), (x
′, j))]pi,j=1

and
(x, x′) ∈ X2 →

∑
k≥m

[bd2k((x, i), (x
′, j))]pi,j=1
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define, likewise, strictly positive definite kernels. In order to see that (ii) holds, it
suffices to observe that

[fij(x, x
′, s]pi,j=1 =

[ ∞∑
k=0

bdk((x, i), (x
′, j))P d

k (s)

]p

i,j=1

=

∞∑
k=0

[
bdk((x, i), (x

′, j))
]p
i,j=1

P d
k (s), x, y ∈ X.

which implies, by uniqueness, that

Ad
k(x, x

′) = [bdk((x, i), (x
′, j))]pi,j=1, k ≥ 0, x, x′ ∈ X. (4.2)

Thus (i) implies (ii). Conversely, keeping the notation in (4.2), if (ii) holds, Theorem
9 reveals that, for every m ≥ 0, g, h : (X × {1, . . . , p})2 → C given by

g((x, i), (x′, j)) =
∑
k≥m

bd2k+1((x, i), (x
′, j)), x, x′ ∈ X; i, j ∈ {1, . . . , p},

and

h((x, i), (x′, j)) =
∑
k≥m

bd2k((x, i), (x
′, j)), x, x′ ∈ X; i, j ∈ {1, . . . , p},

are strictly positive definite kernels. An application of Theorem 11 now shows that
the kernel G : [(X × {1, . . . , p})× Sd]2 → C given by the formula

H(((x, i), u), ((x′, j), v)) =
∞∑
k=0

bdk((x, i), (x
′, j))P d

k (⟨u, v⟩)

is strictly positive definite. Equivalently, H : [(X × Sd)× {1, . . . , p}]2 → C given by

H(((x, u), i), ((x′, v), j)) =

∞∑
k=0

bdk((x, i), (x
′, j))P d

k (⟨u, v⟩)

is strictly positive definite. Finally, Theorem 5 implies that the matrix function

((x, u), (x′, v)) ∈ (X × Sd)2 →

[ ∞∑
k=0

bdk((x, i), (x
′, j))P d

k (⟨u, v⟩)

]p

i,j=1

is strictly positive definite as well. However, this matrix function is nothing but F .
Therefore, (i) holds.
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4.2 Kernels on Sd

Here, we will consider isotropic matrix functions of the form F = [fij ]
p
i,j=1 : Sd ×

Sd → Mp(C), where d ≥ 2 and each fij is continuous. As before, isotropy of F will
mean that

F (x, y) = f(⟨x, y⟩), x, y ∈ Sd,

for some function f : [−1, 1] → C. We will recover the characterization for the strict
positive definiteness of continuous matrix functions on Sd obtained in [8], as an
application of the results in Section 3 and Subsection 4.1.

According to either Hannan ([9, p.102]) or Yaglom ([21, p.387]), a continuous and
isotropic kernel F : Sd × Sd → Mp(C) is positive definite if and only if the isotropic
part f of F is a matrix function possessing a convergent series representation in the
form

f(s) =
∞∑
k=0

AkP
d
k (s), s ∈ [−1, 1], (4.3)

in which eachAk is a nonnegative definite element ofMp(C). IfAk = [Aij
k ], convergence

of the series above means that

∞∑
i=0

Aij
k P

d
k (1) < ∞, i, j = 1, . . . , p.

We observe that for a positive definite kernel F as above, the entries fii are real-
valued functions.

If a kernel F as above is strictly positive definite, then Theorem 8 implies that
the kernel g : (Sd × {1, . . . , p})2 → C given by

g((u, i), (v, j)) =
∞∑
k=0

Aij
k P

d
k (⟨u, v⟩), u, v ∈ Sd; i, j ∈ {1, . . . , p},

is strictly positive definite. Equivalently, h : ({1, . . . , p} × Sd)2 → C given by

h((i, u), (j, v)) =
∞∑
k=0

Aij
k P

d
k (⟨u, v⟩), i, j ∈ {1, . . . , p};u, v ∈ Sd,

is strictly positive definite. Since this representation fits into that in Theorem 10
with X = {1, . . . , p}, we know already that each kernel

(i, j) ∈ {1, . . . , p}2 → Aij
k

is positive definite. Theorem 11 reveals that the set{
k ∈ Z+ : c

[
A

i(µ)i(ν)
k

]m
µ,ν=1

c∗ > 0

}
******************************************************************************

Surveys in Mathematics and its Applications 16 (2021), 339–359
http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v16/v16.html
http://www.utgjiu.ro/math/sma


Positive definiteness with applications 353

contains infinitely many even and infinitely many odd integers, whenever m ≤ p,
i(1), . . . , i(m) are distinct elements of {1, . . . , p} and c is a nonzero vector in Cm.
However, this is equivalent to saying that

{k ∈ Z+ : cAkc
∗ > 0}

contains infinitely many even and infinitely many odd integers when c ∈ Cp \ {0}.
This process is reversible along the same lines. Therefore, we have recovered the
following result.

Theorem 15. (d ≥ 2) Let F = [fij ]
p
i,j=1 : S

d × Sd → Mp(C) be an isotropic matrix
function with each fij continuous. If F is positive definite with series representation
implied by (4.3), then the following assertions are equivalent:

(i) F is strictly positive definite;

(ii) If c is a nonzero vector in Cp, then the set

{k ∈ Z+ : cAkc
∗ > 0}

contains infinitely many even and infinitely many odd integers.

As far as we know, versions of Theorems 14 and 15 remain elusive in the case in
which the sphere Sd is replaced with S1.

5 From operator-valued to scalar kernels and vice-versa

In this section, we go one step further, and establish a connection between operator-
valued (strictly) positive definite kernels and scalar (strictly) positive definite kernels.
The notions of operator-valued kernels we are interested in are as follows.

Let (H, ⟨·, ·⟩) be an inner product space and write L(H) to denote the space of
all linear operators on H. The action of an operator T ∈ L(H) on a vector v ∈ H
will be written Tv. A kernel F : X ×X → L(H) is positive definite if

n∑
µ,ν=1

⟨F (xµ, xν)vµ, vν⟩ ≥ 0, (5.1)

whenever n ≥ 1, x1, . . . , xn are distinct points in X and v1, . . . , vn are vectors in
H. A positive definite kernel F : X × X → L(H) is strictly positive definite if the
inequalities above are strict when the vµ are nonzero. In applications, the definitions
above may demand additional requirements: L(H) can be replaced with B(H),
i.e., the set of all continuous operators on H while the kernel F may be assumed
to be continuous with respect to the operator norm on B(H). Another common
requirement is F (x, x′) = F (x′, x)∗, x, x′ ∈ X, where ∗ stands for the adjoint
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operator. For instance, these adjustments are frequently found in some settings of
learning theory as the reader can verify in [4, 18, 23] and some references therein.

Here are some simple examples of operator-valued positive definite kernels. If
P : H → H is a linear positive operator in the sense that ⟨P (v), v⟩ ≥ 0, v ∈ H, and
f : X ×X → C is a positive definite kernel, then F : X ×X → L(H) given by

F (x, x′) = f(x, x′)P, x, x′ ∈ X,

is positive definite. Indeed, for points x1, . . . , xn in X and vectors v1, . . . , vn in H,

[⟨F (xµ, xν)vµ, vν⟩]nµ,ν=1 = [f(xµ, xν)]
n
µ,ν=1 • [⟨Pvµ, vν)⟩]nµ,ν=1,

and the matrix [⟨F (xµ, xν)vµ, vν⟩]nµ,ν=1 is then positive semi-definite. In particular,
(5.1) holds. Further, if f is strictly positive definite and P is positive definite in the
sense ⟨P (v), v⟩ > 0, v ∈ H \ {0}, then F is actually strictly positive definite. To see
that one needs to invoke Oppenheim’s inequality. A similar reasoning shows that if
f : X × X → C is a positive definite kernel and G : X × X → L(H) is positive
definite, then H : X ×X → L(H) given by

H(x, x′) = f(x, x′)G(x, x′), x, x′ ∈ X,

is positive definite as well. If both f and G are strictly positive definite, then the
same is true of H. Finally, let T : H1 → H2 be a linear transformation between
complex inner product spaces. If F : X × X → L(H1) is positive definite, then
G : X × X → L(H2) given by G(x, x′) = T ◦ F (x, x′) ◦ T ∗, x, x′ ∈ X, is positive
definite too. Further, if F is strictly positive definite and T is invertible, then F is
strictly positive definite.

We will make use of the following technical lemma, the proof of which is left to
the readers.

Lemma 16. Let X and Y be nonempty sets and f : X × Y → C a kernel. The
following assertions are equivalent:

(i) f is (strictly) positive definite.

(ii) If x1, . . . , xm are distinct points in X and y1, . . . , yn are (distinct) points
in Y , then the matrix [f((xµ, yi), (xν , yj))]

n
i,j=1]

m
µ,ν=1 is positive semi-definite

(definite).

Theorem 17 below provides a simple method to produce scalar kernels from
operator-valued kernels. The only additional requirement needed is the use of a
fixed Hamel basis {ur : r ∈ J} of H.

Theorem 17. Let F : X × X → L(H) be an operator-valued kernel. Define f :
(X × J)2 → C by the formula

f((x, r), (y, s)) = ⟨F (x, y)us, ur⟩, x, y ∈ X; r, s ∈ J.

If F is (strictly) positive definite, then so is f .
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Proof. Let x1, . . . , xm be distinct points in X and r1, . . . , rn distinct points in J . For
complex numbers cµ,i, µ = 1, . . . ,m, i = 1, . . . , n, set

vµ =
n∑

i=1

cµ,iuri , µ = 1, . . . ,m.

If F is positive definite, then we have that

m∑
µ,ν=1

n∑
i,j=1

cµ,icν,jf((xµ, ri), (xν , rj) =

m∑
µ,ν=1

⟨F (xµ, xν)vµ, vν⟩ ≥ 0,

and the matrix [f((xµ, ri), (xν , rj))]i,j=1n ]
m
µ,ν=1 is positive semi-definite. By Lemma

16, f must be positive definite. Further, if the cµ,i are nonzero, then the fact that
{ur : r ∈ J} is a basis of H shows that the vµ are nonzero vectors. Thus, if F
is strictly positive definite, then the inequality above is actually strict. The same
Lemma 16 now implies that f is strictly positive definite.

Needless to say that Theorem 17 holds with the same proof for operator-valued
kernels of the form F : X ×X → B(H).

Next, we present a procedure that allows one to go from scalar positive definite
kernels on X × J to operator-valued kernels. For a fixed kernel f : (X × J)2 → C
we will make use of the quadratic form Q : (X ×H)2 → C given by

Q((x, u), (x′, v)) =
∑
i

∑
j

aibjf((x, ri), (x
′, rj)), x, x′ ∈ X;u, v ∈ H,

in which u =
∑

i aiuri and v =
∑

j bjusj (both sums are finite).

Theorem 18. Let f : (X × J)2 → C be a kernel and assume that

Q((x, u), (x′, v)) = ⟨F (x, x′)u, v⟩, x, x′ ∈ X;u, v ∈ H,

in which F : X ×X → L(H). If f is (strictly) positive definite, then so is F .

Proof. Let x1, . . . , xn be distinct elements of X and v1, . . . , vn vectors in H. If we
write vµ =

∑m
i=1 cµ,iuri ,µ = 1, . . . , n, where r1, . . . , rm are distinct points in J and

the cµ,i are complex numbers, then

n∑
µ,ν=1

⟨F (xµ, xν)vµ, vν⟩ =
n∑

µ,ν=1

m∑
i,j=1

cµ,icν,jf((xµ, ri), (xν , rj).

If f is positive definite, then an application of Lemma 16 implies that the matrix
[f((xµ, ri), (xν , rj))]

m
i,j=1]

n
µ,ν=1 is positive semi-definite. Thus, F is positive definite.

If f is strictly positive definite, then the same Lemma 16 implies that the matrix
[f((xµ, ri), (xν , rj))]

m
i,j=1]

n
µ,ν=1 is positive definite. Now, if the vectors vµ are nonzero,

then not all the complex numbers cµ,i will be zero, and therefore the previous
inequality will be strict. Thus, F is strictly positive definite as well.
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The following piece of information may be useful if one intends to deal with
operator-valued kernels of the form F : X ×X → B(H): if F : X ×X → L(H) is
positive definite and F (x, x) belongs to B(H) for all x ∈ X, then all the F (x, x′)
will belong to B(H). Indeed, the positive definiteness of F implies that[

⟨F (x, x)u, u⟩ ⟨F (x, x′)u, v⟩
⟨F (x′, x)v, u⟩ ⟨F (x′, x′)v, v⟩

]
is positive semi-definite, whenever x, x′ ∈ X and u, v ∈ H. In particular,⏐⏐⟨F (x, x′)u, v⟩

⏐⏐2 ≤ ⟨F (x, x)u, u⟩⟨F (x′, x′)v, v⟩, x, x′ ∈ X;u, v ∈ H.

However, if each F (x, x) belongs to B(H), we can find positive constants Mx and
Mx′ so that ⏐⏐⟨F (x, x′)u, v⟩

⏐⏐2 ≤ MxMx′⟨u, u⟩⟨v, v⟩, x, x′ ∈ X;u, v ∈ H.

This implies that

⟨F (x, x′)(u), F (x, x′)(u)⟩ ≤
√
MxMx′ ⟨u, u⟩, x, x′ ∈ X;u ∈ H.

that is, F (x, x′) belongs to B(H).
The literature lacks of consistent applications involving the results described

in this section. Applications aligned with those described in Section 4 can not
implemented because characterizations of operator-valued strictly positive definite
kernels are rare in the literature. In any case, here are two results that resemble
Theorems 17 and 18, for special choices of X and F .

Example 19. Let X = Rm and assume that H is a separable Hilbert space. If
F : X → B(H) is ultraweakly continuous, then the operator valued kernel

(x, x′) ∈ X ×X ↦→ F (x− y) ∈ B(H)

is positive definite if and only if the kernels

(x, x′) ∈ X ×X ↦→ ⟨F (x− y)u, u⟩, u ∈ H,

are positive definite. This fact is implied by results proved in [14].

Example 20. Let H be a separable Hilbert space and F : [0,∞) → B(H) a
ultraweakly continuous function for which F (0) is trace-class. If the kernels

(x, x′) ∈ Rm × Rm ↦→ ⟨F (∥x− x′∥)u, u⟩, m ∈ Z+;u ∈ H,

are all positive definite, in which ∥ · ∥ denotes the usual norm in Rm, then each
operator-valued kernel

(x, x′) ∈ Rm × Rm ↦→ F (∥x− x′∥)
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is positive definite. Further, each kernel above is strictly positive definite if and only
if the functions

t ∈ [0,∞) ↦→ ⟨F (t)u, u⟩, u ∈ H \ {0},

are nonconstant. The proof of this result appeared in the recent paper [6]. It is worth
mentioning that [6] an impressive source of results resembling Theorems 17 and 18
in many aspects.

We would like to point out that some of the results proved in this work were
motivated by others considered in J. C. Guella’s dissertation ([5]) concluded in 2019
at ICMC-Universidade de São Paulo, under my sypervision.
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