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1 Quantales

In this section we introduce the basic definitions and results of the theory of quantales (a good
reference is [Ros]). Quantales were introduced by Mulvey ([Mul]) as an alternative as an algebraic
tool for studying representations of non-commutative C*-algebras. Informally, a quantale is a
complete lattice () equipped with a product distributive over arbitrary sup’s. The importance
of quantales for Linear Logic is revealed in Yetter’s work ([Yet]), who proved that semantics of
lei,ssical linear logic is given by a class of quantales, named Girard quantales, which coincides with
Girard’s phase semantics. An analogous result is obtained for a sort of non-commutative linear
logic, as well as intuitionistic linear logic without negation, which suggest that the utilisation of the
theory of quantales (or even weaker structures, such that *-autonomous posets) might be fruitfull

n studying the semantic of several variants of linear logic.

As usual, we denote the order in a lattice by <, while V and A denote the operations of sup
and inf, respectively. We write T for the largest clement in a lattice and O for its smallest element.

Deﬁnition 1.1 A quantale is a complete laltice Q) whith an associative binary operation
®:Q x Q— Q , which distributes on the right and on the left of arbitrary sup’s, i.e.:

Q1] a® (b@c) =(a®b)®c, for every a,b,c € Q)

[Q2) a® (Vies i) = Vierla ® @), (Vier a;) ® a = Vier(ai @ a)

A quantale Q s unital of 1t has an element 1 € Q) such thata®1 =1®a = a, for every a € Q.
A quantale () is commutative if a @b = b® a, for every a, b € Q.

A morphism of quantales is an operator between quantales which preserves and arbitrary
sup’s,

[t’s easily seen that the above axioms imply that @ is increasing in both coordinates, that is

If(zébthen,‘v’ccéQ, a®c < b®c and c®a< c®b

We raeio ;
€ register a classic result:



Proposition 1.2 The endomorfisms a® -, -®a: Q — Q have right adjoints, denoted by a —r*
and a — -, respectively. Thus,

a®@c<biff c<a—,b c®a<biff c<a—b
and consequently
a—»,sz{cEQ:a@cgb} a—»,b:V{cEQ:c@aSb}.

Definition 1.3 Let Q) be a quantale. A map j : QQ — Q is said to be a

a) quantic nucleus if it satisfies

[NQ) a < b implics j(a) < j(b) NQ?) a < j(a)

[IN@3] 3(j(a)) = 5(a) [NQ4] j(a)®j(b) < j(a®b)

b) quantic conucleus if it satisfies :

(CNQY] a < b implies g(a) < g(b) CNQ2] ¢(a) < a

[CNQ3] g(9(a)) = g(a) [CNQ4] g(a) @ g(b) < g(a @ b)

Quantic nuclei and conuclej are important, because they determine the quocients and subobjects
in the category of quantales.
Definition 1.4 Let Q be 4 quantale.

A subset S C Q is a subquantale of Q if it is closed under
® and arbitrary sup’s.

Proposition 1.5 [Ros] : (a) IfQ i» @ is a quantic nucleus, then Qi={zeQ:jz)=1x}¥
a quantale where the operations @, V' and N\’ in Q; are given by

a®'b=j(a®b) Vierai = j(Vies a;) Nerai = Ngr ai.
Moreover, the map j :

Q— Q; given by a i(a),
Further, every surjective m

orphism of quantales can be re
B)IfQ-Qisa quantic conucley
with notation as in (a), Nerai = g(A

8 a surjective morphism of quantal€5'
presented in this form,

s, then Q, = {z € () - 9(z)
ie1@;). Moreover, every subqua
ifSCQisa subquantale, then there ezists g quantic conucleus

=z} 1s a subquantale whert
ntale is of this form, i.e.,

g Q such that S = Q,.

Definition 1.6 An element | ¢ Q is dualizing if:
(@ —, 1) ~Hd =a=(g -5 1) —, L, for every aq € Q.

An element s € Q) is cyclic if:

G-'*rS:a—-*zs,foreveryae &
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) M .
roposition 1.7 [Ros] : Let () be a quantale and s, L be elements of Q-
6) s € Q is cyclic iff for all ay,...,an in Q,

Q- @a, <s implies @) ® an(2) @ ® Cr(n) =8,

or all permutations of {1,...,n}.

DIfLeqis dualizing, then @ is unital and we have :

1=1L—,1l=1-— B

lement L. The

Definit; . : .
efinition 1.8 4 Glirard quantale is a quantale which has a cyclic dualizing e
=a — L (note

?Perator. Hl=—, L=gy-— L8 called linear negation, and we write g
hat 1 — 1t ‘

Ne . T T e -
Xt proposition is of frequent use when computing mn a Girard quantale.

PrbOPOSitiOH 1.9 [Ros] : Let Q be a Glirard quantale with a cyclic dualizing element L and let
“O€ Q. Then:
(1) a — b= (a®b")* (2) a——rrb:(bL@)a)J‘

(3) a®b=(a— i (4) b@a=(a—r byt

(5) g —, b=b-—=at (6) a——nb:bl-—»,aL

Py " , . .
'OPosition 1.10 Let Q be an unital quantale and s € Q cyclic. Then, j: Q — Q, gwen by

(@) = . ; . g
(v) (@ —s) > sisa quantic nucleus, and Q;,={ac@ :j(a) =a} isa Girard quantale, where

i.tseQ]

Ex .

ample 1.11 : The Phase Quantales (Girard)
a‘bLet (M’., 1) be a monoid. We define A-B={a-b:a€ Abe B}. Let L C M be such that
€ Limpliesb-a e L (for ezample, L can be a semiprime ideal or the complement of a prime

Zdeal Of M)

Thuys ,

unz'Onhub’ P(M) is a quantale with the product de,
Then S()(U) and intersections (()). In fact, it’s an unt
act » %Y proposition 1.10, P(M); is a Girard’s quantale conlaining
=S, and we hque:

fined above, and with sup’s e inf’s calculated as
tal quantale, where 1 = {1} and L s cyclic.
1. Their elements are called

A®B:(A.B)_LJ_

Vier Ai = (Uies Ai)*+; in particular, AV B=(AUB)'t =4; A®B,

)

Nier A= Nier Ai; in particular, AN B=ANB =4y A&B.
VI‘

he
> Next reg ] . ,
b result, tells us that every Girard quantale is of this form.

I)]‘() Sl
Position 1.12 [Ros] : If Q is a Girard’s quantale, then () is isomorphic to a phase quantale.



We are now going to relate the exponentials treated by Yetter ([Yet]) and Avron ([Av]) with certain
concepts in the theory of quantales.

Definition 1.13 (Yet) An open modality in a quantale Q is a map B Q—Q satisfying:
M1] p(a)<a [M2] a < b implies p(a) < u(b)
M3] p(p(a)) = p(a) [M4] p(p(a) ® p(b)) = p(a) ® u(b).
An open modality i is said to be
- central if b® p(a)= p(a)® b for every a,b € (.
- idempotent if p(a)® p(a) = p(a) for every a € Q.
- weak if Q is unital, u(1) = 1, and #(a) <1 for every a € Q.
Let M(Q) = {p : u is an open modality in Q}, partially ordered by pointwise order.

Proposition 1.14 [Yet] : Let Q be q quantale (vesp. unital quantale). Then, there exists an
unique mazimal open modality in Q central (resp. central, idempotent and weak) denoted by cm
(resp. !y.) given by:
en() =V{a € Q:a < r,0 € 2(Q))
bafz) =V{a€Q:a§zA1,a=a®a, a€ Z(Q)},

where Z(Q)={a € Q:a®b=bQa, for every b € Q}.

Definition 1.15 [Av] : Let Q be an unital quantale. A map B: Q — Q is a modal operation
if it satisfies, for all z, y € () :

[B1] B(1) =1 [B2] B(z)<z
[B3] B(B(zx)) = B(x) [B4] B(z)® B(y) = B(z A y).

Proposition 1.16 Let ) be a quantale, and p: Q — Q a map.
(i) p is an open modality iff y is a quantic conucleus.

(1) If Q is unital, then u is an open, idempotent and weak modality iff u is a modal operation.

Proof: (i) We must prove that [M4] is equivalent to [CNQ4]. Let u be an open modality. Because
M) ® u(b) < a®b, we get u(a) ® u(b) = p(u(a) (b)) < p(a®b).

Conversely, if 1 is a quantic conucleus, then
#(@) @ p(b) = u((a)) ® p(u(b)) < p(p(a) ® u(b)) < #(a) ® u(b).

(ii) Assume that 4 is an open, weak and idempotent modality. Then, it clearly satisfies condi-
tions [B1],[B2], [B3]. Because p(a) < aand u(b) < 1, we get pu(a) @ p(d) <a® 1 = a. Similarly,
#(a) @ u(b) < b and therefore, #(a) @ u(b) < aAb. Thus, u(a) ® u(b) = p(p(a) ® u(b)) < p(a Ab):

Now, since 4 is increasing and a A b < a,b, then p(a Ab) < p(a), u(b). Thus,

4
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p(a Ab) = pla Ab) @ p(a Ab) < p(a) ® u(b),
and 50 4 satigfies [B4].

Con -
eqUiVa,leV;:iely’ if 4 is a modal operation, then [M1] is just [B2); [M3] is [B3], while [M4] is
a 0 [CNQ4], in the presence of [M1],[M2], [M3], by item (i) above.
ondit; 9 G g .
Y in [iljlon [M2] is item (5) of Lemma 4.2 in [Av] and p satisfies [C NQ4] by item 8 of Lemma
s, (B ) .It follows from items 4 and 1 in that same Lemma, that p(z) < 1 for every x € Q.
» 1B1] yields that p is weak. O

Deﬁ e
Nitio "
n1.17 4 frame (()7‘ Complete Heyting (L[gebra) 15 a qu(mtale where @ = A.

Definit;
t
; on 1.18 [et Q be a quantale and let T be the mazimum of Q. We say that x € @ is
@) ry ; .
)twffd (inQ)ifz2®@T < x; b)left-sided (in Q)if Tz z;
two. Nt il ol N ;
0-8ided (in Q) if it is right and left sided in AN d) idempotent fr@zr=1

T0posit;
‘on 1.19 [Ros] : Let Q) be a quantale, and g a quantic conucleus in Q. Are equivalent:

(a)
(c)

Qs is frame. (b) g(a)® g(b) = gla A b).
e€v oo .
Gy x € Q, is idempotent and two-sided (in Q)

localic conucleus and Qg is

®finjt;

0 .

Calleq n 1.-20 A map g satisfying the conditions above is called a
ocalic subguantale. .

ince (, . .
pen, weak idempotent modalities are localic conuclei g such that p(1) =1, we have

C()ro
Thep

llar )
¥ 121 Lot @ be an unital quantale, and let p be an open, weak and idempotent modality.

s a frame.

y ! (of course) lie in a locallic sub-

U8, the . .
Wanggy, fixed points of the interpretation of the modalit
linear logic is interpreted.

C ; .
Omplete Heyting algebra) of any quantale 1n which

L.
Mear Calculus with Equality

Iy th;
1

e sresenting equality. The goal is to define

c s : e ol & 3

f]aSS of Al Mmetric and transitive predicate satisfying the substitution (Leibnitz’s) rule for the

o atg ic fofrnu]&s. We may assume, just as in (llassical Logic (C'L), that we have substitution

Wit} Ormulas . . ¥ : , shall define a prototype of a linear calculus
equal; s. With this model in mind, we shall defin€ a I M ¢ ar calculus

Quality ., "t .
e wij) S Y called (11 E, ). Our formulation will use sequents in Linear Logic (LL). Analogously,

;Xpollen "a ‘()Yvn a calculus with equality for the (MALL) fragment, i.e., the fragment without

Orm va mdicated by (LLE,). Starting from the property of substitution for elementary
y We . et U Lo .

Prove that, (. = )) must be < 1, idempotent in (M ALL) and open in the general case.

S Sect:
Ctl()n "
X we discuss the laws for a binary predicate rel

)|



: A b
Definition 2.1 A first order linear language with equality I consists in g countable set of pre

icate symbols P = {P, : n ¢ whU{ =} (where "=" 45 binary), a countable set of variables
V = {vn : n € w}, together with the symbols:

17 J‘" T707-L ,V? A’ EB’&’ ®,U7 !7 ?'

Definition 2.2 The formulas of I, FOR(LL)
[F1] 1,1, T.0¢ FOR(L).
[F2) IfPePisaq predicate of arity n and @1y o

, are defined recursively:

s Tn are variables, then
P(zy,...,z,) and Ploy, ..., 8 )t € FOR(L).

[F3] if F,Ge FOR(LL) then F®G,FU G, F&G, Fo G ¢ FOR(L)

(F4] if F ¢ FOR(LL), then \F, 7F ¢ FOR(LL)

[F5] if F'€ FOR(L) and 3 € V, then \2.F and Vz.F € FOR(L).

Every ocurrence of a variable T in a formula F is free except in q subformula of the type /\x'G
or Va.G (which are bounded ocy

rrences). We shall write

ELF(L) = {P(z1,...,2,): P e P={=1, &

and

€V}, the set of elementary formulas

yntactic linear negation is g map L : FOR(L) — FOR(IL) given by tht

usual rules:
[NL1] 1(1)= L(
[NL2) L(P(zy, ..., 2,)

Pt 20') = Plesyyz), L((o = g)) = sy
(here, P(zy,...,2,) € ELF(L))
[NL3] L(Fg G)= L(F)u L(G), L(Fu G)=L1(F)® 1(q),

LF&G) = L(F) o 1(G), L(Faq a)
(NI L0F)=11(F), LR = |L(F)

[NL5]  L(A r.F) = Vz.L(F), L(Va.F)
We write 1L (F) = F

= L(F)&L(q)

= Az.L(F)
o clearly F = pL1 for every F ¢ FOR(L).
Definition 2.4 Let A a formula; we define A

all bound occurrences of y by z, where » is the
in A, and then replacing all free occurences

[y/:zc] to be the formulqg obtaine
first variable (in t

of variable o by y.

d from A by replaci.ﬂﬁ
he naturql order of V) not occurrim!

Definition 2.5 (Girard) The calculys (LL) for first order com
the azioms and rules beloy (here, A, B

mutative lineqr logic is defined b9
denote formulas, and T,

A denote multisets of formulas)
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[AX1] At A [AX2] FT,T [AX3] F1

lcuT) FT,A F A, AL
FT.A

[EXCH] If A is a permutation of ', then |}:£

&] F AT + B, T
F A&B,T

®1) FA,T @2 B

FA®B,T AL
(4] If T is not empty, then }—l_J_FF
[®] FAT + B, A [Ll] _i—_&_ﬂii_

FA®B,T,A i

[dereliction] _L';%:_II;_ A[weakem'ng] F%{"f
[Contract' F?A4,7A,T ! _}—_‘_{ﬁl

ion) AT [ HlA T
V] F Aly/z],T If z is not free in I, then AL

Fy 24, T A A

We can consider as defined connectives the linear implication and the linear equivalence, given

by:

(A —o B) =4 (ALUB)=(A® Bl (Ao—o B) =4y (A—0 B)&(B —o A).

Deﬁnition 2.6 The linear calculus with equality (LLEy) for the (MALL) fragment of (LL) is

¢fined by adding the azioms below to those in the preceding definition :

Bk (gag), [§o:F@=wtE=2) [T=litE=n"E=2)"(=2)

[SUBST] 3R (ify = yn)l, ...,(Q?n = yn)la F(mla---amn)l»F(ml LY1, ""xnly")’

w .
here clementary formula with (eventually) x1,...,xn free and

(xl,--.,xn) denotes an
by replacing some ocurrences of x; (which are

1;1
mffl 1Y,y 2,0 yn) is obtained from F(z1,..sTn)
! the scope of a y;-quantifier) by yi-

[[:]i}‘(wzy)l,(mzy)@?(x:y) [<1):F (@=y)"1

Dt tys .
th:ﬁm.tlon 2.7 The linear calculus with equality (LLEy) for (LL) is defined by adding, besides
Wroms [R =], [S =], [T =], [SUBST] the following rule

7



=]: F=y'li(z=y)

Obviously, all the rules (with exception of [R =]) could be formulated as linear implications, for
example [T =| could be stated as

Flz=y)8y=2)—o(e=2)

We have as well that (LLE;) is equivalent to the calculus obtained from (LLE;) by replacing [S =]
and [! =] by the rule:

[S'=] F=y)* (y=2)

3 Semantics

In this section we develop interpretations for the calculi described above. It will be necessary t0
extend the definitions in [Yet] so that the axioms involving equality are verified.

Definition 3.1 An interpretation of a language IL is a triple < AV, |- |4 > where
~ A is an algebra for the theory with constants Ly LT, 0:

= a set of unary operations M J{*} (the interpretation of the modalities);
- binary operations ®, U, &, ®, and infinitary operations V and A;

=V C A, the set of valids elements; and

=|Ja: ELFt(L) — A is q map.

It is straightforward to see that there erists a (unique) extension of | |4 to FOR(IL), also
denoted by |- |4. When there is no risk of confusion, we write | -] for |- ]4.

Definition 3.2 A semantics Jor 1L is a class

of interpretations. A semantics is sound (with respec!
to a linear calculus P) if:

b A, ..., A, is provable in P implies |A;

U..UA,Ja €V for every < AV [ |4 > in the
semantics.

A semantics for 1, is complete (with respect to Pl §:
|F|la €V, for every < AV |-

|4 > in the semantics, implies - F' ;g provable in P.

Definition 3.3 An interpretation of quantales for 1, is q

assignement ! — € M(Q) and a map |l : ELF*(IL)
that

—Va, b € Q, GUbEdef (a-L ®bl)l;

Girard quantale (), together with a”
-k 1, whereV:{aGQ:aZl} such

- We interpret Az.A and \/ z.A qs Mev ]A[y/z:]lQ and Vyev IA[y/:c]|Q, respectively.

Recall that M(Q) 1s the lattice of open modalities in () (Definition 1.18).

8
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Deﬁnition 3.4

class of The semantics of quantales for (commutative) Linear Logic with equality is the

inter .
Pretation of quantales for I such that:

51 @
1 .
§ commutative. [S2] g =aes !is idempotent and weak.

(53] o : BLF*(IL) — ( satisfies:

(4) For the Calculus (LLEy):

[tl]: |(B:
e =yl=ly=zl;

221, [=2: lz=yl®=2<lz=2 [=3]:

=4]. |
. m =
1=91] Q-+ ® |zn = Y| @ |F (21, Tn)l glﬁimlzylpu,wnlynﬂ

(same notation as [SUBST));

[ 5] ¥ —_—
¢ = — =
P=y<le=ylol=y; [=6: l=yl<1

are replaced by the stronger :

(5) Fop
th
¢ Calculus (LLE,), conditions [= 5] and [= 6]
[ 7] 2 |z =y| < e =yl

he n
Xt regyt
shows that it is always possible to define a map |- | satisfying the above conditions.

Pro

~positi0n
sﬁtlsfying, i ::hS If|-|g : ELF(IL) — @ 15 a map, then it can be extended to ELF*(LL)
\1]"'-,[= 4] [~e7](MALL) case, conditions [= 1], sf= 6} and, in the general case, conditions
% Let’s begi

Let || 8In by the general case, in which ! € M(Q) is idempotent and weak.

- ELF(IL) — () be a map, and let z,y € V,z #y. Define Azy and By, as:
Ay, = {F € ELF(L) : neither z nor y occur in F'}
: Bey= {FE ELF(L) : z or y occur in F'}
n

Z,y COns;
nsider the relation:

F~ ; .
G iff @ is obtained from F by replacing some occurrences of
¢ by y and/or some occurrences of y by .

F()r
lelap: amp] ,
tiop, NOngéﬁlz(m,z,y) ~ Pz, z,2) ~ P(y,z,y) ~ P(y,2,z). Clearly, ~ 1s an equivalence
e,

L., = M|Flg = |Glg : .G € Baws £ ~ G}

F
At g i | sati .
atisfies [= 7] and [= 3], then it satisfies [= 4] iff |z = y| < Ty for  # y.

& See thig
Note that there is H € ELF(IL) such that

g,

» assume that F,G € Bgy, F' ~ G.

y), (7 -
Singe | . G=Hyy z).

18 ide
Mpotent, [= 7] implies [= 5]

M, | P=UOIFIS e =yl@ (e =sl @1

and so, by [= 4] we have |z = y|® |F| < |H|; thus,
<le=yl®H <G

T = oy » r
| y| <|F| — |G|, proving that |z = y| < Try-

9



Conversely, suppose that |z = y| < Ty for = # y. Then,
|#n = ynl < |F(ml"">xn)| ¥ |F(x1)-~-axn—1vxnzyn)|

and therefore, |z, = y,|® |F(zy, s Tn)| S|F(T1y 0y Ty, 2,1 Yn)|. Analogously,

—— Yn-1| ® ety = Yn| ® IF(ml’ ’mn)l) < |$n—1 = Yn-1| ® IF(

T1y.eeny Tn-1,Tn z yn)|

_<_ IF(.’B], ey T2y, Ty { Yn-1,Tn ! y'n)l
We may proceed by induction to get:

le = yll & .- ® Ixn = ynl ® IF(mh-'-’wn)‘ S |F((I)1 ! Y1500y Ty l yn)l,
as desired.

If F €N, As,,, then, since [= 7] implies [= 6], we have:
|m1=y1|®---®|mn=yn|®|F|§(1®---®1)®|F|= |Fl,
showing that[= 4] is valid.
By induction, define a map | - | as follows: for T,y € V,x #y, set
|z =ylo=T.,;
|2 = y|nys = Nagoy(|z = 2|, & |y = z|s) (a & b means (@ = b)A(b— a));
|z = y|oo = Anen |z = Yln), with |z = B g T

Fact 2: |- | satisfies the properties required for the fy]] logic.

In fact: condition [= 1] is clear, while [= 3] is verified because it’s true for |z = yln, for o
n € w.

Since |z =y, = e = ylo, [= 7] is satisfied (the case x =

y 1s valid too, because 1 = 1)
Observe that, for every n > 0 and z # Bl

2 = yloy1 ® |z = 2ln < |y = z|, and therefore,

l"‘::yloo@’lx:z‘oo it l-’c=y|n+1®|z=z|n

fo == Yloo ® & = 2|oo < /\neN |3/ = Zln; now [= 7] and [M4] yield [: 2].
Since |z = Yo < |z = Ylo = Lo Bt 1 guarantees that E

For the (M ALL) fragment, it’s enough to take ! = | (
computations. O "

<y = 2|, for every n > (. Thus,

loo satisfies [= 4.

ve
see Proposition 1.14) in the abo

Discussion 3.6 Are requeriments [= 5], [= 6] (resp. [=7]) too strong ?

The motivation for them is, starting with substitution for elementa
fox: every forrnul_a. Obviously, they are sufficient, byt indeed they are a] sary. To°

this, note t}‘lat, ifa=|z=y| b= |P(z)| and ¢ = 1P(x) )| t,hen b lS]O n:rc«tas @b < cad
e@®c< b, (ie a < (b ¢)) must imply a@ 1p < le (and o,f course, that a\"e <l?b 1 SinC; 18’
formula, we must also have s = ¢ @ 1 < 1. The critica] éases are (é) anad '(1®V\}<Ce Ea\./e).

Lemma 3.7 Let Q be a Girard Quantale qng let q

. be an element of Q such that a <1l
(a) Are equivalent:

4109
ry fOrmulas, to have substitut’

10
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(i))V b, ¢ de @, a<(bec),a<(dee) implies a < ((b®d) & (c®e€)).
(1) a<a®a
(b) Assume that ! € M(Q) is idempotent and weak. Are equivalent:
()Y b, ce Q, a < (bec) implies a < (16 ).
(i) a=la

(c)Vb ce &, a<(bec) implies a < (bL ).

Proof: :
;T\Of‘ (a) (1) = (41): sincea <1, then a < (1 ¢ a) and so @ < (1 ®1) « (a®a)); thus,
=a®(1®1)<a®a.

a®(i) E(@): Ifa<(bere)ya<l(de e), then we have ¢ @ b < ¢ and a
b®d) < (a®a)® (b®d) = (a@b)@(a@d) <c®e. Analogously,a@(c@e) <b®d.

1 & a) and therefore a < (1 «!a); thus,

@ d < e, and so

. ‘(b) (¢) = (41): sincea <1and!'l1=1, then a < (
=e®1< la<a.
b (1) « () :  suppose that a < (b e c); thus, a ® h < ¢ and then a® h < a®b < e Thus,
aég) ['M;l] , we have a®@ b = la® b = !(!a® 'b) =!(a® Ib) £ le Analogously, we can prove that
€< 1,

(C) Since Q is commutative, then (2~ y) = (yl = xl), by Proposition 1.9. 0

We ¢ e
e can now show that we have substitution for every formula:

P -
T;;SPOSltxon 3.8 Let || : ELF(L) — Q satisfying [= 1]-[=6] [=1- [= 4],[= 7] resp.).
", the extension to FOR(IL) verifies:
21 = 1| @ - - @ 2n = Yal @ 91,1, 20)] S 191 LY1, +ves Tn LYn)|

currences of variables T, ..., Tn, and ¢(xq 1
g Some OCCUTTENCES of x; (not in the scope

when

0 7€ 9(z1, ..., x,) € FOR(L) has (eventually) free oc

Of’;l--,a:n LYn) is obtained from $(z1, yy) bY replacin
Yi-quantifier) by vy;.

PI‘() . .
~X9f: By induction in the complexity of ¢. As a first step, we have two cases to consider.

) 6 € BLF*(L), It true by [= 41, (=2 and [=6] (or [= T} and ! weakd).
i) ¢ € {1, 1,T,0}. It’s true by [=6] (or [=17]
assume that substitution holds true for every ¢ with complexity
lexity k + 1. We have the following cases:

and ! weak).

To .
<ho I()iroceod with the induction,
id let ¢ be a formula with comp

a) ¢ = a® B. It’s immediate from
b) ¢ = at. Since |at| = |a|*, the conclusion follows from Lemma 3.7.

c) ¢ = Az.az1, ..., Tny ). GiVED

Q. | -
H I:Li - yll @ /\HEV |(Y(11flv-..151711)‘1:)[3//1:” S ®i:l |ZIT,' = y" ® |(¥($1,...,:1,‘”,:E)[Z/.’BH
< |a(zy L Y1, s Tn L Y, )[2/2]|-

[= 5] (common to both systems) and lemma 3.7.

» €V, we have:

Thug,

11



B |zi = 4il © Ayev lal@1, -, 2, 2)[y/2]| < Agev (@1 1y1, ooy 0 Ly, 2) [y /2]
d) ¢ = a&p. Similar to c).
e) (full logic) ¢ = !a. It follows from [= 7] and Lemma 3.7.

Since the other connectives are defined by duality, the proof is complete. O

Now, we shall extend the results in [Yet] to the calculus with equality.

Theorem 3.9 (Soundness) The semantics of quantales for commutative Linear Logic with equek
ity is sound with respect to the given calculus.

Proof: We prove the validity of the new axioms (for the others rules, consult [Yet]). Define
|k Ai, ..., An| = |[A1U---U A,|. By observing that, for every a,be@, a<b iff atudb>1, the
validity of each axiom is guaranteed by [= 1] — [= 6] (resp. [= 1] — =dl.=T]). o

Theorem 3.10 (Completeness) The semantic of quantales for comutative Linear Logic with
equality is complete with respect to the given calculus.

Proof: The proof is an extension of the proofs by [Yet] and [Gir]. Let M, be the set of finite
sequence of formulas in IL; M; is a monoid with the operation of concatenation (and identity the
null sequence). Let M be the (commutative) monoid obtained by identifying sequences which ?ffe
distinct only by a permutation of their elements. Just as in example 1.11, P(M) is a commutati?®
quantale and we set L = {I': - T' is provable } € P(M)

Since M is commutative, L is cyclic and so we can consider the phase quantale @) = P(M )i

where j : P(M) — P(M) is given by j(A) = (A — 1)— L.
Let Pr: FOR(IL) — P(M) defined by:

Pr(A)={T':  A,T is provable 1
By theorem 3.4 in [Yet], Pr factores trough @, i.e., Pr(FOR(L)) = Q.

Let | - | = Pr |gpr+(u); clearly, the unique extension of || to FOR(IL) is Pr, once we ha"*
defined in @) the open, weak and idempotent modality ! as:

i(z) = V{Pr(14) : Pr(lA) € x }.

Fact: '1 =1 (where, by definition, 1 = APr(A): F Ais provable}).

To see this, Let I' € PR('1); thus, HI1,T (ie., F (21)%, T § bl OR(L) b
such that - A is provable. Then: (?L)4,T) is provable and let A e FOR(

_,_
=

|

T
R

, L :
. ko it T
AT

ie, ' € Pr(A), and so Pr(!1) < AN Pr(A)

T
R

: F A is provable } =1.

12
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Th
nd soui’ Pr(l1) < V{Pr(!A): Pr(lA) <1} = 11. In fact, equality holds because F11 is provable,
<Pr(l1) < 11<1, je 1=1

We
< P:;l(all now show that | - | satisfies the required properties. Since - (z = ) is provable,
T =z)) = |z = |. This verifies [= 1].

To
prove [= 2letTA€|lz=y| ly= z|. Then we have:

“m:
E=y).r Fo=g)h =24 E=2)
- (= &), (z = &),T

e, TA dios i
’ E|-"°=2|.Thua,|ar:=y|-|y=z|§|35=Zl‘mdso

e=y|@ly=2=(z=yl ly=2)" Slz=2

To
Prove [= 3,let T e |z = y|. We have:

Fiy=a),l
x| and thus le=y|<l|y= 2l

P1‘0 '

- pe x e e

“1terpret;tt.leb [= 4],[= 5],[= 6],[= 7] are verified in a similar w
1on of quantales such that |A| > 1iff A is provable,

Saliely

ay. This shows that we have an
completing the proof. O

Gel‘leralis.sltions of the Calculus

\

T€ are alte ) )
o alternatives to the treatment of equality given above, using the exponentials of Linear

Oglc, |
properti;): Example, instead of requiring (- = *) to be open, we could establish that its characteristic
[R!] N € valid in the interior of (- = -). Thus, we Jefine the calculus (P1) by the axioms:
or.(x =2 [§] Fie=y)-oly=2) [ FiE=pelly=2=lF=3
[SUBsT]very bredicate symbol P,
Rl
(‘lea l .(:Cl = yl) X ® !(xn — yn) ® P(.’IT[, ...,.’lfn) —0 P(J/'l H/l, coey Ty ! yn)
~lear
of 4 ineai’sewe hfawe substitution for every formula, and we can say that !(z = y) has the behaviour
L I *quality. An even weaker form of substitution can be defined as follows :
. w =
or 1= 51) @@ oy = )@ [P(T1y s Zn) =0 1P(21 101 1T Yn)
» €ven
3

(:El =
e yl) s ‘® !(xn = yn)@ 'P(Tla "-’-(L‘n) i ?P(Il VY1, Tn ! y")
fopy. . 20 : : :
Olwg, s ino.d‘fy each axiom combining the modal operators in all possib
Mody) Pera?lfy that (incorporating id, the identity operation on formulas), there are only seven
1ons obtained by succesive applications of {!,7}, namely, the set

le ways. It is straight-

13
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; ) ? 1?
M= {1,121,2012,712., id} id NN

1”7

! fig. 1

with it’s natural lattice structure (see figure 1). This is in complete analogy with Kuratowski’®
problem, in which we can prove that, given a topological space X and A C X , there are only 1'4
distinct sets that can be obtained from A by combinations of taking complements and closure '(1Il
our case, we do not consider modalities of the form m/(z) = m(x)* with m € M). Starting with
this, we can define a general scheme to create a linear calculus with equality.

Definition 4.1 Let (m;)!2; be a sequence in M. A linear caleulus with equality P((m;)) is defind
by the following azioms:

[R]  Fmi(z=z) [S]  Fma(z=y) —oms(y = )
[T+ ma(ms(z = y) @ my(y = 2)) —o me(e = 2)
For each predicate symbol P, the aziom

[SUBS] F mr((®ie, me(z; = ¥i)) @ mo(P(zy, ey Tn))) =0 myo(P(z1 LYy, ..., Tn Yn))-

Remarks 4.2 (a) If m; < ma, then [S] implies that, for ma Srs<my,r(zr=y),s(z= y)
r(y =z) and s(y = z) are all equivalent.

() If my =1id or my =, then + m(z = z) is provable for every m € M.

(¢) If m7 = id, mg € {1,172, 7} and mg > myo, then substitution holds for every formula ¢ buil
up from formulas of the form mq(P), where P € ELF(L).

(d) For each m; € {1,12,!71}, we have m(®i; mi(A;)) = m!( i1 mi(A)).

Examples 4.3 (a) The system (LLE) of section 2 is obtained by the assignement
mg =1 and m; =1d, for every i £ 3,
(b) If we set
M1 =My =m3=ms=mg=mg = and Mg = M7 = mg = myo = td,

we get the system (P), in which "equality” is the interior of ( =-). This system satisfies subst”
tution for every formula.

(c) If we set
m1=m2:m5:m6:m8:?, m4:m7:m9:m10:id and mB‘:'?
then we have a system in which "equality” corresponds to the closure of (- = ;. from [S] wl

follows that that (- = -) is "clopen”. This system satisfies the substitution rule for every formt %

14
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(d) By considering

My =mg =mg=myp =1 m2=m5=m8=m9=!?! and mg=m7; =17 or 7

We get a system containing a translation of the classical theory of equality inside (LL), to be studied
n next section.

B (tB) Another translation of classical equality in (LL) can be obtained by considering the assigne-
en

ml=id;m2=m4=m5=m7=m8=m9=? and mg = Me = My = --
alent calculi. Instead of doing a complete

Now, we would like to identify the classes of equiv
le theoretic techniques that are useful in

zleas-smcation of the possible calculi, we present quanta
ciding this problem. We start with reflexivity ([R]) :

Proposition 4.4 Let ) be a Girard’s quantale,and let T € Q. Then:
(@) Are equivalent:
@ ?%>1 @)re>1 (@) Me21
() Are equivalent:
(e >1 (#) 'z > 1
(¢) Are equivalent:
(1) Ne > (22) Mz >1

Proof: (a): If 74 > 1, then 17z > 11 = L. If 7z > 1, then 77z 271 > 1. Finally Wi 1L

imp;
plies 75 > 1, because ? > 77

(b) comes directly from '1 = 1, while (c) 1s consequence of (b). O

Thus, introducing the notation r = s to denote that calculi obtained withmy =r and m; =3

€ equivalent,, we have:
@ ?=r=m @d=! (@ "=

an . (R LR
450 there are only three non equivalent possibilities for [R].
= (2,7, 717} = {?m : m € M}, together with M, =

{! ,Wlth respect to axiom [S], consider My ! : .
iy to denote that calculi obtained with mg =7,

?’!?!} = {!m : m € M}. Write (r,3) = (r',5')

Mgy =
$ and my =1, my3 = s are equivalent. Then we have:

Pr i
®Position 4.5 (a) If ma € My, then:

@) () = (2, ma) = (17, ma) (i) () = (N7ymg) (i) (id,mg) = (7,ma)
() If m, € My, then:
(2) (mz,?) = (7n2,!?) . (7722’ ?'?) (ZZ) (’n’lz,?!) = (m2,‘7‘) (“7) (m271d) = (m2,!)

Ther .
her efore, there are only 26 non equivalent cases for [S]:

©: (1) = o7y = (1,7) = (7, 12) = (M) = () = (D = (L)

15



(LN =0, M=, = (M7, 1) =M,

(LM =0M=0n= (L1 = (1,1

: (id, ) = (7,7) (5): ("M =M, M) = (17,17 (6): (2d,7) = (2,7

(e, M) = (7,717) (8): (L,id) = (,1) (9): 7. b= (1?,4d)

(10): (17,1 = (171, 4d) (11): (:d,:d)

(12): (:d,") (13): (4d,!17) (14): (id,!71) (15): (?,4d) (16): (2,!7)

(17): (7,17 (18): (7,1 (19): (71?,4d) (20): (712,17) (21): (M2,17N)

(22): (M,N (23): (,id) (24): (21,17 (25) (71,171) (26): (71,1 ,.
For transitivity ([T]), we shall write (r,8,1) = (r',8',t") when calculi obtained with m4 =D

Ms =38, mg=1t and my=1r' my; = 8’y mg =t are equivalent. Then we have:

Proposition 4.6 If ms € My, then:
(2) If mg € My, then (ryms,me) = (

s ”7) 2
(i) (rms, ) = (5,ms, ) = (id, m, 17) = (1, mg, 17) = (17,m5,17) = (120, ms, 17) = (¢, ms, 217)
(u,ms, M1?) for every r,s,t.u € M.

$,Ms,me) for every r.s € M

. . very
(e22) (r, ms, ) = (8,ms,?) = (id,m5,!?!) = (!,m5,!?!) = (!?,m5,!?!) = (17!, ms,!17) fore
rseEM.

Tthe results above imply that, for ms € M 2

fixed, we have only 8 possibilities for pairs (ma4, me)
(in contrast with 26 possibles ones)

» Where the numbers refer to the pairs described above.
L:M=@=w=@m= 13)  [2:@)=(5)=(6) = (14)

(3]: (8) = (11) = (12) [4]: (9) = (10) 5] : fis)y = (19) = (23)

[6] : (16) = (20) = (24) [7]:(17) = (21) = (25) 8] : (18) = (22) = (26)

With respect to substit then there are again, for pairs (m7, mliot),
only the 8 cases above, T ent calculi that can be constructed W

: ) : . J
the exponentials, satisfy We register that thig corresponds to onlf
8% of the original unjy

ution, if we fix Mg, My € M,,
hus, these are the non equival
ing the usual rules of equality.
erse of possible calculi.

Equality

It is well know that the exponentials of linear logic (LL) are important in
logic (1L) and classical logic (C'L) inside [, For each of these logics, we
of them based in the fact that every (commutative) Girard’s quantale Cc
Heyting algebra) (corollary 1.21) and a complete Boolean algebra:

; B oo e,
Interpreting mtmtlonlsne
have two translations, ft
~ e
ntains a frame (comp

'H:{!x:er} and B:{?!m:xEQ},

16
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respectively. Operations and constants in each of these algebras are given by :
(H). For the frame H:
Oy=0,14=1, (xAHy)z(;,;@y):!(x/\y), (xVry)=(zVy)
(f”:?’y):!(:v——»y), ~z = (z = 0y) =!(z — 0),
AS=1AS, VyS=VS.
(B). For the complete Boolean algebra B:
Os=1,1,=71, (cAsy)=202@%) =Ny, (Voy)=(eUy)=(" 0"

(2= y) = (lz - Y), z=(=0)=(z—>1)= zt);
AsS=7AS,  VgS=1V{z:z€S}
Thus, we can interpret A € FOR(IL) as A' € FOR(L) by the rules:

deﬁAl =14 if A is atomic; proceed by induction on complexity using the operations in (H) to
ne A' for all intuitionistic formulas (here, FOR(IL) denote the set of intuitionistic formulas).

For classical logic, we have our first translation :

£
) A° = NAif A is atomic; then proceed by induction on complexity, using the rules in (B).

Thus, if we assume two-hand sequents for (LL), we have ([Gir])

A : .
i - A’ is provable in LL,

by Ay bpp, A is provable in intuitionistic logic iff (A1), .., (An)
and

1ty | , .

( T): Ay, ..., An Fer, A is provable in classical logic iff !(A1)S, .- (Ap)° F A% 1s provable in LL.

gic is constructed from polarities for formulas. Thus,
A, we'll say that occurrences of formulas A € T are

las B € A are negative (denoted by nA). We

give‘:‘ln:ther interpretation for classical lo
e sequent for classical logic I' For
W (denoted by pA) and occurrences of formu

e following rules of a second translation il

PA=A=nAif Ais atomic.
P(=4) = (nA)L, n(=A) = (pA)*,
P(AV B) = p(A) @ p(B) , n(AV B) = 'n(A)U In(B),
P(AA B) = 7p(A)® 7p(B), n(A A B) = n(A)&n(B),
P(A = B) = n(A)* @ p(B), n(A = B) = Tp(4) — n(B),
P((V2)A) = A 2.2p(A), n((Vz)A) = Az.n(A),
P((32)A) = \ 2.p(A), n((3z)A) = Vz.In(A)-
**With this definition, we have
™) Ay, ..., Ag Fop, A is provable in (cr) ift (A1), .oy 1

determining a linear theory of equality such that, given a
logic 1s defines a linear theory contained in the

(Ax) F 7p(A) is provable in (LL).
W
€ now turn to the question of

s aSSi ' .
01‘igin(il .theory of, its translation into linear
al linear theory of equality.

17



For this, we need to relate the deduction of a sequent in (LL) from a set of sequent-axioms ail)
the deduction of a formula from a multiset of hypothesis (in the left-hand side of the sequent);
called external and internal relations of consequence (respectively) by [Avr].

Definition 5.1 Let A € FOR(IL) with ezactly 1, ..., z, as free variables. The universal clos@rzlof
A, denoted by A\ A is the formula obtained from A by quantifying unwersally all the free variablé
of A, e, NA=Azy. - Az, A. . Analogously, we define \/ A, the ezistencial closure of A.

It is straightforward to prove next result:

Proposition 5.2 Let A, ..., A, be Jormulas, B=1\A& --- & 'AA,, and A a multiset de for
mulas. Are equivalent:

(z) F A is provable from the sequent-azioms b= Ay, ..., A, ;
(22) there exists k > 0 such that B, .., BF A is provable;
S —
k times

(¢3) 'A Ay, ' AALF A s provable.

Now, assume that 4 is the set of axioms (
language without functional symbols. It follows
is a formula, then the following are equivalent,

(1) Al, ,An '—OL A;
(i) 1(A1)%, o, W(AR)e F Ac is provable in (LL)

(iii) There is a proof of F A° from the axioms F (A;)°,
free variables)

without free variables) of a theory of (C'L) inz
from Proposition 5.2 that if Ay, ..., A, € Aand
for the first translation (*) of CL into LL :

)

-, F (An)° (recall that the A;’s have 10

Thus, to each axiom A € A of a classical theory, corresponds a sequent-axiom F A° in (LL )

Similarly, for the second translation (**), it can be seen that to each axiom A € A, there corr®
sponds a sequent-axiom n(A).

Now assume that A defines the classical theory of equality. Thus, A consists in the followin8
axioms:

(Vz)(z = 2);

(V2)(Vy)((z = y) = (y
(V2)(Vy)(¥2)((z = y) A
(V21) (Y1) (Vo) (Vyn) (21 = 1) A - - A (3, = Yn) A P(z1,...,2,) = P

(where P varies over every predicate symbol of arit

For the first translation

T Y1y 00y Ty yn))
y n of the language).

(*), we get a calculus (E1) with the following axioms:
[R1) FH A z= 1) [S1] i+ ?!/\x?!/\y(!?!(x =y)—o 2
[T+ BASHAGHA (2o = )12y = 2)) o (e — ),

[SUBST1)If P is a n-ary predicate symbol of the |

y=uz))

anguage
TiyunnyTy))

=0 ?'P(lel I Yty ey Tnlyﬂ))
18
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For the second translation (**), we get a calculus (E,) with the following axioms:

Bk Az(e= z)  [S2] FAzAy(z=y)-o ly=2)

T4+ Ao Ay Az (2(2(e = )Ty = 2) = Uz =2)

[SUBSTz] If P is a n-ary predicate symbol in the language

+ Azy Ay, - Az Ayn (221 = 11) @ @F(Tn = yn)®?P(T1, .0y Tn)) —© IP(211Y1y s TnlYn))-
Consider the linear theory (P;) determined by the axioms:

URY b oie=z) (LS FN@=y) -0 My=2)

UTY ke = )iy = 2) —o (e = 2)

[LSUBSTU F12 (2 = 31) ® - - @ (zn = yn) QNP (21, ooy Tn)) -0 TLP(211 Y1y Tn L Yn)

; ' ible i ing the equiv-
Clearly, (P1) contains (F,) (because every axiom in (Ey) is deducible in (Pr), using q

2 ity in the sense of
alences of last section) and we have that (F1) defines a linear theory of equality in the s
Section 4

Similarly, define the theory (P,) by the axioms:
[LR2] - (_73 e III) [LSQ] - ?(x = y) —0 '(y = .’IZ)
19 (2o = )@ty = 2) o Yo =) .
[LSUBSTZ] F?Nzy=91) @ @ zn = yn)®7 P(z1, ey Ba)) =0 IP(x1 Y1, TnlYn)-
We can reformulate (P;) as:
[LR21] - (IL‘ _ (II) [LS2’] = (.’1) s y) =20 (y = .’IJ)
Ty (2 = 4) @ (y = 2) —o (¢ = z) (Proposition 4.5
[Lsy ' - 7P(21, ..y Tn)) —O LP(z1 1 Y1, Tn 1 Yn)
BST2] F?((m1:y1)®---®($n—yn)® 1
[? S'] F 7(.’1‘ = y) —0 ‘(x = y).

' is the st est
It is straightforward to check that (P,) and (E2) are equivalents. In fact, (P;) is the strong

: . i dy defined.
and therefore more restricted as far as semantics 1s concerned) of the calculi already

X Equality and intuitionistic Linear Logic

Il’] thls se
Calculus
lear |

w i i intuitionistic logic from a linear
ction we shall study how to recover classical logic and 1ntu1t1foillllst1c 1a§ionship gt
P [e i | . : ‘e
ithout e sntials. as well as analyse another extensions o the relation . 1w .
l gic and il Uh b ‘ tem is (commutative) first order intuitiomistic linear logic,
¢ and quantales. Our basic syste C
I‘()m . D.
no

i ics will turn out to be furnished by com-
W o > ropriate semantics wi : . by com
Mutat]ye u:i b B E‘:EE qeinantics for non-commutative first order intuitionistic

€A shal al quantales. From thi.s, it will be. seen that,1 a(%dmr%hap-
prOPia'te axi logic, classical logic and classical linear logic. us,

tal quantales. Similarly,
€ proven to be given by unit

oms, we can recover intuitionistic e i i
an Mbuitiniggie l,incal‘ theory of equality provides an intuitionistic theory of equality, a

¢ S0ty of equality, and a classical linear theory of equality, simultaneously. The most natural
and; . ) .
ndldate 1S system (LLEO), the simplCSt already defined.

< T Tp—
s define a sequent calculus for (commutative) first-order intuitionistic linear logic with
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. ; . teness
negation, simply by extending the system in [GiLa] and then proving soundness and comple

)
for this system.

Definition 6.1 The language IL; for commutative first-order intuitionistic' linear logic coTLszsé Z{}‘j
counatble set of predicate symbols, P = {Pn :n € w}, acountable set of variables V = {Un_- n of th
the symbols @, —o, &, @, \/, \ and the same rules as in Deﬁnition‘ Q.Qfor the f'01?matzon
set of formulas FOR(IL;). For A € FOR(IL;) and z,y € V, Aly/z] is as in Definition 2.4.

Definition 6.2 The calculus (LLI) for commutative

first order intuitionistic linear logic consist
the following rules and azioms (A, B,C denote

formulas, and T', A denote multisets offOrmUIas)'

[AX1] AF A [AX2] TFT
[AX3) F1 [AX4] T,0+ A
[CUT) TFA  AAFB [EXCH] T,A,B.A}\C
FakFB IB,A,AFC
[1L] TFA [®R] TF A A+ B [®L] T,A,BFC
1,THA ['AFAQ®B IAQB}FC
[%kR] [+FA  TrB [&1]  T,AFC &2 T,BFC
['F A&B [,A%BF C I, A&BF C
[®L] T,AFC T.BrcC @] TIraA [®2] _LEB
A BFRC 'Ae B I'A® B
[« B T,AFB [0 L] TFA A BFC
'A—-oB I''AJA—oBF(C
[VE] T Aly/a) VL] TI,AFB
'FVz.A LWz AFB  if 2 not occurs free in I', B
AL} T,Aly/«]+ B AB] _FEka
T Ac.AFB

'FAz.A ©if 2 pot occurs free in '

*
Definition 6.3 An interp 18 a commutative unital quantale (@, Vs
and

: ma
|+ lq : FOR(L;) — Q satisfying:

1. 10| =0, 1] =1, =T,

2. |A® B| = |A| * |B], |A —o B| = |A] — |B.

3. |A&B|=|A|A|B|, |A® B|=|A|v|B|.

4 [Nz A| = Avev arwy |Aly /], |Ve.A| = Viev ar,) |Aly/z]|.

We say that A ¢ FOR(LL;) is valid in Q if |[Alg > 1.
A sequent I' - A s interpreted as | —

retation of quantales for (LLI)

|A|, where
oy = { 1 4T =g
®:L=1 lAll ZfF — Alv"'aAn
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Note that [T+ A| > 1 iff |[| < |A|.

Before stating and proving soundness we establish the following simple
Lemma 6.4 [t Q be a quantale. Then, a@0=0®a =0 for every a € Q.
Proft  0<a—,0 implies a®@0<0;0<a—0 implies 0®a<0.0

}}heorem 6.5 (Soundness) IfT' I A is provable in (LLI), then it is valid in every interpretation
uantales, i.e., |T' F Alg 2 1 for every unital quantale Q. '

Proof; By induction on least lenght n of a proof of I' F A.
Let Q be a quantale. If n = 1, [AX1],[AX2] and [AX3] are immediate, while [AX4] is a

o ,
nsequence of Lemma 6.4.

Assume the thesis holds for all sequents with a proof of length < n (n > 1 fixed) and let A+ D
€ a sequent admitting a proof of minimum length n + 1. We discuss the last rule applied in the

Proof of A | P :

4 CUT: We have 1) < 4] and |A] A] < |B] by the induction hypothess; thus, [T« 4] <
I+ 1Al < 8.

a dThe passage through the rules [EXC H] and [1L)] follow from the fact that @ is commutative
Nd that 1 is the unit of Q.

[®RJ: 1| < || and |A| < |B] (induction hypothesis) yield, then [T x |A] < [A]* Bl
[®L): This works by definition of interpretation.
[&R]: By induction, |I'| < |A] and |I'| < |B|, and so IT| < |A|A|BI.
[&1] and [&2] : We have |I'| ¥ |A] < |C] ( induction hypothesis); thus
IT|* (JA]|A|B]) < 01+ |AL < (C].
The other rule is similar.
[®L), [®1], [®2): Same argument as in &, using V in place of A.
[~o R): Induction yields |I| * |A] < | B|; thus, by adjointness |I'| < |A| — |Bl.
[~o L}: The induction hypothesis yields [I'l < |A| and |A]* |B] < |C]. Thus,
(JA| = |B]) * [T+ |A] < (1Al = [Bl) * [Al* [A] < |B|* |A] <|C].
v R}; By induction, there is a variable y such that IT'| < |Aly/z]]; but then
U] < |Aly/2)l <V, |Aly/2]l
Fagy, :V'e;flow state a Fact whose proof is routine :
proVa‘ble i;;‘: b B is provable in n steps and z is not free in either I' or B, then I',Aly/z]t B is
' steps for every y € V.

the[;“/aL]: Supposse that last rule applied was [V L]. Since z is not free in I', B, by induction and
¢t above, we may assume that [I'[ * |Aly/z]| < |B, for every y € V.
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Thus, |Aly/z]| < |I| —
Il |Ve.A < |B.

[AL]: This is treated just as [\ R], above.

B,i'e'
|B| for every y € V and so |VzA| = Vy|Aly/2)| < |T| — |BI

[A R]: Suppose that last rule applied was
above allow us to assume that Tl < |Aly/z]
ending the proof. O

. . Fa,d
[AR]. Since  is not free in I', induction and t};[ey/z“
|, forevery y € V. It is then clear that [I'| < A, |

5. anal'
general result about quantales (generalizing an
ogous result about Heyting algebras in [Mir)).

: : ative ope’
Definition 6.6 A, autonomous poset is q partially ordered set p with a binary associati

.an
ation ® such that the endomorfisms a @ - and . ® a have right adjoints, denoted by a —r
@ = -, respectively.

ous poset where L is q lattice and such thatfﬁ
s which eaists in L, ie, f S C L such that exists \/ S in L, the("\’/s)l
every a € L, V,e5(a ® s) and Vies(s ® a) exists in L, and we have that Vies(a® s) =a ®
Vies(s ® a) = (VS) ®a.

If S, T are subsets of L, define

S-T:{a@b:aeSandbE T}.

I
a lattice and | C L an ideal (ie, ifz € [ and y < x theny € b
- We say that T is complete if it satisfies:

if S C I such that \/,

Since an arbitrary meet of complete ideals is again a complete ideal,

CILY={ICL:] i @ complete ideal iy, |, }
containing, for eqch ¢ € L

S exists, then VrSel,

. o ol
1S a complete lattice ordered by inclusion,

a‘":{mGL::z:Sa}.
L, define

def Ueer(a —, ¢)-

[faeLanngLisasubsetof

Q=51 = and a—»;]Edef Ucel(a ~¥ C)‘_'

Lemma 6.8 et J, j, a[®, V]-autonomons lattice, q ¢ T, and
(a) IfI € CI(L), then q =, I and

(b) For every S\T C L and K €C

SC L. Then

a— I are in CI(L).
I(L), we haye

STCK if S CMeerla — k) 4 TCn

whereS-T:{a@b:aES,bET}.

aeS(a >y ["))

Proof:(a) If z € 4 —r I, then there i

|

—

€ I'such that 4 S a =, ¢ thus, if y<ztheny<a™
and therefore Y€a—, ],

Ifz,ycaq = I, then there are ¢,d € J gych that o <a-, ¢, and y < ¢ —, d; therefore

mVyS(aﬂ,c)V(aﬂ,.d)Sa-ﬂ(c\/d),
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yleldsﬂny €a—, I, becausecVdel

y <Let S C a —, I be such that ¢ = VS exists. For every s € S there is ¢, € I such that
2@ >, ie,a®s < c, Since I is an ideal, a ® s € I, for all s € S. Then,

a®c=a®Vs€sS=V,ega®S€1,

b ; : :
CCause [ is complete. But this means that ¢ € a = I. A similar computation will prove that

‘= leci(L).
and(b) Let 2 € S and ¢ € T and assume that S-T C K;sincez®a =c¢€ K, thenz <a —c
thus € ¢ —, K, for everya € T.

Suc}II\IOW’ Suppose that S g ﬂaeT(a — I\’),
that & < g — ¢ ie. z®a < c. Since K 1s an ideal, we get t®a €

€an be handled similarly. O

xESandaeT;sincexEa——nK,thereisceK
K. The other equivalence

Theorem 6.9 (The completion of a [®,V]-autonomous lattice)

TnapLth .LLbe a [®, V]-autonomous lattice with 0, T. Then, there exists a quantale Q and an injective
‘L — @) such that

andl/.\ ¢(0) = 0, ¢(T) = T. Moreover, ¢ preserves all \/’s and \’s existing in L, i.e., if Vier ai

ics b; exists in L, then

¢(Vier ai) = Vier ¢(a,~) and ‘15(/\jeJ b;) = Njes d(b;)-
2. FOT‘ all a, b & L,

()¢(a ® b) = ¢(a) @ A(b)
(ii) §(a —, b) = $(a) =, $(b) and dla—1b) = ¢(a) —1 $(b).

3. Ifa ® b = b ® a for every a, b - L, then Q 18 commutative.

and‘{;ﬁ(lf)L is unital, i.e., there is 1 € L such that a ® 1=a=1Q®a,Ya€L, then Q is unital
1) = 1 ’
Q-

5 If in addition, [ has a cyclic dualizing element 1L, then Q is a Girard quantale and (L) = L.

Proof. .
0o Set @ = CI(L) and define in () the operation
h (I) I*.]Edcfn{l(eQ:K—D—I'J}’
w ’
‘*e;e Ij= {a@b:acl,beJ} (learly # is increasing in both variables. By Lemma 6.8,
and [ x . have right adjoints I — J and I — J, given by

Nues(a =+ J) and Naer(a =1 J),

I'es SRR I
Pectively, Thus, V I,J € Q,

(1) [+JCK

For
Ormulag (I) and (1I) will be of constant use.

ff 1cJ K iff JCI -, K.

To show that * is associative, we need

F&(;t e
el Let I,J,K € Q. Then
A:{IIGQ:HZ_)(I*J)-K}:{HEQ:HQI-(J*K)}:B.

Py T
00f of Fact 1 . We have, using Lemma 6.8, the following sequence of implications
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HD(IxJ)-K = HQ(I-J)-K:I-(J-K)
The last term implies H 21 (J*K)

, H.
= J-KCIl—-. H = JxKCI—»

and A C B. Similar reasoning yields B C A.
It folows directly from the Fact that
over suprema.

Let I € Q@ and {I,},c, C @
VI:n{HeQHQUaIa},a
we have the following sequence of im

- cC I —, K o

KQU(I*IQ) = KDI+], . YaeA = LCI—. K YacA = Uls C '

= Vi, Sl K = I«VI,CK,
and so I'x\/ [, C V(I +1,). Right distributivit

Before defining the map ¢, we state
Fact 2 : Fora,b ¢ Q

< rothutes
. 151',I‘lbu
* 1s associative. We now must show that * d

e that
we shall prove that Ix\I, = V(I * I,). Observ

. NOW1
s well as that V(I * I) CTxVI, is always true.
plications

R T . . " e.
Y 1s similar and so () is indeed a quantal

(i) a= -, b = (a —, b)=
(1) ¥ 8'C L 45 such that o =
() I § € I suck that ¢ =
(iv) a= % b= = (a @ b)-,

and a* 5 p- = (a —, b)—.

V'S exists in L, then Vies s™ = a+.

A S exists in L, then ¢- = Nees 8™ = Nees 8.

d 50,
Proof of Fact 9 - (i) Let K ¢ @ be such that g 4 K Cbo=; for 2 ¢ K, we have a @ z < b an
< a—, ) Thus, K C (a—, b)

', proving that ¢~ = 0" C (a0 -, b)—.

0
and $
Y < a—, b then TRY < a®(a —, b) é‘__b/, b
- This last relatiop, implies (¢ —, b)~ C a j
argument is similar.

$ 0" C b, e, = (g o, B~ Ch
eration 1, the

(i) IfVS = @, then 5= C ¢~ fo; BYery & € S, and sglit
HHD Uses s°, since H is com

(iii) Is similar to (i1).

s clear that Viess™ Ca”.
plete, it follows that ¢ € I

. . b
(iv) If z < @Yy < bthen z g Yy<a®hb Implies g . p~ Cle® b)-. Thus, a= x b= C (a ® )
Now, if H . 3 al ”

ol
v, if “then a®be H ang ye 8t (4®8)~ C H. By the definition of % (for™
(1)), this yields (a @ b)= C sired. This ends the proof of Fact 2.

’l

" % b7 ag de
We now define

3 F— Q by é(
Clearly ¢ ig injective and, by Fact 2,

Furthermore, ¢(0) = {0} (the sma)
of the others opera;

n items 1 and 2 o

a) = a™,
(i1) and (iii)
lest complete jde

eed by Fact 2.(1)

. 0

‘g 11
» Preserves a]] existing \/’s and A’S ati?’
alin ) and HT)=1 = Tq. The preserv®.,

e _ rt!
b10ns is guarant and (iv). This shows that, ¢ has the prop®

f the statement,.

It is quite cleay from t
commutative in [, M
1s the unit of Q.

he definition of x

(see (I), above)
oreover, if [, is unital gt

i

TE
that @ will be commutative if ¥,
ra.lghtforwa,rd Coy

Dputation will show that ¢(1) =

: o of
(d) Let L e be a cyclic duallzmg element iy Clearly |~ € @ is cyclic and theref
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%r: {IE @ : j(I) = I} is a Girard quantale, where j : Q — @ given by j(I) = (I = L17)—> 1"
embpé)s?tlon 1.10). Moreover, a~ € @;, for every a € L. Thus, the map j o ¢ : L — @ is an
edding of L in a Girard quanatale, with all the required properties. O

We can now prove

T
heorgm 6.10 (Completeness) If [[' F Alg 2 1 for all interpretations in quantales @, then
A is provable in (LLI).

Proof:
£200f: Our method wil be to show that the Lindenbaum algebra L of (LLI) can be embedded in

a :
“ommutative unital quantale @, such that ITHAlg>1 iff TF A is provable.

Define in FOR(IL;) the relation:
A~B iff AF B and Bt A are provable.

It is easily seen that ~ is an equivalence relation. Its equivalence classes shall be denoted by

. A € FOR(IL;)}. In L, define the

L , .
relatieotn:L be the set of equivalence classes, 1.€., L = {A/~

Al < B/~ iff Al Bis provable in (LLI).

By [CUT), < is a partial order in L. Moreover, for formulas A, B in LLI, we have

fact 1 . If A, B are formulas in (LLI), then
L (A&B)/. = (A/.) A (B]) and (A@® B)/~=(Al~)V (B/~):
2 Nev(Aly/e]/.) = (Ae.A)/~ and Vyev(Aly/zl/~) = (Vz.A)/~
Proi.f 0=0/, and T= W e
d\OfEm : All these equaliti

0t ‘ ; |
USeth first one in each of items 1. and 2. in som
or the other cases.

L.
On From [AX1), [&1] and [&] we get A&B
€ other hand, if C' + A and C + B, then
(Ol & A s D S B/. = C/~ < (A&B)/~,

es can be read off the corresponding rules of the calculus. We
e detail, just naming the rules that should be

L A, B and so (A&B)/~ < A/~, (A&B)/~ < B/
[&R] yields C'F A& B. This means that

:roving that (A& B)/~ = (A/~) A (B/.)in L.
Similar]y, [AX1]), [@1], [#2] and [DL] will yield (A® B)/~ = (A/~)V (B/~).

2. By [AXI] and [AL], (ANz.A)/~ = Aly/z)/~, for every y € V.

. If B, < Aly/z]/.~, for every y, let 2 be a variable not ocurring in B. Then, B/. < Alz/z]/~

[AR] yields B/.. < (AzA)/~. This proves that Avev(Aly/z)/~) = (Nz.A)/~.
Or the existential quantifier, the reasoning is the same, using [AX1],[V R] and [V L).

3. Th: :
+ This follows directly from [AX2] and [AX4], ending the proof of Fact 1.

Deﬁn; i y _
€in L a binary operation * by :

(A]~)* (Blw) Stef (A @B}«




. ‘ . " . and 1/~ 1
Clearly, * is well defined, is associative, commutative, increasing in both variables
9
the unit. We have

Fact 2 : With the operation * defined above, L is a [®, V] autonomous lattice.

) = s suprem
Proof of Fact 2 : It remains to be shown that * has right adjoints and distributes over the p
existing in L.

If A, B,C are formulas in (LLI), then | i3
(+) A® B F Cisprovable iff A,BF C is provable iff Al B -e (' is prov:

To see this, note that [®R] yields _A /fl—,f/}l - A%Z’B

Thusif A® B + ¢ is provable, [CUT) implies that A, B  ( i provable.

The converse comes directly from [@L] as AAéJBB!-f—CC ,
B Rl weget _A,BF C |
oo e g Al B-oC

y * able1
To show that the Jagt clause in (+) implies the second, first note that B,B -o ('t (' is prov

because we can uge [eRlas _ BB (o C
B,BC K (O

; C.
Thus, the provability of A g _ Cand BB C and [CUT) yield that of A BF

It is clear from (+) that (A - )/~ is the rigth adjoint to Al ~ %= A/ ~in L.

. el
To show that « distributes over the sup’s in L, let § S L be such that there is A/~
satisfying 4/., = V5 S. Fix Bl.e L,

for
Since * is increasing, (B/.) « (X/~) < (BJa) * (Al~):
every X/, € §.

Let Ff.. € L such that (B/.) « (X/.) < Fil
X/ ~in S,

for
for every X/. €8, By (+) we have that,
BRXFFis provable iff x |- (B —o F)is provable, J
n
VX/.€S; taking sup’s, we get A (B —o I") is provable. Thus, B AF F is provfil’)le, aua]
80 (B/.) * (A/.) < F/«. But this means that VX/~€S((B/~) *(X/.)) exists in L, and it’s €4
to (B/.)*V, S, ending the proof of Fact 2. |

Therefore, Lisa commutative
I - @, where @ is an unit
and all existing \/’s e Nsin L. ¢

, :ti0?
[®, V}—a,utonomous lattice and by theorem 6.9 it has a (-,omple:r
al commutative quantale, Moreover, ¢ preserves @, -, 0, 1
onsequently, if XV are formulas ip (LLI) we have

T
Properties that the map | . lo : FOR( IL;) — @ giver P
fAlQ.z $(A/.) is an nterpretation of hat | - Al >1ifT - A s provable,

Before we give

logical applications of the
that a quantale be

preceding resylts, we need
comes a frame, R rom [

is i
to investigate when
“mma 6.4 comeg :

Corollary 6.11 Let Q be q quantale. If () hs 4 largest locallie subquantale L, then
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L=I1Q)={a€Q:ad®*=a}.

z Proof : We must have I, C I(Q) because every « € L is idempotent (proposition 1.19).

,For @ € 1(Q), set L, = {0,a}. By Lemma 6.4, L, is closed under ®; it is clearly closed under
arbltrary V’s, and so L, is a subquantale of ). Furthermore, every z € Lq is two-sided (in La)
aud idempOtent. It follows from Proposition 1.19, that L, is localic. Thus, La € L, 1.e., a € L,
and therefore I(Q)CL. O

The next result is a correction of Theorem 3.4.1 in [ROS], which is false as it stands. In fact,
® Usual quantale of phases of Linear Logic is a counterexample to that result.

PrOPOSition 6.12 Let () be a quantale. Are equivalent:
(1) Q has q largest localic subquantale .

(%) I(Q) is a localic subquantale of Q.
(3) For ali every a,b € 1(Q), a®@b=b®a<aAb (A in Q orin I(Q)).

M HRES (2) comes from Corollary 6.11, while (2) = (3) is immediate.
u (3) = (1) : Because 1(Q) is commutative, it is closed under ®. To show that 1(Q) is closed
:der Sup’s, let {ai}iel & [(Q) Then:
(*) Viera; = Vier(a; ® a;i) < Vi jer(ai ® a;) = (Vier %) ® (Vier a;);
*
! WViera) @ (Vjera;) = Vier(Vjer(a ® a5)) < Vier o
“Cause % @ a; < a; for every j € 1. From (*) and (**) it follows that V;es a; is idempotent and
(@) is subquantale of Q.
To show that I(Q) is locallic, observe that it follows from 3. that a®b < a, for every b € 1(Q).

hus, v a € I(Q),
a®VIQ)= Vier@)(@ ®b) <a and (VI(Q))®a<a,
Which ‘

shows that all elements of () are idempotent and two-sided in I(Q). Now, Propositio.n
Buarantees that 1(Q) is localicc. f L C @ is a localic subquantale then every z € L is
Potent, (Proposition 1.19) and so L € 1(Q)- B

» I a commutative Girard quantale @, [(Q) is Fhe largest frame contained 13 & Erom
It of view of Logic, we have a priveledged locallic subquantale, that RRER a b ik
ogic. However {he situation is quite different i1 $he nox commut.atlve Sl perteel,
o Tard quantale will h(;t have a largest locallic subquantale. If one considers fPr(:p.osmu()}r} 1.1;’1,

€ real: : ’ . there is a largest interpretation for !in a Girard’s
Qua, alizes the importance of commutativity : there is a larges p

Ntale Q, corresponding to the largest among frames L satisfying
WLczq) GyLC1-={zeQ:z<1)
. fact, @, — Q)N Z(Q)N1~, where 7(Q) is the center of Q.

s ® Quantale theoretic setting will be helpfull in finding axiorr.ls that,’ when added to v§rious
Yste e e Jssical intuitionism and classical logic. We have the simple

idem,

s : .
of Linear Logic, produce cl

fom .
Pare with proposition 1.19),
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Lemma 6.13 Let L be a complete lattice and + : L x [, — L a binary operation on L
equivalent:

(’L) %= N\,
(22) (a) x*z=2a for everyz € L.
b) e+ T <z Tz <z foreveryzc L.

(
(¢) * is increasing in both variables.

Proof: (i) = (ii) is clear.
(ii) = (i) : Wehave a*xb<a* T < a; a*b< T +b<band therefore, a* b < a A b.
On the other hand, since * is increasing a Ab= (a Ab)* (aAb) < axb O

. et
An analoguos (and dual) result holds for the operation V. From the preceding results we &

Corollary 6.14 Let () be o quantale. Are equivalent:
(1) Q is a frame, ie., @ = A,

(i) every z € Q is idempotent and two-sided. O

This Corollary and the completenes Theorem 6.10 yield

Proposition 6.15 (a) The system (LI) obtained from (LLI) by adding the azioms
D] FA®A—A [ID2 +A-0AgA 25] FA®T oA

determines intuitionistic logic, and therefore if we add to (L1) the aziom

[+=] (A=00)—00F 4

we get classical logic, where 1 is equivalent to T and 1 —o 0 s equivalent to 0.

. . 0!
Thus, adding the azioms [1D1],[1D2],(25] and [R=],[S =],[T =|,[SUBST),[< 1] (see sectt .

' j
2) to (LLI) we obtain q wntuitionistic theory of equality, which becomes first order classical 109
with equality upon the addition of [=-].

p
(b) The system (MALLY) obtained from (LLI) by adding the constant formula L to the 4
guage and the axiom

] (A=ol)-o Ll 4,
is equivalent with (MALL) in the following sense:
b A is provable in (MALL)

where A+ and AU B are interpreted as A
Thus, adding L to the language we have th,

ff + A is provable in (MALLY),

—o L1 and ((A —o 1)® (B —o 1)) —ol, respectwe
at

(LLI) + the axioms [-="],[R =],[S =], = |

SUBST],[I =],[<1] s equivalent to (LLEO)’
where (LLEy) is described in Definition 2.6

(c¢) Adding [1D1), [ID2) and [25] to (M AL

, t
: : ‘ ) produces classical logic, where 1 is equivale”
T, and 0 is equivalent to | O

f
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R

p:}?;rk 6.16 The possibility of obtaining (MALL) from (LLI) in part (b) appears in [Dos]
(4 ¢ by a different method : one interprets A —o B, A&B and Nz.A as (A® (B —o 1)) —o 1,
) ~L)®(B—o 1)) —o L and (V z.(A—o L)) —o L, respectively, together with the interpretation
or U maked in (b).

shOSche (a® b)—oc=a—o(b—oc) and b =1 -0 b, in every commutative quantale, it can be
( zrz that his interpretation of linear implication 1s equivalent to adding [=—"] to (LLI) to obtain
L) (translations for & and \ are derived and a consequence of the ones given).

As Matter of fact, we can extend this result to non-commutative intuitionistic linear logic,

ageli,l:aby observing that each rule of (LLI) determines an algebraic P_I‘Ope.rty f)f the Lindenbaum

e of the cleulus. For a general unital quantale, we need two 1mpllcat10ns, -0y an_d -0, ,

properta,‘rd ™ exchange rule [EXCH], as well as to modify the -rules n f)rder tf’ describe the

e les of each operation. We can define a linear calculus which describes unital quantales,
Wtially the same as in [Abr].

sim

De Sse st .
cOnf:;ut-lon 6.17 The calculus (NCLLI) for noncomutative first-order linear intuitionistic logic
St in the following rules and azioms:

AXY 4k 4 [AX2] TFT
X3+ [AX4] T,0,AF A
Cur) TrA 3 AArB ar] DAFA
%, I,AF B [1,AFA
®R _pp I, A B,AFC
A AFB L g £y <79
I'AFA®B (®L] T A® B,AFC
(&R I,B,AFC
Pba Tk o _LAAFC LB
FFA&B‘B (L] [LA®B,AFC
SN ry _LB.AEC
I A&B,AF C [,A&B,AF C
[®R1)
LHA R2)] _LFB
' Ao B R VY
L) Tr4 s BAFC (coyR] TAFB
¥,A—o,B,T,AF C 'FA—o B
[~o, L} TkA 2. B,AFC [~o, R] ATHB
Y,T,A=o, B,AF C 'FA—o, B
VR 1r )
A : e Bl DS BB
s ly/z] (VL] If « s not free in I', A, B then FVs AAF B
[/\L] w [AR] If = is not free in I then _LI'F A
I'\Ae.A,AF B TFAz.A

Wit
‘lllanta, };Sthe Same method employed in Theorems 6.5 and 6.10, Theorem 6.9 yields that unital
are a complete and sound class of models for (NC'LLI):
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Theorem 6.18 : (Completeness and Soundness for (NCLLI))

| : ons 0f
A sequent I' = A 4s provable in [NCLLI| off T & A is valid in every interpretations
quantales.
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