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1 Quantales 
In this section we introduce the basic definitions and results of the theory of quantales ( a good 
reference is [Ros]). Quantales were introduced by Mulvey ([Mul]) as an alternative as an algebraic 
tool for studying representations of non-commutative C* -algebras. Inforrnally, a quantale is a 
complete lattice Q equipped with a product distributive over arbitrary sup's. The importance 
of quantales for Linear Logic is revealed in Yetter's work ([Yet]), who proved that semantics of 
c!~ssical linear logic is given by a class of quantales, named Girard quantales, which coincides with 
Gi~ard's phase semantics. An analogous result is obtained for a sort of non-commutative linear 
logic, as well as intuitionistic linear logic without negation, which suggest that the utilisation of the 
~heory of quantales ( or even weaker structures, such that *-autonomous posets) might be fruitfull 
in studying the semantic of several variants of linear logic. 

As usual, we denote the order in a lattice by ~' while V and A denote the operations of sup 
anr] inf, respectively. We write T for the largest element in a lattice and O for its smallest element. 

Definition 1.1 A quantale is a complete lattice Q whith an associative binary operation 
(s) : Q X Q--+ Q , which distributes on the right and on the left of arbitrary sup 's, i. e.: 

[Ql] a® (b® c)= (a® b)® c1 for every a, b, c E Q 

[Q2] a® (ViEiai) = Vio(a ® ai), (ViEiai) ®a= ViEI(ai ® a) 
A quantale Q is unital if it has an element 1 E Q such. that a® 1 = 1 ® a = a, for every a E Q. 

A quantale Q is commutative if a® b= b® a1 for every a) b E Q. 
A rnorphism of quantales is an operator between quantales which preserves ® and arbitrary 

S1lp1s. 

It's easily seen that the above axioms irnply that ® is increasing in both coordinates, that is 

If a ~ b then, V c c E Q, a® c ~ b® c and c® a~ c® b 

We re · t 1 · gis .er a c assic result: 
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Proposition 1.2 The endomorfisms a®·, ·®a: Q--+ Q have right adjoints, denoted by a -+r · 
and a -+1 ·, respectively. Tlius, 

a ® c S b iff c S a -+r b 

and consequently 

a -+r b= V { c E Q : a® c S b} 

j 

a -+1 b= V{c E Q: c® a S b}. 

Definition 1.3 Let Q be a quantale. A map j : Q --+ Q is said to be a 
a) quantic nucleus if it satisfies 

[NQI] a S b implies j(a) S j(b) 
[NQ3] j(j(a)) = j(a) 
b) quantic conucleus if it satisfies : 

[CNQI] a :S b implies g(a) S g(b) 
[CNQ3] g(g(a)) = g(a) 

[NQ2] a S j(a) 
[NQ4] j(a)®j(b) '.Sj(a®b) 

[CNQ2] g(a) Sa 
[CNQ4] g(a) ® g(b) S g(a ® b) 

Quantic nuclei and conuclei are important, because they determine the quocients and subobjects 
in the category of quantales. 

Definition 1.4 Let Q be a quantale. A subset S ~ Q is a subquantale of Q if it is closed under · 
® and arbitrary sup 's. 

Proposition 1.5 [Rosj: (a) lf Q ~ Q is a quantic nucleus, then Qi = {x E Q: j(x) = x} is· 
a quantale where the operations ®i, Vj and /\i in Q i are given by : 

Moreover, the map j : Q--+ Qi given by a H j(a), is a surjective morphism of quantales, 
Further, every surjective morphism of quantales can be represented in this form. 

(b) lf Q ~ Q is a quantic conucleus, then Q9 = {x E Q: g(x) =x} is a subquantale where, 
with notation as in (a), /\fEiai = g(/\iElai)- Moreover, every subquantale is of this form, i.e., 

if S ~ Q is a subquantale, then there exists a quantic conucleus g in Q such that S = Q
9
• 

Definition 1.6 An element l. E Q is dualizing if: 

(a -+r l.) -+1 l. =a= (a -+1 l.) -+r l., for every a E Q. 

An elemeni s E Q is cyclic if: 

a "-*r s = a -+1 s, for every a E Q. 
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>ro ·r posi ion 1. 7 [Ros} : Let Q be a quantale and s, J_ be elements of Q. 

a) 8 E Q is cyclic iff J or all a1, ... , an in Q, 

a1 0 · · · 0 an :S: s implies a1r(1) 0 a1r(2) 0 · · · 0 a1r(n) :S: s, 

{)r all permutations 1r of { 1, ... , n}. 

b) If J_ E Q is dualizing, the n Q is unital and we have : 

Definition 1.8 A Girard quantale is a quantale which has a cyclic dualizing element J_. The 
Jpera/;or . ---+ J_ . ll d z · t. d 't J. J_ ( 'h I = · -+r J_ ~def · -+ J_ 1.s ca e mear nega ioti, an we wn e a = a --+ tioie 
· at 1 :::: J_ J. J. 

~ext pro ·t· . . . ..,.. · posi 10n 1s of frequent use when computing m a Girard quantale. 

Proposition 1.9 [Ros} : Lei Q be a Girard quantale with a cyclic dualizing element J_ and lei 
1
' b E Q · Then: 

(1) a -+ 1 b = ( a ® bJ. f (2) a -+r b= (bJ. ® a)J. 

(3) a® b= (a --+1 bJ.)l. (4) b® a= (a --+r bJ.f 

(5) a -+r b= bJ. --+1 aJ. (6) a --+1 b = bJ. -+r aJ. 

Prop · · i(a) ~OSition 1.10 Lei Q be an unital quantale and s E Q cyclic. Th_en, j :_ Q -----+ Q, given by 

l 
_ ( a ---+ s) ---+ s 1.s a quantic nucleus, and Q 1 = { a E Q : J (a) = a} is a Girard quantale! where 
- s E Q· .J• 

Exarnple 1.11 : The Phase Quantales (Girard) 
a . /et ( ~' ·, 1) be a monoid. We define A · B = { a · b : a E A, b E B}. Let J_ ~ M be such that 
id lE ~ implies b· a E J_ (for example J_ can be a semiprime ideal or the complement of a prime 

ec of M). J 

uni::hus) P(M) is a quantale with the product defined above, and with sup 's e inf's calculated as 
The ns {U) and intersections (n). In fact, it 's an unital quantale, where 1 = { 1} and J_ is cyclic. 
fact;·, by proposition 1.10, P(M)j is a Girard's quantale containing J__ Their elements are called 
---:..J and we have: 

A 0 B= (A. 8)1.1. 
viE[ Ai = (UiEl Ai)J.J.; in particular, A v B = (A u B)J..J.. =def A EB B ' 

AiE[ Ai :::: niEl Aij in particular, A A B = A n B =def A&B. 

1'he next · _ . . . . . result tells us that every G1rard quantale 1s of tlus form. 

Prop ·. 0s1h0n 1.12 {Ros} : If Q is a Girard 's quantale, then Q is isomorphic to a phase quantale. 

3 



----- - ~- - 

We are now going to relate the exponentials treated by Yetter ([Yetl) and Avron ([Av]) with certain 
concepts in the theory of quantales. 

Definition 1.13 (Yet) An open modality in a quantale Q is a map µ: Q--+Q satisfying: 
[Ml} µ(a) Sa [M2} a S b implies µ(a) S µ(b) 
[M3} µ(µ(a))= µ(a) [M4} µ(µ(a)® µ(b))= µ(a)® µ(b). 
A n open modality µ is said to be 

- central if b® µ(a)= µ(a)® b for every a,b E Q. 
- idempotent if µ(a)® µ(a)= µ(a) for every a E Q. 
- weak if Q is unital, µ(1) = 1, and µ(a) S 1 for every a E Q. 
Let M(Q) = {µ: µ is an open modality in Q}, partially ordered by pointwise order. 

Proposition 1.14 {Yetj : Lei Q be a quantale (resp. unital quantale). Then, there ezists an 
unique maximal open modality in Q central (resp. central, idempotent and weak) denoted by Cm 
{resp. lm) given by: 

cm(x) = V{a E Q: a S x,a E Z(Q)} 

lm(x) = V{a E Q: a S x/\ 1, a= a® a, a E Z(Q)}, 

where Z ( Q) = { a E Q : a ® b = b ® a, for every b E Q}. 

Definition 1.15 [Avj: Let Q be an unital quantale. A map B: Q --+ Q is a modal operation 
if it satisfies, J or all x, y E Q : 

[Bl} B(l) = 1 
[B3} B(B(x)) = B(x) 

[B2} B(x)sx 

[B4} B(x) ® B(y) = B(x /\ y). 

Proposition 1.16 Lei Q be a quantale, andµ: Q --+ Q a map. 

(i) µ is an open modality iff µ is a quantic conucleus. 

(ii) If Q is unital, ihen µ is an open, idempoieni and weak modality iff µ is a modal operaiion. 

Proof: (i) We must prove that [M4) is equivalent to [CNQ4]. Let µ be an open modality. Because 
µ(a) 0 µ(b) Sa® b, we get µ(a)® µ(b)= µ(µ(a)® µ(b)) 'S µ(a® b). 

Conversely, if µ is a quantic conucleus, then 

µ(a)® µ(b)= µ(µ(a))® µ(µ(b)) 'S µ(µ(a)® µ(b)) S µ(a)® µ(b). 

(ii) Assurne that µ is an open, weak and idempotent modality. Then, it clearly satisfies condi­ 
tions [Bl), [B2], [B3]. Because µ(a) 'Sa and µ(b) S 1, we get µ(a)® µ(b) ,sa® 1 = a. Similarly. 
µ(q.) 0 µ(b) S b and therefore, µ(a)® µ(b) <o r. b. Thus, µ(a)® µ(b)= µ(µ(a)® µ(b)) ,s µ(a(\ b)· 

Now, since µ is increasing and a I\ b 'Sa, b, then µ(a I\ b) ,S µ(a), µ(b). Thus, 
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µ(a I\ b)= µ(a I\ b)® µ(a I\ b)::::; µ(a)® µ(b), 
and so µ satisfies [B4]. 
~onversel · f · . . . . equ1valent t [c' ,,. !S a modal operation, thcn [Ml] ]S JIISI [B2]; [M3] IS [B3l, while [M4] ]S 

C O NQ4], m the presence of [Ml], [M2], [M3], by item (i) above. 
0ndition [ M2] . . . . . 4.2 in [Av] I 18 item (5) of Lemma 4.2 m [Av] and µ satisfies [C NQ4] by itern 8 of Lemma 

Thus, [Bl]. _t follows from items 4 and 1 in that sarne Lemma, that µ(x)::::; 1 for every x E Q. 
yields that µ is weak. D 

Defi · · n1tion 1.17 A · Jmme (or Complete Heyting algebr!!) is a quantale where ® = /\. 

Defi · . n1tion 1.18 . 
) 

. Let Q be a quatiiale and let T be the nwxzmum of Q. We say that x E Q is 
a rzght-sid d (. . . . c)t~_e__in Q) zf x® T ::::; x; b)left-sided (zn Q) if T ®x:::; x; 

'Wo-sided (. Q . . . . . . ~ 1,f ii is rzght and left sided in Q. d) idempotent if x ® x = x 

Prop . os1tion 1 1 . . (a) . · 9 [Rosj : Let Q be a quantale} and g a quantzc conucleus in Q. Are equivalent: 
Qg is a Jr , (c) ame. (b) g(a) ® g(b) = g(a I\ b). 
every x E Q . . 

g is ulempoteni and two-sided (in Q 9). 

Defi · . c n1tion 1.20 . . . . . . . . alled a loc 
I 

A map g satisfymg the conditwns above 1.s callcd a localtc conuclcns and Q, is 
~ntale. 

Since open . . . . . .. ' weak idempotent modahties are localic conucle1 µ such that µ(1) = 1, we have 
Coron 7' ary 1.21 . . . hen

1 

Q is f Let Q be an uniial quaniale, and let µ be an open; weak and zdempotent modalzty. 
µ a rame. 

qu?hus, the fixed · · d 1· I ( 1: ) 1· · l 11· nta]e ( corn pom ts of the in terpret at i on of the m o a. , ty. . o co urse . 1e m a oca 1 c s u b- 
p lete Heyting algebra.) of any quantale in which lmear log1c 1s mterpreted. 

2 Linea C r a.lculus with Equality 
h1 th' is secti a tefl on We d' · · t· l't Th 1 · d fi l · exive . 13cuss \he laws [or a binary prcd1catc reprcsen mg equa 1 y. e goa. 1s to c ne 
; •ss of a!] ;irnrnetric and \ransitive predicate satisfying the substitut.ion (Leibnitz's) rule for the 
0t at · orrnula W · "'l · l L · (CL) th t h b · · w· ornic fo · 8· e may assume, just as m C ass1ca og1c , . a we ave su stitution 
Ith equaJit nnulas. \i\!ith this model in miJJ<l, we sha11 define a, prototype of a linear calculus :e WiU set t called (LLE

1 
). Our formulation wi1l use sequcnts in Linear Logic (LL ). Analogously, /'P0nential 0~11 a calculus with cquality for the (M J\LL) fragment, i.e., the fragment without 

Otrnu1 s, indic t d . l . " b . . . as w . a e by ( LLEo)- Staxting from t 1e property OL su stitut10n for elementary 
' e Prov tl . · ) · e 1at (, = ·) must be::::; 1, 1dempotent m (M ALL and open m the general case. 
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· · lL · · t bl set of pred- Definition 2.1 A first order linear language with equahty consisis m a coun a e . bles 
icaie symbols p = {Pn : n E w} U{ = } {where "=" is binary), a countable sei of »aria 
V = { Vn : n E w}, together with the symbols: 

l,J_,T,0,.1,V,/\,EB,&,0,u, !, ?. 

Definition 2.2 The formulas of ll., FOR(lL), are defined recursively: 
[Fl] 1, J_, T, 0 E FOR(lL). 

[F2] If P E P is a predicate of arity n and x1, •.. , Xn are variables, then 

P(x1, ... ,xn) and P(xi, ... ,xn).L E FOR(lL). 
[F3] if F, G E FOR(lL) then F ® G, F u G, F&G, F EB G E FOR(lL) 
[F4] if F E FOR(lL), then !F, ?F E FOR(lL). 

[F5] if F E FOR(lL) and x E V, then /\ x.F and V x.F E FOR(lL). 
Every ocurrence of a variable x in a formula F is free except in a subformula of the type I\ x.C 

or V x.G {which are bounded ocurrences). We shall write 

ELF(lL) = {P(x1, •.. , xn) : P E P - { = } , x, E V}, the set of elementary formulas 
and 

ELF+(JL) = ELF(lL) U{(x = y): x, y E V}, the extended sei of elementary formulas. 

Definition 2.3 The syntactic linear negation is a map l_ : FOR(L) --, FOR(L) given by th, usual rules: 

[NLl] j_(l) =J_, Lf L) = 1, j_(O) = T, J_ (T) = 0 

[NL2] j_(P(xi, ,xn)) = P(xi, ,xn)\ j_((x = y)) =(x= y).l, 

j_(P(xi, ,xn).L) = P(xi, ,xn), j_((x = y).L) =(x= y) 
(here, P(x1, ... , xn) E ELF(JL)) 

[N L3] 1-(F 0 G) = 1-(F) U 1-( G) , 1-(F U G) = 1-(F) 0 1-( G) , 

j_(F&G) = j_(F) EB j_(G) , j_(F EB G) = j_(F)&j_(G) 
[N L4] j_(!F) =? j_(F), j_(? F) = lj_(F) 

[N L5] J_(/\ x.F) = V x.J_(F) , j_(V x.F) = /\ x.J_(F) 

We uirite j_(F) = F\ clearly F = p.11- for every F E FOR(JL). 

Defini ti on 2. 4 Let A a form ula; we defi ne A [y / x J to be the form ula obtain ed from A by rep/aci_ll! 
a/I bound occurrences of y by z, where z is the first variab/e (in the natura/ order of V J not occurrinl 
m A, and then replacmg all free occurences of variable x by y. 

Definition 2.5 (Girard) The calculus (LL) for first order commutative linear logic is defined bi 
the axioms and ru/es below (here, A, B denote formulas, and r, t. denote mu/tisets of formu/as), 
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[AXl] I- A1. A [AX2] I- T, f [AX3] I- 1 
) 

[CUT] I- r, A I- 6 A1. 
) 

1- r,6 

[EXCH] If 6 is a permutation of I', then I- r 
I- 6 

[&] I- A,r I- B, r 
f- A&B,f 

[EBl] f- A, r [E82] f- B,r 
f-AEBB,r 1-AEBB,f 

If I' is not empty, then f- r 
f- 1-, r 

[0] f-A,f f-B,6 
f-A®B,I',6 

[U] 

[dereliction] 

[contraction] 

f- A,r 
f-? A, r 

[weakening] 

f-?A, ?A, r 
f-? A, r 

[!] 

f- A,B,f 
f-ALJB,f 

f- r 
f-? A, f 

f- A, ?f 
HA,?f 

[V] I- A[y/x], r [/\] If x is not free in r, then f- A, r 
f- V x.A, r f- /\ x.A, r 

by: We can consider as defined connectives the linear implication and the linear equivalence, given 

(A -0 B) =def (A1. LJ B) = (A® B1. )1. (A o-o B) -def (A -o B)&(B -o A). 

Defin·t· . . define~ ron 2.6 The linear calculus with cquality (LLEo) for the_ (MALL) fragment of (LL) 15 

by addzng the axioms below to those in the preceding defimtwn : 
[R:==:]: I- (x= x); [S =]: f- (x= y)l.,(y = x); [T =]: f- (x= y)\(y = z)1.,(x = z). 

[SU BST]: I- (x
1 
= y

1
)\ ... , (xn = Yn)\ F(x1, ... , xn)\ F(x1 I Y1, ... , Xn I Yn), 

where F( . ( P( X1, ... , xn) denotes an elementary formula with eventually) x1, ... , Xn free and 
Xi_ I Y1, ···, Xn I Yn) is obtained from F(x1, ... , xn) by replacing some ocurrences of x; (which are 

not zn th e scope of a Yi-quantifier) by Yi· 

[1:==:)·1-( · X=y)1.,(x=y)®(x=y) [~ 1) : f- (x= y)l., 1 

Definit' . . . . th . ion 2. 7 The linear calculus with equalzty ( LLE1) for ( LL) is defined by adding besides 
e axz [ · ' oms R =], [S =], [T =], [SU BST] the following rule 
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[!=]: 1-(x=y)·L,!(x=y) 

Obviously, all the rules (with exception of [R =]) could be formulated as linear implications, for 
example [T =] could be stated as 

I- ( x = y) 0 (y = z) -0 ( x = z) 

We have as well that (LLE1) is equivalent to the calculus obtained from (LLE1) by replacing [S ::::] 
and [! =] by the rule: 

[5! =] I- (x= y)-1, !(y = x) 

3 Semantics 

) 

In this section we develop interpretations for the calculi described above. It will be necessary to 
extend the definitions in [Yet] so that the axioms involving equality are verified. 

Definition 3.1 A n interpretation of a language :n:, is a triple < A, V, I · IA > where 
- A is an algebra for the theory with constants 1, 1-, T, 0; 

- a sei of unary operations M U{ 1.} (the interpretation of the modalities); 

- binary operaiions @, LJ, &, EBJ and infinitary operations V and/\; 
- V ~ A) the sei of valids elemetiis; and 

- I· IA : ELF+(JL) ---t A is a map. 

It is straightforward to see that there exists a (unique) extension of I . /A to FOR("JL), nlso 
denoied by I · IA. When there is no risk of conjusion, we write I · I for I · IA. 

J)efinition 3.2 A semantics for :n:, is a class of interpretations. A semantics is sound (with respect 
to a linear calculus P) if: 

I- A1, ... , An is provable in P implies IA1 LJ ... LJ AnlA E V for every < A, V, j . IA > in the 
semantics. 

A semantics for lL is complete (with respect to P) if: 

IFIA E V, for every < A, V, I · IA > in the semantics, implies I- F is provable in p. 

Definition 3.3 A n interpretation of quantales for [, is a Girard quantale Q, ioqether with ari 
assignement ! 1---7 µ E M(Q) and a map I· IQ: ELF+(JL) ---t Q, where V= { a E Q: a~ 1} such that 

-Va, b E QJ a LJ b =def (al. 0 bl.)l.; 

- We interpret /\ x.A and V x.A as /\yEV IA[y/x]IQ and VyEV IA[y/x]JQ, respectively. 
Recall that M( Q) is the lattice of open modalities in Q (Definition 1.13). 
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Defi · · nition 3.4 Th . . . . . class of inte e semantzcs of quantales for (commutatzve) Linear Logzc wzth equality is the 
[SI] ?retation of quantales for [, such that: 
[S

3 
Q is commutative. [S2] µ =def ! is idempotent and weak. 

l 1 · IQ . ELF+( · [,) --+ Q satisfies: 

(a) For th C [- l] e alculus (LLEo): 
- : lx = xl ~ L, [= 2] : lx = YI 0 IY = zj S lx = zl; [= 3] : lx = yj = jy = xj; 
[~ 4] . I 

. Xi = Y110 ... ® lxn = Ynl@ IF(x1, ... ,xn)I S jF(x1 I Y1, ... ,Xn I Yn)I 
(same noiaiion as [SU BST]); 

[~ 5]. I 
· x= yj s; lx = YI 0 lx = yl; [= 6] : [z = YI S 1 

(b) For the C alculus (LLEi)
1 
conditions [= 5] and[= 6] are replaced by the stronger: 

[ = 7] : I x = Y I s ! I x = Y I . 
1'he next reSult shows th t · · I I · f · h b diti a it 1s always possible to define a map · Q satis ymg t e a ove con 1 ions. 

Prop . 
s . o_s1tion 3. . 

[
atisfyzng . 5 If I · IQ : ELF(L) --+ Q is a map, then it can be extended to ELF+([,) 
:::: l] J zn the (MA . . . , ... ,[,,, 

4
1,[0c ?] . LL) case, conditions [= 1], ... ,[= 6] and, m the general case, conditwns 

Proof L ~ et'sb · Let I egin by the general case, in which ! E M( Q) is idempotent and weak. 
. IQ : ELF(IL) ---+ Q be a map, and let x, y E V, x i- y. Define Ax,y and Bx,y as: 

Ax,y = {F E ELF(L): neither x nor y occur in F} 

Bx,y = {F' E ELF'(L): x or y occur in F} 

In B . 
:c,y consjd er the relation: 

F "" G iff G is obtained from F by replacing some occurrences of 
For e x by y and/or sorne occurrences of y by x. 

re)at' Xarnple P( 
10n. Now a'r, x,z,y) rv P(x,z,x),...., P(y,z,y) rv P(y,z,x). Clearly, rv is an equivalence 

e 1ne, 

Fa Tx,y = /\{IFIQ--+ IGIQ : F, G E Bx,y, F rv G}. 
~lfl. ' . . . . . 1'
0 

I satisfies [= 7] and [= 3] then 1t satisfies [= 4] 1ff lx = YI S Tx,y for x i- y. 
l[ see th' ' ""'P(x I Y)18G' asSume that F G E B. F ,...., G. Note that there is H E ELF(L) such that 

- H ' x,y, 
Since 1 • '. - (y I x) . 

. is idem . potent, [= 7] irnplies [= 5] and so, by [= 4] we have lx = YI@ IFI S IHI; thus, 
'rheref lx === YI 0 IFI S lx = YI 0 (lx = YI 0 IFI) S lx = YI 0 IHI S IGI. 

ore, lx - I< I - Y - FI -+ IGI, proving that lx = YI S Tx,y· 
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Conversely, suppose that lx = YI ~ Tc,y for x -=j:. y. Then, 

lxn = Ynl ~ JF(x1, ... , Xn)I -+ JF(x1, ... , Xn-l, Xn I Yn)I 
)I IF( I y )I Analogously, and therefore, lxn = Ynl 0 IF(xi, ···, Xn S X1, ···, Xn-t, Xn " • )I 

lxn-l = Yn-1 I 0 (lxn = Ynl ® JF(x1, ... , Xn)I) ~ lxn-l = Yn-1 I 0 JF(x1, ... , Xn-1, Xn I Yn 
~ JF(x1, ... , Xn-2, Xn-1 I Yn-1, Xn I Yn)J. 

We may proceed by induction to get: 

Jx1 = y1J ® · · · ® Jxn = Ynl 0 JF(x1, ... , Xn)I ~ JF(x1 I Y1, ... , Xn I Yn)I, 
as desired. 

If F E nn A . . then since [= 7] implies [ = 6], we have: i=l x,,y, ' 

lx1 = Y1I ® · · · 0 lxn = Ynl ® IFI ~ (10 · · · 01) 0 JFJ = IFJ, 
showing that[= 4] is valid. 

By induction, define a map I · I as follows: for x, y E V, x -=j:. y, set 
Jx = Ylo = Tx,y; 

[z = Yln+I = Az;t:x,y(lx = zln H Jy = zln) (a H b means (a-+ b)/\ (b-+ a)); 
Jx = Yloo = !(/\nEN lx = Yln), with Jx = xJoo = 1. 

Fact 2: I · loo satisfies the properties required for the full logic. ail 
In fact: condition [= 1] is clear, while [= 3] is verified because it's true for Jx = Yln, for 

n E w. _ t), 
Since Jx = yJ00 = !lx = yJ00, [= 7] is satisfied (the case x == y is valid too, because !l - 

Observe that, for every n 2: 0 and z -=j:. x, y: 

lx = Yln+I 0 Jx == zln ~ Jy == zln and therefore, 

lx == Yloo 0 lx == zloo ~ lx == Y\n+I 0 \x== zln ~ Jy == zln for every n 2:: 0. Thus, 
lx = Yloo 0 lx = zloo S /\nEN IY = zln; now [= 7) and [M4) yield [= 2). 

Since lx = Yloo S lx = Ylo = T,,., Fact I guarantees that I· !
00 

satisfics [= 4). 

b ve 
) 

' h )1 ·n the a 0 
For the (M ALL fragment, it s enoug to take ! = !m (sec Proposition 1.14 c;omputations. D 

Discussion 3,6 Are rcqucriments [= 5], [= 6) (resp. [= 7]) ioo strong ? 

·o~ The motivation for them is, starting with substitution for elementary formulas to have substitutJ ee 
· . ' To 5 for every formula. Obv1ously, they are suffic1cnt, but indecd, they are also neccessary. 

0

d 
this, note that, if a= lx = YI, b= IP(x)I and c= IP(x I y)!, then we must have that a 0 b '.S c~ , 
a 0 c S b, (i.e. a S ( b <--+ c)) must imply a@ !b S !c ( and, of course, that a® !c S ! b). Since 1 '' formula, we must also have a = a 0 1 S 1. The critical cases are 0 and !. We have 

Lemma 3.7 Let Q be a Gir-ard Quantale and let a be an element of Q such that a S 1. 
( a) Are equivalent: 

10 
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{i) \/ b, c, d E Q, 
(ii) a~a@a 

{b) Assume that ! E M( Q) is idempotent and weak. Are, equivalent: 

{i)\/ b, c E Q, a ~ (b H c) implies a ::; (!b H!c). 

{ii) a = !a 
{c)\/ b, c E Q, a::; (b H c) implies a::; (b1. H c1.). 

a~(bHc),a::;(dHe) imp/ies as((b@d)H(c@e)). 

Proof- (a) ( ') ( .. ) . ~ . i * zi : smce a ::; 1 , then a ::; (1 H a) and so a ::; ((101) H (a 0 a)); thus, 
a - a® (101) ~ a 0 a. 
a ,,Yi '°' (ii) : If a <; (b ,-, c), a '.:'. (d ..., e), then we have a 0 b '.:'. c and a 0 d '.:'. e, and so 

( ® d) ~ ( a 0 a) 0 ( b 0 d) = ( a 0 b) 0 ( a 0 d) ::; c 0 e. Analogously, a 0 ( c 0 e) ::; b 0 d. 
(b) (i)* (ii): since a::; 1 and !1 = 1, then a::; (1 Ha) and therefore a::; (1 H!a); thus, 

a::::a@1 < ! _ .a ::; a. 
by (2 '°' (ii) : suppose that a <; (b,-, c); thus, a 0 b'.:'. c and then a0 !b'.:'. a 0 b'.:'. c. Thus, 
a'°'~ 4] , we have a@ !b = !a@ !b = !(!a0 !b) = !(a0 !b) ::; !c. Analogously, we can prove that 
'61 .c s; !b. 

(c) Since Q is commuta.tive, then ( x -+ y) = (yl. -+ xl. ), by Proposition 1.9. D 

We can now show that we have substitution for every formula: 

Propo .. Th sition 3.8 Let I . I : ELF(L) --> Q satisfying [= l] - [= 6] ~= l] - [= 4], [= 7] resp.}. 
· en; the extension to FO R(lL) verifies: 

Jx1 == Y1 J 0 · · · 0 Jxn = Ynl 0 l<J>(x1, ... , Xn)I::; J<j>(x1 I Y1, ... , Xn I Yn)I 

wher-e <P( . 
1 

_ X1, ... , :r:n) E FOR(1L) has (eventually) free occurrences of nariables X1, ... , Xn, and <j>(x1 I ~J/ x. I Yn)_ '.s obtained from ef,(x
1
, ... , x.) by replacing some occurrences of x; (not in the scope 

Y1 -quantifier) by Yi. 

Proof· B . . ~ Y induction in the complexity of rj>. As a first step, we have two cases to consider. 

i) <P E ELF+CJL). It's true by [= 4], [= 2] and ]= 6) (or[= 7] and! weak). 
ii) c/> E {l, ..L, T,O}. It's true by [= 6] (or[= 7] and! weak). 

<: kTo Proceed with the induction, assume that substitution holds true for every <p with cornplexity 
- auc[ let c/> be a forrnula with complexity k + 1. We have the following cases: 

a) c/>= a: 0 {3. It's immediate from[= 5] (common to both systems) and lemma 3.7. 

b) c/>= 0:1.. Since Jo:1.\ = Ja\1., the conclusion follows from Lemrna 3.7. 

c) </> == /\ x.a(x1, ... , :rn, x). Given z E V, we have: 

®n I i:::t Xi == Yil 0 /\yEV Jo:(x
1
, ... ,xn,:c)[y/x]I::; 0i=l Jx; = Yil 0 \a(x1,···,xn,x)[z/x]I 

~ Ja(x1 I Y1, ... , Xn I Yn, x)[z/x)J. 

Thus 
' 
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0f=1 lxi = y;I 0 /\yEV la(x1, ... , Xn, x)[y/x]I S: /\yEV la(x1 ! Y1, ... , Xn I Yn, x)[y/x]I 
d) </> = a&{3. Similar to c). 

e) (full logic) </>=!a. It follows from[= 7] and Lemma 3.7. 

Since the other connectives are defined by duality, the proof is complete. D 

Now, we shall extend the results in [Yet] to the calculus with equality. 

a 

1 

. 'th ual- Theorem 3.9 (Soundness) The semantics of quantales for commutative Linear Loqic un eq 
ity is sound with respect to the given calculus. 

Proof: We prove the validity of the new axioms (for the others rules, consult [Yet]). Define 
I 1- A1, ... , Ani= IA1 lJ · · · lJ Ani- By observing that, for every a, b E Q, a S: b iff a.L LJ b 2: 1, the 
validity of each axiom is guaranteed by [= l] - [= 6] (resp. [= l] - [= 4], [= 7]). D 

) 
Theorem 3.10 (Completeness) The semantic of quantales for comutative Linear Logic with 
equality is complete with respect to the given calculus. 

Proof: The proof is an extension of the proofs by [Yet] and [Gir]. Let M1 be the set of finite 
sequence of formulas in lL; M1 is a monoid with the operation of concatenation ( and identity the 
null sequence). Let M be the (commutative) monoid obtained by identifying sequences which ~re 
distinct only by a permutation of their elements. Just as in example 1.11, P(M) is a commutative 
quantale and we set 1- = {r : I- r is provable } E P(M). 

Since M is commutative, 1- is cyclic and so we can consider the phase quantale Q = P( M)J, 
where j : P(M) ~ P(M) is given by j(A) =(A--+ 1-)--+ l_, 

Let Pr: FOR(JL) ~ P(M) defined by: 

Pr(A) = {r : I- A, r is provable }. 
By theorem 3.4 in [Yet], Pr factores trough Q, i.e., Pr(FOR(JL)) = Q. 
Let I · I = Pr IELF+(L); clearly, the unique extension of I . I to FOR(JL) is Pr, once we have 

defined in Q the open, weak and idempotent modality ! as: 

!(x)= V{Pr(!A): Pr(!A) s; x}. 

Fact: !1 = 1 (where, by definition, 1 = /\{Pr(A): I- A is provable}). 
To see this, Let r E PR(!l); thus, Hl,f (i.e., I- (?1-)·L,r) is provable and let A E FOR(L) be 

such that I- A is provable. Then: 

I- A 
I- A, 1. 
I- A, ?1. I- (?1-).L,r 

I- A, r 
i.e., r E Pr(A), and so Pr(!l) S: /\{Pr(A) : I- A is provable } = 1. 

12 
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Thus, Pr('l) < V{ . nd 
80 1 

· - Pr(!A) : Pr(!A) :S 1} = !1. In fact, equahty holds because 1-!1 is provable, 
~ Pr(!l) :S !1 :S 1, i.e. 1 = !1. 

<W~ s(h(all now show that I . I satisfies the required properties. Since I- ( x = x) is provable, 
- r x== x))= lx = z]. This verifies [= 1]. 

To prove [- 2] 1 - ' et rL\ E lx = YI. IY = z], Then we have: 

~x:=y),r -- ---'-.------~l-~(~x_:-:JYU..)-1·1,~(y~-=---:_zL) .L~, (~x-=-::.....'.z"_J_) 

I- (y = z)\ (x= z), r 1-(y=z),L\ 

1-(x=z),f,6. 
.e., I'6. E I x== z]. Thus, jx = YI . IY = zl :S lx = zl and so 

lx = YI 0 IY = z] = (lx = YI · IY = zlf.L :S lx = zj. 
To Prove [- ] - 3 , let r E lx = YI- We have: 

~),r -- --~---~1-_j(~x .=J!.YL-f_,_, ~(y~x':J_) 
1.e r I- (y = x),r 

·, E IY == xl a d th I n us x= YI :S IY = z]. 
Prop t' interpret _ies [== 4], [= 5], [= 6], [= 7] are verified in a similar way. This shows that we have an 

ation of quantales such that IAI 2: 1 iff I- A is provable, completing the proof. D 

4 Generalisations of the Calculus 
'l'here a L . re al ter t' · · · h · 1 f 1· og1c. p na rves to the treatment of equahty g1ven above, usmg t e exponentia s o mear 
Propert· or example, instead of requiring (. = . ) to be open, we could establish that its characteristic 

ies be v lid · · . ( ) b h · [ll!] ~ 
1 

a 1 111 the interior of(·=-). Thus, we define the calculus P, y t e axioms: 

-(x - ) P · - x [S!] f- !(x= y) -o !(y = x) [T!] f- !(x= y)0 !(y = z) -o !(x= z) 
or ever . 

[~rr Y pred1cate symbol P 
'-VBSI] ' 

• 1-- ' ( C! · x1 = Y1) 0 · · ·0 '(x.= y.) 0 P(x1, ... ,x.) -o P(x1 I yi, ... ,x. I Yn) 
of a li::~;,ewe_have substitution for every formula,_ and wc can say that !(x= y) has the behaviour 

1-- 
1 

quahty. An even weaker form of substitut10n can be defined as follows : 
·(X1 - ) or -yl 0···0!(xn=Yn)0!P(x1, ... ,xn)-o !P(x1IY1,···,XnlYn) 
'even 

t-- l(x1 :::: W Yi) 0 · · ·0 !(xn = Yn)0 !P(x1, ... , Xn) -o ? P(x1 I Y1, ... , Xn I Yn)- 
f e can . orward to m~dify each axiom combining the modal operators in all possible ways. It is straight- 
lt!ocl l venfy th t (' · · · · · f 1 ) h a oper· . a mcorporatmg id, the 1dent1ty operat10n on ormu as , t ere are only seven 

a,bons obtained by succesive applications of{!,?}, namely, the set 
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M = {!, !?!, ?!, !?, ?!?, ?, id} 

? 

I 
?I? 

I~ 
id ?I I? 

I/ 
!?! 

I 
fig. 1 

with it's natural lattice structure (see figure 1). This is in complete analogy with Kuratowski'l 
problem, in which we can prove that, given a topological space X and A ~ X, there are only ~ 
distinct sets that can be obtained from A by combinations of taking complements and closure ~1~ 
our case, we do not consider modalities of the form m'(x) = m(x)l. with m E M). Starting wit 
this, we can define a general scheme to create a linear calculus with equality. 

Definition 4.1 Let ( miH~1 be a sequence in M. A linear calculus with equality P( ( mi)) is defined 
by the following axioms: 

[R] f- m1(x = x) [S] f- m2(x = y) -o m3(y = x) 
[T] f- m4(ms(x = y) ® ms(Y = z)) -o m6(x = z) 
For each predicate symbol P, the axiom 

[SU BS] f- m1((®7=1 ms(xi = Yi)) ® mg(P(x1, ... , Xn))) -o m1o(P(x1 I Y1, ... , Xn I Yn)). 

Remarks 4.2 (a) If m3 S m2, then [S] implies thai, for m3 S r, s S m21 
r(x = y), s(x == y), 

r(y = x) and s(y = x) are all equivalent. 
(b J If m1 = id or m1 = ! , then f- m( x = x) is provable for every m E M. 
(c) If m7 = id, ms E { !, !? , !?!} and mg ~ m10, then substitution holds for every formula <P built 

up from formulas of the form m9(P), where P E ELF(JL). 

(d) For each m; E {!, !?, !?!}, we have m(®7=1 mi(Ai)) = m!(®7=1 mi(Ai)). 

Examples 4.3 (a) The system (LLE1) of section 2 is obtained by the assignement 

m3 = ! and m, = id, for every i #- 3. 
(b) If we sei 

m1 = m2 = m3 = ms = m5 = ms = ! and m4 = m7 = m9 = m10 = ui, 
we get the system (P!), in which "equality" is the itiierior of(·=·). This system satisfies sub5li· 
tution for every formula. 

(c) If we sei 

m1 = m2 = ms = m5 = ms =? 1 m4 = m1 = mg = m10 = id and m3 = !? 
then we have a system in which "equality" corresponds to the closure of ( · = ·); from [ S] 'llli!I 
follows that that ?( · = ·) is "clopen ". This system satisfies the substitution rule for every formula, 
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( d) By considering 
m1 == m3 == m6 = m10 = ?! m2 = m5 = ms = mg = !?! and m4 = m1 = !? or 1?! 

~e get a system containing a translation of the classical theory of equality inside ( LL), to be studied 
in next section. 

( e J A nother translation of classical equality in ( LL) can be obtained by considering the assigne­ 
ment 

m1 == ;d ·m2 - m - m - m - m - m - ? 0' - 4- 5- 7- s- 9-. 
and m3 = m6 = m1o = ! . 

1 
~ow, we would like to identify the classes of equivalent calculi. Instead of doing a complete 

~ as,si~cation of the possible calculi, we present quantale theoretic techniques that are useful in 
ecidmg this problem. We start with reflexivity ([R]) : 

Propo ·t· 81 ion 4.4 Lei Q be a Girard 's quantale, and lei x E Q. Then: 
(a) Are equivalent: 

(i) ?x~ 1 (ii) !?x~ 1 (iii) ?!?x~ 1 
(b) Are equivalent: 

(i) x ~ 1 (ii) !x ~ 1 
(c) Are equivalent: 

(i) ?!x~ 1 (ii) !?!x~ 1 

Proof- ( ) ~ a : If ?x ~ 1, then !?x 2: !1 = 1. If !?x ~ 1, then ?!?x ~ ?1 ~ 1. Finally, ?!?x ~ 1 
phes ?x > 1 b ? > ?I? - , ecause . _ .... 
(b) cornes directly from !1 = 1, while (c) is consequence of (b). D 

. Thus, introducing the notation r = s to denote that calculi obtained with m1 = r and m1 = s 
are equ· 1 iva ent, we have: 

(a) ? == !? = ?!? (b) id = ! (c) ?! = !?! 
and so th · · · ·b·1· · f [R] ere are only three non eqmvalent poss1 1 ities or . 
{' ,~ith respect to axiom [S], consider M1 = {?, ?!, ?!?} = {?m : m E M }, together with M2 = 
,_,:,-.,!?!} == {!m: m E M}. Write (r,s) == (r',s') to denote that calculi obtained with m2 = r, 
••i3 :::: 8 and m

2 
= r', m

3 
= s' are equivalent. Then we have: 

Prop · . 0s1tion 4.5 (a) If m3 E M 1, then: 
(i) (!,m3) = (?!,m3) = (!?!,m3) (ii) (!?,m,3) = (?!?,m3) 

(b) If m2 E M2, then: 

(i) (m2, ?) = (m2, !?) = (rn2, ?!?) (ii) (m2, ?!) = (m2, !?!) 

(iii) (id, m3) = (?, m3) 

(iii) (m2, id) = (m2, !) 

Therefore, there are only 26 non equivalent cases for [S]: 

(1 ): (!, !?) == (!, ?!?) = (!, ?) = (!?!, ?!?) = (?!, ?!?) = (!?!, !?) = (!?!, ?) - (?!, ?) 
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(2): (!?, !?) = (!?, ?!?) = (!?, ?) = (?!?, ?!?) = (?!?, ?) 
(3): (!, ?!) = (!?!, ?!) = (?!, ?!) = (!, !?!) = (!?!, !?!) 
(4): (id, ?) = (?, ?) (5): (!?, ?!) = (?!?, ?!) = (!?, !?!) (6): (id, ?!) - (?, ?!) 
(7): (id, ?!?) = (?, ?!?) (8): (!, id) = (!, !) (9): (!?, !) = (!?, id) 
(10): (!?!, !) = (!?!, id) (11): (id, id) 

(12): (id, !) (13): (id, !?) (14): (id, !?!) (15): (?, id) (16): (?, !?) 

(17): (?,!?!) (18): (?,!) (19): (?!?,id) (20): (?!?,!?) (21): (?!?,!?!) 
(22): (?!?, !) (23): (?!, id) (24): (?!, !?) (25) (?!, !?!) (26): (?!, !) 

For transitivity ([T]), we shall write (r, s, t) = (r', s', t') when calculi obtained with m
4 

::: r, 
ms = s, m6 = t and m4 = r', m5 = s', m6 = t' are equivalent. Then we have: 

Proposition 4.6 If m5 E M2
1 
then: 

(i) Ifm6 E M1, then (r,m,,m6) =c (s,rn,,rn6) for every r,s E M _ 

) ( ?1?) ;:;; (ii) (r, m5
, ?) = (s, m5, ?) = (id, m5, !?) = (!, m5, !?) = (!?, ms, !?) = (!?!, ms, !? = t, ms, · ·· 

( u, m5, ?!?) for every r, s, t, u E M. 

(iii) (r, ms, ?!) = ( s, m5, ?!) = ( id, m5, !?!) = (!, m5, !?!) = (!?, m5
, !?!) = (!?!, ms, !?!) for everY r,sE M. 

Tthe results above imply that, for m5 E M2 fixed, we have only 8 possibilities for pairs (m4, rn6) 
(in contrast with 26 possibles ones ), where the numbers refer to the pairs described above. 

[l]: (1) = (2) = (4) = (7) = (13) [2]: (3) = (5) = (6) = (14) 
[3]: (8) = (11) = (12) [4] : (9) = (10) [5] : (15) = (19) = (23) 
[6] : ( 16) = (20) sa (24) [7] : (17) =c (21) = (25) [8] : (18) = (22) = (26) 
With respect to substitution, if we fix m8, m9 E M2, then there are again, for pairs (mr, rni_~b 

only the 8 cases above, Thus, these are the non equivalent calculi that can be constructed WI ll 
the exponentials, satisfying the usual rules of equality. We register that this corresponds to on 
8% of the original universe of possible calculi. 

5 Interpreting Classical Equality in Linear Logic witb 
Equality 

It is well know that the exponentials of linear logic ( LL) are important in interpreting intuitioni
5
!i' 

logi c ( IL) and classi cal logic ( C L) insi de L L. For each of th ese logi cs, we have t wo translati ons, oV' 
of them based in the fact that every ( commu tat i ve] C irard ' s q uantale con tai ns a fr ame ( corn plel' 
Heyting algebra) ( corollary 1.21) and a complete Boolean algebra: 

1t = {!x : x E Q} and B= {?!x : x E Q}, 
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respectively O t· d · · pera ions an constants m each of these algebras are given by : 

(H). For the frame 1-{: 
Ort == 0, l 1-t = 1, ( x /\ 1-t y) = ( x 0 y) = ! ( x I\ y), ( x V H y) = ( x V y); 

(x=} Y) ==!(x-+ y), ,x= (x::::} 01-t) =!(x-+ 0), 

/\1t s == ! /\ S, V1-t S = V S. 
(B). For the complete Boolean algebra B: 

OB == .l, la = ?1, (x /\a y) = ?(!x 0 !y) =?!(x/\ y), (x Ve3 y) = (x U y) = (x.J.. 0 y.l..)\ 

(x=} Y) =(!x--+ y), ,x= (x=> Oa) =(!x-+ .l) = ?(x.J..); 

/\BS == ?!/\S, V8S = ?V{!x: x E S}. 

Thus, we can interpret A E FOR(] L) as Ai E FOR(L) by the rules: 
defi Ai ==i !A if A is atomic; proceed by induction on complexity using the operations in (H) to 

ne A for all intuitionistic formulas (here, FOR(IL) denote the set of intuitionistic formulas). 

For classical logic, we have our first translation : 
(*) Ac = ?!A if A is atomic; then proceed by induction on complexity, using the rules in (B). 

Th ·r us, 1 we assume two-hand sequents for (LL), we have ([Gir]): 
A1 A I- . . . 
'···, n IL A is provable in intuitionistic logic iff (A1)1, ... , (An)' I- A' is provable in LL, 
and 

(l8tT) : A1, ···, An 1-cr., A is provable in classical logic iff !(A1)C, ... , !(Ant I- Ac is provable in LL. 

g
. Another interpretation for classical logic is constructed from polarities for formulas. Thus, 
iven . . 

P 
.. a sequent for classical logic r 1-cr., ~, we'll say that occurrences of formulas A E r are 

0s1tive (d . ( ~ enoted by pA) and occurrences of formulas BE ~ are negat1ve denoted by nA). We 
ave the following rules of a second translation (**) : 

PA == A - A 'f A . t · - n 1 1s a onuc. 

P(,A) = (nA).l.., n(--iA) = (pA)1-, 
P(A V B) = p(A) EB p(B) , n(A V B)= !n(A)U !n(B)i 

P(A I\ B) = ?p(A)0 ?p(B), n(A I\ B)== n(A)&n(B), 
P(A =}B)= n(A).J.. EB p(B), n(A :::=> B)= ?p(A) -o !n(B), 

P((Yx)A) = /\x.?p(A), n(('v'x)A) = /\x.n(A), 
P((:1x)A) = Vx.p(A), n((3x)A) = Vx.!n(A). 
With thi d fi . . h s e nition we ave 

(** ' ) A1, ···, Ak 1-cL A is provable in (CL) iff !n(A1), ... , !n(Ak) f- ?p(A) is provable in (LL). 
cla ~e now turn to the question of determining a linear theory of equality such that, given a 

01
/~Ical theory of its translation into linear logic is defines a linear theory contained in the 
1g1nal r ' inear theory of equality. 
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For this, we need to relate the deduction of a sequent in (LL) from a set of sequent-axioms and 
the deduction of a formula from a multiset of hypothesis (in the left-hand side of the sequent), 
called external and internal relations of consequence (respectively) by [Avr]. 

Definition 5.1 Let A E FOR(IT..,) with exactly x1, ... , Xn as free variables. The universal clos~rf of 
A, denoted by /\ A is the [ormula obtained from A by quantifying universally all the free varzables 
of A, i.e., /\A= /\x1• · • • /\xn,A, . Analogously, we define V A

1 
the existencial closure of A. 

It is straightforward to prove next result: 

Proposition 5.2 Lei A1, ... , An be [ormulas, B=!/\ A1& · · · & ! /\ An, and D. a muliisei de for· 
mulas. Are equivalent: 

(i) f-- D. is provable from the sequent-axioms f-- A1, ... , f-- An; 

(ii) there exists k?:: 0 such that B, ... , B f-- D. is provable; ,___, 
k tirnes 

( i ii) ! /\ A1, ... , ! /\ An f-- D. is provable. 

Now, assume that A is the set of axioms (without free variables) of a theory of (CL) in; 
language without functional symbols. It follows from Proposition 5.2 that if A

1
, ... , An E A and 

is a formula, then the following are equivalent, for the first translation (*) of C L into LL : 
(i) A1, ... , An f--cL A; 

(ii) !(A1)C, ... , !(An)c f- Ac is provable in (LL ); 

(iii) There is a proof of f- Ac from the axioms f- (A1)C, ... , f- (An)c (recall that the A/s have no 
free variables). 

Thus, to each axiom A E A of a classical theory, corresponds a sequent-axiom f- A c in ( LL )· 
Similarly, for the second translation (**), it can be seen that to each axiom A E A, there corre­ 
sponds a sequent-axiom f- n( A). 

Now assurne that A defines the classical theory of equality. Thus, A consists in the following axioms: 

(\lx)(x = x); 
(\lx)(\ly)((x = y) ==> (y = x)); 
(\lx)(\ly)(\lz)((x = y) I\ (y = z) ==>(x= z)); 
(\lxi)(\ly1) ... (\lxn)(\lyn)((x1 = Y1) (\···I\ (xn = Yn) I\ P(x1, ... , Xn) =? P(x1 I y

1
, ... , Xn I Yn)) 

(where P varies over every predicate symbol of arity n of the language). 

For the first translation (*), we get a calculus (E1) with the following axioms: 

[Rl] f-?!(\x?!(x=x) [S1] f-?!(\x?!(\y(!?!(x=y)-o ?!(y==x)) 

[Tl] f- ?!(\x?!(\y?!f\z(!?(!?!(x = y)®!?!(y_= z))-o ?!(x= z)) 
[SU BSTl] If P is a n-ary predicate syrnbol of the language 

r-?!/\x1?!/\y1 · · · ?!/\xn?!/\yn(!?(!?!(x1 = Y1) ®···®!?!(x = y )tv. l?IP(x )) 
n n 'Ol · • · 1, ... , Xn 

-B ?!P(x1 I Y1, ... , Xn 1 yril) 
18 
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For the second translation (**), we get a calculus (E2) with the following axioms: 

[R2] f-Ax(x=x) [S2] 1-Axf\y(?(x=y)-o !(y=x)) 

[T2] f- Ax /\y A z (?(?(x= y)®?(y = z)) -o !(x= z)) 
[SU BST2] If p · 1s a n-ary predicate symbol in the language 
f-- /\xi AY1 ···A x " (?(?( - ) ?( - )l'vl?P( )) 1P( )) nl\Yn .. X1 =u: ®"·®· Xn -Yn '-0'· X1, .. ,,Xn --0 . Xi/Y1, .. ,,XnlYn . 

Consider th 1· . . e rnear theory (A) determmed by the axioms: 

[LR1] f--- ?I( .. x= x) [LSl] f--- ?!(x= y) -o ?!(y = x) 
[LT1] f- l?I( ... x= y)®!?!(y = z) -o ?!(x= z) 
[Lsu BSTI] f- !?!(x1 = Y1) (8) •. -®!?!(xn = Yn)®!?!P(x1, ... , Xn)) --0 ?!P(x1 I Y1, ... , Xn I Yn)• 

ale2learly, (P1) contains (E
1
) (because every axiom in (E1) is deducible in (A), using the equiv­ 

sect·ces of last section) and we have that (A) defines a linear theory of equality in the sense of 
10n 4. 

Similarly d fi . [ , e ne the theory (P2) by the axioms: 

[
LR2] f- (x= x) [LS2] f--- ?(x= y) -o !(y = x) 
LT2] f- ?(?( · . x= y)®?(y = z)) -o !(x= z) 
[LSUBST2] f--- ?(?( X1 = Y1) ® · · ·®?( Xn = Yn)®? P(x1, ... , Xn)) -0 !P( X1 I Y1, ... , Xn I Yn)- 

We can reformulate ( P2) as: 

[
[LR2'] f- (x= x) [LS2'] I- (x= y) -o (y = x) 

_LT2'] .. 
[
L f- (x= Y) ® (y = z) -o (x= z) (Propos1t10n 4.5 
SUBST2'] I- ?((x1 = y1) ® · · · ® (xn = Yn)®?P(x1, .. ,,xn))-o !P(x1 IY1, .. ,,XnlYn) 

[? :S!] f- ?( · X = y) -0 ! ( X = y). 
It is st · h . . ( and ther:"ig t forward to check tha t ( P,) and . ( E2) are equi valen ts. In fact, . ( P,) is the strongest 

fore more restncted as far as semantics 1s concerned) of the calculi already defined. 

6 Equality and intuitionistic Linear Logic 
In th· 18 sectio h J • 1 1 · d · · · · · 1 · f cakul . n we s all study how to recover c assica ogic an mtmt10mst1c og1c rom a linear 
linear ~s ~ithout exponentials, as well as analyse another extensions of the relationship between 
from n ogic and quantales. Our basic system is ( commutative) first order intuitionistic linear logic, 
ll1utati:w 0~ denoted by (LLI). The appropriate semantics will turn out to be furnished by com­ 
linear le unital quantales. Similarly, the semantics for non-commutative first order intuitionistic 

8 iall b . · · 1 F l . . ·11 b h . Propiat . . e proven to be given by umtal quanta es. -rom t 11s, 1t w1 .. e seen t at, addmg ap- 
an int : ~~JOms, we can recover intuitionistic logic, classical logic and classical linear logic. Thus, 

th uitin1stic 1· · · d · t · t· · t· th f 1· eory of e . mear theory o~ equ~hty prov1 es an m u~ 10m: 1c eory o equa 1ty, a classical 
candid t . quabty, and a class1cal lmear theory of equahty, snnultaneously. The most natural 

a e 1s t W sys em (LLE0), the simplcst already defined. 
e define a ( · ) fi d · t · · · · 1· sequent calculus for commutat1ve rst-or er m u1t10mstic mear logic without 
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negation, simply by extending the system in [GiLa] and then proving soundness and completeness 
for this system. 

Definition 6.1 The language r, for commutative first-order intuitionistic linear logic consist oJ}a 
counatble sei of predicate symbols, P = { Pn : n E w}, acountable set of variables V = { Vn : n E w ' 
the symbols ®, -o, & , EB I V, /\ and the same rules as in Definition 2. 2 for the f ormation of the 
sei of formulas FO R(lLi). For A E FO R(lLi) and x, y E V 

I 
A[y /x] is as in Definition 2.4, 

Definition 6.2 The calculus (LLI) for commutative first order intuitionistic linear logic consist z)·~ 
the following rules and axioms (A, B, C denote formulas, and r, ~ denoie multisets of formul,as · 

[AXl] AI--A 

[AX3] I- 1 
[AX2] r I- T 
[AX4] r,o I- A 

) [CUT] r I- A A,~ 1-- B 
r,~1--B 

[lL] r 1--A 
1,f I- A 

[&R] r 1--A r I- B 
f 1--A&B 

[EBL] r,A I- c r,B 1-- c 
f,AEBBI--C 

[-o R] f,A I- B 
fl--A-oB 

[V R] r I- A[y/x] 
r 1--Vx.A 

[/\ L] r, A[y/x] 1-- B 
I',/\x.A 1-- B 

[®R] 

[EXCH] f,A,B,~1-- C 
f,B,A,~ 1-- C 

r 1--A ~ I-- B [®L] 
r,~ I- A®B 

[&1] f,A I- C 
f,A&B I- C 

[EBl] fi-A 
fl--AEBB 

[-o L] r I- A ~, B 1-- C 
f,~,A-oBI--C 

f,A,B I- C 
f,A®BI-C 

[&2] f,B I- C 
f,A&B I- C 

[EB2] r I- B 
fl-AEBB 

[V L] f,A I- B 
f, V x.A 1-- B if x not occurs free in r, B 

[/\R] r I- A 
f I- /\ x.A if x not occurs free in r 

Definition 6.3 An interpretation of quantales for ( LLI) is a commutative unital quaniale ( Q, V/1 

and a r,iaP 
I· IQ : FOR(lLi) -----+ Q satisfying: 

1. 1101 = 0) 111 = 1) ITI = T. 

2. IA ®BI= IAI * IBl1 IA-o BI= IAI--+ IBI. 
3. IA&BI = IAI /\ IBI, IA EB BI= IAI V IBI. 
4- I/\ x.AI = /\yEV AR(L;) IA[y /x]\, I V x.AI == VyEV AR(L;) IA[y / x] 1- 
We say that A E FOR(lLi) is valid in Q if IAIQ ~ 1. 
A sequeni r I- A is interpreted as lfl --+ IAl

1 
where 

if r == 0 
if f == A-1 A ' ... , n 
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Note that 1r I- AI ~ 1 i./J lr\ :-::; IAI. 
Before stating and proving soundness we establish the following simple 

Lemma 6.4 Let Q be a quantale. Theti, a 18) 0 = 0 18) a = 0 for every a E Q. 

0 :S a -+r O implies a 18) 0 :-::; O; 0 S a -+1 0 implies O 18) a S 0. D 

Tfheorem 6.5 (Soundness) If r I- A is provable in (LLI), then it is valid in every interpretation 
0 quant l · I a es, z.e., r I- A\Q ~ 1 for every unital quantale Q. · 

Proof- B · d . ~ Y m uction on least lenght n of a proof of r I- A. 
Let Q be a quantale. If n = 1, [AXl], [AX2] and [AX3] are immediate, while [AX4) is a 

consequence of Lemma 6.4. 

b AsSume the thesis holds for all sequents with a proof of length S n (n ~ 1 fixed) and let A I- D 

P
e a sequent admitting a proof of minimum length n+ 1. We discuss the last rule applied in the 
roo] of A I- D : 

\A\ [CUT]: We have [I'] S IAI and \AI * 161 S IBI by the induction hypothesis; thus, [I'] * 16I S 
* l~I s; IBI. 

a dThe passage through the rules [EXCH] and [lL] follow from the fact that Q is commutative 
n that 1 is the unit of Q. 

[®R]: II'J :S JAI and \61 s IBI (induction hypothesis) yield, then [I'] * J6J S IAJ * JBJ. 
[®L]: This works by definition of interpretation. 

[&R]: By induction, Jrl s JAI and Jrl S JBI, and so lr\ S JAI /\ IBI. 
[&l] and [&2] : We have JrJ * \AI s JCI ( induction hypothesis); thus 

Jrl * (IAI /\ IBI) s Jrl * IAI s JCJ. 
The other rule is similar. 

[EBL], [EBl), [EB2]: Same argument as in &, using V in place of A. 

[-o R]: Induction yields [I'] * JAI s IBI; thus, by adjointness If! S IAJ -+ JBJ. 
[-o L]: The induction hypothesis yields !fi S IAI and l6I * IBI S JCJ. Thus, 

(IAI -+ IBI) * [I'] * J6I S (IAI -+ \BI)* JAI * l6I S IBI * \6I S ICJ. 
[V R]: By induction, there is a variable y such that Jrl S IA[y/x]J; but then 

lfl s IA[y/x]I s vy JA[y/x]J. 
w F e now state a Fact whose proof is routine : 

-lgj_: ir r . . . . . . Provabl . 'A I- B 1s provable in n steps and x 1s not free m either r or B, then r, A(y/x] I- B is 
e m n steps for every y E V. 

the [i L]: Supposse that last rule applied was [V L]. Since x is not free in r, B, by induction and 
act above, we may assume that [I'] * JA[y/x]J S JBJ, for every YE V. 
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I IBI i.e. Thus, IA[y/x]I ~ ir1-+ IBI for every y E v and so IVxAI = vy IA[y/x]I s If ---+ ' lfl * IVx.AI ~ IBI. 
[A L]: This is treated just as [V R], above. 

[/\ R]: Suppose that last rule applied was [/\ R]. Since x is not free in I', induction and ~c ~j 
above allow us to assume that II'I ~ IA[y/x]I, for every y E V. It is then clear that lfl '.S /\y I [y ending the proof. D 

1. . an an~· Before we prove completeness, we need a general result about quantales (genera izmg 
ogous result about Heyting algebras in [Mirl). 

. er· Definition 6.6 An autonom.ous poset is a partia/ly ordered set P with a binar-y associaiivc op ,, 
ation ® such that the endomorfisms a ® · and · ® a have right adjoints, denoted by a ---+r · a a -+1 ·, respectively. 

A [0, V]-autonomous lattice L is an autonom.ous posei wher·c L is a lattice and such fkatf: 
is distributive for a/I V 's which exists in L,. =. if S <:; L such that exists V S in L, the•v S), 
every a E L, v,Es( a 0 ., ) and V •ES( s 0 a) ezisis m L, and we have that V ,Es( a 0 s) = a 0 ( Vses(s ®a)= (V S) ® a. 

If S, T are subsets of L, define 

S · T = { a ® b : a E S and b E T}. 

Definition 6.7 Lei L be a lattice and I <:; L an ideal (i.e., if x E J and y <; x 
x, y E J then x V y E J). We say that I is complete if it satisfies: 

if S s;;; I such that V L S exists, then V L S E J. 
Since an arbitrary rneet of completc ideals is again a complete ideal, 

C I ( L) = {I C:: L : I is a comp/ eie id eal i n l ), is a comp/ eie lattice o rd ered by i nclusioni a~ containing, for eacli a E L, 

J· ii then Y E 1 

a-={xEL:x:Sa}. 
If a E L and S s;;; L is a subset of L, define 

and 

Lemma 6.8 Let L be a /0, V]-autonomous lattice, a E L and S <:; L. Then 
(a) Tf T E Cl(L), then a-,, I and a--., l are in Cl(L). 
(b) For every S, T s;;; L and J( E CI(L); we have 

s. T c:: K iff s c:: n,ET( a -,, K) iff T' <:; n,Es( a ->, K)' where S · T = { a ® b : a E S 
I 
b E T}. 

Proof:(a) If x E a->, I, lhen there is c E J such that. x < a _, c- th. .
1 

h < a Arr 
and therefore y E a --tr J. - r , us, 1 Y '.S x t en Y - 

If x, YE a --tr I, then there are c d E J such that < c 

' x - a --tr c, and y < a --t d· there1ore 
- r ' x V y '.S (a --tr c) V (a --tr d) S: a --tr (c V d), 
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Yields x v YE a -+r I, because c V d E /. 
s < Let S ~ a -+r I be such that c = V L S exists. For every s E S there is C8 E / such that 
- a "-?r Cs, i.e., a 0 s S c

8
• Since / is an ideal, a® s E /, for all s E S. Then, 

a ® c = a ® V sES s = V sES a ® s E /, 
because I is complete. But this means that c E a -+r I. A similar computation will prove that 
a -+1 I E CI(L). 
and(~l Let x E S and a E T and assume that S · T ~ I<; since x® a= c E I<, then x Sa -+i c 

us x E a -+1 I<, for every a E T. 
suc:ow, eupposc that s <;; n.ET(a __,, K), x E s and a E T; since x E a __,, K, there is c E K 
ca bthat x S a -+1 c, i.e. x 0 a s c. Since I< is an ideal, we get x® a E I<. The other equivalence 
n e handled similarly. o 

Theorem 6 9 ( . · The completion of a [®, V]-autonomous latiice} 

»« L: L be a [ 0, V]-a utonomous latiice with O, T . Th eti, there exisis a qua ntal e Q and a n i n jecti ve 
p : L --+ Q such that 

an/· </>(O) = 0, </>(T) = T. Moreover, ip preserves all V 's and I\ 's existing in L, i.e., if ViEJ c, 
/\jEJ bj ezists in L then 

' 
<fa(ViEJai) = ViEJ<fa(ai) and <fa(/\jobJ = /\jo<fa(bj)- 

2. For all a, b E L, 

(i)rj>( a 0 b) = ip( a) ® <J>( b) 
(ii) r/>(a -+r b)= <J>(a) -+r ip(b) and </>(a -+1 b)= <fa(a) -+1 </>(b). 

3· If a 0 b= b® a for every a, b E L, then Q is commutative. 

and
4· If L is unital i e there is 1 E L such that a® 1 = a = 1 ® a) V a E L, then Q is unital 
<P(l) - ' .. J 

- 1Q, 
5· If in addiiion, L has a cyclic dualizing element ..L, then Q is a Girard quantale and </>(-1-) = ..L. 

Proo~ S . et Q = C J ( L) and define in Q the operat1on 
(I) I* J =def n{ J{ E Q : J{ 2 1 · J}, 

Wh . * eire I· J = { a 0 b : a E J b E J}. Clearly * is increasing in both variables. By Lemma 6.8, 
¾d]" ' . * · have right adjoints I -+r J and J -+1 J, g1ven by 

naEl(a --+r J) and naEl(a -+1 J), 
respecf rvely. Thus V J J E Q 

) ) ' 
(II) J* J ~ J{ iff I~ J -+1 I< iff J~ I -+r I<. 

Formulas (I) and (II) wiU be of constant use. To show that * is associative, we need 
Fa t . 
~: Let 1,J,K E Q. Then 
p A= {H E Q: J-I 2 (I* J)· I<} = {J-I E Q: H 2 1 ·(J* I<)} = B. 
~of R.,n,. , h f 11 . f . l' . ~ : We have, using Lernrna 6.8, t e · o owmg sequence o irnp ications 
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T/ C J ---+r H. . (J' T.") J T{ c I -+ H =} J * 11. -- 
H -:> (I* J). K =} H ;:2 (J. J). J{ ==J. . 11 =} · 1' _ r 

- · · Id B c A The last terrn implies fI:;, I. (J* I<) and A<:; B. Simila.r rcasonmg yie s - . d·stribut• 

· t· We now must show that * 1 
It folows directly from the Fact that * is assoc1a ive. 

over suprerna. Observe th•
1 Let J E Q and Ua)oEA c:; Q; we shall provc that J * V t; = V(J_ * I\).a s true. No• v i; = n{H E Q : H ;:2 Ucr Icr}_, as _wel! as that V(I * Icx) ~ I* v t; IS a w y 

we have the following sequence of 1mphcat1ons •/ ,) 

LJ]cx ~ f ---+r ]\ . 
J{ ;:2 LJ(I * Icx) =-c} J{ ;:2 J* Icx, V o: E A =} I; ~I-+,. K, V a E A =} 

=} Vlcx~l--+rK =} l*Vlcx~K, 

'b . . . . ·1 d Q . . deed a quantale- and so 1 * V Icx ~ V(I * Icx), Right distn utivity Is suni ar an so IS m 
Before defining the map </>, we state 

Fact 2 : For a, b E Q 

(i) a- -+r b-== (a -+r b)- and a- -+1 b<-== (a -+1 b)-. 

) 
(ii) If S ~ L is such that a == V S exists in L, then V~Es s._ == a-. 
(iii) If s <:; L such that a = /\ s exists in L, the n a- = /\.,ES ,- = n,ES ,- . 
(iv) a._* b._== (a® b)<-·. 

< b and so, Proof of Fact 2 : (i) Let K E Q be such that a.-* J( <:; b-; for x E J(, we have a 0 x - 
x S a -,, b. Thus, J( <:; ( a -., b)-, proving that «- ->, b- <:; ( a -•, b J-. d ~ 

For the rcvcrse inclusion, considcr x S a and y S a --., b; then x 0 y S a 0 ( a --->, b) S_ b::;' b", 
a-· ( a -., b J- <:; b-, i.e., a-* ( a -., b J- <:; b'·. This last relation irnplies ( a --->, b J- <:: a ' 
as needed. For the operation -+1, the argurnent is similar. 

(ii) If V S = a, then ,- <:; «- for every s E S, and so it is clear that V ,ES ,- <:: a-· 
If fI :;, U,Es s - , s in ce fI is corn plete, it follows that a E H. 
( ii i) Is similar to (ii). 

b( (iv) If x Sa, y S b then x 0 y Sa 0 b imp]ies a•·· b-<:; (a 0 b)-. Thus, a-* b- c;; (a 
0 

ull 

Now, if H 2 a-· b- then a 0 b E fI and we gct ( a 0 b)- <:; fl. By the definition of * (forJ1l 
(I)), this yiclds ( a 0 b J- <:; «- *b-, as desired. This ends the proof of Fact 2. 

We now define 

,f,:L-.-,q by <f(a)=a•·. . p 
Clearly ,j, is injectivc and, by Fact 2.(ii) and (iii), prcserves all existing V's and f\'s 

1
~jol 

Furt hermore, ,f, ( 0) 'C { 0} ( th c smallcst corn p I ete id cal in L) and ,t,( T) = L = T Q. T be p rcserv;,til 
of the others operat1ons IS guaranteed by Fact 2.(i) and {iv). This shows t.hat ,j, has the prop in items I and 2 of the statement. . 

It is q ui te clear from the defini tion of * ( see (J), above) that q wil! be com m u t at i ve i~'/ 
commutative in L. Moreover, if L is unital, straightforward computation will show tha! ,f,(l) - is the unit of Q. 

pl {d) Let J. E L be a cyclic dua]izing elernent in L. Clearly J.- E Q is cyclic and there 
0 
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~r: {I_~ Q: j(I) = J} is a Girard quantale, wherej: Q--+ Q given by j(J) =(I-> 1_+-) _. J_+­ 
ernb p:~~tion 1.1~)- Moreover, a+- E Qj, for every a E L. Thus, the map j o </> : L --+ o, is an 

e Ing of L m a Girard quanatale, with all the required properties. D 

We can now prove 

Theorem 6 r ~ A . .10 (Completeness) If If f- AIQ ;::: 1 for all interpretations in quantales Q, then 
is provable in (LLI). 

Proof- 0 ~ ur method wil be to show that the Lindenbaum algebra L of (LLI) can be embedded in 
ommutative unital quantale Q, such that [I' f- AIQ ;::: 1 iff r f- A is provable. · 

Define in FO R(Li) the relation: 
A l"V B iff A f- B and B f- A are provable. 

It· A/ '""·Is easily seen that /"V is an equivalence relation. Its equivalence classes shall be denoted by 

Let L b h . . rel t· e t e set of equivalence classes, 1.e., L = {A/,,_, : A E FOR(Li)}. In L, define the 
a ion: 

A/,,_, ~ B/,,_, iff A f- B is provable in (LLI). 

F By [ G UT], S: is a partial order in L. Moreover, for forrnulas A, B in LLI, we have 

~·lfA · , B are formulas in (LLJ), then 
1. (A&B)/,__,=(A/,,_,)l\(B/,,_,) and (AEBB)/"'=(A/"')V(B/,,_,). 
2· 1\Ev(A[y/x]/,__,) = (/\x.A)/,,_, and vyEv(A[y/x]/__,) = (V x.A)/__,. 
3. 0 - 0/ P - "' and T = T / ,,_,. 

-lQ.Qf__of F;:,rt , . do th~ '. All these equalities can be_ read off the _correspondmg rules of the calculus. We 
used 

1 
rst one m each of items 1. and 2. m sorne detail, JUSt nammg the rules that should be 

or the other cases. 

On ~h:rom [AXl], [&l] and[&] we get A&B f- A,B _and so (A&B)/,,_, ~_A/"', (A&B)/"' ~ B/,__,. 
other hand, if C f- A and C f- B, then [&R] y1elds C f- A&B. This means that 

C/,,_,~ A/"', C/"'~ B/- :::} C/,,_,~ (A&B)/,,_,, 
P~oving that (A&B)/,,_, = (A/,,_,) I\ (B/"') in L. 
Similarly, [AXl], [EBl], [EB2] and [EBL] will yield (A EB B)/__,= (A/__,) V (B/,,_,). 
2· By [AXl] and [/\L], (/\x.A)/"'~ A[y/x]/,,_,, for every YE V. 

and I~:/"' S ~[y/x]/,..,, for every y, let z be a variable not ocurring in B. Then, B/"' :S A[z/x]/,.., 
R [/\R] yields B/-'.,'. (/\xA)/-· This proves that /\,Ev(A[y/x]/-) = (flx.A)/-- 
"or the existential quantifier, the reasoning is the same, using [AXl], [V R] and [V L]. 
3- 'n · . 118 follows directly from [AX2] and [AX4], endmg the proof of Fact 1. 

Define i L . . n a binary operation * by : 

(A/"')* (B/,,_,) =def (A@ B)/"'. 
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1/ 1: . · · · both variables and N 
Clearly, * is well defined, is associative, commutative, mcreasmg m 

the unit. We have . 

. fi d b L · [/0, V] autonomous [attice. Fact 2 : With the opcrerion * de ne a ove, " a "'' ern 

. . . d d' t 'b t s over the supr Proof of Fact 2 : It remains to be shown that * has nght adjoints an Is n u e 
existing in L. 

If A, B, C are formulas in (LLI), then 
( +) 

. vable. 61 iff A f- B --O C is pro A ® B f- C is provable iff A, B f- C is prova e 

To sce this, note that [0R) yields A l ;J C A~~ B 
' 

Thus if A ® B f- C is provable, [CUT] implies that A, B f- C is provable. 

The converse cornes directly from [®L] as 

I 
A,B f- C . 

A ® B f- C 
From [---0R] we get A, B f- C . 

A C B-o C ble 
. . . B B C f- C is prova ' To show that the last clause m ( +) unphes the second, first note that , _,, " 

because we can use [---0R] as -11.J:_ B C f- C . 

B,B---0C f- C C 

· f A B f- . 
Thus, the provability of A C B-o C and B, B-o C C C and [CUT) yield that o , 

It is clear from ( +) that (A -o · )/ ~ is the rigth adjoint to A/ ~ * · = · * A/ ~ in L. L 
To show that * distribut.es over the sup's in L, let S <:;; L be such that there is A!;)\, 

satisfying A/,= VLS. Fix B/, E L. Since * is increasing, (B/,)* (X/,) '.c (B/,)* (A'' every X/,..,, E S. 

. t for Let F/, E L such that (B/,)* (X/,) '.c P/,, for every X/, E S. By (+) we have that, X/"' in S, 

B 0 X C P is provab]e iff X C (B -o F) is provable, J 
\/X/, E S; taking sup's, we get A C (B -o P) is provablc. Thus, B 0 A C P is provable, ·:~ 

so (B/,)* (A/,) S: P/,. But this means lhat Vx/,cs((B/,) * (X/,)) exists in L, and it's eq to (B/-)* V L S, ending the proof of Fact 2. 

. . . . letioO Therefore, L 1s a commutal1vc [0, V]-autonomous latt,ce and by theorem 6.9 it. has a comp 

I 

I 
if, : l ---> Q, where Q is an unita] commutative quantale. Moreover, </, preserves 0, -

0
, O, ' 

and aJ] cxisting V's e /\'s in L. Conscquently, if X, Y are formulas in (LLI) we have 

r/>(X/,,.,)$</)(Y/,..,,) iff X/-5:Y/,_,. 

. n bY It fol!ows from these pre$ervation properties that the map I· IQ : POR(JL,) --, Q g,ve ; 
/ A I Q = if,( A/,) is an iu terpretation of q uru,tales such t hal I r C A I :,: 1 i ff r C A is p rovab !e, required to complete the proof of the Theorem. D 

. ;i, Before we give logica] applicalions of the preceding results, we need to investigate when rs 
that a quantale becomes a frame. From Lemrna 6.4 comes : 

Corollary 6.11 Let Q be a quantale. ff Q has a largest loca/lic subquantale L, then 
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L = I( Q) = { a E Q : a2 =a}. 

Proof · W, 1 ~ • e must have L ~ I( Q) because every x E L is idempotent (proposition 1.19). 
For a E I(Q) . . . arbit , set La = { 0, a}. By Lemma 6.4, La 1s closed under ®; 1t 1s clearly closed under 
rary V's a d L · b 1 f Q F l · · · and idem ' n so a 1s a su quanta_e_ o . urt 1ermo~e, eve~y x E La 1s two-sided (m La) 

and th potent. It follows from Propos1t1on 1.19, that L; 1s localic. Thus, L; ~ L, i.e., a E L, 
erefore J( Q) ~ L. 0 

the The next result is a correction of Theorem 3.4.1 in [ROS], which is false as it stands. In fact, 
USual quantale of phases of Linear Logic is a counterexample to that result. 

Propos·t· 1 Ion 6.12 Let Q be a quaniale. Are equivalent: 

(l) Q has a largest localic subquantale . 

(2) l(Q) is a localic subquantale of Q. 
(3) For all every a, b E J(Q), a® b= b® a::; a I\ b (/\ in Q or in I(Q)). 

~ (l) ==> (2) comes from Corollary 6.11, while (2) =} (3) is immediate. 

Und(3) ==> (1) : Because J(Q) is commutative, it is closed under co. To show that I(Q) is closed 
er su ' 1 (*) P 8, et { ai}iEI ~ J( Q). Then: 

(**) v,E, a, = V,o( a, 0 a,) '.o Vi,jEJ( a, 0 a;) = (V,o a,) 0 (V;EI a;); 
b (ViEJai) ® (VjEiaJ = ViEI(VjEJ(ai ® ai)) ~ ViEJai, 
ecause a· . . so J ( Q) . ' 0 a j S a, for every J E J. From ( *) and (**) it follows that V iEI a; is idempotent and 

18 a subquantale of Q. 
Th}0 ~how that J( Q) is locallic, observe that it follows from 3. that a® b::; a, for every b E /( Q). 

s, v a E J( Q), 
Wh' a® V I(Q) = VbEI(Q)(a ®b)~ a and (V J(Q)) ®a~ a, 
l.l~ch shows that all elements of J(Q) are idempotent and two-sided in J(Q). Now, Proposition 
idelll. g~arantees that J( Q) is localic. If L ~ Q is a localic subquantale then every x E L is 

,/ tent (Proposition 1.19) and so L ~ I(Q). D 
the h~s, in a commutative Girard quantale Q, I(Q) is the largest frame contained in Q. From 
· . Point of · · · · d 1 11· b t 1 th t d · 1ti
00

· t· view of Logic we have a pnveledge oca 1c su quan a e, , a correspon s to mtu- 
1s ic L . . ' . . . . . . . . a Gir ogic. However, the situation 1s quite different m the non commutat1ve case : m general, 

one r:iz~uantale will not have a largest_ locallic subquantale. If_ one considers Proposition 1.14, 
quant· s the importance of commutat1v1ty: there 1s a largest mterpretation for \ m a Girard's 

ale Q f L · f' · . ' corresponding to the 1argest arnong rames satis ymg 
(i) L c -Z(Q) (ii)L~l-={xEQ:x~l} 
In fact Q 'l' , ' ! === J(Q)nZ(Q)n1-, where Z(Q) is the center of Q. 

syste he quantale theoretic setting will be helpfull in finding axioms that, when added to various 
(colll. rns of Linear Logic produce classical intuitionism and classical logic. We have the simple 

Pare with ' proposition 1.19), 
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L Are Lemma 6.13 Let L be a complete lattice and * : L x L ---+ L a binary operation on · 
equivalent: 

( i) * = A. 

(ii) (a) X*X=xforeveryxEL. 

(b) x * T :::; x} T * x :::; x for every :r E L. 

(c) * is increasing in both variables. 

Proof: (i) =} (ii) is clear. 

(ii) =} (i) : We have a* b:::; a* T :::; a; a* b:::; T *b:::; b and therefore, a* b~ a A b. 

On the other hand, since * is increasing a A b= (a A b)* (a A b):::; a* b. D 

h d. lts we get An analoguos ( and dual) result holds for the operation V. From t e prece mg resu 

Corollary 6.14 Let Q be a quantale. Are equivalent: 

(i) Q is a [rame, i.e., ®=A. 

( ii) every x E Q is idempotent and two-sided. D 

This Corollary and the completenes Theorem 6.10 yield 

Proposition 6.15 {a) The system (LI) obtained from (LLI) by adding the axioms 

[IDl) f--A®A-oA [ID2) f--A-oA®A [2S] f--A®T-oA 
determines intuitionistic loqic, and therefore if we add to (LI) the axiom 

[,,] (A -o 0) -o Of-- A 
we get classical loqic, where 1 is equivalent to T and 1 -o O is equivalent to O. 

ctiol Thus, adding the axioms [ J D!], [ f D2], [2S] and [ R =], [ S =], [T =], [ SU B ST], [<; 1] [see se /of 
2) to (LLI) we obtam a zntmtzonzstzc theory of equality} which becomes first order classzcal 
with equality upoti the addition of[,,]. 

(b) The system (MALLl) obtained from (LLI) by adding the constant formula _l_ to the /aW 
guage and the axiom 

[,-7'] (A -o 1-) -o 1- ~- A} 
is equivalent with (M ALL) in the following sense: 

1-- A is provable in (MALL) iff f-- A is provable in (MALLl)
1 . e1, where A.L and A LJ B are interpreted as A -o J_ and ((A -o J_)® (B _

0 
_1_)) _

0 
J_

1 

respectiV 
Thus, adding J_ to the language we have that 

(LLI) + the axioms [,,'], [R =], [S =], [T =], [SU BST], [I=],[:::; 1] is equivalent to (LLEo), 
where (LLE0) is described in Definition 2.6. 

. . . l ,it /I {c) Addmg [I Dl], [I D2] and [2S] to (M ALL) prod11,ces classical logic, where 1 is eqw,va e T} and O is equivalent to J_. D 
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P
llremdark 6-16 The possibility of obtaining (M ALL) from (LLI) in pari (b) appears in [Dos] 
ove b dffi ((A Ya z erent method: one inierpreis A-o B, A&B and (\x.A as (A@ (B-ol.)) -ol., 

Jo U-o ..L) EB (B-ol.)) -ol. and (V x.(A-o l.)) -ol., respectively, toqether with the interpretaiion 
r maked in {b). 

sh Since ( a @ b) -o c = a -o ( b -o c) and b = I ---0 b, in every commutative quantale, it can be 
(;~}tat his inte:pretation of luiear implication is equivalent to adding [-,-,'j t~ ( LLI) to obtain 

) (translatzons for & and(\ are derived and a consequence of the ones qiien}, 

sirn ~s a matter of fact, we can extend this result to non-commutative intuitionistic linear logic, 
al t y by observing that each rule of (LLI) determines an algebraic property of the Lindenbaum 
tog~. ra of the clculus. For a general unital quantale, we need two implications, ---01 and --Or , 

Pro isc~rd the exchange rule [EXCH], as well as to modify the rules in order to describe the 
ess:~~ties of each operation. We can define a linear calculus which describes unital quantales, 

n ially the same as in [Abr]. 

befin·r co . 1 ~on 6.17 The calculus ( N C LLI) for noncomutative jirst-order linear intuitionistic logic 
nsiSt zn the following rules and axioms: 

[AX1] A f- A 

[AX3] f- 1 
[AX2] 

[AX4] 

f f-T 

f,0,61-A 

[CUT] r f- A E, A, 6 I- B 
E,f,6 I- B 

[®R] _r f- A 6 f- B 
r,6 f-A@B 

[lL] f, 6 I- A 
f,1,6 I-A 

[&R] Jf-A fi-B r f- A&B 
[&L1) _r, A,~ 1- c 

r,A&B,~ I- C 

[EBL] 

f,A,B,6 I- C 
f,A@B,6 I- C 

f,A,61- c r,B,61- c 
r,AEBB,61-C 

[@L] 

[&L2] 

[EBRl] 

[-o, L] _rf-A E,B,61-C 
E, A -o1 B, I', 6 1- C 

_If-A E,B,61-C 
E,r,A-or B,61- C 

[EBR2) 

f,B,61-C 
I',A&B,61- C 

fi-B 
rl-AEBB 

[-01 R] 

[V R] ~ 
r f- Vx.A 

[/\L] ~[y/x], 61- B 
r, /\x.A,~ 1- B 

[V L] If x is not free in I', 6, B then 

I', A I- B 
I' I- A -01 B 

A, I' I- B 
r I- A-o,. B 

f,A,61- B 
f, Vx.A, 61- B 

[/\R] If x is not free in r then r I- A 
r I- /\x.A 

With the . %antal same method employed in Theorems 6.5 and 6.10, Theorem 6.9 yields that unital 
es are ( ) a complete and sound class of models for NC LLI : 
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Theorem 6.18 : {Completeness and Soundness for (NC LLJ)) 
· t tions of A sequent r f- A is provable in [NCLLI] iff r f- A is valid in every inierpre a 

quantales. 
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