
 

 
 

UNIVERSIDADE DE SÃO PAULO 
Instituto de Ciências Matemáticas e de Computação 
                                                                                                 ISSN 0103-2577 

 
 

 

 
 

 
 
 

 
_______________________________ 

 
GLOBAL DYNAMICAL ASPECTS OF A GENERALIZED 

SPROTT E DIFFERENTIAL SYSTEM 
 
 

REGILENE OLIVEIRA 

CLAUDIA VALLS 

 
 

 

No 412 
_______________________________ 

 
 

NOTAS DO ICMC 
 

    SÉRIE MATEMÁTICA 

 
 
 

 
 
 
 
 
 
 

São Carlos – SP 
Set./2015 



Global dynamical aspects of a generalized

Sprott E differential system

Regilene Oliveira1 and Claudia Valls2
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Abstract
In this paper we consider some global dynamical aspects of the generalized Sprott E differential

system
ẋ = ayz + b, ẏ = x2 − y, ż = 1− 4x,

where a, b ∈ R are parameters and a 6= 0. This is a very interesting chaotic differential system with
one equilibria for all values of the parameters. We show that for b sufficiently small it can exhibit two
limit cycles emerging from the classical Hopf bifurcation at the equilibrium point p = (1/4, 1/16, 0).
We use the Poincaré compactification for a polynomial vector field in R3 to do a global analysis of
the dynamics on the sphere at infinity. To show how the solutions reach the infinity we study the
existence of invariant algebraic surfaces and its Darboux integrability.

Keywords: Hopf bifurcation; Poincaré compactification; invariant algebraic surface; Sprott E system

1 Introduction and statement of the main results

Chaos, an interesting phenomenon in nonlinear dynamical systems, has been developed and intensively
studied in the past decades. A chaotic system is a nonlinear deterministic system that presents a complex
and unpredictable behavior. The now-classic Lorenz system has motivated a great deal of interest and
investigation of 3D-autonomous chaotic systems with simple nonlinearities, such as the Lorenz system
[8], the Rössler system [9] and the Chen system[2]. All these system have seven terms and have two or
one quadratic nonlinearities. Sprott [10] found 19 simple chaotic systems (called Sprott systems) with no
more than three equilibria, one or two quadratic nonlinearities and with less than seven terms.

In [11], Wang and Chen proposed a generalization of the Sprott E system (that we will call the
Wang–Chen system) with a single stable node–focus equilibria and 1–scroll chaotic attractor. This new
system is very interesting because for a 3-dimensional autonomous quadratic system with a single stable
node–focus equilibrium one typically would expect the non existence of a chaotic attractor. We recall
that the Lorenz system and the Rössler system are all of hyperbolic type, while the Wang–Chen system
is not hyperbolic. In fact, they proposed a system which is the original Sprott E system with a new
parameter that causes a delay feedback. Since the stability of the single equilibrium changes from one
system to the other the Wang–Chen system is not topologically equivalent to the Sprott E system.

In the investigation of chaos theory and its applications it is very important to generate new chaotic
systems or enhance complex dynamics and topological structure based on the existing of chaotic attrac-
tors. It is also very important to study the stability of the equilibria of the system. This is a very
challenging task, but one of the mechanisms could be the addition of new parameters to a given system.
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Figure 1: The chaotic atractor of system (1) when a = 1.1 and b = 0.006: 2D views on the xy-plane,
yz-plane, xz-plane and the 3Dview.

In this paper we modify the Wang–Chen system by considering more parameters in the nonlinear
part, expecting to cause more chaotic behavior. Although the most natural way would be to add two
parameters in the quadratic part (the system has only two quadratic terms) it is easy to see that with
a linear change of coordinates the system with two additional parameters can be reduced to a system
with only one additional parameter. More precisely, we study the following generalization of the Sprott
E system

ẋ = ayz + b,

ẏ = x2 − y,
ż = 1− 4x.

(1)

where a, b ∈ R are parameters and a 6= 0. This system for a 6= 1 (when a = 1 system (1) is the Wang–Chen
system) also generates a 1-scroll chaotic attractor as shown in Figure 1.

The first goal is to study all possible bifurcations which occurs at the equilibrium point p =
(1/4, a/16,−16b/a) of system (1). The first bifurcations that we may study are the codimension one
bifurcations. Three elementary static bifurcations are associated with a simple zero eigenvalue of the
Jacobian matrix at the equilibrium point: saddle-node, transcritical and pitchfork bifurcations. Easy
calculations show that for any value of a, b ∈ R with a 6= 0 system (1) has never a zero eigenvalue. So we
will study the other codimension one bifurcation: the Hopf bifurcation. We recall that for the arguments
above we will not have a zero–Hopf bifurcation. For the same reason our system (1) will not exhibit the
well known codimension two bifurcation of Bogdanov–Takens.

We will study analytically all possible classical and degenerate Hopf bifurcations that occurs at the
equilibrium point p of system (1). For this, we will use the classical projection method to compute the
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Lyapunov coefficients associated to the Hopf bifurcations. More precisely, our first main result, concerning
Hopf bifurcations is the following.

Theorem 1. The following statements hold

(a) Let C = {(a, b) ∈ R2 : a > 0, b = 0}. If (a, b) ∈ C then the Jacobian matrix of system (1) in p has
one real eigenvalue −1 and a pair of purely imaginary eigenvalues ±i

√
a/2.

(b) The first Lyapunov coefficient at p for the parameter values in C is given by

l1(a, 0) = − a2(16− 40a+ a2)

(1 + a)(4 + a)(256 + 69a+ a2)
.

If 16− 40a+ a2 6= 0 then system (1) has a transversal Hopf point at p for b = 0 and a > 0. More
precisely, if a < 4(5− 2

√
6) or a > 4(5 + 2

√
6) then the Hopf point at p is asymptotic stable (weak

attractor focus) and for each b > 0 but sufficiently close to zero there exists a stable limit cycle near
the unstable equilibrium point p. If 4(5−2

√
6) < a < 4(5+2

√
6) then the Hopf point at p is unstable

(weak repelling focus) and for each b < 0 but sufficiently close to zero there exists an unstable limit
cycle near the asymptotically stable equilibrium point p.

(c) The second Lyapunov coefficient at p for a = 4(5− 2
√

6) and b = 0 is given by

l2(4(5− 2
√

6), 0) =
256(−267817529746 + 109358484143

√
6)

48101385991833
> 0.

Since l2(4(5 − 2
√

6), 0) > 0 system (1) has a transversal Hopf point of codimension 2 at p for the
parameters a = 4(5− 2

√
6) and b = 0 which is unstable.

(d) The second Lyapunov coefficient at p for a = 4(5 + 2
√

6) and b = 0 is given by

l2(4(5 + 2
√

6), 0) = −256(267817529746 + 109358484143
√

6)

48101385991833
> 0.

Since l2(4(5 + 2
√

6), 0) < 0 system (1) has a transversal Hopf point of codimension 2 at p for the
parameters a = 4(5 + 2

√
6) and b = 0 which is stable.

In Theorem 1 we have analyzed the Hopf and degenerate Hopf bifurcations of system (1). We have
analytically proved that there exist two points in the parameter space for which the equilibrium point p
is a codimension 2 Hopf point. With the analytical data provided in the analysis of the proof of Theorem
1 we will conclude a qualitative information of the dynamical aspects of system (1). There are regions
in the parameter space where system (1) has two limit cycles bifurcating from the equilibrium point p
which are described as follows: for l1 < 0 and b > 0 with |l1| � b > 0 for the parameters where l2 > 0
and for l1 > 0 and b < 0 with l1 � |b| > 0 for the parameters where l2 < 0.

Theorem 1 will be proved in Section 3. For a review of the projection method described in [5] and
the calculation of the first and second Lyapunov coefficients, see Section 2.1.

We note that system Sprott E has no parameters so it can not present any bifurcation and the
Wang–Chen system has no codimension two transversal Hopf points.

Now we continue the study of the global dynamics of system (1) by studying its behavior at infinity.
For that we shall use the Poincaré compactification for a polynomial vector field in R3 (see Section 2.2
for a brief description of this technique and for the definition of Poincaré sphere).

Theorem 2. For all values of a ∈ R \ {0} and b ∈ R, the phase portrait of system (1) on the Poincaré
sphere S3 is topologically equivalent to the one shown in Figure 2.
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Figure 2: Global phase portrait of system (1) on the Poincaré sphere at infinity.

Theorem 2 is proved in Section 4. Note that the dynamics at infinity do not depend on the value of
the parameter b because it appears in the constant terms of system (1). It depends on the parameter a
but the global phase portraits at the Poincaré sphere for different values of a are topologically equivalent.
From Figure 2 we have four equilibrium points at infinity, two nodes and two cusps and there are no
periodic orbits on the sphere.

The Poincaré sphere at infinity is invariant by the flow of the compactified systems. A good way
to understand how the solutions approach the infinity is studying the behavior of the system along of
invariant algebraic surfaces, if they exist. More precisely, if system (1) has an invariant algebraic surface
S, then for any orbit γ not starting on S either α(γ) ⊂ S and ω(γ) ⊂ S, or α(γ) ⊂ S3 and α(γ) ⊂ S3 (for
more details see Theorem 1.2 of [1]) and, α(γ) and ω(γ) are the α−limit and ω−limit of γ, respectively
(for more details on the ω– and α–limit sets see for instance Section 1.4 of [4]). This property is the key
result which allows to describe completely the global flow of our system when it has an invariant algebraic
surface and, consequently, how the dynamics approach the infinity. Guided by this we will study the
existence of invariant algebraic surfaces for system (1). The knowledge of the algebraic surfaces and the
so called exponential factors (see again Section 2.3 for definitions) allow us to characterize the existence of
Darboux first integrals. It is worth mentioning that the existence of one or two first integrals for system
(1) will much contribute to understand its dynamics and so its chaotic behavior.

Theorem 3. The following statements holds for system (1)

(a) It has neither invariant algebraic surfaces, nor polynomial first integrals.

(b) The unique exponential factor is exp(z) and linear combinations of it. Moreover the cofactor of
exp(z) is 1− 4x.

(c) It has no Darboux first integrals.

The paper is organized as follows. In Section 2 we present some preliminaries. In Section 3 we prove
Theorem 1. The dynamics at infinity is studied in Section 4. In Section 5 we prove Theorem 3.

2 Preliminaries

2.1 Hopf bifurcation

.
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In this section we present a review of the projection method used to compute the Lyapunov constants
associated to Hopf bifurcations described in [5].

Consider the differential system
ẋ = f(x, µ), (2)

where x ∈ R3 and µ ∈ R3 are respectively vectors and parameters. Assume that f is quadratic and that
(x, µ) = (x0, µ0) is an equilibrium point of the system. Denoting the variable x− x0 by x we write

F (x) = f(x, µ0) as F (x) = Ax +
1

2
B(x, x), (3)

where A = fx(0, µ0) and, for i = 1, 2, 3

Bi(x, y) =

3∑
j,k=1

∂2Fi(µ)

∂µj∂µk

∣∣∣
µ=0

xjyk. (4)

Suppose that (x0, µ0) is an equilibrium point of (2) where the Jacobian matrix A has a pair of purely
imaginary eigenvalues λ2,3 = ±iω0, ω0 > 0, and admits no other eigenvalues with zero real part. Let
T c be the generalized eigenspace of A corresponding to λ2,3, i.e., the largest subspace invariant by A on
which the eigenvalues are λ2,3.

Let p, q ∈ C3 be vectors such that

Aq = iω0q, Atp = iω0p, < p, q >=

3∑
i=1

piqi = 1,

where AT denotes the transposed matrix of A and p is the conjugate of p. Note that any y ∈ T c can
be represented by y = wq + wq, where w =< p, q >∈ C. The 2-dimensional center manifold associated
to the eigenvalues λ2,3 = ±iω0 can be parameterized by the variables w and w by the immersion of the
form x = H(w,w), where H : C2 → R3 has a Taylor expansion of the form

H(w,w) = wq + w q +
∑

2≤j+k≤6

1

j!k!
hjkw

j wk +O(|w|7),

with hjk ∈ C3 and hjk = hkj . So substituting this expression in 2 we get the following equation

Hwẇ +Hwẇ = F (H(w,w)) (5)

where F is given by (3). The vectors hjk are obtained solving the linear systems defined by the coefficients
of (5), taking into account the coefficients of F in the expressions (3) and (4). So system (5) on the chart
ω for a central manifold, is writing as

ẇ = iω0w +
1

2
w|w|2 +

1

12
G32w|w|4 +

1

144
G43w|w|6 +O(|w|8),

with Gjk ∈ C.

More precisely, we have
h11 = −A−1B(q, q),

h20 = (2iω0I3 −A)−1B(q, q),

where I3 is the identity matrix. For the cubic terms, the coefficients of the terms w3 in (5), we have

h30 = 3(3iω0I3 −A)−1B(q, h20).
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From the coefficients of the terms w2w in (5), in order to solve h21 must take

G21 =< p,B(q, h20) + 2B(q, h11) > .

We define the first Lyapunov coefficient l1 by

l1 =
1

2
ReG21.

The complex vector h21 can be found by solving the 4-dimensional system(
iω0I3 −A q

q 0

)(
h21
s

)
=

(
B(p, h20) + 2B(q, h11)−G21q

0

)
, (6)

with the condition < p, h21 >= 0.

From the coefficients of the terms w4, w3w and w2w2 in (5) one obtain respectively

h40 = (4iω0I3 −A)−1(3B(h20, h20) + 4B(q, h30)),

h31 = (2iω0I3 −A)−1(3B(q, h21) +B(q, h30) + 3B(h20, h11)− 3G21h20),

h22 = −A−1(2B(h11, h11) + 2B(q, h21) + 2B(q, h21) +B(h20, h20)).

Defining

H32 =6B(h11, h21) +B(h20, h30) + 3B(h21, h20) + 3B(q, h22) + 2B(q, h31)− 6G21h21 − 3G21h21,

we have that the second Lyapunov coefficient l2 is

l2 =
1

2
ReG32,

where G32 =< p,H32 >.

2.2 Poincaré compactification

Consider in R3 the polynomial differential system

ẋ = P1(x, y, z), ẏ = P2(x, y, z), ż = P3(x, y, z),

or equivalently its associated polynomial vector field X = (P1, P2, P3). The degree n of X is defined as
n = max {deg(Pi) : i = 1, 2, 3}. Let S3 = {y = (y1, y2, y3, y4) : ||y|| = 1} be the unit sphere in R4 and
S+ = {y ∈ S3 : y4 > 0} and S− = {y ∈ S3 : y4 < 0} be the northern and southern hemispheres of S3,
respectively. The tangent space of S3 at the point y is denoted by TyS3. Then the tangent plane

T(0,0,0,1)S3 = {(x1, x2, x3, 1) ∈ R4 : (x1, x2, x3) ∈ R3}

can be identified with R3.

Consider the identification R3 = T(0,0,0,1)S3 and the central projection f± : T(0,0,0,1)S3 → S± defined
by

f±(x) = ± (x1, x2, x3, 1)

∆(x)
, where ∆(x) =

(
1 +

3∑
i=1

x2i

)1/2

.

Using these central projections R3 is identified with the northern and southern hemispheres. The equator
of S3 is S2 = {y ∈ S3 : y4 = 0}.

The maps f± define two copies of X on S3, one Df+ ◦X in the northern hemisphere and the other
Df− ◦X in the southern one. Denote by X the vector field on S3 \ S2 = S+ ∪ S−, which restricted to S+
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coincides with Df+ ◦X and restricted to S− coincides with Df− ◦X. Now we can extend analytically
the vector field X(y) to the whole sphere S3 by p(X) = yn−14 X(y). This extended vector field p(X) is
called the Poincaré compactification of X on S3.

As S3 is a differentiable manifold in order to compute the expression for p(X), we can consider the
eight local charts (Ui, Fi), (Vi, Gi), where

Ui = {y ∈ S3 : yi > 0} and Vi = {y ∈ S3 : yi < 0}

for i = 1, 2, 3, 4. The diffeomorphisms Fi : Ui → R3 and Gi : Vi → R3 for i = 1, 2, 3, 4 are the inverse of
the central projections from the origin to the tangent hyperplane at the points (±1, 0, 0, 0), (0,±1, 0, 0),
(0, 0,±1, 0) and (0, 0, 0,±1), respectively.

Now we do the computations on U1. Suppose that the origin (0, 0, 0, 0), the point (y1, y2, y3, y4) ∈ S3
and the point (1, z1, z2, z3) in the tangent hyperplane to S3 at (1, 0, 0, 0) are collinear. Then we have

1

y1
=
z1
y2

=
z2
y3

=
z3
y4

and, consequently
F1(y) = (y2/y1, y3/y1, y4/y1) = (z1, z2, z3)

defines the coordinates on U1. As

DF1(y) =

−y2/y21 1/y1 0 0
−y3/y21 0 1/y1 0
−y4/y21 0 1/y1 0


and yn−14 = (z3/∆(z)n−1), the analytical vector field p(X) in the local chart U1 becomes

zn3
∆(z)n−1

(
− z1P1 + P2,−z2P1 + P3, z3P1

)
,

where Pi = Pi(1/z3, z1/z3, z2/z3).

In a similar way, we can deduce the expressions of p(X) in U2 and U3. These are

zn3
∆(z)n−1

(
− z1P2 + P1,−z2P2 + P3, z3P2

)
,

where Pi = Pi(z1/z3, 1/z3, z2/z3), in U2 and

zn3
∆(z)n−1

(
− z1P3 + P1,−z2P3 + P2, z3P3

)
,

with Pi = Pi(z1/z3, z2/z3, 1/z3), in U3.

The expression for p(X) in U4 is zn+1
3 (P1, P2, P3) and the expression for p(X) in the local chart Vi

is the same as in Ui multiplied by (−1)n−1, where n is the degree of X, for all i = 1, 2, 3, 4.

Note that we can omit the common factor 1/(∆(z))n−1 in the expression of the compactification
vector field p(X) in the local charts doing a rescaling of the time variable.

From now on we will consider only the orthogonal projection of p(X) from the northern hemisphere
to y4 = 0 which we will denote by p(X) again. Observe that the projection of the closed northern
hemisphere is a closed ball of radius one denoted by B, whose interior is diffeomorphic to R3 and whose
boundary S2 corresponds to the infinity of R3. Moreover, p(X) is defined in the whole closed ball B in
such way that the flow on the boundary is invariant. The vector field induced by p(X) on B is called the
Poincaré compactification of X and B is called the Poincaré sphere.

All the points on the invariant sphere S2 at infinity in the coordinates of any local chart Ui and Vi
have z3 = 0.
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2.3 Integrability theory

We start this subsection with the Darboux theory of integrability. As usual C[x, y, z] denotes the ring
of polynomial functions in the variables x, y and z. Given f ∈ C[x, y, z] \ C we say that the surface
f(x, y, z) = 0 is an invariant algebraic surface of system (1) if there exists k ∈ C[x, y, z] such that

(ayz + b)
∂f

∂x
+ (x2 − y)

∂f

∂y
+ (1− 4x)

∂f

∂z
= kf. (7)

The polynomial k is called the cofactor of the invariant algebraic surface f = 0 and it has degree at
most 1. When k = 0, f is a polynomial first integral. When a real polynomial differential system has a
complex invariant algebraic surface, then it has also its conjugate. It is important to consider the complex
invariant algebraic surfaces of the real polynomial differential systems because sometimes these forces the
real integrability of the system.

Let f, g ∈ C[x, y, z] and assume that f and g are relatively prime in the ring C[x, y, z], or that g = 1.
Then the function exp(f/g) 6∈ C is called an exponential factor of system (1) if for some polynomial
L ∈ C[x, y, z] of degree at most 1 we have

(ayz + b)
∂ exp(f/g)

∂x
+ (x2 − y)

∂ exp(f/g)

∂y
+ (1− 4x)

∂ exp(f/g)

∂z
= L exp(f/g). (8)

As before we say that L is the cofactor of the exponential factor exp (f/g). We observe that in the
definition of exponential factor if f, g ∈ C[x, y, z] then the exponential factor is a complex function.
Again when a real polynomial differential system has a complex exponential factor surface, then it has
also its conjugate, and both are important for the existence of real first integrals of the system. The
exponential factors are related with the multiplicity of the invariant algebraic surfaces, for more details
see [3], Chapter 8 of [4], and [6, 7].

Let U be an open and dense subset of R3, we say that a nonconstant function H : U → R is a
first integral of system (1) on U if H(x(t), y(t), z(t)) is constant for all of the values of t for which
(x(t), y(t), z(t)) is a solution of system (1) contained in U . Obviously H is a first integral of system (1)
if and only if

(ayz + b)
∂H

∂x
+ (x2 − y)

∂H

∂y
+ (1− 4x)

∂H

∂z
= 0,

for all (x, y, z) ∈ U .

A first integral is called a Darboux first integral if it is a first integral of the form

fλ1
1 · · · fλp

p Fµ1

1 · · ·Fµq
q ,

where fi = 0 are invariant algebraic surfaces of system (1) for i = 1, . . . p, and Fj are exponential factors
of system (1) for j = 1, . . . , q, λi, µj ∈ C.

The next result, proved in [4], explain how to find Darboux first integrals.

Proposition 4. Suppose that a polynomial system (1) of degree m admits p invariant algebraic surfaces
fi = 0 with cofactors ki for i = 1, ..., p and q exponential factors exp(gj/hj) with cofactors Lj for
j = 1, ..., q. Then, there exist λi and µj ∈ C not all zero such that

p∑
i=1

λiKi +

q∑
j=1

µjLj = 0, (9)

if and only if the function

fλ1
1 . . . fλp

p

(
exp

(
g1
h1

))µ1

. . .

(
exp

(
gq
hq

))µq

is a Darboux first integral of system (1).
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The following result whose proof is given in [6, 7] will be useful to prove statement (b) of Theorem
3.

Lemma 5. The following statements hold.

(a) If exp(f/g) is an exponential factor for the polynomial differential system (1) and g is not a constant
polynomial, then g = 0 is an invariant algebraic surface.

(b) Eventually exp(f) can be an exponential factor, coming from the multiplicity of the infinity invariant
plane.

3 Hopf bifurcation

In this section we prove Theorem 1. We will separate each of the statements in Theorem 1 in different
subsections.

Proof of Theorem 1(a). System (1) has the equilibrium point p = (1/4, a/16,−16b/a) with a 6= 0. The
proof is made computing directly the eigenvalues at the equilibrium point. The characteristic polynomial
of the linear part of system (1) at the equilibrium point p is

p(λ) = −a
4
−
(a

4
+ 8b

)
λ− λ2 − λ3.

As p(λ) is a polynomial of degree 3, it has either one, two (then one has multiplicity 2), or three real
zeros. Imposing the condition

p(λ) = (λ− k)(λ2 + β2) (10)

with k, β ∈ R, k 6= 0 and β > 0 we obtain a system of three equations that correspond to the coefficients
of the terms of degree 0, 1 and 2 in λ of the polynomial in (10). This system has only the solution
k = −1, b = 0, β =

√
a/2, with a > 0. This completes the proof.

Proof of Theorem 1(b). We will compute the first Lyapunov coefficient at the equilibrium point p of
system (1) with (a, b) ∈ C. We will use the projection method described in Section 2.1 with ω0 =

√
a/2,

x0 = p, µ = (a, b) and µ0 = (a, 0).

The linear part of system (1) at the equilibrium point p is

A =

 0 0 a/16
1/2 −1 0
−4 0 0

 .

The eigenvalues of A are ±i
√
a/2 and −1. In this case, the bilinear form B evaluated at two vectors

u = (u1, u2, u3) and v = (v1, v2, v3) is given by

B(u, v) =

(
a

2
(u3v2 + u2v3), u1v1, 0

)
.

The normalized eigenvector q of A associated to the eigenvalue i
√
a/2 normalized so that q · q = 1 is

q =
−
√
a(4 + a)√

256 + 69a+ a2

(
i,

√
a(4 + a)√
a− 2i

,−8
√
a

)
.

The normalized adjoint eigenvector p such that AT p = −ip, where AT is the transpose of the matrix A,
so that p · q = 1 is

p =
−
√

256 + 69a+ a2

2
√
a(4 + a)

(
i, 0,−

√
2

8

)
.
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The vectors h11 and h20 are

h11 =
a

256 + 69a+ a2

(
0, 4 + a, 128

)
,

h20 =
1

3(256 + 69a+ a2)

(
32ai(

√
a+ 2i),

a(16
√
a+ (44 + 3a)i)√
a− i

,−128
√
a(
√
a+ 2i)

)
.

Moreover,

G21 =
2a3/2(12

√
a+ 15a3/2 + (8− 46a+ 6a2)i)

3(
√
a− i)(

√
a− 2i)(256 + 69a+ a2)

.

The first Lyapunov coefficient is given by

l1((a, 0)) = − a2(16− 40a+ a2)

(a+ 1)(a+ 4)(256 + 69a+ a2)
.

If 16 − 40a + a2 6= 0 then system (1) has a transversal Hopf point at p for b = 0 and a > 0. Note
that the denominator of l1((a, 0)) is positive because a > 0.

If 16−40a+a2 > 0 which corresponds to a < 4(5−2
√

6) or a > 4(5+2
√

6) then l1((a, 0)) is negative,
so the Hopf point at p is a asymptotic stable (weak attractor focus).

If 16 − 40a + a2 < 0 which corresponds to 4(5 − 2
√

6) < a < 4(5 + 2
√

6) then l1((a, 0)) is positive,
so the Hopf point at p is unstable (weak repelling focus). This completes the proof.

Proof of Theorem 1(c) and (d). We will only proof statement (c) of Theorem 1 because the proof os
statement (d) is analogous. We consider system (1) with b = 0 and a = 4(5− 2

√
6). Guided by Section

2.1, first we compute h21, solving system (6). Doing that we get s = 0 and

h21 =
−608

√
2√

1809817388739 + 738854273343
√

6

(
i,

√
−20546− 1815

√
6 + i(29635

√
2 + 24189

√
3)

114
√

2
, 4

)
.

The vectors h30, h40, h31 and h22 are, respectively

h30 =
8
√

2(507 + 49
√

6)
√

80881(61446− 25082
√

6 + (55200
√

3− 67692
√

2)i)
(h130, h

2
30, h

3
30),

h40 =
256

12658259471535
(h140, h

2
40, h

3
40),

h31 =
64

2531651894307
(h131, h

2
31, h

3
31),

h22 =
512

58875625449
(0, 5(24716931− 10079780

√
6), 16(−56419784 + 23146371

√
6)),

where

h130 = 94944− 38760
√

6 + (13164

√
5− 2

√
6− 5376

√
6(5− 2

√
6))i,

h230 = 19785− 8077
√

6− (2373

√
5− 2

√
6 + 967

√
6(5− 2

√
6))i,

h330 = −17552 + 7168
√

6 + (12800

√
5− 2

√
6− 5216

√
6(5− 2

√
6))i,

h140 = 16(−1953106124 + 803446490
√

6 + (70176310
√

2− 80224605
√

3)i),

h240 =
6541736161(−7445240

√
2 + 6079280

√
3 + (−12387403 + 5057280

√
6)i)

1935(5770036
√

2− 4714916
√

3 + (651169− 263780
√

6)i)
,

h340 = 16(100321195 + 10048295
√

6 + (457233346
√

2− 346213144
√

3)i),
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h131 = −8(−7926775675 + 3235727335
√

6 + (−5501563156
√

2 + 4489741563
√

3)i),

h231 =
−92397528797 + 37723310264

√
6 + (107493145530

√
2− 87106977438

√
3)i)

19
,

h331 = −16(−4076702851 + 1668298723
√

6 + (2139233246
√

2− 1752971219
√

3)i).

Finally

G32 =
512(951258

√
2 + 741120

√
3 + (1035205 + 346030

√
6)i

387(350363749
√

2 + 286072179
√

3)
,

and so

l2(4(5− 2
√

6), 0) =
256(−267817529746 + 109358484143

√
6)

48101385991833
.

Since l2(4(5−2
√

6), 0) > 0, system (1) has a transversal Hopf point of codimension 2 at p. This completes
the proof.

4 Compactification of Poincaré

In this section we investigate the flow of system (1) at infinity by analyzing the Poincaré compactification
of the system in the local charts Ui, Vi for i = 1, 2, 3.

From the results of Section 2.2 the expression of the Poincaré compactification p(X) of system (1)
in the local chart U1 is given by

ż1 = 1− az21z2 − z1z3 − bz1z23 ,
ż2 = −az1z22 − 4z3 + z23 − bz2z23 ,
ż3 = −z3(az1z2 + bz23).

(11)

For z3 = 0 (which correspond to the points on the sphere S2 at infinity) system (11) becomes

ż1 = 1− az21z2, ,
ż2 = −az1z22 .

This system has no equilibria. It follows from the Flow Box Theorem that the dynamics on local chart
U1 is equivalent to the one shown in Figure ??, whose the solutions are given by parallel straight lines.

The flow in the local chart V1 is the same as the flow in the local chart U1 because the compacted
vector field p(X) in V1 coincides with the vector field p(X) in U1 multiplied by −1. Hence the phase
portrait on the chart V1 is the same as the one shown in the Figure 3 reserving in an appropriate way
the direction of the time.

In order to obtain the expression of the Poincaré compactification p(X) of system (1) in the local
chart U2 we use again the results given in Section 2. From there we get the system

ż1 = −z31 + az2 + z1z3 + bz23 ,

ż2 = −z21z2 − 4z1z3 + z2z3 + z23 ,

ż3 = −(z21 − z3)z3.

(12)

System (12) restricted to z3 = 0 becomes

ż1 = −z31 + az2,

ż2 = −z21z2.
(13)

11



Figure 3: Phase portrait of system (1) on the Poincaré sphere at infinity in the local charts U1 (on the
left-hand side), U2 (on the center) and U3 (on the right-hand side).

The origin is the unique equilibria of system (13) and it is a nilpotent point. Applying Theorem 3.5 in
[4] we conclude that the origin is an stable node. It local dynamics on the local chart U2 is topologically
equivalent to the one shown in Figure 3.

Again the flow in the local chart V2 is the same as the flow in the local chart U2 shown in Figure 3
by reversing in an appropriate way the direction of the time.

Finally, the expression of the Poincaré compactification p(X) of system (1) in the local chart U3 is

ż1 = az2 + 4z21z3 + bz23 − z1z23 ,
ż2 = z21 − z2z3 + 4z1z2z3 − z2z23 ,
ż3 = (4z1 − z3)z23 .

(14)

Observe that system (14) restricted to the invariant z1z2-plane reduces to

ż1 = az2,

ż2 = z21 .

The solutions of this system behave as in Figure 3 which corresponds to the dynamics of system (1)
in the local chart U3. Indeed the origin is a nilpotent equilibrium point and from Theorem 3.5 in [4] we
conclude that the origin is a cusp (in this case f(x) ≡ 0, F (x) = B(x, 0) = x2 and G(x) ≡ 0, with m
even). The flow at infinity in the local chart V3 is the same as the flow in the local chart U3 reversing
appropriately the time.

Proof of Theorem 2. Considering the analysis made before and gluing the flow in the three studied charts,
taking into account its orientation shown in Figure 4, we have a global picture of the dynamical behavior
of system (1) at infinity. The system has four equilibrium points on the sphere, two nodes and two cusps
and there are no periodic orbits. We observe that the description of the complete phase portrait of system
(1) on the sphere at infinity was possible because of the invariance of these sets under the flow of the
compactified system. This proves Theorem 2. We remark that the behavior of the flow at infinity does
not depend on the parameter b and the global phase portrait at the sphere for different values of a are
topologically equivalent.

5 Darboux integrability

In this section we prove Theorem 3. We first prove statement (a) proceeding by contradiction. Let f ∈
C[x, y, z]\C be an invariant algebraic surface of system (1) with cofactor k. Then k = k0+k1x+k2y+k3z
for some k0, k1, k2, k3 ∈ C.

12



Figure 4: Orientation of the local charts Ui, i = 1, 2, 3 in the positive endpoints of coordinate axis x, y, z,
used to drawn the phase portrait of system (1) on the Poincaré sphere at infinity (Figure 2). The charts
Vi, i = 1, 2, 3 are diametrically opposed to Ui, in the negative endpoints of the coordinate axis.

First we will show that k2 = k3 = 0. Expanding f in powers of the variable y we get f =∑m
j=0 fj(x, z)y

j where fj are polynomials in the variables x, z and m ∈ N ∪ {0}. Computing the terms

of ym+1 in (7) we obtain

az
∂fm
∂x

= k2fm.

Solving this linear differential equation we get

fm = gm(z) exp
(k2x
az

)
,

where gm is an arbitrary smooth function in z. Since fm must be a polynomial we must have that either
fm = 0 or k2 = 0. If k2 6= 0 then f = f(x, z) and so by (7) it must satisfy

(ayz + b)
∂f

∂x
+ (1− 4x)

∂f

∂z
= (k0 + k1x+ k2y + k3z)f. (15)

The linear terms in y in (15) satisfy

az
∂f

∂x
= k2f, that is, f = g(z) exp

(k2x
az

)
,

for some arbitrary smooth function g. Since f must be a polynomial and k2 6= 0 we must have that f = 0
in contradiction with the fact that f is an invariant algebraic surface. In short, k2 = 0.

Expanding f in powers of the variable z we get f =
∑m
j=0 fj(x, y)zj where fj are polynomials in the

variables x, y and m ∈ N ∪ {0}. Computing the terms of zn+1 in (7) we get

ay
∂fm
∂x

= k3fm and so fm = gm(y) exp
(k3x
ay

)
,

where gm is an arbitrary smooth function in the variable y. Since fm must be a polynomial we must have
that either fm = 0 or k3 = 0. If k3 6= 0 then f = f(x, y) and so by (7)

(ayz + b)
∂f

∂x
+ (x2 − y)

∂f

∂y
= (k0 + k1x+ k3z)f. (16)
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The linear terms in the variable z in (16) satisfy

ay
∂f

∂x
= k3f, that is, f = g(y) exp

(k3x
ay

)
for some arbitrary smooth function g. Since f must be a polynomial and k3 6= 0 we must have that f = 0
in contradiction with the fact that f is an invariant algebraic surface. So, k3 = 0.

Let n be the degree of f . Expanding the invariant algebraic surface f in sum of its homogeneous
parts we get f =

∑n
j=0 fj(x, y, z) where each fj(x, y, z) is a homogeneous polynomial in x, y, z of degree

j. Without loss of generality we can assume that fn 6= 0 and n ≥ 1.

Computing the terms of degree n+ 1 in (7) we have

ayz
∂fn
∂x

+ x2
∂fn
∂y

= k1xfn (17)

or in other words, if we consider the linear partial differential operator of the form

M = ayz
∂

∂x
+ x2

∂

∂y
, (18)

then equation (17) can be written as
Mfn = k1xfn. (19)

The characteristic equations associated with the linear partial differential equation in (19) are

dz

dy
= 0,

dx

dy
=
ayz

x2
.

This system of equations has the general solution

z = d1,
x3

3
− az y

2

2
= d2,

where d1 and d2 are constants of integration. According with the method of characteristics, we make the
change of variables

u =
x3

3
− az y

2

2
, v = y, w = z. (20)

Its inverse transformation is

x =

(
3u+ 3aw

v2

2

)1/3

, y = v, z = w. (21)

Under changes (20) and (21), equation (19) becomes the following ordinary differential equation (for fixed
u, w): (

3u+ 3aw
v2

2

)1/3
df̄n
dv

= k1f̄n,

where f̄n is fn, written in the variables u, v and w. In what follows, we always use θ̄ to denote a function
θ(x, y, z) written in terms of the variables u, v and w. Using that∫

dv(
3u+ 3aw v2

2

)1/3
=

21/3

31/3
vu−1/3F1

(1

3
,

1

2
,

3

2
,−av

2w

u

)
, (22)
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where F1 is the hypergeometric function defined as

F1(a, b, c, z) =

∞∑
k=0

(a)k(b)k
(c)kk!

zk, with (x)k = x(x+ 1) · · · (x+ k − 1) (23)

we get that

f̄n = k121/3ḡn(u,w)vu−1/3F1

(1

3
,

1

2
,

3

2
,−av

2w

u

)
,

being ḡn an arbitrary smooth function in u and w. So,

fn(x, y, z) = f̄n(u, v, w) = ḡn

(x3
3
− az y

2

2
, z
) k121/3y(

x3

3 − aw
y2

2

)1/3F1

(1

3
,

1

2
,

3

2
,− ay2z

x3

3 − az
y2

2

)
.

Note that it follows from (23) that F1

(
1
3 ,

1
2 ,

3
2 ,−

ay2z
x3

3 −az
y2

2

)
is never a polynomial. So, in order that fn is

a homogeneous polynomial of degree n we must have that k1 = 0 and f̄n is a polynomial in the variables
u and w. Consequently, the cofactor of every invariant algebraic surface of system (1) is constant, i.e,
k = k0 and

fn =

[n/3]∑
l=0

alz
n−3l

(x3
3
− az y

2

2

)l
, (24)

where [·] stands for the integer part function of a real number.

The terms of degree n in (7) are

Mfn−1 = k0fn + y
∂fn
∂y

+ 4x
∂fn
∂z

= k0

[n/3]∑
l=0

alz
n−3l

(x3
3
− az y

2

2

)l
− azy2

[n/3]∑
l=0

allz
n−3l

(x3
3
− az y

2

2

)l−1
+ 4x

[n/3]∑
l=0

al(n− 3l)zn−3l−1
(x3

3
− az y

2

2

)l
− 2axy2

[n/3]∑
l=0

allz
n−3l

(x3
3
− az y

2

2

)l−1
.

(25)

Using transformations (20) and (21) and working in a similar way to solve f̄n we get the following ordinary
differential equation (for fixed u and w):(

3u+ 3aw
v2

2

)2/3
df̄n−1
dv

= k0

[n/3]∑
l=0

alw
n−3lul − awv2

[n/3]∑
l=0

allw
n−3lul−1

+ 4
(

3u+ 3aw
v2

2

) [n/3]∑
l=0

al(n− 3l)wn−3l−1ul − 2a
(

3u+ 3aw
v2

2

)
v2

[n/3]∑
l=0

allw
n−3lul−1.

Integrating this equation with respect to v and using the formula in (22) together with∫
dv(

3u+ 3aw v2

2

)2/3
=

22/3

32/3
vu−2/3F1

(1

2
,

2

3
,

3

2
,−av

2w

u

)
,

∫
v2dv(

3u+ 3aw v2

2

)1/3
=

21/332/3

7aw
v(u+ av2w)2/3 − 21/332/3

7aw
vu2/3F1

(1

3
,

1

2
,

3

2
,−av

2w

u

)
,

∫
v2dv(

3u+ 3aw v2

2

)2/3
=

22/331/3

5aw
v(u+ av2w)1/3 − 22/331/3

5aw
vu1/3F1

(1

2
,

2

3
,

3

2
,−av

2w

u

)
,
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we obtain

f̄n−1 = ḡn−1(u,w) +
22/3

32/3
vF1

(1

2
,

2

3
,

3

2
,−av

2w

u

) [n/3]∑
l=0

al

(
k0 +

3l

5

)
wn−3lul−2/3

− 22/331/3

5
v(u+ av2w)1/3

[n/3]∑
l=0

allw
n−3lul−1 − 24/332/3

7
v(u+ av2w)2/3

[n/3]∑
l=0

allw
n−3l−1ul−1

+ 24/332/3vF1

(1

3
,

1

2
,

3

2
,−av

2w

u

) [n/3]∑
l=0

al

(
4(n− 3l) +

6

7
l
)
wn−3l−1ul−1/3,

where ḡn−1 is an arbitrary smooth function in u and w. Since fn−1 must be a homogeneous polynomial

of degree n− 1 and neither F1

(
1
2 ,

2
3 ,

3
2 ,−

av2w
u

)
nor F1

(
1
3 ,

1
2 ,

3
2 ,−

av2w
u

)
are polynomials we must have

al

(
k0 +

3l

5

)
for l = 0, . . . , [n/3],

al

(
4(n− 3l) +

6

7
l
)

for l = 0, . . . , [n/3].

(26)

Note that the second condition in (26) implies that

al = 0 for l = 0, . . . , [n/3]

because l ≥ 0 and n− 3l ≥ 0 with n ≥ 1. Therefore, from (24) we get that fn = 0 which is not possible.
Note that a polynomial first integral is an algebraic invariant surface with cofactor k = 0. Proceeding
as above with k0 = k1 = k2 = k3 = 0 we also obtain that there are no polynomial first integrals. This
concludes the proof of statement (a).

Now we prove statement (b). Let E = exp(f/g) 6∈ C be an exponential factor of system (1) with
cofactor L. Then L = L0 + L1x+ L2y + L3z, where f, g ∈ C[x, y, z] with (f, g) = 1. From Theorem 3(a)
and Lemma 5, we have that E = exp(f) with f = f(x, y, z) ∈ C[x, y, z] 6∈ C.

It follows from equation (8) that f satisfies

(ayz + b)
∂f

∂x
+ (x2 − y)

∂f

∂y
+ (1− 4x)

∂f

∂z
= L0 + L1x+ L2y + L3z, (27)

where we have simplified the common factor exp(f).

Let n be the degree of f . We write f =
∑n
i=0 fi(x, y, z), where fi is a homogeneous polynomial of

degree i. Without loss of generality we can assume that fn 6= 0. Assume n > 1. Computing the terms of
degree n+ 1 in (8) we obtain

ayz
∂fn
∂x

+ x2
∂fn
∂y

= 0

or using the operator M in (18) we have Mfn = 0. Proceeding as we did to solve (19) we obtain that fn
becomes as in (24). Computing the terms of degree n in (27) we obtain

Mfn−1 = y
∂fn
∂y

+ 4x
∂fn
∂z

= −azy2
[n/3]∑
l=0

allz
n−3l

(x3
3
− az y

2

2

)l−1
+ 4x

[n/3]∑
l=0

al(n− 3l)zn−3l−1
(x3

3
− az y

2

2

)l
− 2axy2

[n/3]∑
l=0

allz
n−3l

(x3
3
− az y

2

2

)l−1
.

which is (25) with k0 = 0. Proceeding exactly in the same way as we did to solve (25) we get that fn = 0,
which is not possible. So n = 1.

16



We can write f = a1x + a2y + a3z with ai ∈ C. Imposing that f must satisfy (27) we get f = a3z
with cofactor a3(1− 4x). This concludes the proof of statement (b) of Theorem 3.

It follows from Proposition 4 and statements (a) and (b) that if system (1) has a Darboux first
integral then there exist µ ∈ C \ {0} such that (9) holds, that is, such that µ(1 − 4x) = 0. But this is
not possible. Hence, there are no Darboux first integrals for system (1) and the proof of statement (c) of
Theorem 3 is completed.
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