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Abstract. This paper presents a general algorithm for the automatic proof that an erosion (respectively,
dilation) has a sequential decomposition or not. If the decomposition exists, an optimum decomposition
is presented. The algorithm is based on a branch and bound search, with pruning strategies and bounds
based on algebraic and geometrical properties deduced formally. This technique generalizes classical
results as Zhuang and Haralick, Xu, and Park and Chin, with equivalent or improved performance.
Finally, theoretical analysis of the proposed algorithm and experimental results are presented.
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1. Introduction

The problem of designing automatically morphological (2] operators may be approached by a process
composed of two main steps: i - learning of the target operator by the estimation of the structuring
elements that characterize it in a standard representation form (e.g., the sup-representation, that is formed
by the union of sup-generating operators or, the inf-representation, that is formed by the intersection of
inf-generating operators); i - transformation of the standard form morphological operator learned into
other equivalent representations that permit more efficient implementations.

In this paper, we will study some aspects of step i of this process. The choice of good representation
structures depends on the architecture of the machine in which the morphological operator should be
implemented. In general, sequential decompositions are more adequate for conventional machines, while
the hybrid (sequential-parallel) ones are more adequate for parallel architectures.

We find in the literature some works that study the problem of transformation of decomposition struc-
tures. Barrera and Salas [5] presented a method for computing the sup-representation of any translation
invariant (t.i.) set operator from any morphological representation of it. Barrera and Hashimoto [4]
showed how the sup-representation of t.i. set operators can be transformed into the union of composi-
tions of sup-generating operators with dilations.

However, the general problem of transforming the sup or inf-representation of t.i. set operators into
sequential or hybrid representations is extremely hard and practically not studied. In fact, some aspects
of this problem have been studied for the families of erosions and dilations.

The speed up achieved by representing erosions and dilations by sequential decompositions, in conven-
tional machines, was quantitatively studied by Maragos [13, p. 77], who showed examples where the time
complexity of the algorithms that implement erosions and dilations went from quadratic, in the sup or
inf-representation, to linear, in the sequential decomposition.

Theoretically, the sequential decomposition of erosions and dilations can be viewed equivalently by
two optics. On one hand, considering the sup-representation (respectively, inf- representation), an erosion
(respectively, dilation) is the simplest operator that can be represented, since the sup-representation
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(respectively, inf-representation) of an erosion (respectively, dilation) is the erosion (respectively, dilation)
itself [11, p. 86, Theorem 4.15]. On the other hand, the composition of erosions (respectively, dilations) is
equivalent to the erosion (respectively, dilation) by the accumulate Minkowski addition of the structuring
elements that characterize the erosions (respectively, dilations) [20, p. 47]. Therefore, the problem
of transforming the sup-representation of an erosion (respectively, inf-representation of a dilation) in a
sequential decomposition is equivalent to find a decomposition in terms of Minkowski additions for the
structuring element that characterizes it.

Several researchers [24, 18, 22, 12, 14, 15, 23, 3, 8, 1] have studied the problem of decomposition of
a structuring element as a sequence of Minkowski additions of smaller subsets and proposed different
algorithms to generate it. Zhuang and Haralick [24] presented a tree-search algorithm for decomposition
of an arbitrarily structuring element, where all elements in the decomposition have the prescribed fixed
number & points. Xu [22] developed an algorithm for the decomposition of convex structuring elements
in terms of subsets of the elementary square (i.e., the 3 x 3 square centered at the origin). Park and
Chin [15] developed an extension of Xu’s algorithm for the decomposition of simply connected (i.e., an
8-connected structuring element that contains no holes) structuring elements, where all elements in the
decomposition are also simply connected.

We should remark that not all structuring elements have sequential decompositions by Minkowski
additions [22]. Furthermore, it is not known an efficient algorithm for determining the existence of such
decompositions for an arbitrary structuring element.

Here, we present a method for the generation of decompositions of any arbitrary structuring element

as sequences of Minkowski additions of subsets of the elementary square. If there exist such decomposi-
tions, the method gives the one that uses the minimum number of subsets, otherwise, it proves that the

structuring element is not decomposable.

As Zhuang and Haralick’s work [24], the fundamental idea of the method proposed is the application
of Combinatorial Optimization techniques, under algebraic constraints. The formulation adopted is a
branch and bound search in a tree that represents the space of all possible sequences of subsets of the
elementary square. In the search we look for valid solutions, pruning impossible ones. The efficiency of
the pruning, that is supported by algebraic properties of Minkowski addition, is essential for the feasibility
of the method. If no valid solution is found, then the structuring element has no decomposition.

Following this introduction, Section 2 presents the mathematical foundations of the paper. Section 3
presents the proposed branch and bound decomposition algorithm. Section 4 compares the proposed
algorithm with other known algorithms [22, 15, 24]. Section 5 presents some experimental results. Finally,
Section 6 presents some conclusions and future steps of this research.

2. Mathematical Foundations

This section gives the mathematical foundations necessary for presenting our decomposition algorithm.
Subsection 2.1 states the problem of sequential decomposition of subsets of Z2 in terms of Minkowski ad-
ditions. Subsection 2.2 recalls the formulation of Combinatorial Optimization problems by the branch and
bound approach. Subsection 2.3 presents the main data structure used in our algorithm: the decomposi-
tion tree. Subsection 2.4 presents three strategies to prune nodes of a decomposition tree. Subsection 2.5
states a lower bound for the length of a decomposition.

2.1, Problem Statement

In this section, we present some definitions and properties in order to state the problem studied.
A finite subset of Z? is called a structuring element (SE). We consider just non empty SE’s.
Forany X C 22 and y € Z2, X, denotes the translation of X by y, that is, X, = {z € Zt:z—ye X}
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Fig. 1. {6} A SE A. () Invariant Sequence of A.

Let X and Y be SE’s. The Minkowski addition and subtraction of X and Y are the subsets given,
respectively, by X @Y =U{X,:yeY}and X OY =n{X_,:yeY}. .

Equivalently, the Minkowski addition of X and Y can be written as X ®Y = {4y € Z:zeXye
Y} [11, p. 81, Eq. 4.20}.

Three important properties of Minkowski addition are commutativity (i.e., X®Y =Y @ X) [11, p.
81}, associativity (ie, (X ®Y)®Z =Y & (X @ Z)) [11, p. 82, Eq. 4.29] and the translation effect (i.e.,
X o {y}=X,) [11, p. 82, Eq. 4.24}.

We take the point o = (0,0) as the origin of Z%. We call the 3 x 3 square centered at the origin the
elementary square.

The dilation and the erosion by the structuring element A are the mappings in the powerset of z*
given, respectively, by, for any X C Z%, §4(X) =X & Aand ea(X) =X 0 A.

A property of dilations and erosions is their sequential decomposability [20, p. 47].

Proposition 1. Let A,By,B;,-+,By be SE’s. 64 = 6p,6p, - 6B, and €4 = €p,€p, - €p, if and
onlyif A= B ®By® -+ & By

Given a SE A, a sequence of subsets of A is the succession of subsets of A in a fixed order. For example,
if By, Bz, B3, B4, Bg, B, B; are distinct subsets of A, then [B7, By, B;, By, By, B2, B3, By, By, By, Ba, Be]
is a sequence of subsets of A. We consider just finite sequences.

Let R=[Ry, Rz, -, Rm] and S=[51,5z, -, Ss] be sequences of subsets of a given SE A. We say R
is a subsequence of S if and only if, for any R; € R, there exists Sy(;) € S, such that B; = S.(; (ie.,
R=[Sx(1), Sx(2)r* ** » Sx(m)])> where 7(j) is aindex in {1,2,3,---,n} and 7(1) < m(2) < #(38) < --- < w(m).
For example, if By, By, B3, By, Bs, Bs are distinct subsets of A, then [By, B1, By, Bz is a subsequence of
[Bs, By, B, By, B»,B,,Bs, By, By, Bs, Bz], but [B] , By, Ba, Bl] is not.

A SE A is said to have a sequential decomposition (or A is said to be decomposable) if there exists a
sequence [B1, Ba,- - -, Bn] of subsets of the elementary square such that A=B®B;®---&B,. The
sequence [By, By, - -, By) is called a decomposition sequence of A.

A decomposition sequence of a SE can be decomposed into two subsequences: shape and iranslation.
The shape subsequence represents the shape of the SE and it is formed by the subsets in the sequence
that have at least two points. The translation subsequence defines the position of the SE in the integer
plane and it is formed by the unitary subsets in the sequence. The shape subsequence (B, Bz, -, Bi|
is called the shape decomposition (or simply, decomposition) of A and the number k is the length of this
decomposition of A.

Let A and B be SE’s. We say B is an invariant of A if and only if A = (A © B) ® B. For example, the
subsets B, Bo, B, presented in Figure 1b, are invariants of the SE A presented in Figure la.

Propositions 2 and 3 give some properties of invariants of a given SE. The first one was stated by
Serra [20, p. 53] and the second one by Zhunang and Haralick [24, Proposition 5.

Proposition 2. Let A and X be SE’s. Then, X is invariant of A if and only if there ezists 0 SE Y
suchthat A=Y & X.

Proposition 3. Let A, X,Y be SE’s. fA=X@®Y, then X and Y are both invariants of A.

The following corollary is an immediate consequence of Proposition 3.
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Corollary 1. Let A be a SE. If the sequence [By, By, - -, By] is a shape decomposition of A, then each
B; is an invariant of A.

Proof:  Since [By, By, -, Bs) is a shape decomposition of A, then there exists h € Z* such that
A=(Bi®B1® - @Bi)por A= (B, ®By®- & B, @ {h}. Hence, by commutativity and associativity
of the Minkowski addition and Proposition 3, each B; (i = 1,2,---, k) is an invariant of 4. O

Let X be a SE and let n be a positive integer. The succession of n — 1 Minkowski additions ((X &
X)® - @ X) is denoted nX. This notation is extrapolated for n = 0 by stating 08 = {(0,0)}.

Let A and X be SE’s such that X is an invariant of A. The multiplicity of X with respect to A is the
greatest positive integer n such that nX is an invariant of A. For example, the multiplicity of the subsets
By, By and Bs, presented in Figure 1b, with respect to A, presented in Figure la, is 1, since, for any
i € {1,2,3}, 2B; is not an invariant of A. Note that unitary sets have infinity multiplicity.

Let us state an equivalence relation on a generic collection C of subsets of Z3. Let X and Y be two
elements of C. We say X and Y are equivalent under translation if and only if one can be built by a
translation of the other, that is, X = Y if and only if there exists h € Z* such that X, =Y.

Since the equivalence under translation is an equivalence relation (i.e., reflexive, symmetric and tran-
sitive), the set of their equivalence classes (i.e., the sets composed exactly by all the equivalent elements
in C) constitutes a partition of C.

We denote by P(C) the set of all the equivalence classes (under translation) on C. We denote by E(C)
a set composed by exactly one element of each equivalence class in P(C), that is, E(C) is a set such that

E(C)| = |P(C)|.
I '(I‘h)e'a sel o(i :ﬂl subsets of the elementary square that have at least two points is denoted @ = {B C
{-1,0,1}*: |B| > 2}.

Given a SE 4, the set of all elements of E(Q) that are invariants of A is denoted B(4) = {B €
E(Q) : B is an invariant of A}. For example, the set B(A) for the SE A presented in Figure la is
B(A) = {Bi, Bz, Bs}, where B,, B, and Bs are the sets presented in Figure 1b.

Proposition 4. Let A be a SE and X € B(A). If n is the multiplicity of X with respect to A, then
any decomposition sequence of A coniains at most n elements egual to X.

Proof:  Suppose that there exists a decomposition sequence of A that contains m > n elements equal
to X, that is, A=mX & B, ® B;® - - - ® By. By Proposition 3, mX is an invariant of A that contradicts
the definition of multiplicity. a

Let X be a SE and n be a non-negative integer. If n # 0, then the sequence formed by the succession
of n subsets X is denoted by Seq[X,n], that is, Seq(X,n] = [X, X,---,X]. n =0, Seq[X, 0] denotes the
empty sequence.

Let A be a SE. Let By, By, -, By be all elements of B(4) in a fixed order and n; be the multiplic-
ity of B; with respect to A (i = 1,---,k). The invariant sequence of A is the sequence InvSeq[d] =
Seq[Bi, 1] - - -Seq[By,ng]. For example, the sequence [By, Ba, Bs] (of subsets presented in Figure 15) is
the invariant sequence of the SE A presented in Figure la.

The following proposition is an immediate consequence of Corollary 1 and Proposition 4.

Proposition 5. If A is a SE, then A has a sequential decomposition if and only if there ezists a
subsequence of InvSeq[A] that is a shape decomposition of A.

2.2. Combinatorial Optimization Techniques

Given a SE 4, it is not possible to enumerate, in a reasonable time, all subsequences of InvSeq[A]. This
makes impossible any attempt to solve the problem of finding a decomposition of minimum length by
explicit enumeration. We can view this problem as a Combinatorial Optimization problem. The aim of
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Fig. 2. A node Y in the decomposition tree.

optimization problems is to maximize or minimize a given function over a certain domain. Combinatorial
Optimization problems are characterized by the case in which this domain is finite and its elements can be
“eagily” generated. The difficulty to solve such problems usually stays in the cardinality of the domain.

A strategy to partially enumerate the solutions of Combinatorial Optimization problem is known as
the Branch and Bound Method [17, p. 40]. The idea is to partition the set of possible solutions into some
small sets, originating independent subproblems. When one solves all these subproblems, the best solution
found is the optimal solution of the original problem. This partition can be viewed as the construction
of a rooted tree, whose nodes correspond to partial solutions, and the root node to the original problem.
The search in the tree can be improved if some lower and upper bounds on the value of the optimal
solution are known. For example, if it is known a feasible solution whose value is say 25, and we are in
a node with lower bound 28, this branch can be pruned, since the best possible solution in this branch
cannot be better than a known solution. The art of the strategy is to find good bounds in order to avoid
visiting all (or too many) possibilities.

There are many different ways to visit the nodes of a tree. In the algorithm presented in Section 3, we
use the depth first search [17, p. 39], that is described in the following. In the beginning all nodes are
marked as “unvisited”. In the first iteration, some arbitrary node is selected (if the tree has a root, this
i the selected node) and marked as “visited”. Its neighbors are marked “reachable”, and pushed into a
stack. In an arbitrary iteration, if the stack is empty, the search stops. Otherwise, the top element is taken
out and marked as “visited”. The still “unvisited” neighbors of this node are marked as “reachable”,
pushed into the stack, and a new iteration begins.

2.3. The Decomposition Tree

Given a SE A, we define a labeled tree that represents the space of all possible subsequences of InvSeq{A).
Let [By, Ba, - -, Bm] be the invariant sequence of 4, i.e., InvSeq [4) = [B1, Bz, - -, Bm}. The decomposition
tree of A, denoted 7(A), is a labeled tree such that:
(1) All nodes are labeled by a subset ¥ = By, ® B, @---®8;;, where [Biy, Biy, - - , Bi,] is a subsequence
of InvSeq[A].
(2) The label of the root is the unitary set that contains the origin and it is denoted by {o};
(3) The labels of the direct descendants of a node whose label is Y = B;, ® B, &- - -®B;; areY ® B;; +1,
Y @ B4z, +,Y ® By, (see Figure 2).
(4) The edge that joins a node whose label is ¥ and its direct descendant whose label is Y & By is
labeled By. (see Figure 2).
We often use node Y meaning node whose label is Y. .
By construction of the decomposition tree, it is not difficult to see that if the invariant sequence of a
given SE A has m elements, then 7(A) has 2™ nodes. See Figure 3 for an example of T(A).



6 Hashimoto, et al.

"gh 31-:&82-%53-t

(w) ()

Fig. 3. {a) A SE A. (b) Invariant S of A. (c) Decomposition Tree of A.
LR (344
At it
(a) (O]

Fig. 4. (a) A SE A. (b) The convex hull of A.

Let A be a SE and let X and Y be two nodes of 7(A) such that X is a descendant of Y. We denote
Path 4[Y, X] the sequence of the labels of the edges of 7(A) that are on the path from Y to X. It is
not difficult to see that if Path4[Y, X| = [C),C;,--,Cj], then X =Y & C, @ --- & Cj. For example, in
Figure 3¢, Path 4[N, Ny] = [B;, Bs] and Ny = N, @ By @ B;.

According to this notation, Path4[{0}, Y] denotes the sequence of labels of the edges of 7(A) that are
on the path from the root to the node ¥, which in turns forms a subsequence of InvSeq|A] such that the
Minkowski addition of all elements of this subsequence is equal to the node Y. For example, in Figure 3c,
Patha[{o}, Ne] = [Bz, Bs] is a subsequence of InvSeq[A] and Ng = B; @ Bj. So, if the SE A is equal to
a translation of the node Y (that is, ¥ = A}, then A has a shape decomposition given by the sequence
Path4[{0},Y].

The level of a node Y in the decomposition tree is the length of the path from the root to Y and it is
denoted by level(Y'). Given a SE A, our objective is to find a node of label ¥ = 4 in 7(A) with minimum
level. If there is no node ¥ = A, then the SE is not decomposable.

Let A be a SE. Given a node Y of T{A), we say Y is a feasible node if and only if there exists a node
X, descendant of Y, such that X = A. For example, in Figure 3¢, the node N, is a feasible node, while
the node N is an unfeasible one.

The art of the strategy presented in Section 3 is to visit the nodes of the decomposition tree, looking
for feasible nodes and pruning unfeasible ones.

2.4. Necessary conditions for feasible nodes

In this subsection, we state some necessary conditions for the existence of feasible nodes in the decom-
position tree of a given SE. For that, we ana.lyze some measures taken on the SE.

The convex bull C(A) of & subset A C Z? is the intersection of all half planes that contain A. We
suppose that the subsets are represented in a square grid and consider just the half planes with slopes 0,
45, 90 and 135 degrees to build the convex hull (see Figure 4 for an example).
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A subset A C Z? is said convez if and only if A = C(A). Note that, in particular, for a half plane H,
the convex hull C(H) = H.
The Propositions 6 to 11 give some properties of the convex hull.

Proposition 6. Let A, B C Z2. Then,
(1) ACC(4),
(1) AC B = C(A4) C O(B),
(#4d) (C(A))n = C(Ay), for any h € Z2.
Proof: Let A and B be the sets of all the half planes that contain, respectively, A and B.
Since C(A) is the intersection of all half planes that contain A, then, by a property of intersection,

C(A) 2 A. This proves i.
In order to prove i, let X € B. Since X 2 B D A, then X € A. Thus, B C A. Hence,

(Nnn(NxX=NXe

YeB XeA XecA
C(B)NC(A) = C(4) +
C(A) C C(B).

Finally, to prove #4%, let A € Z% and let H be the set all the half planes that contain 4;. Thus,

HeH& HDA,
s H DA
SH ,eA

Hence,

(CA=([) Hn
HeA

=( n Hy)
HeA

=( N B

H_p€A

=(() &)

HeH
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Proposition 7. If A, B C Z?, then
(s} C(A)uC(B)C C(AUB),
(i) C(A)NC(B) 2 C(AN B).
Proof: Let usprovei. Clearly, A C AUB and B C AUB. Thus, by Proposition 613, C(A) C C{AUB)

and C(B) C C(AU B). Hence, by a property of union, C(A) UC(B) C C(A U B). Property ii follows by
dual arguments. N

Proposition 8. If A C Z%, then C(C(A)) = C(A).

Proof: By Proposition 6, properties ¢ and ¢4, it is easy to see that C(A4) C C(C(A)). It remains to be
proved that C(C(A)) € C(A). Let A be the set all the half planes that contain A. Hence,

c(c(4)) =c([) X)

XeA
c e
XeA
(by Proposition 7)
= ﬂ X
XeA
(since C(X) = X,
for any X € A)
= C(A)

Therefore, C{(C(A)) = C(A).

Proposition 8. If A,B C Z?, then C(A)® B C C(A & B).
Proof:

ClA) o B = |J(C(Ah

beB
= )
beB
(By Proposition 6—iit)
coJ )
beB
(By Proposition 7)
=C(A®B).
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Fig. 5. A point y and the axis tio, €y, %2 and 3.

MINz(A) = =1,  MAX)(A} =3

-------------- MING(A) = ~1

st MAXgp(A) = 2
~ N TMAX3(A) =2
A

- n
MAX;(4) = 4- MIN3(A) = —2

Fig. 6. A SE A with the axis @, 1), @2 and #s.

MIN; (A) = _a)

Proposition 10. If 4,B C Z?, then C(A & C(B)) C C(4 & B).

Proof:
By Proposition 9, A® C(B) = C(B) @& A C C(A® B). By Proposition 6—if and Proposition 8,
C(A®C(B)YCC(C(A®B))=C(A® B). ]

Proposition 11. If A, B C Z?, then C(C(4) & C(B)) = C(A® B).

Proof: First, let us prove that C(A @ B) C C(C(A) ® C(B)). By Proposition 6—i, A C C(A) and
B C C(B). Then, A® B C C(A)® B [11, p. 82, Eq. 4.30] and C(A)@ B C C(A)® C(B) [11, p. 82, Eq.
4.26]. Hence, A ® B C C(A) @ C(B) and by Proposition 6—ii, C(A & B) C C(C(A) & C(B)).

Finally, we prove that C(C(A) & C(B)) C C(A® B). By Proposition 9, C(A)® C(B) C C(A& C(B)).

Thus, C(C(A) @ C(B)) C C(C(A @ C(B)))
(By Proposition 6—i3)

=C(A® C(B))
(By Proposition 8)

CC(A®B)
(By Proposition 10)

Hence,
C(C(A) & C(B)) = C(A® B).

g
Let i, i, i, and @3 be the Cartesian axis that intersect the origin and have slopes, respectively,
—90, —45, 0 and 45 degrees (see Figure 5). For a given point z € Z2, let ly(z), lh(x), la(x), la(z) be
the orthogonal projections of z at the Cartesian axis @, %1, %3 and i3, respectively. Observe that these
projections are integer numbers at the directions —90 and 0 degrees and real numbers (proportional to
%i) at the directions —45 and 45 degrees. Given a point z € Z%, we denote by z¢, z;, 3 and 3 the
normalized orthogonal projections of the point z at the Cartesian axis i, 3, iz and ¥ given, respectively,
by zo = lbo(z), 71 = h(z) - VZ. 72 = la(z) and z5 = I3(z) - V2. For example, the normalized projections
of the point y = (~5,2) € Z* presented in Figure 5 are yo = —2, 1 = —7, 32 = ~5 and g3 = 3.
Tet A be a SE. For i = 0,1,2,3, let MAX;(A) and MIN;(A) be, respectively, the maximum and
the minimum normalized orthogonal projection at the Cartesian axis #; of the points in A, that is,
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Fig. 8. The eight edges of a convex SE A.

MAX;(A) = max{z; : = € A} and MIN;(A) = min{z; : z € A}. For example, the maximum and
the minimum normalized orthogonal projections of the set A presented in Figure 6 are, respectively,
MAXo(A) = 2, MAX,(A) = 4, MAX,(A4) = 3, MAX;3(A4) = 2 and MINp(4) = -1, MIN((4) = -2,
MINz(A) = —1, MIN3(A) = —2.

Propositions 12 and 13 give some properties of MAX;(A) and MIN;(A) of a given SE A.

Proposition 12.  If A and B are SE’, then, for any i € {0,1,2,3}, MAX;(A @ B) = MAX,(4) +
MAX.(B) and MIN;(A & B) = MIN;(A) + MIN;(B).

Proof: MAX(A® B) = max{z; : 2 € A® B} = max{a;+5; : a € 4,b € B} = max{a; : a €
A} +max{b; : b € B} = MAX,(4) + MAX;(B). In the same way, MIN;(4 & B) = MIN;(4) + MIN;(B).
|

Proposition 13. If A is a SE, then, for any i € {0,1,2,3},
MAX;(C(A)) = MAX;(A4) and MIN;(C(A4)) = MIN;(A).

Proof: Foranyi =0,1,2,3, by definition of MAX;(A), there exists y € A such that y; = MAX;(4). On
one hand, MAX;(A) < MAX;(C(4)), since, by Proposition 6—i, A C C(A). On other hand, MAX(A) >
MAX;(C(A)). In fact, suppose that there exists w € C(A) such that MAX;(4) < w;. Let Hy = {z €
Z 1, < MAX;(A)} and H; = {z € Z* : z; < w;}. Clearly, H; and H, are half planes that contain
A and w & H; (see Figure 7). Since C(A) is the intersection of all half planes that contain A, then,
w ¢ C(A). But it contradicts the hypothesis that w € C(A). The proof for MIN;(C(A)) = MIN,(A) can
be done in a similar way. [m]

Let A be a SE. We define the eight edges of A, denoted by Ey(A),---, E7(A), in the following way. For
i=0,1,2,3, Ei(A4) and E;44(A) are the sets containing all points of C(A) that have, respectively, the
same maximum and minimum normalized orthogonal projection at axis 1, i.e., E;(4) = {z € C(4) :
7 = MAX;(A)} and B 4(A) = {z € C(A) : z; = MIN;(A)} (see Figure 8 for an example). Note that
the axis u; is perpendicular to edges E;(A) and E;y4(A) (see Figure 8 for an example). By construction
of E;(4), ¢=0,1,---,7, and by Propositions 8 and 13, it is clear that E;(4) = Ei(C(A)) € C(A).

Given a SE A, the next edge of E;(A) is Eiy1(A), if i <7, or Eg(A), if i = 7. The last edge of Ei{A) is
E;1(A), if § > 0, or Er(A), if i = 0. For example, the next edges of E;(A4) and E(A) are, respectively,
E3(A) and Ey(A); the last edges of E5(A) and Eo(A) are, respectively, E4(A) and E(A). For simplicity
of notation, we denote E;_;(A) and E;;1(A), respectively, the last and the next edges of E;(A).
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Fig. 10. Extremities of edge E;({A).

Given a SE A, Proposition 14 states a property of edges E,(A) and E;+1(A).
Propesition 14. If A is a SE, then, for any i € {0,1,---,7}, |Ei(A) N E;41(A4)] = 1.

Proof:
We suppose that = 1 or 2 (the other cases for ¢ = 0,3,4,5,6,7 can be proved in a similar way).
Consider the coordinate system formed by the Cartesian axis #; and #;;, (see Figure 9, for an example).
In this coordinate system any point £ € Z* can be uniquely represented by the ordered pair (25, Zi41)-
Clearly, E;(A)UE;;;(A) is an 8~connected subset of C(A) (see Figure 9). Thus, by definitions of E;(A)
and E;y (A), there is a point y € E;(A)U Eiy, (A) such that y; = MAX.(A) and yi41 = MAX{1(A) (see
Figure 9). So, also by definitions of E;(A) and E;41(4), y € E{A) and y € E;;(A). It remains to show
that this point is unique. Suppose there exist two points g,z € E;(4) N E;;1(A). In this case, y; = 2
(since y,z € E;(A)) and yiy1 = 241 (since g,z € Ei1(A4)). Thus, ¥y = (3, 9i41) = (2, 2i41) = 7 and
therefore IE.(A) NEi(4) =1. O
Given a SE A, by definition, for any i € {0,1,---,7}, E;(A) is a line formed by a segment of consecutive
points of C(A) at 0, 45, 90 or 135 degrees. Thus, each E;(A) contains at most two points that we call
eztremities of E;(A). More formally, the two extremities of E;(A) are the poinis z,y € E;(A) such that
z € Ey1(A) and y € E;_,(A). For example, in Figure 10, the points z and w are extremities of E;(A4).
Given two SE's A and B, the following proposition gives an important property of edges of 4 and B.

Proposition 15. If A and B are SE’s, then, for anyi € {0,1,---,7}, E;(A@® B) = E;(A) ® Ei(B).

Proof: We suppose that ¢ = 1 or 2 (the other cases for 1 = 0,3,4,5,6,7 can be proved in a similar
way).

Firat, we prove that E;(A) & E;(B) C E:(A® B).

By definition of E;(A @ B), z € E;(A @ B) if and only if z € C(A © B) and z; = MAX;(A & B). So,
in order to prove that E;(A) & E;(B) C E,;(A ® B), we have to show that, if z € E;(A) ® E;(B), then
z € C(A® B) and z; = MAX;(A & B) = MAX;(A) + MAX;(B) (by Proposition 12).

Since E;(A) C C(A) and Ei(B) C C(B), then Ei(A} & E{(B) C E;(A)® C(B) C C(4)® C(B) [11,
p. 82, Eq. 4.26]. Thus, by Proposition 6—i and 11, E;(A) ® Ei(B) C C(A @ B). It remains to show
that z; = MAX;(A) + MAX;(B). By defintion of Minkowski addition, if z € E;(A) @ E,;(B), then there
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exist y € F;(A) and z € Ei(B) such that £ = y + z. By definition of B;(A), y € E;(A) if and only if
y € C(A) and y; = MAX;(4). Similarly, » € E;(B) if and only if 2 € C(B) and % = MAX,(B). Thus,
since £ = y + z, then z; = y; + 2, = MAX;(A) + MAX,(B). Hence, E;(4) ® E;(B) C Ei{{(A & B).

Now, we prove that E;(A & B) C E;(A) @ Ei(B).

Since, by definition, E;(A) and E;(B) are lines formed by segments of consecutive points of C(A)
and C(B), respectively, and the Cartesian axis u; is perpendicular to E;(A) and E;(B), then clearly, by
definition of Minkowski addition, E;(A) @ E;(B) is a line formed by a segment of consecutive points of
C(A)®C(B) and the Cartesian axis u; is also perpendicular to E;(A)® Ei(B). In addition, by definition,
E;(A® B) is a line formed by a segment of consecutive points of C(A ® B) and the Cartesian axis u; is
perpendicular to E;(A ® B). So, if the extremities of F;(A® B) belong to E;(A) @ E;(B), then obviously
E;(A® B) C E{(A)® Ei(B).

Let ¢ and z be extremities of E;{A @ B) such that {t} = Ei_1(A @ B)N Ei(A® B) and {2} =
E{(A®B)NE;;1(A® B). We will show that z,t € Ei(A) ® Ei(B). For that, let z and y be extremities
of, respectively, E;(A) and E;(B) such that {z} = E;i(A) N Ei41(A4) and {y} = Ei(B) N Ei1(B).

In the coordinate system formed by the Cartesian axis #; and @41, we have r = (@i, Ti41), ¥ = (¥i, ¥i+1)
and z = (2, ziv1)-

Since z € E;(A), y € E;(B) and 2 € E;(A® B), then, respectively, z; = MAX;(4), y; = MAX;(B) and
2, = MAX;(A @ B). Thus, by Proposition 12, z = MAX:(4 @ B) = MAX,(4) + MAXi(B) = z; + .
Analogously, 241 = Zip1 + gis1. Hence, 2= (2, 441) = (23, Zin) + (g0 pi1 ) = 2 4 v

In a similar way, if , s are extremities of, respectively, E;(A) and E;(B) such that {r} = E;_; (A)NE;(4)
and {3} = E;_{(B)N E;(B), thent=r 3.

Thus, since E;(A) @ Ei(B) = {v+ v : u € E;(A),v € E;(B)}, then 2 =2 +y and ¢ = r + & belong to
Ei(A)® Ei(B).

O
Given a SE A, the length of an edge E;(A) is defined as |Ei(A)| — 1. The following proposition is an
immediate consequence of Proposition 15.

Proposition 16. If A and B are SE’s, then, for anyi € {0,1, .-, 7}, |Ei(A®B)| = |Ei(A)|+|Ei(B)| -
1.

Proof: Since E;(A) and E;(B) are lines formed by segments of consecutive points of C(A4) and C(B),
respectively, and the Cartesian axis #; is perpendicular to both E;(A) and E;{B), then, by definition of
Minkowski addition, clearly, the cardinality of E;(A) & E;(B) is equal to |E;(A)| + {E:(B)| — 1.
Therefore, | E:(A ® B)| = |E:(A)| + |Ei(B)] - 1, since by Proposition 15, E;(A ® B) = Ei(A) ® Ei(B).
a

The vector projection of a given SE A is the vector v(A) € Z® such that its coordinates are the
lengths of the edges of A (see Figures 11a, 11b and 11d for an example). More formally, the vector
projection of the SE A is v(A) = (1p(4),v1(A),- -+ ,v1(A)), where v;(A) is the length of E;{A), that is,
vi(A) = |Ei(A)| — 1. Kanungo and Haralick [12] studied some properties and decomposition for convex
SE’s that are 4—connected (that they called restricted domains) and they used a boundary enconding
scheme (called B—coded) that is very similar to the vector projection defined above.

Note that the vector projection is independent of translation, that is, ¥(A) = v(A4), for any h € z>.
Note also that, for any SE X, v(X) = v(C(X)), since, by defitinion, E;(X) = E;(C(X)).

1t is known that the chain code [6][7, p. 484] describes completely the shape of a convex SE. Without loss
of generality, we assume that the chain code starts at 0 degree direction and runs counterclockwise. Thus,
the chain code of a convex SE is represented by the sequence of numbers between 0 and 7: Q7e1™ ... 7™,
where i™ (n; > 0) is the string defined in the following way: i repeats n; times if n; > 0 or it is an empty
string if n; = 0. For example, the chain code of the SE presented in Figure 11b is shown in Figure 11c.
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Fig. 11. (a) A SE A. (b) The convex hull of A. (c) The chain code of C(A). (d) The vector projection of A.
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Fig. 12. (a) A SE A. (b} Invariant Sequence of A.

We can easily see that the vector projection of a given SE A and the chain code of C(A) are equivalent
definitions (see Figures 11c and 11d for an example).

An O(n) time algorithm for computing the chain code of a convex SE A (or equivalently, the vector
projection of A) can be found in [16, p. 143}, where n is the number of points of 4.

The next proposition gives an important property of vector projection. The same result for convex
SE’s that are 4—connected can be found in {12].

Proposition 17. Let A, X andY be SE’s. f A= X ®Y, then v(A) = v(X) + v(Y).

Proof:  Since the vector projection is independent of translation, then for any ¢ € {0,1,---,7},
vi(A) =un(X 8Y)
= |E(X V)| -1
= (|BX)| + | Ex(Y)| - 1) -1
(by Proposition 16)
= (|B(X)| - D)+ (IE(Y) - 1)
=u(X) + v(Y).

Therefore, v(A) = »(X) + v(Y).

O
The following proposition gives a necessary condition for the existence of a decomposition for a given
SE.

Proposition 18. Let A be ¢ SE. Let Z be the SE obtained by Minkowski addition of all subsets in the
sequence InvSeq[A]. If there exists i € {0,--+,7} such that v;(Z) < ¥;(A), then A has no decomposition.

Proof: Suppose that A has a decomposition. By Proposition 5, there exists asubsequence of InvSeg[A],
say [B1,Ba,---,B:), that is a shape decomposition of A. Hence, there exists h € Z?2 such that 4 =
(B1 ®Ba® --- ® Bg)s. So, by Proposition 17, v(A) = v(By) + v(Ba) + --- + »(Bx). Thus, v;(4) =
vi(By) + uj(Bz) + -+ vi{Bi) € v;(Z), for any j € {0,1,---,7}, since Z is the Minkowski addition of
all subsets in the sequence InvSeq[A]. But it contradicts the hypothesis that there exists s € {0,1,-.-,7}
such that v;(A) > v;{Z). Therefore, A has no decomposition. O
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For example, Figure 12a presents an undecomposable SE A. Let Z be the SE obtained by Minkowski
addition of all subsets in the sequence InvSeq[A] (presented in Figure 12b), that is, Z = B, @ B: &
B; & B,. The vector projections of A and Z are, respectively, v(4) = (2,2,2,2,2,2,2,2) and »(Z) =
(2,2,2,2,2,3,0,3). Thus, by Proposition 18, 4 has no decomposition, since v5(Z) < v5(4).

The next proposition, a consequence of Proposition 17, states a necessary condition for feasible nodes,
and, therefore, it gives a strategy to prune some unfeasible nodes of the decomposition tree of a given SE.

Proposition 19. Let A be a SE. Let Y be a node in T{A). If there ezists i € {0,---,7} such that
vi(Y) > vi(A), then Y is not a feasible node.

Proof:  Suppose that Y is a feasible node. Thus, there exists a descendant of Y, say X, such that
X = A. Let W C Z? be the set obtained by the Minkowski addition of all subsets in PathA[Y, X]. So,
X =Y @W = A, and thus, there exists h € Z? such that A = (Y ® W),. Hence, by Proposition 17,
v(A) = v(Y) + v(W). Thus, for any j € {0, 1,---,7}, ¥;(A) = v;(¥) + v;(W), and v;(A) > v;(Y). But
it contradicts the hypothesis that there exists ¢ € {0,1,---,7} such that 1;(A) < »(Y'). Therefore, Y is
not a feasible node. O

For example, in Figure 3¢, the vector projections of Ny and A are, respectively, »(Ny) = (2,2,0,2,2,0,4,
0) and v(4) = (1,1,1,1,1,0,3,0). Thus, by Proposition 19, Ny is not a feasible node, since vo(Ny) >
vo(4).

The following proposition, an immediate consequence of Proposition 3, is another prunning strategy.

Proposition 20. Let A be a SE. Let Y be a node in T(A). If Y is not an fnvariant of A, thenY s
not a feasible node.

Proof: Suppose that Y is a feasible node. Then, there exists a descendant of Y, say X, such that
X = A. Let W C Z? be the set obtained by the Minkowski addition of all subsets in Path[Y, X]. So,
X =Y ®W = A, and thus, there exists z € Z” such that A= (Y @ W) ® {2} =Y & (W & {z}). Hence,
by Proposition 3, Y is an invariant of A. But it contradicts the hypothesis that the node Y is not an

invariant of A. Therefore, Y is not a feasible node. O
The following definitions are necessary in order to get another pruning strategy (given by Proposi-
tion 22).

Let A be a SE. Let ¥ be a node of 7(A4). We denote Direct4[Y] the sequence formed by the labels
of the edges that join Y and its direct descendants, that is, if ¥ is the root, Directs[Y] = InvSeq[A]; if
Y = B;, ®---® B;,, then Directs[Y] = [Bi, 11, Bi, 42, -, Bm] (see Figure 2). For example, in Figure 3c,
Direct4[V1] = [Bz, Bg|. If X is a descendant of Y, then, by construction of 7(A), the sequence Path4[Y, X]
is a subsequence of the sequence Direct4[Y]. For example, in Figure 3¢, Path4[N;,Ns] = [B;] is a
subsequence of Direct4[Ny] = (B3, Bs).

Let A be a SE. Let Y be a node of T{A). We define the subsequence Possible4[Y] of Direct4[Y] in the
following way. Let Dy, Dy, -+, Dy be all distinct elements of Direct 4[Y] such that, forany i € {1,2,---,k~
1}, D; appears before D;,, in Direct 4[Y]. Let m; be the number of occurrences of D; in Direct4[Y]. Clearly,
Direct4[Y] = Seq[Dy,m,]- - - Seq[Dg, ms]. Let n, be the greatest non-negative integer such that (Y ®n:D;)
ig invariant of A. Let d; = min{n;,m;}. The possible sequence is Possible4[Y] = Seq[Dy,d;] - - - Seq[Di, di].
For example, in Figure 3¢, Possible4[N;] = Bj, since Direct4[V1] = Ba,Bs, N1 ® By = Ny is not an
invariant of A and N; @ B3 = Nj is an invariant of A.

In the next proposition, we have an interesting property for possible sequences. As a consequence of
this property, we can get a new pruning strategy that is given by Proposition 22.

Proposition 21. Let A be a SE. Let X,Y be two nodes of T(A) such that X is o descendant of Y. If
X = A, then Path4[Y, X] is a subsequence of Possibles[Y].
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Fig. 18. Orthogonal projection of A.

Proof:  Let §1,8,, -+, S be all distinct elements of the sequence of Path4[Y, X], such that, for any
i € {1,2,3, .-,k — 1}, S: appears before Si4; in Path4[Y, X]. I s; is the number of occurrences of S; in
Path4[Y, X], then Path4[Y, X] = Seq[S1, 31] - - - Seq[Sk, 8x]. Thus, X =Y © 8151 D 3252 ® - @ 55. In
order to prove that Path4[Y, X] is a subsequence of Possibles[Y], we have to show that:

(1) each S; € Possibles[Y];

(2) if d; is the number of occurrences of S; in the sequence Possible4 Y], then s; < d;;

(3) for anyie {1, .-,k -1}, S; appears before 5,1, in Possibles[Y].

Since X =Y ©38,5, ®---®3,Sk = A, there exists 2 € Z2 suchthat A=Y $ 5,51 & - @8 Sx @ {z}. So,
by Proposition 3, (Y & 5,5;) is invariant of A and, by definition of Possible4[Y], S; € Possibleg[Y]. This
proves (1).

Let n; be the greatest positive integer such that (Y & n;S;) is invariant of A. Let m; be the number of
occurrences of S; in Direct4[Y]. By construction of the sequence Possible4[Y], the number of occurrences
of §; in PossibleA[Y] isd; = min{n.-,mi}. If d; = n;, then 8; < n;, since Y & s,5; is invariant of A. If
d; = m;, then s; < m;, since Path,[Y, X] is a subsequence of Direct4[Y]. This proves (2).

Suppose that there exists j € {1,2,---,k — 1} such that S;;, appears before that S; in Possible4[Y].
Since the sequence Possible4[Y] is a subsequence of the sequence Direct4[Y], then S;41 appears before
that S; in Directs[Y]. Since Patha[Y, X] is a subsequence of Direct4[Y), then S, appears before that S;
in the sequence Path4[Y, X]. But it is a contradiction, since, by construction of Path4[Y, X], S; appears
before that S;41 in the sequence Path,[Y, X|. Therefore, for any i € {1,2,---,k — 1}, 5; appears before
Si41 in the sequence Possiblea[Y]. This proves (3). 0

The following proposition gives a new pruning strategy.

Proposition 22. Let A be ¢ SE. Let Y be a node in T(A). Let Z C Z? be the set obtatned by
Minkowski addition of all subsets in the sequence Possibles[Y]. If there erists i € {0,---,7} such that
vi(Z) < v(A) - vi(Y), then Y is not a feasible node.

Proof: Suppose that Y is a feasible node. Thus, there exists a descendant of Y, say X, such that
X = A. Let W C Z® be the set obtained by Minkowski addition of all subsets in Path,[Y, X]. So,
X =Y®W = A, and thus, there exists h € Z? such that A = (Y& W). Hence, by Proposition 17, we get
v(A) = v(Y)+v(W). Since, by Proposition 21, the sequence Path4[Y, X] is a subsequence of Possible[Y],
then, for any j € {0,---, 7}, v;(2) 2 vj(W) = v;(A)—r;(Y). But, it is a contradiction, because we assume
that there exists i € {0,---, 7} such that v;(Z) < v;(4) — v;(Y"). Therefore, Y is not a feasible node.
a

With the pruning strategies given by Propositions 19, 20 and 22 we can avoid some (not all) unfeasible
nodes of the decomposition tree.

In the next subsection, we present a lower bound for the length of shape decompositions. If a shape
decomposition of a given SE A is found, we can check if it is an optimum solution verifying if the lower
bound is equal to the length of the solution found.
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2.5. Lower Bound

In order to state a lower bound for the length of shape decompositions of a given SE, we define a new
measure taken on SE's.

The orthogonal projection of a SE A is the vector p(4) € Z® such that, p1(A) = v3(A) + v4(A4) + v5(A)
and p3(A) = v1(A) + va(A) + v3(A). See Figure 13 for an example. In other words, the coordinates of
the orthogonal projection of a SE A are the lengths of the edges of the smallest rectangle that contains
A

Since the vector projection is independent of translation, we have that, for any h € Z%, p(A) = p(As).
Since, for any SE X, 1{X) = v(C(X)), we have that p(X) = p(C(X)).

The next result is an immediate consequence of Proposition 17.

Proposition 23. Let A, X andY be SE’s. f A= X @Y, then p(4) = p(X) + p(Y).

The following proposition gives a lower bound for the length of shape decompositions of a SE by
Minkowski additions.

Proposition 24. Let A be a SE. If A has a decomposition, then a shape decomposition of A contains
at least lower(A) = [max{p;1(A), p2(A4)}/2] elements.

Proof: Let [By,Ba,-.-.B,.] be a shape decomposition of the SE A. Then, A= B ®Ba®:- & B,
and thus, there exists h E Z* such that A = (B; @ B3 @ --- ® Bm)a. Let S; be the 3 x 3 square that
contains B, for i = 1,2,---,m. Clearly, A C (51 ® Sa ® -+ ® S )», and the orthogonal projection of
(S1 0838 - B Smln i8 p((MmS)n) = p(mS) = (2m,2m), where S is the elementary square.

Hence, since A C (S) B S2®- - - Sm ), then p1(A) € 2m and p2(4) < 2m. Thus, max{p; (A), p2(A)} <
2m and, therefore, m > [max{p;:(A), p2(4)}/2]. 0

Notice that, given a SE A, the length of the optimum solution of A must be greater or equal than the
lower bound stated by Proposition 24. Besides, it is not the only lower bound that can be computed.
Others can be determined using sophisticated combinatorial and optimization techniques (relaxation,
primal-dual, etc...). In this work, we just consider the lower bound fixed by Proposition 24.

3. Search of Optimum Decomposition

In this section, we present an algorithm for finding an optimum shape decomposition of a given SE A.
The following proposition characterizes a node Y in the decomposition tree of a given SE A such that
Y=A

Proposition 25. Let A be a SE and let Y be a node of T(A). Then, Y = A if and only if Y is an
invariant of A and v(Y) = v(A).

Proof: (=) IfY = A, then, there exists A € Z2 such that Y = 4, = A@{h}. Hence, by Proposition 3,
Y is invariant of A. Since ¥(A) = v(A), then, v(Y) = v(4).

(<) Since Y is invariant of A, by Proposition 2, there exists a SE X such that A = X & Y. By
Proposition 17, »(4) = ¥(X) + »(Y). Since ¥(A4) = »(Y), then ¥(X) = O and therefore | X| = 1. Let
h € Z2 such that X = {h}. In this case, the Minkowski addition X ® Y = A is a translation of the set
Y by h. Hence, ¥ = A. a

Let A be a SE. When a node Y of 7(A) such that Y is an invariant of A and »(Y') = v(A) is found,
then, by Proposition 25, ¥ = A, and therefore, the sequence Path4[{{o}, Y] is a shape decomposition of
A. If level(Y) is equal to lower(A) (the lower bound fixed by Proposition 24), ther Paths[{0},Y] is an
optimum solution. Otherwise, the optimum solution contains at most level(Y) elements. So, we get an
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upper bound for decomposition of A. Note that this upper bound can change dynamically. We denote
c.u.b. the current upper bound.

A crucial task of the procedure is an adequate pruning of the decomposition tree when its nodes are
being visited. Proposition 18 gives a necessary condition for the existence of a decomposition for A. Thus,
we should begin the search just if this condition is satisfied. Proposition 24 fixes the lower bound for a
decomposition of A, while Propositions 19, 20 and 22 guarantees important pruning, since they detect
unfeasible nodes.

Under this context, after setting c.u.b. with infinite, the search dynamics goes on. In the first iteration,
the root is selected to be visited. In an arbitrary iteration, when the node Y is being visited:

(8) — Verify if this node can be pruned.
There are four pruning strategies that have to be checked:
(i.a) Pruning by Upper Bound.

level(Y) > c.u.b.

(i.8) Pruning by Projection.

There exists ¢ such that
vi(Y) > vi(4)

(i.c) Pruning by Invariance.
Y is not invariant of 4.

(i.d) Pruning by Possible Sequence.
Let Z C Z? be the set obtained
by Minkowski addition of all sub-
sets in the sequence Possible 4[Y].

If there exists ¢ such that
V,'(Z) < vi(A) —wi(Y)
If one of these conditions is satisfied, then the node Y is pruned and a new iteration begins.
(i) — Verify if this node is a solution.
Y is a solution if the following two conditions are satisfied:
o level(Y) > lower(A) and
o YY) =wv(A).
In the case of these two conditions are satisfied, ¥ is an invariant of A (otherwise, Y would be
pruned in step (i.c)) and, since v(Y) = v(A), by Proposition 25, Y = A, and then, PathA[{o} Y]
is a shape decomposition of A.
(#.a) — This node is a solution.
There are two possibilities:
s if level(Y) = lower(A)
= The search stops.
o if level(Y) > lower(A)
= c.u.b. — level(Y)
and a new iteration
begins.
(ii.b) — This node is not a solution.
The algorithm begins a new iteration.

In Figure 14, we show a simple example of the algorithm running for finding a shape decomposition
of the SE A presented in Figure 14a. The invariant sequence of A is presented in Figure 14b. The
vector projection, the orthogonal projection and the lower bound of A are presented in Figure 14c. The
root is selected to be visited in Figure 14d. The node N, is being visited in Figure 14e. The node N
is being visited in Figure 14f. The node Ny is pruned (pruning by Projection, see Proposition 19) in
Figure 14¢. The node Nj is being visited in Figure 14h. Since N5 = A, then Path[{o}, Ns] = [B,, Bs]
is a decomposition of A. Besides, since level(Ns) = 2 = lower{A), then Path[{o}, N5] is an optimum
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Fig. 14. An example showing the algorithm running.

solution and the search stops. In this example, only the pruning by projection was detected. The other
pruning strategies are detected in a similar way.

Proposition 26. Let A be a SE. If m is the number of elements in the invariani sequence of A, then
m = O(n), where n is the sum of all coordinates of the vector projection v(A).

Proof:  Clearly, the multiplicity of a given SE with respect to A is at most max{p1(4), pa(A4)} = O(n)
and the number of all possible subsets of the elementary square is 2°. Thus, the number of elements in
InvSeq[A] is at most 2° - max{p1(A4), p2(A4)} = O(n). Therefore, m = O(n). (]

Since the decomposition tree of a given SE A contains 2™ nodes, where m is the number of elements
in the invariant sequence of A, and by Proposition 26, the time complexity of our algorithm, in the worst
case, is O(2™), where n is the sum of all coordinates of ¥(A).

4. Comparison with some known Algorithms

In this section, we compare the algorithm presented in Section 3 with some known algorithms. Sub-
section 4.1 compares with Zhuang and Haralick's algorithm [24]. Subsection 4.2 compares with Xu's
algorithm [22]. Subsection 4.3 compares with Park and Chin’s algorithm [15].
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Fig. 15. (a) A SE A. (b) The subsets of the elementary square that are in B(A). (c) The invariant sequence of A according
to the order chosen to construct it. (d) Output of our algorithm. (&) Output of Xu’s algorithm.

4.1.  Zhuang and. Haralick’s Algorithm

Zhuang and Haralick [24] presented an algorithm for finding the optimum decomposition of an arbitrarily
SE, where all elements in the decomposition have the prescribed fixed number  points. Their algorithm
perfoms the breadth-first search in a tree (that they called tree search) and the essence of the solution
technique is divided into two parts: (i) the recognition that SE’s participating in the decomposition must
have points which are the differences between points of the given SE and (#i) the reduction of the search
space using pruning by the invariance strategy that they called forward checking.

The breadth-first search has advantages and disadvantages over the depth-first search. The main
advantage it that the first solution found is always the optimum one. The principal disadvantage is that
all nodes in the current level have to be kept in memory. So, we decided to use the depth-first search
because it requires less memory and, in our experiments (see Section 5), we observed that the distance
between the optimum and the first solution found usually is small.

The problem decomposition considered in our work (stated in Subsection 2.1) is a special case of the
problem studied by Zhuang and Haralick {with k = 2,3,---,9 and each SE in the decomposition being
a subset of the elementary square). In this particular case, our algorithm can reduce more the search
space, since it uses two more pruning strategies (prunings by projection and possible sequence).

4.2. Xu’s Algorithm

Xu [22] developed an algorithm for finding the optimum decomposition of convex SE’s in terms of subsets
of the elementary square, where all SE’s in the decomposition are also convex.

In order to use Xu's algorithm for decomposing a convex SE A, it is necessary to compute the chain
code of A. The time complexity of the algorithm given in [16, p. 143] for determining the chain code is
linear with respect to the number of points in the whole SE A, or equivalently, the time complexity is
O(n?), where n is the sum of all coordinates of the vector projection v{A4). In this subsection, we show
that, if the input of our algorithm is a convex SE, then its time complexity is O(n*) and its output can
contain non-convex SE's (in this sense, it is more general than Xu’s algorithm).

Depending on the order chosen to construct the invariant sequence, different heuristic search procedures
arise. We have sorted the elements of the invariant sequence in decreasing order, according to the sum of
the coordinates of the orthogonal projections of each subset in the invariant sequence, and, at the same
time, in increasing order, according to the number of points of each subset in the invariant sequence.
For example, Figure 15¢ presents the invariant sequence of the SE A (presented in Figure 152) according
to the order chosen to construct it. In this figure, observe that pe(B1) + p1(B1) = po(Bz) + p1(Bs) >
po{Bs) + p1(B3) and B, contains less points than Bs.
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According to this sorting, the algorithm prefers to choose non-convex SE’s rather than convex ones
for the shape decomposition. Thus, as the time complexity of algorithms that implement erosions and
dilations depends on the number of points in the SE, our algorithm has an advantage over Xu's algorithm,
sinee all elements in the output of Xu’s algorithm are convex subsets of the elementary square [22]. For
an example, in Figures 15d and 15¢ are presented, respectively, the output of our and Xu’s algorithm.
In this particular example, the difference is just four points, but for bigger SE's the difference can be
considerable.

Given a SE A and a node Y of T(A), let B be the first element in Direct4[Y] such that ¥ & B is an
invariant of A. We define the node Y @ B as the leftmost invariant direct descendant of Y. We define
the leftmost node sequence of the decomposition tree T(A) as the sequence [¥s,71,Y2,:--,Y3] formed
by the nodes of 7(A) such that ¥; is the root (i.e., the unitary set that contains the origin) and, for
t=1,2,...,k, Y; is the leftmost invariant direct descendant of ¥;_;.

Given a convex SE A, if the invariant sequence of A is built in the manner described above, then the
following proposition, proved in [10], gives an important result in order to prove that the output of the
algorithm is an optimum shape decomposition of A.

Proposition 27. Let A be a conver SE. If the sequence (Y5,Y1,Yz2, . Yi] is the mozimal leftmost
node sequence of T(A), then lower(Y:) =k and Y = A.

The next proposition is an immediate consequence of Proposition 27.

Proposition 28. Let A be a convez SE. If the sequence [¥5,Y1,Y3,- -+, V3| is the mazimal leftmost
node sequence of T(A), then Path4[{o},Yi] is an optimum shape decomposition of A.

Proof: By Proposition 27, lower(Yx) = k and Y = A. So, v(Yi) = v(4), and, consequently,
k = lower(Y}) = lower(A). Since Path,[{o}, Yi] contains exactly k elements and k = lower(A), then,
clearly, Patha[{o},Y:] is the optimum shape decomposition of A. a

Given a convex SE A, when a maximal Jeftmost node sequence of 7(A), say {¥5,Y1,Y3,--+,Y3], is
found, then, by Proposition 28, Path4[{c},Y}] is the optimum shape decomposition of A. It remains to
show that the time complexity to find the first maximal leftmost node sequence is O(n*}, where n is the
sum of all coordinates of the vector projection v(A).

Let A and Y be SE’s such that ¥ is a node of T(4). Let Patha[{o},Y] = [B1, B3, ++,Bi]. In order
to verify if Y is an invariant of A, we have to checkif A=(AeY)aY =(---((A6B1)6B30:---©
B,)® B,)® By ®---® By). The time complexity for computing A © B; or A @ B; is linear with respect
to the number of points in A, since B; contains at most 9 points. If n is the sum of all coordinates of
the vector projection ¥(A), then the time complexity for computing A © B; or A® B; is O(n?). So, the
overall complexity for verifying if a node ¥ at level k is an invariant of A is O(k - n3).

Since the algorithm presented in Section 3 uses the depth first search, then, the first maximal sequence
of nodes visited by our algorithm is the maximal leftmost node sequence {Yp, Y3, Ya,- -+, Y] of T7(4). By
Proposition 28, k = lower(A). Hence the time taken for finding the maximal leftmost node sequence of
T(A) is O(1 - n?) + O(2 - n?) + - - - + O(lower(A) - n?). Therefore, the time complexity of the algorithm
for finding an optimum decomposition of a convex SE A is O(lower(A)? - n?), that is, O(n*), since
lower(A) = O(n).

4.8. Park and Chin’s Algorithm

Park and Chin [15] developed an extension of Xu’s algorithm for finding the optimal decomposition of
simply connected SE’s, where all elements in the decomposition are also simply connected. In this subsec-
tion, we show that there exist infinite families of simply connected SE’s that have shape decompositions
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Fig. 17. (a) -~ (c) SE's X1, Y} and 2.

but are not decomposable according to the Park and Chin’s decomposability definition. In addition, we
give some comments about the time complexity of their algorithm.

In this subsection, we consider the SE’s Dy = {d;,dy}, D; = {dy,ds}, D3 = {d1,d3,dq}, Dy = {d3,ds}
and Dy = {dy,d3}, where d; = (—1,1), d; = (1,-1), d3 = (0,0) and d4 = (0, ~1). These SE's are
presented in Figure 16.

For any integer ¢ > 0, consider the SE's X; = iD1 & D3, Y; = iD; ® D4 and Z; = iD; & Ds. See
Figure 17 for some examples of these SE’s. These SE’s X,, ¥; and Z: are simply connected and at least
one element in the decomposition of X, Y; and Z; is not simply connected [9]. So, the families of simply
connected SE's X' = {X;:1> 0}, ¥ = {¥; :4 >0} and 2 = {Z; : i > 0} are not decomposable according
to the Park and Chin’s decomposability definition [9].

In their work, Park and Chin [15] did not mention the time complexity of their algorithm. In a certain
step of the Park and Chin’s algorithm, it is necessary to find an integer solution of a linear system with
a fixed number of variables [15, p. 8}, but they did not show how to do it. Theoretically, for each fixed
natural number n, there is a polynomial algorithm solving systems of linear inequalities in n integer
variables [19, p. 256], but its implementation is not practical. In general case, integer linear systems are
very hard problems (19, p. 227].

Although the time complexity of our algorithm is O(2™), where m is the number of elements in
the invariant sequence, our algorithm has an advantage over Park and Chin’s algorithm, since it can
decompose any type of decomposable SE, including the SE’s in families X', V and Z.

5. Experimental Results

In this subsection, we present some experimental results of application of our algorithm for finding an
optimum decomposition for some different types of SE’s, namely: digital disks (see definition below),
convex SE’s (see an example in Figure 18a), decomposable connected SE's that contain holes (see an
example in Figure 18b), decomposable connected SE’s that contain no holes (see an example in Figure 18c),
decomposable disconnected SE's that contain holes (see an example in Figure 18d) and decomposable
disconnected SE’s that contain no holes (see an example in Figure 18¢). These experiments have been
performed using a Sun Ultira Enterprise 3000. Processing time is measured in hours (h), minutes (m) and
seconds (s).

The digital disk of radius r > 0, centered at the origin, is the SE given by D(r) = {(z,y) € Z% : 22442 <
72} (see Figure 19 for some examples). Note that it is not the only definition to discrete circular SE’s.
A method to obtain some types of decomposable discrete circular SE’s and their decomposition can be
found in [21].

We divide this subsection into three parts. In the first one, we show some results for digital disks; in
the second one, for convex SE’s; in the third one, for decomposable connected and disconnected SE’s that
contain holes and no holes. In the tables, we use the following notation:
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Fig. 18. (a) A cor SE. (b) A decomposabl d SE that ins a hole. (¢) A decompoeable connected SE that
contains no holes. (d) A decomposable disconnected SE that contains some holes. (e} A dec ble di ed SE

that contains no holes.

ust = number of subsets in the invariant sequence.
number of subsets in the first solution.

number of subsets in the optimum solution.

time taken for detecting the non-decomposability.
1rs = time taken for detecting the first solution.

108 = time taken for detecting the optimum solution.

5.1. Digital Disks

The disks D(2) and D(4) are decomposable, while disks D(3) and D(5) to D(50) have no decomposition.
The time taken for detecting the non-decomposability of the disks from D(5) to D(50) was less than 40
seconds. The time taken for detecting the first solution (that was the optimum one) of the disks D(2)

and D(4) are presented in Table 1. Table 2 shows the time taken for detecting the non-decomposability
of some disks of radius between 5 and 50.

5.2. Convez SE’s

We have applied the procedure to find the optimum decomposition for about 250 convex SE’s. As stated
in Proposition 28, all the first solutions found were the optimum one. Table 3 presents the average time
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Fig. 19. (a) — (¢) Disks of radius 2, 3 and 4.

Table 1. Decomposable Diska.

radius NSI  NFS=MDS  TFSeT0S

for detecting the optimum solution for convex SE’s that are subsets of 20 x 20, 40 x 40, 56 x 56, 72 x T2
and 88 x 88 square. We have observed that the time taken for finding the optimum decomposition of
convex SE's is very small, even for large SE’s. Table 4 presents the time taken for detecting the optimum
solution of some convex SE’s.

5.8. Decomposable Connected and Disconnected SE’s that contain holes and no holes

In this subsection, we use the following notation for denoting the SE's:
ocs = decomposable connected SE's that contain holes.
¢ = decomposable connected SE's that contain no holes.
ma = decomposable disconnected SE’s that contain holes.

mw = decomposable disconnected SE’s that contain no holes.

We have applied the procedure to find the first and optimum shape decomposition for about, respec-
tively, 400 and 200 decomposable connected and disconnected SE’s that contain holes and no holes.

Table 5 presents the average time for detecting the first solution of SE’s that are subsets of 20 x 20
and 40 x 40 square. In most cases, the first solutions were the optimum ones. In addition, the distance
between the lower bound and the number of elements in the first solution was at most two. Therefore,
the first solutions was very close to the optimum ones.

In Teble 6, we present the time taken for detecting the first and the optimum solutions of some SE’s
that are subsets of the 20 x 20 square and the lower bound was not equal to the number of elements in
the first solution. In this table, observe that the distance beetween the lower bound and the first solution
is usually small and, in most cases, the first solution is the optimum one. Since the complexity time for
detecting the optimum solution, in the worst case, is exponential, in practical applications, it may be a
good heuristic to stop when the first solution is found.

Despite the good results presented in Tables 5 and 6, the time taken for finding the first solution has
increased exponentially with the size of the SE. This was because the three prunings strategies used in
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Table 2. Undecomposable Disks.
radins  NSI ™

05 4 0.Ts
10 22 1.08
15 38 2.2
20 54 il.1s

25 T0 36.3s
30 T0 2.6s
35 54 4.4s
40 70 4.9s
45 6.3

50 102 T7.Ts

Table 3. Average time for detecting the optimum solution of convex SE’s.

Subset of the squars TFS=TQS

20 x 20 5.5s

40 x 40 19.4s
56 x 56 47.2s
72 %72 1n42.08
88 x 88 3m21.08

the algorithm were unable to avoid many unfeasible nodes in the decomposition tree. Table 7 presents
the time taken for detecting the first solution of some SE’s that are bigger than the SE’s presented in
Table 6.

Table 4. Time for detecting the optimum solution of some convex SE’s.

SE A p{A) WSI  WFSsNOS  TFS=T0S

o1 7,11 «s ] 5.58

02 (17, 19) 631 10 .78

03 (31, 34) B4 34 23.3s
04 (32, 38) 918 18 22.08
05 (48, 48) 1837 24 50.0s
[ (62, 56) 1619 28 E7.0s
14 (65, 68) 2114 34 2u7.0s
(] (69, 68) a7 35 2n30.0s
09 (85, 82) 2586 [Y] 3u55.08
10 (88, 84) 2802 a4 4n32.08
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Table 5. Average time for detecting the first solution decomp

and no holes.

hi,

and

ted SE's that contain holes

20 x 20
DCH 3.266s
oC 2.876s
DDA 1.682s
jv)] 1.506s

40 x 40

13m41.08

22.2s
34.08

18m27.08

Table 6. Time for detecting the first and optimum solution of some decomposable ¢ d and di ted
contain holes and no holes.
SE A o(A) NSI  Jower bound NFS  7TFS  NOS T0S
(18,16) 17 ] 10 1.28 10 3.08
(18,16) 17 8 2 1.0 9 4.1s
DDH | (18,18) 38 9 10 1.8s 10 29.40
{18,18) 21 9 10 1.1s 10 6.0s
(14,18) 10 9 10 1.0s 10 1.3
(18,16) 19 ] 9  1.1s8 9 7.68
DD (18,17) 29 9 10 1.2 10 43.68
(18,14) 36 ] 10  1.58 10  1a54.0a
(18,16) 20 9 10 1.3s 10 7.78
(18,16) 24 9 10 1.2s 10 11.6s
(16,16) 41 8 9 355 9  239.0s
DCR | (18,18) 30 9 10 1.28 10 57.2s
(16,18) 19 9 10 1.0s 10 2.58
(16,18) 30 9 10 1.8 10 18.08
(18,177 60 9 10  4.1s § 47.0s
bc (14,18) 43 ° 10 5.3 10  2=41.0a
(18,15) 31 8 8 1.8 9 27.0a
(18,18) 41 [ 10  1.6s 10  8m20.3s

SE’s that
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Table 7. Time for d ing the first solution of some d ble c cted and di d SE’s that in holes
and no holes.

53 A) WSt 5
DOH | (62,75) 114 67h3Gmb8 Os
o0 | (62,66) 91 5h25m30.-08
DCH
BC

(50,64) 137 23h24m21.0s
(50,68) 521 at least 201k

6. Conclusion

The change of decomposition structure of morphological operators for improving the performance of
their implementation is a fundamental step in the process of automatic programming of Morphological
Machines [2]. In this paper, we studied a particular aspect of this problem: the sequential decomposition
of erosions (respectively, dilations).

A general algorithm for the automatic proof that an erosion (respectively, dilation) has a sequential
decomposition or not was presented. The proof of existence is constructive and an optimum solution is
exhibited. This algorithm is based on a branch and bound search, with prunning strategies and bounds
based on algebraic and geometrical properties deduced formally.

The proposed algorithm is not efficient for all the cases, but is generalizes important classical results
as Zhuang and Haralick, Xu, and Park and Chin, with equivalent or improved performances. Theoret-
ical analysis and experimental results illustrated these facts. The combinatorial algorithm is open to
improvements if new bounds or prunings are discovered.

The same kind of combinatorial algorithm could be applied, for example, to compute the sequential
decomposition of alternate sequential filters from their basis. This should be the next problem to be
examined in our research.
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