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Abstract. This paper presents a general algorithm for the automatic proof that an erosion (respectively, 

dilation} has a sequential decomposition or not. If the decomposition exists, an optimum decomposition 
is presented. The algorithm is based on a branch and bound search, with pruning strategies and bounds 
based on algebraic and geometrical properties deduced formally. This technique generalizes classical 

results as Zhuang and Haralick, Xu, and Park and Chin, with equivalent or improved performance. 
Finally, theoretical analysis of the proposed algorithm and experimental results are presented. 
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1. Introduction 

The problem of designing automatically morphologica.l [2] operators may be approached by a process 
comp08ed of two main steps: i - learning of the target operator by the estimation of the structuring 
elements that characterize it in a standard representation form (e.g., the sup-representation, that is formed 
by the union of sup-generating operators or, the inf-repre3entation, that is formed by the intersection of 
inf-generating operators}; ii - transformation of the standard form morphological operator learned into 
other equivalent representations that permit more efficient implementations. 

In this paper, we will study some aspects of step ii of this process. The choice of good representation 
structures depends on the architecture of the machine in which the morphological operator should be 
implemented. In genera.I, sequential decompositions are more adequate for conventional machines, while 
the hybrid (sequential-parallel) ones are more adequate for parallel architectures. 

We find in the literature some works that study the problem of transformation of decomposition struc­
tures. Barrera and Salas [5] presented a method for computing the sup-representation of any translation 
invariant (t.i.) set operator from any morphological representation of it. Barrera and Hashimoto [4] 
showed how the sup-representation of t.i. set operators can be transformed into the union of composi­
tions of sup-generating operators with dilations. 

However, the general problem of transforming the sup or inf-representation of t.i. set operators into 
sequential or hybrid representations is extremely hard and practically not studied. In fact, some aspects 
of this problem have been studied for the families of erosions and dilations. 

The speed up achieved by representing erosions and dilations by sequential decompositions, in conven­
tional machines, was quantitatively studied by Maragos [13, p. 77], who showed examples where the time 
complexity of the algorithms that implement erosions and dilations went from quadratic, in the sup or 
inf-representation, to linear, in the sequential decomposition. 

Theoretically, the sequential decomposition of erosions and dilations can be viewed equivalently by 
two optics. On one hand, considering the sup-representation (respectively, inf-representation), an erosion 
(respectively, dilation) is the simplest operator that can be represented, since the sup-representation 
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(respectively, inf-representation) of an erosion (respectively, dilation) is the erosion (respectively, dilation) 
itself [11, p. 86, Theorem 4.15). On the other hand, the composition of erosions (respectively, dilatiollB) is 
equivalent to the erosion (respectively, dilation) by the accumulate Minkowski addition of the structuring 
elements that characterize the erosions (respectively, dilations) [20, p. 47]. Therefore, the problem 
of transforming the sup-representation of an erosion (respectively, inf-representation of a dilation) in a 
sequential decomposition is equivalent to find a decomposition in terms of Minkowski additions for the 
structuring element that characterizes it. 

Several researchers [24, 18, 22, 12, 14, 15, 23, 3, 8, 1] have studied the problem of decomposition of 
a structuring element as a sequence of Minkowski additions of smaller subsets and proposed different 
algorithms to generate it. Zhuang and Haralick [24] presented a tree-search algorithm for decomposition 
of an arbitrarily structuring element, where all elements in the decomposition have the prescribed fixed 
number A: points. Xu [22) developed an algorithm for the decomposition of convex structuring elements 
in terms of subsets of the elementarp square (i.e., the 3 x 3 square centered at the origin). Park and 
Chin [15) developed an extension of Xu's algorithm for the decomposition of .rimpli; connected (i.e., an 
8-connected structuring element that contains no holes) structuring elements, where all elements in the 
decomposition a.re also simply connected. 

We should remark that not all structuring elements have sequential decompositions by Minkowski 
additiolll! (22). Furthermore, it is not known an efficient algorithm for determining the existence of such 
decompositions for an arbitrary structuring element. 

Here, we present a method for the generation of decompositions of any arbitrary structuring element 
118 sequences of Minkowski additions of subsets of the elementary square. H there exist such decomposi­
tions, the method gives the one that UlleS the minimum number of subsets, otherwise, it proves that the 
structuring element is not decomposable. 

AB Zhuang and Ha.ralick's work (24], the fundamental idea of the method proposed is the application 
of Combinatorial Optimization techniques, under algebraic constraints. The formulation adopted is a 
branch and bound search in a tree that represents the space of all po11sible sequences of subsets of the 
elementary square. In the search we look for valid solutions, pruning impossible ones. The efficiency of 
the pruning, that is supported by algebraic properties of Minkowski addition, is essential for the feasibility 
of the method. If no valid solution is found, then the structuring element has no decomposition. 

Following this introduction, Section 2 presents the mathematical foundations of the paper. Section 3 
presents the proposed branch and bound decomposition algorithm. Section 4 compares the proposed 
algorithm with other known algorithms [22, 15, 24]. Section 5 presents some experimental results. Finally, 
Section 6 presents some conclusions and future steps of this research. 

2. Mathematical Foundations 

This section gives the mathematical foundations necessary for presenting our decomposition algorithm. 
Subsection 2.1 states the problem of sequential decomposition of subsets of 'll.2 in terms of Minkowski ad­
ditions. Subsection 2.2 recalls the formulation of Combinatorial Optimization problems by the branch and 
bound approach. Subsection 2.3 presents the main data structure used in our algorithm: the decomposi­
tion tree. Subsection 2.4 presents three strategies to prune nodes of a decomposition tree. Subsection 2.5 
states a lower bound for the length of a decomposition. 

f!.1. Problem Statement 

In this section, we present some definitions and properties in order to state the problem studied. 
A finite subset of 'll.2 is called a atructuring element (SE). We consider just non empty SE's. 
For any X ~ 7l2 and 1,1 E 'll.2, X 11 denotes the tm~lationof X by 11, that is, X 11 = {x E 7l2 : x-y EX}. 
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Fig. 1. (<>)ASE A. (b) Invariant Sequence of A. 

Let X and Y be SE's. The Minkawski addition and subtroction of X and Y are the subsets given, 

respectively, by X EBY= u{Xl': y E Y} and Xe Y = n{X_l': y E Y} .. 
Equivalently, the Minkowski addition of X and Y can be written as X (I) Y = { x + y E 'll.2 : x E X, y E 

Y} [11, p. 81, Eq. 4.20]. 
Three important properties of Minkowski addition are commutativity (i.e., X EBY= Y EB X) [11, p. 

81], associativity (i.e., (X EBY) EB Z = Y EB (X EB Z)) [11, p. 82, Eq. 4.29] and the translation effect (i.e., 

X $ {y} = X 11 ) [11, p. 82, Eq. 4.24]. 
We ta.ke the point o = (0, OJ a.s the origin of 'll.2 • We call the 3 x 3 square centered at the origin the 

elementary square. 
The dilation and the erosion by the structuring element A are the mappings in the powerset of 'll.2 

given, respectively, by, for any X <;;; 'll.2, 6A(X) = X $ A and fA(X) =Xe A. 
A property of dilations and erosions is their sequential decomposability [20, p. 47]. 

Proposition 1. Let A, B1, B2, · · ·, Bn be SE's. OA = 6sJ1s, · · · 6s. and EA = EB, EB, · · · Es. if and 

only if A = B1 $ B2 $ · · · $ Bn. 

Given a. SE A, a sequence of subsets of A is the succession of subsets of A in a fixed order. For example, 

if Bi, B2, B3, B4, Ba,Bs,B1 are distinct subsets of A, then [B1, Bi, Bi, B1,B2, B2, B3, Bi, B4,B5, B 2 , B 6] 

is a sequence of subsets of A. We consider just finite sequences. 
Let R=[R1, R2, · · · , Rm] and S=[S1, S2, · · · , Sn] be sequences of subsets of a given SE A. We sa.y R 

is a subsequence of S if and only if, for any Rj E R, there exists S,.(j) E S, such that R; = S,.(j) (i.e., 

R=[S .. (t), S,,c2J, · .. , S.,(m)D, where 11'(j) is a index in {l, 2, 3, .. · , n} and 11'(1) < 11'(2) < ,r(3) < .. • < 11'(m). 

For example, if B1, B2, Ba, B4 , Bs, Be are distinct subsets of A, then (B1 , Bi, 84, B2] is a subsequence of 

[B5,B1,Bi,B1,B2,B2,B3,Bi,B4,B5,B2J, but [B1,Bi,B4,B1] is not . 
A SE A is said to have a sequential decomposition (or A is said to be decomposable) if there exists a 

sequence [B1, B2, · · ·, B.,] of subsets of the elementary squa.ce such that A = B1 $ B2 a, · · · $ B.,. The 

sequence [Bi,B2, .. ·, B.,] is ca.lied a decomposition sequence of A. 
A decomposition sequence of a SE can be decomposed into two subsequences: shape and tronslation. 

The shape subsequence represents the shape of the SE and it is formed by the subsets in the sequence 

that have at least two points. The translation subsequence defines the position of the SE in the integer 

plane and it is formed by the unitary subsets in the sequence. The shape subsequence [Bi, B2, • • •, B,] 
is called the shape decomposition (or simply, decomposition) of A and the number k is the length of this 

decomposition of A. 
Let A and B be SE's. We say Bis an invariant of A if and only if A= (A e B) $ B. For example, the 

subsets B1 , B 2 , B3, presented in Figure lb, are invariants of the SE A presented in Figure la. 
Propositions 2 and 3 give some properties of invariants of a given SE. The first one was stated by 

Serra [20, p. 53] and the second one by Zhuang and Haralick [24, Proposition 5]. 

Proposition 2. Let A and X be SE's. Then, X i.l invariant of A if and only if there exists a SE Y 

suchthatA=Y$X. 

Proposition 3. Let A, X, Y be SE's. If A= X $ Y, then X and Y are both invariants of A. 

The following corollary is an immediate consequence of Proposition 3. 
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Corollary 1. Let A be a SE. If the sequence {B1, B2, · · · , Be] u a shape decomposition of A, then each 
B; is an invariant of A. 

Proof: Since [B1, B2, .. •, Be) is a shape decomposition of A, then there exists h E '71.2 such that 
A= (B1 eB2 e • • •fBBc),. or A= (B1 eB2 e · •• $Bk e {h}. Hence, by commutativity and associativity 
of the Minkowski addition and Proposition 3, ea.ch B; (i = 1, 2, .. •, k) is an invariant of A. □ 

Let X be a SE and let n be a positive integer. The succession of n - 1 Minkowski additions ((X $ 

X) e .. • e X) is denoted nX. This notation is extrapolated for n = 0 by stating OB = {(O, O)}. 
Let A a.nd X be SE's such that X is an invariant of A. The multiplicity of X with respect to A is the 

greatest positive integer n such that nX is an invariant of A. For example, the multiplicity of the subsets 
B1, B2 and B3, presented in Figure lb, with respect to A, presented in Figure la, is 1, since, for any 
i E {1,2,3}, 2B; is not an invariant of A. Note that unitary sets have infinity multiplicity. 

Let us state a.n equivalence relation on a generic collection C of subsets of '7/.2 . Let X and Y be two 
elements of C. We say X and Y a.re equi11alent under tmnslation if and only if one can be built by a. 
translation of the other, that is, X = Y if a.nd only if there exists h E 'll.2 such that X,. = Y. 

Since the equivalence under translation is an equivalence relation (i.e., reflexive, symmetric and tran­
sitive), the set of their equivalence classes (i.e., the sets composed exactly by all the equivalent elements 
in C) constitutes a partition of C. 

We denote by P(C) the set of &11 the equivalence classes (under translation) on C. We denote by E(C) 
a set composed by exactly one element of ea.ch equivalence class in P(C), that is, E(C) is a set such that 
IE(C)I = IP(C)I. 

The set of all subsets of the elementary square that have at least two points is denoted Q = {B !;: 
{-1,o,1p: IBI ~ 2}. 

Given a SE A, the set of all elements of E(Q) that a.re invariants of A is denoted B(A) = {B E 
E(Q) : B is an invariant of A}. For example, the set B(A) for the SE A presented in Figure la is 
B(A) = {B1,B2,Bs}, where B 1 , B2 and Bs are the sets presented in Figure lb. 

Proposition 4 . Let A be a SE and X E B(A) . If n u the multiplicity of X with re.,pect to A, then 
an11 decomposition aequence of A contains at moat n elements equal to X. 

Proof: Suppose that there exists a decomposition sequence of A that contains m > n elements equal 
to X, that is, A = mX e B1 e B2 e • • • e B,.. By Proposition 3, mX is a.n invariant of A that contradicts 
the definition of multiplicity. □ 

Let X be a SE and n be a non-negative integer. If n-:/ 0, then the sequence formed by the succession 
of n subsets X is denoted by Seq[X, n] , that is, Seq(X, n] = (X, X, · · · , X]. Un = 0, Seq(X, OJ denotes the 
empty sequence. 

Let A be a SE. Let B1, B2, · · · , B,. be all elements of B(A) in a fixed order and n, be the multiplic­
ity of B, with respect to A (i = 1, · · •, k). The inooriant sequence of A is the sequence lnvSeq[A] = 
Seq[B1,n1] · · ·Seq[Bt,nc] - For example, the sequence [B1,B21 B3] (of subsets presented in Figure lb) is 
the invariant sequence of the SE A presented in Figure la. 

The following proposition is an immediate consequence of Corollary 1 and Proposition 4. 

Proposition 5. If A is a SE, then A hM a aequential decomposition if and onl11 if there emts a 
aub,equence of lnvSeq(A) that is a shape decomposition of A. 

t.t. Combinatorial Optimization Techniqliu 

Given a SE A, it is not ))OSSible to enumerate, in a reasonable time, all subsequences of lnvSeq(A] . This 
mabe impossible any attempt to solve the problem of finding a decomposition of minimum length by 
explicit enumeration. We can view this problem as a Combi.natorial Optimization problem. The aim of 
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Fig. e. A node Y in the decomposition t=. 

optimization problems is to mwcimize or minimize a given function over a certain domain. Combinatoria.l 

Optimization problems are characterized by the case in which this domain is finite and its elements can be 

"easily" generated. The difficulty to solve such problems usually stays in the cardinality of the domain. 

A strategy to partially enumerate the solutions of Combinatorial Optimization problem is known as 
the Bmnch and Bound Method [17, p. 40]. The idea is to partition the set of possible solutions into some 

small sets, originating independent subproblems. When one solves all these subproblems, the best solution 

found is the optimal solution of the original problem, This partition can be viewed as the construction 

of a rooted tree, whose nodes correspond to partial solutions, and the root node to the original problem. 

The search in the tree can be improved if some lower and upper bounds on the value of the optimal 

solution are known. For example, if it is known a feasible solution whose value is say 25, and we are in 

a node with lower bound 28, this branch can be pruned, since the best possible solution in this branch 

cannot be better than a known solution. The art of the strategy is to find good bounds in order to .avoid 

visiting all (or too many) possibilities. 
There are many different ways to visit the nodes of a tree. In the algorithm presented in Section 3, we 

use the depth first search [17, p. 39) , that is described in the following. In the beginning all nodes are 

marked as "unvisited" . In the first iteration, some arbitrary node is selected (if the tree bas a root, this 

is the selected node) and marked as "visited" . Its neighbors are marked "reachable", and pushed into a 

stack. In an arbitrary iteration, if the stack is empty, the search stops. Otherwise, the top element is taken 

out and marked as "visited". The still "unvisited" neighbors of this node are marked as "reachable", 

pushed into the stack, and a new iteration begins. 

f!.3. The DecompoMtion Tree 

Given a SE A, we define a labeled tree that represents the space of all possible subsequences of lnvSeq[A) . 
Let [B1,B2 , • • • ,B,..] be the invariant sequence of A, i.e., ln11Seq[A] = [B1, B2, · · · , Bm]- The decomposition 

tree of A, denoted T(A), is a labeled tree such that: 
(1) All node& are labeled by a subset Y = B,, $B;1 $· · ·$B,;, where [B,1 , B;,, · · · ,B,1 ] is a subsequence 

of lnvSeq(A) . 
(2) The label of the root is the unitary set that contains the origin and it is denoted by {o}; 

(3) The labels of the direct descendants of a node whose label is Y = B;, $B;2 $· · ·$B;, are Y$B,,+1, 

Y $ B;1+2, • • ·, Y $ Bm (see Figure 2). 
(4) The edge that joins a node whose label is Y and its direct descendant whose label is Y EB Bk is 

labeled Bk . (see Figure 2) . 
We often use node Y meaning node whose label is Y . 
By construction of the decomposition tree, it is not difficult to see tha.t if the invariant sequence of a 

given SE A has m elements, then T(A) has 2m nodes. See Figure 3 for an example of T(A) . 
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Pig. 4. (a) A SE A. (b) The convex hull of A. 

Let A be a SE and let X and Y be two nodes of T(A) such that Xia a descendant of Y. We denote 
Path.t(Y,X] the sequence of the labels of the edges of T(A) that are on the path from Y to X. It is 
not difficult to see that if Path.4{Y, X] = (C1, C2, · · ·, C;], then X = Y $ C1 @ • · ·@ C;. For example, in 
Figure 3c, Path,1(N1,N1] = [B2,B3] and N1 = N1 @B2 ffiB3. 

According to this notation, Path.4({0}, Yj denotes the sequence of labels of the edges of T(A) that Me 
on the path from the root to the node Y, which in turns forms a subsequence of lnvSeq[A] such that the 
Minkowski addition of all elements of this subsequence is equal to the node Y. For example, in Figure 3c, 
Path,d{o},N6] = [B2,B3] is a subsequence of lnvSeq[A] and Ne= B2 @B3. So, if the SE A is equal to 
a translation of the node Y (that is, Y = A), then A has a shape decomposition given by the sequence 
Path.41{0}, Y]. 

The le11el of a node Y in the decomposition tree is the length of the path from the root to Y and it is 
denoted by level(Y). Given a SE A, our objective is to find a node of label Y = A in T(A) with minimum 
level. ff there is no node Y = A, then the SE is not decomposable. 

Let A be a SE. Given a node Y of T(A), we say Y is a feasible node if and only if there exists a node 
X, descendant of Y, such that X = A. For example, in Figure 3c, the node N1 is a feasible node, while 
the node N, is an unfeasible one. 

The art of the strategy presented in Section 3 is to visit the nodes of the decomposition tree, looking 
for feasible nodes and pruning unfeasible ones. 

!.-4. Necessar7J condition, for feasible nodes 

In this subsection, we state some necessary conditions for the existence of feasible nodes in the decom­
position tree of a given SE. For that, we anal~ some measures taken on the SE. 

The convex hull C(A) of a subset A ~ 'll. is the intersection of a.II ha.If planes that contain A. We 
suppose that the eubsets are represented in a square grid and consider just the ha.If pla.nes with slopes 0, 
45, 90 and 135 degrees to build the convex hull (see Figure 4 for an ex.ample). 
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A subset A<; Z.2 is said convex if and only if A= C(A). Note that, in particular, for a half plane H, 
the convex hull C(H) = H. 

The Propositions 6 to 11 give some properties of the convex hull. 

Proposition 6. Let A, B c;;; 'll.2. Then, 

(i) A<; C(A), 

(ii) Ac;;; B ~ C(A) c;;; C(B), 

(iii) (C(A)),, = C(Ai,), for any h E 71.2. 

Proof: Let A and B be the sets of all the half planes that contain, respectively, A and B. 
Since C(A) is the intersection of all half planes that contain A, then, by a property of intersection, 

C(A) 2 A. This proves i. 
In order to prove ii, let X E B. Since X 2 B 2 A, then X E A. Thus, B <; A. Hence, 

( n Y) n ( n X) = n X # 
YES XEA XEA 

C(B) n C(A) = C(A) ~ 

C(A) <; C(B). 

Finally, to prove iii, let h E 71:~ and let 1i be the set all the half planes that contain A,.. Thus, 

Hence, 

HE Ji ~H 2 A,, 
~H_,.;;1A 
#H_,. EA 

(C(A)),, = ( n H),, 
HEA 

=( n Hi.) 
HEA 

=( n H) 
H-•EA =(n H) 
HE'H 

=C(A,.). 

D 
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Proposition 7. If A,B <; 71.2, then 

(i) C(A) u C(B) <; C(A u B), 

(ii) C(A) n C(B) 2 C(A n B). 

Proof: Let us prove i. Clearly, A <; AUB and B t; AUB. Thus, by Proposition 6-ii, C(A) t; C(AUB) 
and C(B) <; C(A u B). Hence, by a. property of union, C(A) u C(B) t; C(A u B). Property ii follows by 
dual arguments. □ 

Proposition 8. If At; iZ2, then C(C(A)) = C(A). 

Proof: By Proposition 6, properties i and ii, it is easy to see that C(A) t; C(C(A)). It remains to be 
proved that C(C(A)) !;;; C(A). Let A be the set all the half planes that contain A. Hence, 

C(C(A)) = C( n X) 
XE.A 

t; n C(X) 

=nx 
Xe.A 

=C(A) 

Therefore, C(C(A)) = C(A). 

(by Proposition 7) 

(since C(X) = X, 
for any XE A) 

Proposition 9. If A,B t; 'll?, then C(A)EBB <; C(AEBB). 

Proof: 

C(A) $ B = LJ (C(A))b 
bEB 

= u C(Ab) 

(By Proposition 6-iii) 
t; C(LJ Ah) 

bEB 
(By Proposition 7) 

= C(A EBB). 

□ 

□ 
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Fig_ 5_ A point ~ and the axis iio, t11, ii, and ;;3_ 

li.UN2(A ) • -1, : MAX2(A) • 3 

~ --- - -- - Mil<o(A ) ~ -1 

-~~- · · · · MAXo( A) • 'l 

MIN1(A. J --2 • MAX3(A) •l 
•• ·• Vo •._ ~l 

M:,._X1(A) • 4· MIN3(A ) = -2 

Fig_ 6. A SE A with the axis iio, ii1, 112 and ii3 _ 

Proposition 10- If A, B ~ "ll.2, then C(A 9 C(B)) ~ C(A ffi B) -

Proof: 
By Proposition 9, A ffi C(B) = C(B) 9 A i;; C(A 9 B)- By Proposition 6-ii and Proposition 8, 

C(A 9 C(B)) i;; C(C(A 9 B)) = C(A 9 B)_ □ 

Proposition 11- If A, Bi;; "ll.2, then C(C(A) 9 C(B)) = C(A 9 B) . 

Proof: First, let us prove that C(A 9 B) i;; C(C(A) 9 C(B))- By Proposition 6-i, A i;; C(A) and 

B ~ C(B). Then, A EBB i;; C(A) 9 B [11, P- 82, Eq. 4-30] and C(A) EBB i;; C(A) al C(B) [11, P- 82, Eq_ 
4-26] - Hence, A al Bi;; C(A) EB C(B) and by Proposition 6-ii, C(A EBB) i;; C(C(A) al C(B))-

Fina.lly, we prove that C(C(A)alC(B)) i;; C(Ae,B)- By Proposition 9, C(A)alC(B) ~ C(A$C(B)). 

Thus, C(C(A) EB C(B)) ~ C(C(A al C(B))) 
(By Proposition 6-ii) 

=C(A e,C(B)) 
(By Proposition 8) 

i;; C(Ae,B) 
(By Proposition 10) 

Hence, 
C(C(A) al C(B)) = C(A al B)-

0 

Let t1o, it1 , t12 a.nd u3 be the Cartesian axis that intersect the origin and have alopes, respectively, 

-90, -45, 0 and 45 degrees (see Figure 5)- For a given point z E Z2
, let lo(z), li(x), l2(z), 13 (z) be 

the orthogonal. projections of z a.t the Cartesian axis ito, it1, it2 and u3, respectively_ Observe that these 

projections are integer numbers at the directions -90 and O degrees and real numbers (proportional. to 

:{}-) at the directions -45 and 45 degrees. Given a point x E "71.2 , we denote by x0 , x1, z 2 and x3 the 

normalized orthogonol projection.a of the point x at the Cartesian axis t1o, u1 , il:i and J3 given, respectively, 

by :to= lo(z), x1 = l1(z) - /2. z2 = l2(x) a.nd X3 = l3(z) - /z_ For example, the norma.lired projections 

of the pointy= (-5, 2) E Z 2 presented in Figure 5 are y0 = -2, Y1 = - 7, 'Y2 = -5 and y3 = -3. 

Let A be & SE. For i = 0, 1, 2, 3, let .MAX;{A) and MIN;(A) be, respectively, the maximum and 

the minimum normalized orthogonal projection at the Cartesian axis it. of the points in A, that is, 
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Fig. 7. Il111Stration for demonatration of Propoeition 13. 

Fig. 8. The eigh\ edges of a convex SE A. 

MAX;(A) = max{:z:; : :z: E A} and MIN;(A) = min{:z:i : :z: E A}. For example, the maximum and 
the minimum normalized orthogonal projections of the set A presented in Figure 6 are, respectively, 
MAXo(A) = 2, MAX1(A) = 4, MAX2(A) = 3, MAXs(A) = 2 and MINo(A) = -1, MIN1(A) = -2, 
MIN2(A) = -1, MINa(A) = -2. 

Propositions 12 a.nd 13 give some properties of MAX;(A) and MIN;(A) of a given SE A. 

Proposition 12. If A and B are SE's, then, for any i E {0, 1, 2,3}, MAX,(A El) B) = MAXi(A) + 
MAX,(B) and MIN,(A El) B) == MIN;(A) + MIN;(B). 

Proof: MAX,(A EBB) = max{:z:, : :z: E A EBB} = max{a; + b, : a E A,b EB} = max{a; : a E 
A} +max{b,: b EB}== MAX;(A)+MAX;(B). In the same way, MIN,(AEBB) = MIN;(A) +MINi(B). 

□ 

Proposition 13. If A i.8 a SE, then, for anv i E {0, l, 2, 3}, 

MAX;(C(A)) == MAX;(A} and MIN,(C(A)) = MIN;(A) . 

Proof: For any i = 0, 1, 2, 3, by definition of MAX.(A), there exiBts II E A such that 71; == MAX;(A). On 
one hand, MAX,(A) :5 MAX;(C(A)), since, by Proposition 6-i, A~ C(A). On other hand, MAX;(A) ~ 
MAX;(C(A)). In fact, suppose that there exists w e C(A) such that MAX;(A) < w,. Let H1 = {:z: E 
Z2 

: :z:; :5 MAX;(A)} and H2 = {:z: E Z 2 
: :z:; :5 w,}. Clearly, H 1 and H2 are half planes that contain 

A a.nd w ¢ H1 (see Figure 7) . Since C(A) is the intersection of all half planes that contain A, then, 
w ¢ C(A). But it contradicts the hypothesis that w E C(A). The proof for MIN,(C(A)) = MIN;(A) can 
be done in a similar way. 0 

Let A be a SE. We define the eight edge$ of A, denoted by Eo(A), · · ·, Er(A), in the following way. For 
i == 0, 1, 2, 3, E,(A) and E,H(A) are the sets containing all points of C(A) that have, respectively, the 
same maximum and minimum normalized orthogonal projection at axis il;, i.e., E;(A) = {z E C(A) : 
x, = MAX;(A)} &nd E;+4(A) = {z E C(A) : x; = MIN;(A)} (see Figure 8 for an example). Note that 
the uis u; is perpendicular to edges E;(A) and E,+4(A) (see Figure 8 for an example). By construction 
of E;(A}, i = 0, 1, · · ·, 7, and by Propositions 8 a.nd 13, it is clear that E,(A) = E,(C(A)} h C(A). 

Given a SE A, the nm edge of E;(A) is E,+1 (A), if i < 7, or Eo(A), if i = 7. The IMt edge of E,(A) is 
£;_1 (A), if i > 0, or Er(A), iC i = 0. For example, the next edges of E1 (A) and Er(A) are, respectively, 
B-J(A) and Eo(A); the la.st edges of E5(A) and Eo(A) are, respectively, E4(A) e.nd Er(A). For simplicity 
of notation, we denote E,_i(A) and E,+i(A), respectively, the last illld the next edges of E;(A). 
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llAX;+1(A) 

E1+1CA

0

i-
ov 
• tii 
~ B((A) 

: MAXi{A) 

Fig. 9. Edges E;(A) and E,+1(A). 

Fig. 10. Extremities of edge E,(A). 

Given a SE A, Proposition 14 states a property of edges E,(A) and E,+1(A). 

Proposition 14. If A is a SE, then, for any i E {O, 1, · · ·, 7}, IE;(A) n E;+1(A)l = 1. 

Proof: 
We suppose that i = 1 or 2 (the other cases for i = 0,3,4,5,6, 7 can be proved in a sinlilar way). 
Consider the coordina.te system formed by the Ca.rtesia.n a.xis fl, a.nd u,+1 (see Figure 9, for a.n example). 

In this coordinate system any point x E :11 • .2 can be uniquely represented by the ordered pair (x;,X,+1)-
Clearly, E,(A)UE;+1 (A) is an 8-connected subset of C(A) (see Figure 9). Thus, by definitions of E;(A) 

and E;+1(A), there is a pointy E E,(A)uE,+1(A) such that y; = MAX;(A) and Y,+1 = MAX;+i(A) (see 
Figure 9). So, also by definitions of E,(A) a.nd E;+1(A), y E E;(A) and y E E;+i(A). It remains to show 
that this point is unique. Suppose there exist two points y, z E E;(A) n E;+1 (A). In this case, y; = z; 
(since y,z E E;(A)) and Yi+l = Z.+1 (since y,z E E;+1(A)). Thus, y = (y;,Y;+1) = (z;,z;+1 ) = z and 
therefore IE,(A) n E,+1(A)I = 1. D 

Given a SE A, by definition, for any i E {O, 1, · · ·, 7}, E,(A) is a line formed by a segment of consecutive 
points of C(A) at 0, 45, 90 or 135 degrees. Thus, each E;(A) contains at most two points that we call 
extremities of E,(A). More formally, the two extremities of E,(A) are the points x,y E E;(A) such that 
x E E,+1(A) and y E E,_i(A). For example, in Figure 10, the points x and ware extremities of E;(A). 

Given two SE's A and B, the following proposition gives an inlportant property of edges of A and B. 

Proposition 15. If A and B are SE's, then, for any i E {O, l, · · ·, 7}, E;(A $ B) = E,(A) EB E;(B). 

Proof: We suppose that i = 1 or 2 (the other cases for i = 0,3,4,5,6, 7 can be proved in a similar 
way). 

First, we prove that E;(A) $ E;(B) ,; E,(A $ B). 
By definition of E,(A $ B), x E E;(A $ B) if and only if z E C(A $ B) and z; = MAX;(A $ B). So, 

in order to prove that E,(A) EB E,(B) ,; E;(A EBB), we have to show that, if z E E;(A) EB E;(B), then 
:r; E C(A EBB) and :r;; = MAX;(A EBB) = MAX;(A) + MAX;(B) (by Proposition 12). 

Since E,(A) ,; C(A) and E;(B) ,; C(B), then E,(A) EB E,(B) ,; E,(A) $ C(B) ,; C(A) EB C(B) [11, 
p. 82, Eq. 4.26). Thus, by Proposition 6-i and 11, E;(A) EB E;(B) ,; C(A $ B). It remains to show 
that x; = MAX;(A) + MAX;(B). By defintion of Minkowski addition, if z E E;(A) EB E;(B), then there 
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exist y E E;(A) and z E .E.(B) such that x = 11 + z. By definition of .E.(A), 11 E E;{A) if and only if 
y E C{A) and JI; = MAX,{A) . Similarly, z E E.(B) if and only if z E C(B) and z. = MAX,(B). Thus, 

since x = 11 + z, then x; = y; + z; = MAX;(A) + MAX;(B). Hence, E;(A) EB E;(B) i; E;(A EBB). 

Now, we prove that E,(A EBB) ~ E;(A) e E.(B). 
Since, by definition, E;(A) and E,(B) are lines formed by segments of consecutive points of C(A) 

and C(B), respectively, and the Cartesian a.xis u; is perpendicular to E,(A) and E;(B), then clearly, by 

definition of Minkowski addition, E;(A) EB E;(B) ill a line formed by a segment of consecutive points of 

C(A)eC(B) and the Cartesia.n a.xis u; ill also perpendicular to E;(A)EBE;(B). In addition, by definition, 

E;(A EBB) is a line formed by a segment of consecutive points of C(A EBB) and the Cartesian a.xis u; is 

perpendicular to E,(A EBB). So, if the extremities of E;(AEBB) belong to E;(A) EBE;(B), then obviously 

E;(A EBB) ~ E,(A) EB E;(B). 
Let t and z be extremities of E;(A EBB) such that {t} = E,-1(A EBB) n E,(A EBB) and {z} = 

E;(A e B) n E;+i(A e B). We will show that z, t E E;(A) e E;(B). For that, let x and 71 be extremities 

of, respectively, E;(A) and E;(B) such that {x} = E;(A) n E.+1(A) and {y} = E;(B) n E;+1 (B). 
In the coordina.tesystem formed by the Cartesian a.xis iI; and iI,+1, we havex = (x;,x,+1), ll = (y,, 11;+1) 

and z = (z;, z;+1)-
Since x E E,(A), II E E;(B) and z E E;(AGlB), then, respectively, x; = MAX,(A), y, = MAX,(B) and 

z; = MAX;(A EBB). Thus, by Proposition 12, Z; = MAX;(A EBB) = MAX;{A) + MAX;(B) = x; + y,. 
Analogously, z,+1 = x;+1 + 1/HJ • Hence, z = (z;,z,+1) = (x;,X;+J) + (y;,1/,+1) = x + y. 

In asimilar way, if r, 11 a.re extremities of, respedively, E;(A) and E;(B) such that {r} = E;-i{A)nE,(A) 

a.nd {a}= E,-1(B) n E,(B), then t = r ~ s. 
Thus, since E;(A) $ E;(B) = {u + v: u E E,(.A.), v E E;(B)}, then z = x + 11 and t = r + 11 belong to 

E,(A) EB E,(B) . 

□ 
Given a SE A, the length of an edge E,(A) is defined as IE,(A)I - 1. The following proposition is an 

immediate consequence of Proposition 15. 

Proposition 16. If A and B are SE'&, then, for any i E {O, 1, · · ·, 7}, IE,{AeB)I = IE;(A)l+IE;(B)l-
1. 

Proof: Since E;(A) and E;(B) are lines formed by segments of consecutive points of C(A) and C(B), 
respectively, and the Cartesian a.xis iI; is perpendicula.r to both E;(A) and E;(B), then, by definition of 

Minkowski addition, clearly, the cardinality of E,(A) EB E;(B) is equal to IE;(A)I + !.E.(B)I - l. 
Therefore, IE,(A EBB)I = IE;{A)I + IE,(B)I- 1, since by Proposition 15, E;(A EBB)= E;(A) EBE;(B). 

□ 
The vector projection of a given SE A is the vector v(A) E "ll.8 such that its coordinates are the 

lengths of the edges of A (see Figures lla, llb and lld for an example). More formally, the vector 

projection of the SE A is v(A) = {11o(A), 111 {A),·· • , v-r(A)), where v;(A) is the length of E;(A), that is, 
v,(A) = IE;(A)I - 1. Kanungo and Haralick (12) studied 110me properties and decomposition for convex 
SE's that are 4-connected (that they called restricted domains) and they used & boundary enconding 
scheme (called B-ooded) that is very similar to the vector projection defined a.hove. 

Note that the vector projection is independent of tr&DSlation, that is, v(A) = v(A,.), for any h. E z:2 . 

Note also that, for any SEX, v(X) = v(C(X)), since, by defitinion, E;(X) = E;(C(X)). 
It is known that the chain code [6]17, p. 484] describes completely the shape of a convex SE. Without loss 

of generality, we &asume that the cha.in code starts at O degree direction and runs counterclockwise. Thus, 

the chain code of a convex SE is represented by the sequence of numbers between O &nd 7: 0"" l "' • • • 7"", 
where i"' (n; ~ 0) is the string defined in the following way: i repeats n; times if 1'li > 0 or it is a.n empty 

string if n. = 0. For example, the chain code of the SE presented in Figure llb is shown in Figure llc. 
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"(A)• (2, l, o, 2, 2, 0, 2, 1' 
(d) 

Fig. 11. (a) A SE A. (b) The convex hull of A. (c) The chiun code of C(A). (d) The vector projection of A . 

... ..... 
A~ •:m:• 

•••• . . 
(o) 

1J1--t,· B:11•-f·B3=e•■ B4•·■ 
(b) 

Fig. 18. (a) A SE A. (b) Invariant Sequence of A. 

We can easily see tha.t the vector projection of a given SE A and the chain code of C(A) are equivalent 
definitions (see Figures llc and lld for a.n example). 

An O{n) time algorithm for computing the chain code of a convex SE A (or equivalently, the vector 
projection of A) can be found in [16, p. 143], where n is the number of points of A. 

The next proposition gives an important property of vector projection. The same result for convex 
SE's that ace 4-connected can be found in [12]. 

Proposition 17. Let A, X and Y be SE's. If A= Xe Y, then v(A) = v(X) + v(Y). 

Proof: Since the vector projection is independent of translation, then for any i E {0, 1, • • •, 7}, 

v;(A) = v;(X ® Y) 
= IE;(X eY)l-1 
= {IE,{X)I + IE;(Y)I - 1) - 1 

{by Proposition 16) 
= (IE,(X)I - 1) + (IE,(Y)I - 1) 
= v;(X) + v,(Y). 

Therefore, v(A) = v(X) + v(Y). 

□ 
The following proposition gives a. necessary condition for the existence of a. decomposition for a. given 

SE. 

Proposition 18. Let A be a SE. Let Z be the SE obtained by Minkowski addition of all aubsets in the 
sequence lnvSeq[A]. If there exists i E {O, · · ·, 7} such that v,(Z) < v,(A), then A h03 no decomposition. 

Proof: Suppose that A has a decomposition. By Proposition 5, there exists a. subsequence of lnvSeq[A], 
say [B1 ,B2 ,---,Bk], that is a shape decomposition of A. Hence, there exists h E Z2 such that A= 
(B1 E9 B 2 E9 ···EB B1c)1,. So, by Proposition 17, v(A) = v(B1) + v(~) + · · · + v(Bk)- Thus, v;(A) = 
v;(B1 ) + vj(B2 ) + • · · + v;(Bk) ~ v;(Z), for any j E {O, 1, · · ·, 7}, since Z is the Minkowski addition of 
all subsets in the sequence lnvSeq[A]. But it contradicts the hypothesis that there exists i E {O, 1, · · ·, 7} 
such that v;(A) > v,(Z). Therefore, A has no decomposition. D 
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For example, Figure 12a presents an undecomposable SE A. Let Z be the SE obtained by Minkowski 
addition of all subsets in the sequence lnvSeq(A] (presented in Figure 12b), that is, Z = B1 EB B2 EB 
B3 EB B4 • The vector projections of A a.nd Z are, respectively, v(A) = (2, 2, 2, 2, 2, 2, 2, 2) and v(Z) = 
(2, 2, 2, 2, 2, 3, 0, 3). Thus, by Proposition 18, A hlll! no decomposition, since va(Z) < va(A). 

The next proposition, a consequence of Proposition 17, states a. necessary condition for feasible nodes, 
a.nd, therefore, it gives a. strategy to prune some unfeasible nodes of the decomposition tree of a. given SE. 

Proposition 19. Let A be a SE. Let Y be a node in T(A). If there exists i E {O, · · · , 7} such that 
v;(Y) > v;(A), then Y i., not a feasible node. 

Proof: Suppose tha.t Y is a. feasible node. Thus, there exists a descendant of Y, say X, such that 
X = A. Let W f 'll.2 be the set obta.ined by the Minkowski addition of all subsets in Path,1{Y,X] . So, 
X = Y EB W;;; A, and thus, there exists he Z 2 such that A= (Y EB W)i. , Hence, by Propoeition 17, 

v(A) = v(Y) + v(W). Thus, for any j E {O, 1, · · · , 7}, v;(A) = 11;(Y) + 11;(W), and v;(A) ::?:: 11;(Y). But 
it contradicts the hypothesis that there exists i E {0, 1, · · ·, 7} such that v;(A) < 11;(Y) . Therefore, Y is 
not a feaaible node. □ 

For example, in Figure 3c, the vector projections of N4 and A a.re, respectively, 11(N,) = (2, 2, 0, 2, 2, 0, 4, 
0) and v(A) = (1, 1, 1, 1, 1, 0, 3, 0). Thus, by Proposition 19, N4 is not a feasible node, since vo(N4 ) > 
Vo(A). 

The following proposition, an immediate consequence of Proposition 3, is another pru11ning strategy. 

Proposition 20 . Let A be a SE. Let Y be a node in T(A). If Y i., not an invariant of A, then Y i., 

not a feasible node. 
lj; 

Proof: Suppose that Y is a feasible node. Then, there exists a. descendant of Y, say X, such that 
X = A. Let W f 'll.2 be the set obtained by the Minkowski addition of all subseta in PathA(Y,X]. So, 
X = Y EB W = A, and thus, there exists z E 'll.2 such that A= (Y EB W) EB {z} = Y EB (WEB {z}). Hence, 
by Proposition 3, Y is an invariant of A. But it contra.diets the hypothesis that the node Y is not an 
inva.ria.nt of A. Therefore, Y is not a feasible node. □ 

The following definitions are necessary in order to get another pruning strategy (given by Proposi­
tion 22). 

Let A be a SE. Let Y be a node of T(A). We denote DirectA(Y] the sequence formed by the labels 
of the edges that join Y and its direct descendants, that is, if Y is the root, Direct,1[Y] = lnvSeq(A); if 
Y = B;, EB··· EBB;;, then Direct,1(Y] = [B;1+1,Bi;H, · · · ,B,,.] (see Figure 2). For example, in Figure 3c, 
DirectA[N1] = [B2, Ba] , If Xis a.descendant of Y, theu, by construction ofT(A), the sequence Path,1[Y,X] 
is e. subsequence of the sequence Direct,1[Y) . For example, in Figure 3c, Path,1[N1 ,N&] = [B3) is a 
subsequence of Direct,1[N1) = (B2,Ba). 

Let A be a SE. Let Y be a. node of T(A). We define the subsequence Possible,1[Y] of DirectA(Y] in the 
following way. Let Di, D2, · .. ,Dk be all distinct elements of DirectA[Y] such that, for any i e {l, 2, • • • ,k­
l}, D; appears before D;+i in DirectA(Y]. Let m; be the number of occurrences of D; iu Direct,1[Y]. Clearly, 
Direct,1(Y] = Seq[D1, m1] · · · Seq[Dk, mk). Let n; be the greatest non-negative integer such that (Y EBn,D;) 
is invariant of A. Let d, = min{n;, m;} . The possible sequence is Possible,1[Y] = Seq(D1 , di] .. • 5eq(D1 , d1 ]. 

For example, in Figure 3c, Possible,1(N1] = Ba, since Direct,1[N1] = B2, Bs, N1 e B2 = N,t is not an 
invariant of A and N1 $ Ba = Nb is an invariant of A. 

In the next proposition, we have an interesting property for possible sequences. As a consequence of 
this property, we can get e. new pruning strategy that is given by Proposition 22. 

Proposition 21. Let A be a SE. Let X,Y be two node., ofT(A) ,uch that Xis a descendant o/Y. If 
X = A, then Path,1 (Y, X] is a subsequence of Possible,1(Y] . 
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Fig. 19. Orthogonal projection of A. 

Proof: Let S1, s~, • · •, Sk be all distinct elements of the sequence of PathA[Y, X], such that, for any 
i E {l, 2, 3, · · ·, k - 1 }, S, appears before S,+1 in PathA[Y, X]. If S; is the number of occurrences of S, in 
PathA[Y, X], then PathA[Y, X) = Seq[S1, si]- · · Seq[Sk, Bk]- Thus, X = Y EB s1S1 EB s2S2 EB··· EB SkSk. In 
order to prove that PathA[Y, X] is a subsequence of PossibleA[Y], we have to show that: 

(1) each S; E PossibleA[YJ; 
(2) if d; is the number of occurrences of S, in the sequence PossibleA[Y], then s; ~ d;; 
(3) for any i E {l, · · ·, k - 1}, S, appears before S;+I in PossibleA[Y]. 

Since X = Y EBs1S1 EB··· EB skSk = A, there exists z E 71.2 such that A= Y $s1 S1 EB··· $skSk EB {z}. So, 
by Proposition 3, (Y $ s;S;) is invariant of A and, by definition of PossibleA[Y), S; E PossibleA[Y]. This 
proves (1). 

Let n; be the greatest positive integer such that (Y EB n;S;) is invariant of A. Let m; be the number of 
occurrences of S; in DirectA[Y]. By construction of the sequence PossibleA[Y], the number of occurrences 
of S; in PossibleA[Y] is d; = min{n;,m;}. If d; = n;, thens; ~ n;, since Y $ s;S; is invariant of A. If 
d; = m;, thens,~ m;, since PathA(Y,X] is a subsequence of DirectA(Y]. This proves (2). 

Suppose that there exists j E {1, 2, .. ·, k - 1} such that Si+l appears before that S1 in PossibleA [Y). 
Since the sequence PossibleA[Y] is a subsequence of the sequence DirectA[Y], then S,+1 appears before 
that S1 in Di.-ectA[Y]. Since PathA[Y,X] is a subsequence of DirectA[Y), then S 1-,.1 appea.rs before that S; 
in the sequence PathA[Y, X]. But it is a contradiction. since, by construction of PathA[Y,X), S1 appears 
before that S,+1 in the sequence Path.4(Y,X). Therefore, for a.ny i E {1,2, · · ·, k - 1}, S; appears before 
S,+1 in the sequence Possible.4[Y]. This proves (3). □ 

The following proposition gives a new pruning strategy. 

Proposition 22. Let A be a SE. Let Y be a node in T(A). Let Z ~ 71.2 be the set obtained by 
Minkowski addition of all subsets in the sequence PossibleA[Y), If there exists i E {O, · · ·, 7} such that 
v;(Z) < v;(A) - v;(Y), then Y is not a feasible node. 

Proof: Suppose that Y is a feasible node. Thus, there exists a descendant of Y, say X, such that 
X = A. Let W ~ "ll.2 be the set obtained by Minkowski addition of all subsets in PathA[Y, X). So, 
X = Y EB W = A, a.nd thus, there exists h E "ll.2 such that A = (Y $ W)h- Hence, by Proposition 17, we get 
v(A) = v(Y) + v(W). Since, by Proposition 21, the sequence Path A [Y, X] is a subsequence of PossibleA[Y), 
then, for any j e {O, • • •, 7}, v;(Z) ~ v1(W) = v;(A)-v;(Y). But, it is a contra.diction, because we assume 
that there exists i E {O, • • •, 7} such that v;(Z) < v,(A) - v;(Y). Therefore, Y is not a feasible node. 

□ 
With the pruning strategies given by Propositions 19, 20 and 22 we can avoid some (not all) unfeasible 

nodes of the decomposition tree. 
In the next subsection, we present a lower bound for the length of shape decompositions. If a shape 

decomposition of a given SE A is found, we can check if it is an optimum solution verifying if the lower 
bound is equal to the length of the solution found. 
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£.5. Lower Bound 

In order to state a lower bound for the length of shape decompositions of a given SE, we define a new 
measure taken on SE's. 

The orthogonal projection of a SE A is the vector p(A) E "ll.2 such that, P1(A) = 113(A) + 114(A) + 115(A) 
and P2(A) = v1(A) + 112(A) + 113(A). See Figure 13 for an example. Iii other words, the coordinates of 
the orthogonal projection of a SE A are the lengths of the edges of the smallest rectangle that contains 
A. 

Since the vector projection is independent of translation, we have that, for any h E "ll.2, p(A) = p(Ah), 
Since, for any SEX, v(X) = v(C(X)), we have that p(X) = p(C(X)). 

The next result is an immediate consequence of Proposition 17. 

Proposition 23. Let A, X and Y be SE',. If A= X $ Y, then p(A) = p(X) + p(Y). 

The following proposition gives a lower bound for the length of shape decompositions of a SE by 
Minkowski additions. • 

Proposition 24. Let A be a SE. If A hQ.ll a decomposition, then a 1hape decomposition cf A contains 
at least lower(A) = rmax{p1(A), P2(A)}/2l elements. 

Proof: Let [B1 , B 2 , , , • • B-1 be & shape decomposition of the SE A. Then, A = B, $ Bo $ • .. $ B-, 
and thus, there m11ts h E "ll.2 such that A = (Bi $ B2 $ · · · $ Bm)h• Let S; be the 3 x 3 square that 
contains B;, for i = 1, 2, • • •, m. Clearly, A r; (Si $ S2 EB .. · EB Sm)i., and the orthogonal projection of 
(S1 EB S2 (j) •••El:) S,,.),. is p((mS)i.) = p(mS) = (2m,2m), where Sis the elementary square. 

Hence, since Ar; (S1 eS2$· · •$S,,.)h, then Pt(A) :5 2m and P2(A) :5 2m. Thus, max{Pt(A), P2(A)} :5 
2m and, therefore, m ~ rmax{p1(A),P2(A)}/21. □ 

Notice that, given a SE A, the length of the optimum solution of A must be greater or equal than the 
lower bound stated by Proposition 24. Besides, it is not the only lower bound that ca.n be computed. 
Others ca.n be determined using sophisticated combinatorial and optimization techniques ( relaxation, 
primal-dual, etc ... ). In this work, we just consider the lower bound fixed by Proposition 24. 

3. Search of Optimum Decomposition 

In this section, we present an algorithm for finding an optimum shape decomposition of a given SE A. 
The following proposition characterizes a node Y in the decomposition tree of a given SE A such that 

Y:A. 

Proposition 25. Let A be a SE and let Y be a node of T(A). Then, Y = A if and only if Y is an 
invariant of A and v(Y) = v(A). 

Proof: (=?) IfY = A, then, there exists h E "ll..2 such that Y =Ai.= A${h}. Hence, by Proposition 3, 
Y is invariant of A. Since v(Ai.) = v(A), then, v(Y) = v(A). . 

(-¢:) Since Y is invariant of A, by Proposition 2, there exists & SEX such that A = X EBY. By 
Proposition 17, 11(A) = v(X) + v(Y). Since v(A) = v(Y), then 11(X) = 0 and therefore IXI = 1. Let 
h E z.l such that X = {h}. In this case, the Minkowski addition X $ Y = A is a translation of the set 
Y by h. Hence, Y = A. □ 

Let A be a SE. When a node Y of T(A) such that Y is an invariant of A and v(Y) = v(A) is found, 
then, by Proposition 25, Y = A, and therefore, the sequence PathA[{o},Y] is a shape decomposition of 
A. If level(Y) is equal to lower(A) (the lower bound fixed by Proposition 24), then PathA({o}, Y] is an 
optimum solution. Otherwise, the optimum solution contains at most level(Y) elements. So, we get an 
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upper bound for decomposition of A. Note that this upper bound can change dynamically. We denote 
c.u.b. the current upper bound. 

A crucial task of the procedure is a.n adequate pruning of the decomposition tree when its nodes are 
being visited. Proposition 18 gives a necessary condition for the existence of a decomposition for A. Thus, 
we should begin the search just if this condition is satisfied. Proposition 24 fixes the lower bound for a 
decomposition of A, while Propositions 19, 20 and 22 guarantees important pruning, since they detect 
unfeasible nodes. 

Under this context, after setting c. u. b. with infinite, the search dynamics goes on. In the first iteration, 
the root is selected to be visited. In an arbitrary iteration, when the node Y is being visited: 

( i) - Verify if this node can be pruned. 
There are four pruning strategies that have to be checked: 
(i.a) Pruning by Upper Bound. 

level(Y) ~ c.u.b. 
(i .b) Pruning by Projection. 

There exists i such that 
v,(Y) > v;(A) 

(i.c) Pruning by Invariance. 
Y is not invariant of A. 

( i.d) Pruning by Possible Sequence. 

Let Z ~ 71.2 be the set obtained 
by Minkowski addition of all sub­
sets in the sequence Possible.4.(Y] . 

U there exists i such that 
v,(Z) < v,(A) - v,(Y) 

If one of these conditions is satisfied. then the node Y is pruned and a new iteration begins. 
( ii) - Verify if this node is a solution. 

Y is a solution if the following two conditions are satisfied: 
• level(Y) ~ lower(A) and 
• v(Y) = v(A). 

In the case of these two conditions are satisfied, Y is an invariant of A (otherwise, Y would be 
pruned in step (i.c)) and, since v(Y) = v(A), by Proposition 25, Y = A, and then, Path.4.[{o}, Y] 
is a shape decomposition of A. 

( ii.a) - This node is a solution. 
There are two possibilities: 

• if level(Y) = lower(A) 
* The search stops. 

• if level(Y) > lower(A) 
* c.u.b . .- level(Y) 

and a new iteration 
begins. 

( ii. b) - This node is not a solution. 
The algorithm begins a new iteration. 

In Figure 14, we show a simple example of the algorithm running for finding a shape decomposition 
of the SE A presented in Figure 14a. The invariant sequence of A is presented in Figure 14b. The 
vector projection, the orthogonal projection and the lower bound of A are presented in Figure 14c. The 
root is selected to be visited in Figure 14d. The node Ni is being visited in Figure 14e. The node N• 
is being visited in Figure 14f. The node N4 is pruned (pruning by Projection, see Proposition 19) in 
Figure 14g. The node N& is being visited in Figure 14h. Since N5 = A, then Path.4.[{o} ,N&] = [B1,Bs] 
is a decomposition of A. Besides, since level(N5 ) = 2 = lower(A), then Path.4.[{o},N5] is an optimnm 
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A=ff: 
• 
(a) 

v(A) = (l, l, l, l, l, 0, 3, O) 
p(A)= (2,3) 
lower(A) = 2 

(c) 

(d) (e) (/) @root r-/root 
B1 

Ni =~ 

Fig. 14. A,, example llhowfog the algorith1n running. 

aolution and the search stops. In this example, only the pruning by projection was detected. The other 
pruning strategies are detected in a similar way. 

Proposition 26. Let A be a SE. If m ii the number of element, in the invariant aequence of A , then 
m = O(n), UJM,re n ii the rum of all coordinatu of the veGtor projection v(A). 

Proof: Clearly, the multiplicity of a given SE with respect to A is at most max{Pt(A),P2(A)} = O(n) 
and the number of all possible subsets of the elementary square i8 29 • Thus, the number of elements in 
lnvSeq[A] i8 at most 29 · max{p1(A),P2(A)} = O(n). Therefore, m = O(n). D 

Since the decomposition tree of a given SE A contains zm nodes, where m is the number of elements 
in the invariant sequence of A, and by Proposition 26, the time complexity of our algorithm, in the worst 
case, is 0{2n), where n is the sum of all coordinates of v(A). 

4, Comparison with some known Algorithms 

In this section, we compare the algorithm presented in Section 3 with llOllle known algorithms. Sub­
section 4.1 compares with Zhuang and Haralick's algorithm [24] . Subllection 4.2 compares with Xu's 
algorithm (22). Subllection 4.3 compares with Park and Chin's algorithm [15]. 
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B1 -.+• B3 •.♦• B3 • ♦: 

B, ~ ~ Bo - t­
(•l 

[B1, 83, B2 . B3 , B3, B3 , B4, B4, B,, B4 , B5 , B5. Bn, BG] 

(c) 

[B1, B2, B3, B3 , B3, B4,) 

<•> 
(B3 , B3, B4, B4, B4, B<1,) 

(•) 

Fig. 15. (a) A SE A. (b) The subsets of the elementary square that are in B(A). (c) The invariant sequence of A according 
to the order choeen to construct it. (d) Output of our algorithm. (e) Output of Xu's algorithm. 

4.J. Zhuang and.Haralick's Algorithm 

Zhuang and Haralick [24] presented an algorithm for finding the optimum decomposition of an arbitrarily 
SE, where all elements in the decomposition have the prescribed fixed number k points. Their algorithm 
perfoms the breadth-first search in a tree (that they called tree search) and the essence of the solution 
technique is divided into two parts: (i) the recognition that SE's participating in the decomposition must 
have points which are the differences between points of the given SE and (ii) the reduction of the search 
space using pruning by the invariance strategy that they called forward checking. 

The breadth-first search has advantages and disadvantages over the depth-first search. The main 
advantage it that the first solution found is always the optimum one. The principal disadvantage is that 
all nodes in the current level have to be kept in memory. So, we decided to use the depth-first search 
because it requires less memory a.nd, in our experiments (see Section 5), we observed that the distance 
between the optimum and the first solution found 11Sually is small. 

The problem decomposition considered in our work (stated in Subsection 2.1) is a special case of the 
problem studied by Zhuang and Hara.lick {with k = 2, 3, · · •, 9 and each SE in the decomposition .being 
a subset of the elementary square). In this particular case, our algorithm can reduce more the search 
space, since it uses two more pruning strategies (prunings by projection and possible sequence). 

4-2. Xu'a Algorithm 

Xu [22] developed an algorithm for finding the optimum decomposition of convex SE's in terms of subsets 
of the elementary square, where all SE's in the decomposition a.re also convex. 

In order to \lSe Xu 's algorithm for decomposing a convex SE A, it is necessary to compute the chain 
code o! A. The time complexity of the algorithm given in [16, p. 143] for determining the chain code is 
linear with respect to the number of points in the whole SE A, or equivalently, the time complexity is 
O(n2 ), where n is the sum of all coordinates of the vector projection v(A). In this subsection, we show 
that, if the input of our algorithm is a. convex SE, then its time complexity is O(n4 ) and its output can 
contain non-convex SE's (in this sense, it is more general than Xu's algorithm). 

Depending on the order chosen to construct the invariant sequence, different heuristic search procedures 
arise. We have sorted the elements of the invariant sequence in decreasing order, according to the sum of 
the coordinates of the orthogonal projections of each subset in the invariant sequence, and, at the same 
time, in increasing order, according to the number of points of ea.ch subset in the invariant sequence. 
For example, Figure 15c presents the invariant sequence of the SE A (presented in Figure 15a) according 
to the order chosen to construct it. In this figure, observe that Po(Bi) + P1(Bi) = Po(B2) + P1(B2) > 
Po(Bs) + P1(Ba) and B1 contains less points than B2. 



20 HaJ1himoto, et al. 

According to this sorting, the algorithm prefers to choose non-convex SE's rather than convex ones 
for the shape decomposition. ThllB, as the time complexity of algorithms that implement erosions and 
dilations dependl! on the number of points in the SE, our algorithm has an advantage over Xu's algorithm, 

since &II elements in the output of Xu's algorithm are convex subsets of the elementa.ry square [22]. For 

an example, in Figures 15d and 15e are presented, respectively, the output of our and Xu's algorithm. 
In this particular example, the difference is just four points, but for bigger SE's the difference can be 

considerable. 
Given a SE A and a node Y of T(A), let B be the first element in DirectA[Y] such that Y EBB is an 

invariant of A. We define the node Y EBB as the leftmost in11ariant direct ducendant of Y. We define 

the leftmost node sequence of the decomposition tree T(A) as the sequence [Yo, Yi,~.· · ·, Yt] formed 

by the nodes of T(A) such that Yo is the root (i.e., the unita.ry set that contains the origin) and, for 

i = 1, 2, ... , le, Y; is the leftmost invariant direct descendant of Y;-1• 
Given a convex SE A, if the invariant sequence of A is built in the manner described above, then the 

following proposition, proved in [10], gives an important result in order to prove that the output of the 
algorithm is an optimum shape decomposition of A. 

Proposition 27. Let A be A com,ex SE. If the sequence (Yo, Y1, ~. • • •. Yk] is the maximal leftmost 

node .,equence of T(A), then /ower(Yt) = k and Yi = A. 

The next proposition is an immediate consequence of Proposition 27. 

Prop011ition 28. Let A be a convex SE. If the ,equence (Yo, Y1 , ~. • • • , Y•J is the maximal leftmost 
node aequence o/T(A), then PathA[{o}, Yk] is an optimum ahape decomposition of A. 

Proof: By Proposition 27, lower(Yk) = le and Yk = A. So, 11(Y1,) = v(A), and, consequently, 
k = /owe,-(Yk) = /owe,-(A) . Since PathA[{o}, Yk) contains exactly k elements and le= /ower(A), then, 
clearly, PathA[{o}, Yk) i.s the optimum shape decompoeition of A. D 

Given & convex SE A, when a maximal leftmost node sequence of T(A), say !Yo, Yi, Yi ,•· •, Yk], is 
found, then, by Proposition 28, Path A [ { o}, Yk) is the optimum shape decomposition of A. It remains to 
show that the time complexity to find the first maximal leftmost node sequence is O(n'), where n is the 
sum of &II coordinates of the vector projection v(A). 

Let A and Y be SE's such that Y is a node of T(A) . Let Path.4.({o}, Y] = [B1,B2 , · ··,Bk). In order 
to verify if Y is an invariant of A, we have to check if A = (A e Y) EBY = (·• •((A e B1 ) e B2 e • •. e 
81,) EB Bi) EB B2 EB·· · EB Bk)· The time complexity for computing A 9 B; or A EBB; is linear with ?ffl])eci 

to the number of points in A, since B; contains at most 9 points. ff n is the sum of &II coordinates of 
the vector projection v(A), then the time complexity for computing A 9 B; or A EBB; is O(n2 ). So, the 
over&ll complexity for verifying if & node Y at level k i.s an invariant of A is O(/c • n 2). 

Since the algorithm presented in Section 3 uses the depth first search, then, the first maximal sequence 
of nodes visited by our algorithm is the maximal leftmost node sequence [Yo, Y1 , Y2 , • • • , Yk] of T(A). By 
Propoeition 28, k = lower(A). Hence the time ta.keu for finding the maximal leftmost node sequence of 
T(A) is 0(1 • n 2 ) + 0(2 · n 2 ) + · • • + O(lower(A) • n2 ) . Therefore, the time complexity of the algorithm 
for finding an optimum decomposition of a convex SE A is O(lower(A)2 • n 2 ), that is, O(n4 ), since 
lower(A) = O(n). 

,1.3. Park ond Chin'a Algorithm 

Park and Chin (15] developed &n extension of Xu's &lgorithm for finding the optimal decomposition of 

simply connected SE's, where &II elements in the decomposition are also simply connected. In this subsec­
tion, we show that there exist infinite families of simply connected SE's that have shape decompositions 
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• • • • D1= +. D,c t Di• t D4-t Ds• ♦ 

(o) c•) (c) (4) (c) 

Fig. 16. (a) - (e) SE'a Dt, D2, Ds, D, and D0 • 

(a) 

Pig. 11. (a) - (c) SE's Xi, Yi and Zt , 

but a.re not decomposable according to the Park and Chin's decomposability definition. In addition, we 
give some comments a.bout the time complexity of their algorithm. 

In this subsection, we consider the SE's D1 = {d1,d2}, D2 = {d1,d•}, D3 = {d1,d3,d4}, D4 = {d3,d4} 
and D~ = {d1,d3}, where d1 = (-1, 1), d2 = (1,-1), d3 = (0,0) and d4 = (0, -1). These SE's are 
presented in Figure 16. 

For any integer i > 0, consider the SE's X, = iD1 © D3 , Y; = iD, ffi D4 and z, = iD, © D0 • See 
Figure 17 for some examples of these SE's. These SE's X., Y. and Z, are simply connected and at least 
one element in the decomposition of X,, Y. and z, is not simply connected [9]. So, the families of simply 
connected SE's X = {X;: i > 0}, Y = {Y;: i > 0) and Z = {Z;: i > O} are not decomposable according 
to the Park and Chin's decomposability definition [9]. 

In their work, Park a.nd Chin [15] did not mention the time complexity of their algorithm. In a. certain 
step of the Park a.nd Chin's a.Jgorithm, it is necessary to find an integer solution of a linear system with 
a. fixed number of variables [15, p. 8), but they did not show how to do it. Theoretically, for each fixed 
natura.J number n, there is a polynomial algorithm solving systems of linear inequiilities in n integer 
va.riables [19, p. 256], but its implementation is not practical. In general case, integer linear systems are 
very ha.rd problems [19, p. 227]. 

Although the time complexity of our algorithm is O(2m), where m is the number of elements in 
the invariant sequence, our algorithm ha.s a.n advantage over Park a.nd Chin's algorithm, since it ca.n 
decompose a.ny type of decomposable SE, including the SE's in families X, Y a.nd Z. 

5. Experimental Results 

In this subsection, we present some experimental results of application of our algorithm for finding a.n 
optimum decomposition for some different types of SE's, namely: digital disks (see definition below), 
convex SE's (see a.n example in Figure 18a), decomposable connected SE'a tha.t contain holes (see a.n 
example in Figure 18b), decomposable connected SE's tha.t contain 110 holes (see a.n example in Figure l&), 
decomposable disconnected SE's that contain holes (see an exa.mple in Figure 18d) and decomposable 
disco1111ected SE's that contain 110 holes (see a.n example in Figure 18e). These experiments have been 
performed using a. Snn tntra Enterprise 3000. Processing time is measured in hours (h), minutes (m) and 
seconds (s) . 

The digital diskofradius r > 0, centered at the origin, is the SE given by D(r) = {(z,y) E 'll-2 : x2+y2 ~ 
r2} (see Figure 19 for some examples). Note that it is not the only definition to discrete circular SE's. 
A method to obtain some types of decomposable discrete circular SE's and their decomposition can be 
found in [21). 

We divide this subsection into three parts. In the first one, we show some results for digital dis.ks; in 
the 11eC011d one, for convex SE's; in the third one, for decomposable connected and disco11.11ected SE's that 
contain holes a.nd no holes. In the tables, we use the following notation: 
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Fig. 18. (a) A comm: SE. (b) A decompoMhle colllleCied SE that contalm a hole. (,) A decompoeable C<lllll«ted SE tha.t 
contains no ho lee. ( d) A decompoMhle diacoDDected SE Uw contalna oome holea. ( e) A decompoe&ble dlaconneded SE 
that cont&lnl no holes. 

DI = number of subsets in the invariant sequence. 
m = number of subsets in the first solution. 
- = number of subsets in the optimum solution. 
mi = time taken for detecting the non-decomposability. 
1n = time ta.ken for detecting the first solution. 
ms = time ta.ken for detecting the optimum solution. 

5.1. Digital Disks 

The disks D(2) and D(4) are decomposable, while diskll D(3) and D(5) to D(50) have no decomposition. 
The time taken for detecting the non-decomposability of the disk!, from D(5) to D(50) wa11 less than 40 
seconds. The time taken for detecting the first solution (that Wllll the optimum one) of the disks D(2) 
&nd D(4) are presented in Table 1. Table 2 showa the time ta.ken for detecting the non-decompas&bility 
of some disks of radius between 5 a.nd 50. 

5.!. Com1u SE'a 

We have applied the procedure to find the optimum decomposition for about 250 convex SE's. As stated 
in Proposition 28, all the first solutions found were the optimum one. Table 3 presents the average time 
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Fig. 19. (a) - (c) Dim of radius 2, 3 and 4. 

Table J. Decomposable Disks. 

n.clitu1 ISi IFS••DS TFs-TDS 

6 
lS 

0,61 
o. 71 

for detecting the optimum solution for convex SE's that are subsets of 20 x 20, 40 x 40, 56 x 56, 72 x 72 
and 88 x 88 square. We have observed that the time taken for finding the optimum decomposition of 
convex SE's is very small, even for large SE's. Table 4 presents the time taken for detecting the optimum 
solution of some convex SE's. 

5.9. Decompoaable Connected and .Disconnected SE's that contain hole., and no hole., 

In this subsection, we use the following notation for denoting the SE's: 

DC1 = decomposable connected SE's that contain holes. 

DC = decomposable connected SE's th.at contain no holes. 

IIDII = decomposable disconnected SE's that contain holes. 

Ill> = decomposable disconnected SE's that contain no holes. 

We have applied the procedure to find the first and optimum shape decomposition for about, respec­
tively, 400 a.nd 200 decomposable connected and disconnected SE's that contain holes and no holes. 

Table 5 presents the average time for detecting the first solution of SE's that are subsets of 20 x 20 
and 40 x 40 square. In most cases, the first solutions were the optimum ones. In addition, the distance 
between the lower bound and the number of elements in the first solution was at most two. Therefore, 
the first solutions was very close to the optimum ones. 

In Table 6, we present the time taken for detecting the first and the optimum solutions of some SE's 
that are subsets of the 20 x 20 square and the lower bound was not equal to the number of elements in 
the first solution. In this table, observe that the distance beetween the lower bound and the first solution 
is usually small and, in most cases, the first solution is the optimum one. Since the complexity time for 
detecting the optimum solution, in the worst case, is exponential, in practical applications, it may be a 
good heuristic to stop when the first solution is found. 

Despite the good results presented in Tables 5 and 6, the time taken for finding the first solution has 
increased exponentially with the size of the SE. This was because the three prunings strategies used in 
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Table!. Undecompo11able Disks. 

Alliu ISI 11lll 

06 4 o.r. 
10 22 1.0• 
15 38 2.2. 
20 H 11.h 
25 TO se.3• 
30 TO 2.tia 
35 54 4.,. 
40 TO •••• 
ti H 8.3" 
50 102 T.7a 

Table :J. Average time for detecting the optimum 110!ution of convex SE'a. 

llu11t of tile ,oquro 

20 X 20 
10 X 10 
50 X lie 
72 X 72 
88 X 88 

I.II 
19.ta 
u.2. 

lltt2.0. 
31121.0. 

the algorithm were unable to avoid many unfeasible nodes in the decomposition tree. Table 7 presents 
the time taken for detecting the first solution of some SE's that are bigger than the SE's presented in 
Table 6. 

Tobie 4. Time for detecting the optimum eolution of IIODU! conwx SE'a. 

SE ,t p(A) ISI IF&•JOS tFS-ros 

01 (17. lT) 418 • ,.,. 
02 (17, 19) Ql 10 T. 7• 
03 (31, M) '" lT 23,3" 
04 (32, H) 911 18 22.0. 
06 CU, 48) 1137 2, 50.0. 
04 (62, 55) lUt 28 67.0. 
07 (Ill>, 88) 2114 34 2117.0• 
04 (89 , 18) 221T :Iii 21130.0. 
0, (86, 12) 2588 43 :!ld5.0• 
10 (88, 94) 2802 H t.32.0. 
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Table 5. Average time for detecting the first oolutioo decomposable connected and dioconnected SE'• that contain ho).., 
and no holes. 

20 X 20 40 x 40 

DCB 3.2Gb 13a41.0• 
DC 2.878■ 22.2• 
DDB 1.682• 34.0• 
DD 1.506• llla27.0a 

Table 6. Time for detecting the first and optimum solution of some dec-0mpoeable connected and diaconnected SE's that 
contain holes and no boles. 

St A p A •SI lov•r bound IFS TFS IOS TOS 
(18,Ul 17 9 10 1.:il■ 10 3.0• 
(11, 18) 17 8 9 1,0a 9 4.1. 

DDB (18.18) 38 9 10 1.s. 10 29.4■ 
(18.16) 21 9 10 1.la 10 e.o■ 
{14,18) 10 9 10 1.0. 10 1.3• 
110,16) 19 8 9 1.la 9 7-6• 

DD (18,17) 29 10 1.2■ 10 43.68 
(18,14) 31 10 1.6■ 10 1a54.0• 
(18,16) 20 10 1.3 ■ 10 7. 7• 
\18,18) 24 10 1.21 10 11.61 
(18,18) u 9 3.5• ' 21139.0• 

DCB (18,18) 30 10 1.2. 10 67 .2• 
{15,18) 19 10 1.0a 10 2.6• 
{18,18) 30 10 1.8• 10 18.0• 
(18,17) so 10 4 . b ' t7.0o 

DC (U..18) 4l 10 .... 10 2-41.0. 
{U,16) 31 , i.e. I 21.0a 
(18,18) 41 10 1.8■ 10 Ba20.Sa 
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Tobie 7. Time for deteding the Im oolution of eome decompoeable connected and dioconn~ed SE'• that com;a.in holeo 

and no hol•. 

SE A p( A) ISI TFS 
Dl>I 162,75) u, S7h38a58 . 0• 
DD (62,lilll 91 51>251130 . 0, 

DCll (50,60 137 23h24a21.0o 
DC (60,681 521 a, laut 201)1 

6. Conclusion 

The change of decomposition structure of morphological opera.tors for improving the performance of 

their implementation is a fundamental step in the process of automatic programming of Morphological 

Machines [2]. In this paper, we studied a. particular aspeci of this problem: the sequential decomposition 

of erosions ( respectively, dilations). 
A general algorithm for the automatic proof tha.t an erosion ( respectively, dilation) has a sequential 

decomposition or not was presented. The proof of existence is constructive and an optimum solution is 

exhibited. This algorithm is based on a bra.nch and bound search, with prunning strategies and bounds 

based on algebraic and geometrical properties deduced formally. 
The proposed algoiithm is not efficient £or till the C88ell, but is generalizea unportant clueical results 

as Zhuang and Haralick, Xu, and Park and Chin, with equivalent or improved performances. Theoret­
ical analysis and experimental results illustrated these facts. The combinatorial algorithm is open to 
improvement.fl if new bounds or prunings a.re discovered. 

The same kind of combinatorial algorithm could be applied, for example, to compute the sequential 

decomposition of alternate sequential filters from their basis. This should be the next problem to be 
examined in our research. 
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