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1. INTRODUCTION 

It is well known that every loop L may be realized using the so called Baer 

correspondence. Let G be a group, H ~ G a subgroup and M a subset of 

G such that I E M and the foUowing holds: for all g E G, M is a system of 

representatives of the right cosets of fl9 in G. In other words, every element 

x E G can be uniquely decomposed as x = h9m with h E H and m E M. 

In this case we can define a product • : M x M --+ M by m • n = k where 

m, n , k E M and H mn = H k. The triple ( G, H, M) is called the loop folder 

of L = (M, •) and G is the enveloping group of L. For any loop L we can 

construct a loop folder (G,H,M) such that L == (M,•). Let M be the set 

of right multiplication maps R.: : y --+ yx of L, G = (M) and the H the 

stabilizer of 1 in G. Then (G, H, M) is indeed a loop folder with the extra 

properties that M generates G and H is core-free. The group generated by 

the right multiplications of L is the right multiplication group R.i\1lt (L) os 

L. 
Let G he an algebraic group over an algebraically closed field k with closed 

subgroup H and closed subset M and assume that for each conjugake Hg of 

H in G, the map 

H9 X M--+ G, (h,m) H hm 

is a biregular morphism. Then the triple ( G, H, M ) is an algebrnic loop 

Jolde,· and the corresponding loop L is a strongly algebraic loop. 

There is a more natural definition of the concept of algebraic loops, see 

[9]. A loop L is algebraic if L is an algebraic variety over an algebraically 

closed field k with regular morphisms 

m : L x L --+ L, ¢ : L x L --+ L, i/J : L x L -+ L, 

such that the identities 

(1) x = m(e,x) = m(x,e) = m(y,,f>(y,x)) = m(t/J(x,y), y) 

hold for all x, y E L and some fixed e E L. In this case m(x, y) == x · y is 

the loop product and t/J(x, y) = x/y, ,f>(x, y) = y\x are the right and left 

divisions, respectively. 
If the morphisms m, i/1, if, are well defined rational maps from L x L ..... L 

such that the identities (1) hold on a Zariski-open subset of L x L then we 

shall call L local algebraic loops. If only the regular morphism m : L x L -+ L 
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is defined such that x = m(e, x) = m(x, e) then we shall call L a weakly 
algebraic loop. 

In this paper, we cxamine the class of algebraic right Bol loops, that is, 
algebraic loops which satisfy the right Bo! identity 

((xy)z)y = x(y(zy)). 

We explain the relations between the classes of algebraic, stongly algebraic 
and local algcbro.ic Bol loop. We will show some structure theorems and 
give many examples. 

2. ALGEBRAIC VS. STRONGLY ALGEBRAIC LOOPS 

One of the mo.in questions in the theory of algebraic loops for a given class 
of loops is the equivalence of the notion of algebraic and strongly algebraic 
loops. 

It is known that via the localization process, any algebraic group deter­
mines a formal group this section. This method works for the class of local 
algebraic loops, as well, see [10]. A formal algebraic loop over the field k a 
system 

i= l, ... ,n 

of formal power series in 2n variables over k such that the identities 

µ(X,O) = µ(O,X} = X 

bold. The integer n is the dimension of the formal loop. If the formal loop 
µ is the localization of a local Bo! loop, then it clearly satisfies the formal 
Bo! identity 

µ(X,µ(µ(Y,Z), Y)) = µ(µ(µ(X, Y), Z), Y) . 

Moreover, any algebraic automorphism of an algebraic loop induces an au­
tomorphism of the associated formal loop. 

A finite dimensional JR-vector space B with trilinear operation(.,.,.) and 
bilinear operation [., .] is a Bol algebra if 

(x,y,y) = 0,(x,y,z) + (y,z,x) + (z,x,y) = 0 

((x, a, b), y,z) + (x, (y, a, b), z) + (x, y, (z, a, b)) = ((x, y, z}, a, b) 

([x,y],a, b} = [(x,a,b),y] - [x, (y,a,b)] + ([a,b], x, y) + [la, b], [x, y]] 

holds for all x,y,z,a,b EB. L. Sabinin [161 developed a complete theory for 
local differentiable Bo) loops. [16, 5.34 Proposition] says that local differen­
tiable right Bo! loops are functorially equivalent to Bol algebras. This func­
torial equivalence works perfectly between finite dimensional Bol k-algebras 
and formal Bol loops over fields of characteristic 0. In particular, the auto­
morphisms of a formal Bol loop over a field of characteristic O correspond 
biuniquely to linear automorphisms of the tangent Bol k-algebra. 

Let X be a variety and G be a group consisting of algebraic tranformations 
of X. We define connectedness and dimension of Gas in [14]. 

Lemma 2.1. Let L be a global algebraic Bol loop over an algebroically closed 
field k of charactemtic O and G a connected group consisting of algebraic 
automorphisms of L. Then G is biregularly isomorphic to a closed subgroup 
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of GLn(k) where n = dim(L). In particular, G is finite dimensional and 
h<J$ a unique structure of an algebraic trans/ ormation group on L. 

Proof. Let a be an algebraic automorphism of L and denote by µ(X, Y) 
the formal Bo! loop associated to L. As a( e) = e, it has a localization a(T) 
which is a formal automorphism of µ. The action of o on the tangent Bo! 
algebra is given by the Jacobian (~(O)) of a. Hence, we have an algebraic 
embedding \0 of G into GLn(k). Let us define the action of G on GLn(k) by 
X9 = X\0(9). By [14, Lemma 2), the orbit of 1 is a locally closed subvariety 
of GLn(k). On the one hand, this orbit is precisely Imip. On the other hand, 
Im\O = Im\O by [5, Proposition 7.4.Aj. D 

The main result of this sections is the following. 

Theorem 2.2. Let L be a connected algebraic Bol loop over a field k of 
characteristic 0. Then the right multiplication group R.~lt(L) of L is a 
connected algebraic group; in particular, L is a strongly algebraic loop. 

Proof. For any x E L, we define the algebraic transformation Oz= (R;1, Lzllz) 
on L x L. Let G be the group generated by the connected algebraic family 
{oz Ix EL}, then G is itself connected. It is easy to see that any element 
(/31,f.'2) of G can be uniquely extended to an autotopism (/31 , fJ?.,/33) of L. 
Hence, the stabilizer Gce,e) of (e, e) E L x Lis contained in Aut(L). We show 
that G is finite dimensional of dimension at most 112 + 2n where n = diDI( L). 
Let { \Ot I t E T} an injective family of elements of G with connected variety 
T of dimension N > n2 + 2n. By [14, Lemma 2), X = {\Ot(e,e) It ET} is 
a locruly closed subvariety of L x L. The set {t Et I \Oi(c,e)"' (e,e)} is a 
closed subvariety of T, let To be a connected component of maximal dimen­
sion. As dim To + dim X = dim T and dim X :S 2n, we have dim To > n2• 

However, {\Ot It E To} is a connected injective algebraic family in Aut(L), 
hence a subset of GLn(k) by Lemma 2.1, a contradiction. The main theorem 
of [14j implies the claimed result. D 

Clearly, if Ri\.flt( L) is an algebraic transformation group on L, then L can 
be given by the algebraic loop folder (G, H, K) where G = RMlt(L), H = 
Rlnn(L) and K = {Rz Ix EL}. Indeed, the decomposition G - H x K, 
g ..... hllz with x = e9, h = gR;1 is a biregular bijection between G and 
H x K. This implies that in this case, L is strongly algebraic. Conversely, 
let L be given by a connected algebraic loop folder (G, H, K). We do not 
destroy the algebraic property of the folder by assuming that H does not 
contain a proper normal subgroup of G. Then, by identifying L with the 
coset space G / H, G can be seen as an algebraic transformation group acting 
on L. Moreover, every right translation of L will be contained in G. Since K 
is connected, it generates a closed connected subgroup of G, hence RMlt(L) 
is a connected algebraic transformation group. 

Corollary 2.3. Let L be an algebraic Bol loop over an algebraically closed 
field k of characteristic 0. Then L is a 3tron9ly algebraic loop. 

Unfortunately, Lemma 2.1 does not hold when char(k) > 0. More pre­
cisely, a connected group of automorphisms of L can have infinite dimension. 
The rest of the proof works fine. Therefore we have the following 
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Conjecture. Let L be a connected algebraic Bol loop over an algebraically 
closed field k. Then fu\1lt(L) is an algebraic transfonnation group. In par­
ticular, every algebraic Bol loop is strongly algebraic. 

From the proof of Theorem 2.2 follows that in order to show the strong 
algebraic property, it is sufficient to study the right inner mapping group of 
an algebraic Bo! loop. 

Proposition 2.4. Let L be an algebraic Bol loop over an algebraically closed 
field k and assume that the right inner mapping group H = Rinn(£) of L is 
finite dimensional. Then L is strongly algebraic. 

3. SIMPLE ALGEBRAIC AND LOCAL ALGEBRAIC BOL LOOPS 

Throughout this section k denotes an algebraically closed field. As all 
known algebraic Bo! loops are strongly algebraic, in the following examples, 
we will often skip the adjective "strongly". 

It is known that given any algebraic group G with closed normal subgroup 
N, one can give the abstract group G/N the structure of (affine) algebraic 
group, see [5, Section 11 and 12]. This problem is rather subtle already 
for algebraic groups, and in general the solution is not known for algebraic 
loops. The next theorem gives a solution for strongly algebraic loops, that 
is, for loops given by algebraic loop folders. The normality condition for 
loop folders was given in [l, 2.6]. A subfolder (Go, Ho, Ko) corresponds to a 
normal subloop if and only if 

(NC) for each g E G, ko E Ko and k EK, kok = lok' for some lo E H9nGo 
and k' EK. 

In particular, KoK = HoK holds. 

Theorem 3.1. Let (G, H, K) be an algebraic loop folder with corresponding 
loop L. Let N be a closed normal subloop of L. Then there is an algebraic 
loop folder (G, fl, K) such that the corresponding algebraic loop Lis isomor­
phic to the abstract factor loop L/N. Moreover, the natural homomorphism 
L _, L = L/N is a regular morphism. The algebraic loop L is unique up to 
algebraic isomorphism. 

Proof. We assume w.l.o.g. that corea(H) = 1 and identify the homogenous 
space G / H with L. Let H1 denote the stabilizer of the the closed set N ~ L; 
H1 ~ G is closed by [5, Proposition 8.2]. Go = corea(H1) = n9ecHf is an 
intersection of closed sets, hence is a closed normal subgroup of G. Write 
Ho = Go n H, Ko = Go n K for the closed subsets of G. (Go, Ho, Ko) 
is the normal subfolder corresponding to the abstract loop homomorphism 
L _, L/N. By the normality condition (NC), Kol< = HoK, thus, GoK = 
H0 KoK = HoK. As Hon K = 1, this means that the subset K1 = GoK of 
G is bircgularly isomorphic to the subvariety Ho x K of H x K. In partic­
ular, GoK is closed in G, since the varieties G and H x K are biregularly 
equivalent. 

Let cp be the natural homomorphism G _, G = G/Go and define fl = 
r.p(H) and f< = r.p(K). The loop homomorphism L _, L/N corresponds 
to an abstract folder homomorphism r.p: (G,H,I()-, (G,fI,K). In order 
to see that L/N is algebraic, we have to show that fl,K are closed in G. 
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Indeed, the respective preimages Ht = GoH and K1 = GoK of il and k 
are closed in G. As G = G/Go is endowed with the quotient topology {cf. 
[5, Section 12]), il, k are closed. This completes the proof. □ 

The (strongly) algebraic loop L is said to be simple if it has no proper 
closed normal subloops. The most important example of strongly algebraic 
Bo! loops is the Paige loop M ( k), for the definition sec [15]. It is known 
that M(k) is a nonassociative simple Moufang loop, its multiplication group 
is the projective orthogonal group Pnt(k). 

In the remainder of this section, we give examples of simple algebraic Bol 
loops. Most of the examples arc constructed from an exact factorization 
G = AB of the group G. Briefly said, G = AB is an exact factorization 
of G if A, B are subgroups such that G = AB and A n B = 1. Then the 
triple (G x G,A x B,l() is a Bo! loop folder with K = {(x,x-1

) Ix E G}; 
for details see [ll]. This construction gives many proper simple Bo! loops. 
However, the known conditions for the simplicity of the associated loop were 
rather complicated. We now give a sufficient condition which covers almost 
all known cases. 

Proposition 3.2. Let G = AB be an exact factorization of the group G 
and let L be the corresponding Bo! loop. Assume that 

(i) Z(G) = 1, 
(ii) corec(A) = corec(B) = 1, 

(iii) A is maximal in G, and 
(iv) the normal closure of B in G is G. 

Then L is a simple loop. 

Proof. Let <p : ( G x G, A x B ,I() -+ ( G, fl, k) be a surjective morphism of 
loop folders and with kernel (Go, Ho, Ko); Go <l G. We can assume without 
loss of generality that corec(ff) = 1, that is, corecxc(Go(A x B)) = Go. 
Since IGo,G x l] $ G x 1, we can write [Go,G x 1) = U x 1 with a normal 
subgroup U of G. Assume first U = l, then by Z(G) = 1, we have Go= 1 x V 
with a normal subgroup V of G. As Ko = Go n K = 1, Go = HoKo = Ho $ 
H and V $ B , whiclt contradicts to corec(B) = 1. 

We can therefore assume U f 1. By the maximality of A, G = AU and 

G x 1 $ G x B = (U x l)(A x B) $ G0(A x B). 

Then G x 1 $ corecxc(Go(A x B)) = Go, which implies that Go has the 
form Go = G x V for some V <l G. Then G = (G x G)/N =!! G/V and 
k = KGo/Go = (G x G)/N = G by KGo = G x G. Moreover, as Go(A x 
B) = G x VB, we have fl~ VB/V. Now, the triple (G/V, VB/V,G/V) is 
a loop folder if and only if V B/V = 1, that is, if and only if B $ V. By 
assumption (iv), V = G and the image of cp is trivial. □ 

If G is an algebraic group and A, Bare closed subgroups then the resulting 
loop will be a strongly algebraic Bol loop. 

Simple algebraic Bol loops from exact factorizations. The next con­
struction yields a non-Moufang simple algebraic Bol loop. Let G be the 
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semidirect product of Sl,,z(k) and k2• We can represent G by 3 x 3 matrices: 

{ ( 
au a12 :z:1) } 

G = ~• a~2 :z:f I a;;, :z:; Ek, a11022 - a12a21 = 1 . 

Clearly, G is a connected algebraic group of dimension 5 with Z(G) = 1. 
Since SL-i(k) acts irreducibly on k2, the only connected normal subgroup of 
G is No= 1,,.:.z . 

We define the subgroups 

{ ( 

au 
A= SL-i(k) = ~1 

and 

B = { ( ~ T ;~) I :z:1,:z:2 Ek}~ k
2 

of G. We have AB= G, An B = 1 and corec(A) = corec(B) = 1, that is, 
A and B do not contain proper normal subgroups of G. 

By Proposition 3.2, the Bol loop L corresponding to this exact factoriza­
tion is simple. Notice that this is true for any field k; even for k = F2 and 
k = F3, when SI,,i(k) (and G) are solvable. 

The local hyperbolic plane loop. By Weil's theorem [17], any local 
algebraic group is birationally equivalent to an algebraic group. In this 
section, we construct a local algebraic Bo! loop and prove that it is not 
birationally equivalent to a global algebraic loop. 

The translations of the hyperbolic plane are defined as products of two 
central symmetries; the set of hyperbolic translations forms a sharply tran­
sitive set on the hyperbolic plane, the associated loop is the classical simple 
Bruck loop. An elegant representation of this loop was given in [8] by the 
operation 

x+y 
:z:•y=l+xy 

on the unit disc {z EC I lzl < 1}. Formal expansion using x = :z:1 + ix2, 
y = Yl + iY2 gives the formal operation 

with 

(2) 
f Z1 = 

l z2 = 

(x1,x2) · (Y1,Y2) = (z1,z2) 

This operation defines a simple local algebraic right Bruck loop on k2 

for any field k. The unit element is (0,0) and the inverse of (x1,x2) is 
(-x1,-x2). Straightforward calculation gives that the right inner map 
R(~1.112J.(z,,,.J is 
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b = 
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~Yi+ 2ziv2 - ZiY? + 4z1z2Y1Y2 - zM + z?v? + 2z1y1 + 1 
I + 2z1v1 + 2z2Y2 + zM + zM + z?y? + zM 

2Z1Z2Y? + 2z?Y1Y2 - 2ZiYIY2 - 2z1z2y? - 2y1z2 + 2ZJY2 

1 + 2z1v1 + 2z2Y2 +zM +zM + zM + zM 
Moreover, a2 + b2 = 1 holds identically. Thus, the right inner maps are 
contained in a I-dimensional algebraic group H acting on k2• 

We claim that this local loop is not birationally equivalent to an algebraic 
loop. Let us assume that (L, ·) is an algebraic loop such that a- : k2 -+ Lis a 
birational isomorphism. Then Rinn(L) has the structure of a I-dimensional 
algebraic transformation group on L. By Proposition 2.4, G = RMlt(L) 
is a 3-dimensional algebraic transformation group. Moreover, as L is a 
simple Bruck loop, G is a simple group, hence G ~ PSL(2, k). Any simple 
Bruck loop can be given by a loop folder (G,H,K) where H = Cc(u) and 
K = {g E GI g" = g-1} for an involutorial automorphism u of G, cf. [4). It 
is easy to check that PSL2(k) has no such automorphism. This proves that 
(2) indeed defines a proper local algebraic Bol loop. 

4. ALGEBRAIC SOLVABLE BOL LOOPS 

In this section, we investigate the relation between solvable (strongly) al­
gebraic groups and and algebraic loop folders ( G, H, K) with solvable group 
G. We first show that the Jordan decomposition is well-defined in the class 
of power-associative strongly algebraic loops. 

Proposition 4 .1. Let L be a connected power-Cl3sociative strongly algebraic 
loop. If x E L, there exist unique elements s, u E L such that: Rz = R,R.,., 
s and u are contained in a closed Abelian subgroup of L, R, is semi.simple 
and Ru is unipotent in RMlt(L). If'{) : L-+ L is a morphism of strongly 
algebraic loops then '{)(x), = \O(x,) and \O(x)u = '{)(xu). 

Proof. Let L be given by a faithful algebraic loop folder (G, H, K) with G = 
RMlt(L). Since Lis power-associative and K closed in G, Rz is contained 
in a closed Abelia.n subgroup U of G such that U ~ K . Let Rz = soUo 
be the unique Jordan decomposition of Rz in U. As U is contained in K, 
there are unique clements s, u E L such that so = R,, uo = R.,.. Finally, 
the set {y E L I Ry E U} is a closed Abelian subgroup of L, which contains 
s, u. The last assertion follows from the fact that morphisms of strongly 
algebraic loops are equivalent to morphisms of algebraic loop folders, see 
Theorem 3.1. D 

Now, we are able to prove the Lie-Kolchin theorem for strongly algebraic 
Bol loops. 

Theorem 4.2. Let L be a connected strongly algebraic Bol loop and a.,sume 
that RMlt( L) is solvable. Then L hCl3 a closed connected solvable nonnal 
subloop Lu consisting of the unipotent elements of L. The factor loop L/ Lu 
is a torus. In particular, L is solvable. 

Proof. Let L be given by the faithful algebraic loop folder (G, H, K) with 
G = RMlt(L). Let U be the unipotent radical of G and put U1 = HU. 
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We claim that U1 n I< ~ U. Take an abritrary R.,, E U1 n I<, R.,, = R,Ru 
its Jordan decomposition with R., Ru E U1 n I<. By the Lie-Kolchin theo­
rem, we have the decomposition H = H,Hu of the solvable algebraic group 
H; thus, U1 = H,U and H, is a maximal torus in U1. This implies that 
R, is conjugate to an element of Ii,, hence R, = 1 and R.,, = Ru E U. 
Clearly, (U1,U1 n H,U1 n K) determines a closed subfolder of (G,H,K). 
Moreover, as it satisfies the normality condition {NC), the corresponding 
subloop N is normal in L . By U1 n K =Un I<, N consists precisely of the 
unipotent clements of L. The factor loop L/N has the algebraic loop folder 
(G/HU, 1,G/HU), thus L/N ~ G/HU is a torus. 

In order to show t.hc solvability of L, it remains to deal with the case when 
L consists of unipotent elements. Then K ~ Gu and G = (K) = Gu can be 
assumed. In this case, H is contained in a proper closed normal subgroup M 
of G and the surjcctive morphism (G, H, K)-, (G/M, 1,G/M) of algebraic 
loop folders corresponds to a surjective morphism L _. G / M of algebraic 
~~ D 

After this result, it is natural to ask about the structure of algebraic Bol 
loop folders (G, H, K) where G is a connected unipotent group. We are able 
to handle only a rather special situtation. 

Proposition 4.3. Let k be an algebraically closed field of characteristic 
0. Let L be a connected strongly algebraic Bal loop over k with loop folder 
(G, H, K). Assume that G is a connected unipotent group of nilpotcncy class 
2. Then dim(Z(L)) > O. In particular, L is nilpotent. 

Proof. Since G is 2-divisiblc and has nilpotency class 2, the operation x+y = 
x 112yx112 defines a commutative algebraic group on G with closed connected 
subgroups H and K. Thus, G can be coordinatized such that 

H = {(x1 1 ••• ,xn.,O, ... ,O}lx;Ek}, 
K = {(O, ... ,O,x1,, .. ,xn2)lx;Ek}, 

n = n1 +n2 = dimG, 

and the I-parameter subgroups have the form {tg It Ek}. If x E KnZ(G) 
then tx E Kn Z(G) for all t Ek. 

Let us first assume that Kn Z(G) f. 1 and (G, H, K) is faithful, that is, 
G = R.Mlt(L). Take an arbitrary element R.,, E Kn Z(G). Then R.,,~ = 
RyR.,, implies xy = yx for all y E L. As L is 2-divisible, that is, R.,, = 
{R.,112)2 for some Rx112 E Kn Z(G), we have Rx~ = Rx112ftvRx112 = 
R(.,1/•~,.,,,,. Thus, x E Nµ = Np, These properties imply x E Z(L); in 
particular, dim(Z(L}) = dim(K n Z(G}} > 0. 

Let us now suppose that (G, H, K) is an algebraic Bol loop folder such 
that 

(i) G is connected with nilpotency class 2, 
{ii) Kn G' = 1, 

{iii} the dimension of G is minimal. 

Assumption {iii} implies G = R.Mlt(L) for the associated Bol loop L . Let M 
be a closed connected normal subgroup containing H and put Ko = Mn K. 
As (M, H, Ko) is an algebraic Bol loop folder satisfying (i) and (ii), M has 
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to be commutative by dim M < dim G; hence, M S;< kn-I. Fix an element 
go E G \ M and denote theme.pH ..... G' ~ M, h,.... [h,go] by p. We define 
the subset 

Y = LJ H9 = LJ H190 = { h[t90, h] I h E H, t E k} 
gEG tek 

of M. As M is a. vector group, we change to additive notation: Y = {h + 
t/3(h) I h E H,t Ek}. The map /3: H ..... G' is additive and algebraic, hence 
linear. Moreover, H n G' = 0 by corec(H) = 1. Clearly, for e.ny y E Y and 
s E k, sy E Y. Thus, Y determines a. point set in the projective space P n-2 

given by M. The homogenization of Y is 

Y = {sh+tP(h) I h E H,s,tE k}, 

which is a closed projective variety in II' n-2· Indeed, it is the morphical image 
of the complete variety l!"1 x Pni-l, hence closed by [5, Proposition 6.l(c)j. 
The projective dimension of Y is n,. The subspace Ko of M determines 
an (n2 - 2)-dimensione.l projective subspa.ce of Pn-2• Thus, prdim(Y) + 
prdim(Ko) = n - 2, the projective varieties Y and Ko have at least one 
projective point x E M in common. The elements of Y a.re conjugates to 
elements of H, therefore Y n Ko = 0 and x E Y \ Y. Since the elements 
of Y \ Y correspond to the parameters= 0, Y \ Y ~ [go,H] ~ G'. This 
contradicts to the assumption K n G' = 1. D 

We notice that the above result does not hold if k is not algebraically 
closed, for examples see [7]. Moreover, it is not clear what the nil potency 
class of L can be. The construction in [2, Example VIl.5.3] gives a strongly 
algebraic Moufe.ng loop of nilpotency class 3 such that the right multiplica­
tion group is nilpotent of class 2. 

We formulate the following open question: 

Problem. Let L be a connected strongly algebraic Bol loop over an alge­
braically closed field k with loop folder (G, H, K) such that G is a connected 
unipotent group. Is it true that dim(Z(L)) > O? 

5. CONSTRUCTIONS OF SOLVABLE ALGEBRAIC BOL LOOPS 

In this class of examples, we assume that G is an algebraic group over k 
which is a semidirect product of the connected algebraic groups A and B; 
G = A )I B. Clearly, G = AB is an exact fa.ctorization. Explicit calculation 
shows that the resulting Bol loop L is isomorphic to the split extension 
constructed by Johnson and Sharma [6]. In pe.rticule.r, if the action of B on 
A is not Abelian then L is non-Moufang and non-Bruck, see [6, Theorem 2]. 

Take A= k" and B = Tn(k) the group of nxn upper triangular matrices; 
then G = AB is solvable. The following proposition says that the associated 
Bol loop L is solvable. 

Proposition 5.1. Let G = AB be an exact factorization and N ~ A is nor­
mal in G. Define K = {(x, x-1) Ix E G} ~ G x G and f< = {(xN,x-1N) I 
xN E G/N} ~ G/N x G/N. Then the following hold: 

(i) rp : (G x G,A x B,K) _, (G/N x G/N,A/N x B,f<) is a surjective 
morphism of loop folders. The kernel of'{) is the nonnal sub/older 
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(N x N,N x 1, KN) with KN= {(x, x-1) Ix EN}. The correspond­
ing nonnal subloop is i3omorphic to the group N. 

(ii) If N $ Z(G) n A then ker,p $ Z(L) , where L is the Bol loop asso-
ciated to the exact factorization G = AB. 

Proof. We first notice that it is meaningful to speak of the subgroup A/NxB 
of G/N x G/N, since B nN = 1 implies that the image of Bin G/N is iso­
morphic to B. Moreover, G/N is has an exact factorization with subgroups 
A/N, B. We leave to the reader to check that ,p is indeed a morphism of 
loop folders with kernel (N x N,N x l,KN), The corresponding loop is 
precisely the group N . This shows (i). To see (ii) , assume N $ Z(G) n A 
and take an arbitrary element (n, n-1) of the transversal belonging to ker¢. 
Then (n. n-1 )K = I( implies that the corresponding loop element x E L is 
contained in the right and middle nucleus Np(L) = Nµ(L) . Furthermore, 
by (n,n-1) E Z(G x G), the associated loop element x commutes with all 
elements of L. Thus, x E Z(L) . □ 

We mention that for solvable algebraic G = AB, the solvability of the 
corresponding Bo! loop follows from Theorem 5.1 , as well. However, Propo­
sition 5.1 is also useful for the construction of non-Moufang nilpotent alge­
braic Bol loops. In fact, if A and B are nilpotent groups and B $ Aut(A) 
is not Abelian, then by Proposition 5.l(ii), Lis nilpotent. 

Finally, we mention that many examples of nilpotent algebraic nonasso­
ciative Bruck and Moufang loops are known. For the Moufang case, see [2, 
Example VIl.5.3]. For nilpotent algebraic Bruck loops, one has to consider 

the operation x o y = xlyx½ on any unipotent group G with char(k) -f 2, 
cf. [12, Section 12]. 

A local algebraic solvable Bol loop. We finish this section by construct­
ing a local algebraic solvable Bol loop and show that it is not birationally 
equivalent to a global algebraic loop if cbar(k) = 0. 

Let k be an algebraically closed field of characteristic -f 2 and define the 
operation 

(x1,x2) · (y1,Y2) = (x1 +Y1,x2 +y2+ ~i:-y1x2) 
YI +z1 

on k2• This defines a local algebraic Bol loop by formal calculation; the 
inverse of (x1 , x2) is (-x1, -x2), The right inner map R (v,,in).(:,,:,) maps 

2x1 (y2z1 - Yl z2) 
(xi, x2) ,.... (x1 ' x2 + (2 + xi)(2 + x1 + Y1/ 

This implies that all right inner maps are contained in the I-parameter group 
of transformations 

X) 
{u, : (x1 , x2),.... (x1 , x2 + t-

2 
-) It Ek}. 
+xi 

Assume that this local algebraic loop is birationally equivalent to a 2-
dimensional algebraic loop L. By Proposition 2.4, L is strongly algebraic 
with an algebraic loop folder (G, H, K) where dim G = 3. Clearly, Z(L) has 
dimension 0. We show that RM!t(L) is nilpotent of class 2; this contradicts 
to Proposition 4.3 il char(k) = 0. 
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Lemma 5.2. Let (L, •) be a right Bol loop and define the core x + y = 
(yx- 1 )y of L. Then the following are equivalent. 

(i) For all x,y,z EL, ((x + y) + 1) + z = ((x + z) + 1) + y. 
(ii) The group M generated by the maps P11 = Lyflv, y E L , is Abelian. 
(iii) The group r generated by the autotopisms a 11 = (R;1, L11 flv, Rv), 

y E L, is nilpotent of class at most 2. 
(iv) RMlt(L) is nilpotent of class at most 2. 

Proof. We have 

xP11Pz = (((x + 1) + y) + 1) + z and xP:P11 = (((x + 1) + z) + 1) + y, 

hence (i) implies (ii). The projection pr2 maps r onto M , the kernel consists 
of autotopisms of the form (Ln , 1, Ln) with n E N,-. As for n E N,-, Ln 
centralizes R.Mlt(L), kerpr2 ~ Z(r). Thus, (ii) implies (iii) . Since RMlt(L) 
is a homomorphic image of r , from (iii) follows (iv). Finally, R.,z + Rv = 
RyR; 1 Ry = 14+11 shows that y ...... Ry is an embedding of (L , +) into the core 
of RMlt(L). The identity in (i) can be easily shown for groups of nHpotency 
class 2. 0 

It is easy to check that 

((xi, x2) · (-y1, -Y2)) · (x1 , x2) = (2x1 - Y1, 2:z:2 - Y2), 

and the core of this local Bol loop satisfies the identity of Lemma 5.2(i) . 
The same is true for the core of L, which implies that fu\1lt(L) is indeed 
nilpotent of clnss at most 2. 
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