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Resumo 

Correct conditioning is seen to explain both versions of the Two-envelope Para­

dox. Prior densities for the smallest amount in the envelopes that indicate as 

optimal decision to swap the envelopes are seen to be of regular variation. The 

situation is related to the St. Petersburg paradox. 
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1 Introduction 

There is a vast material concerning the two-envelope paradox, cf. e.g. Clark and 

Shackel [CSOOJ, Horgan (HorOO], Blachman [Bla03]. This problem can be described 

as a game where you are presented with two undistinguishable envelopes, one 

containing twice as much money as the other, and you select one at random; 

then you are offered the chance to swap and take the other instead. In a variant 

situation you can take a glance at the amount in the first envelope before deciding. 

At the latter case, intuitively, if you know that there is an upper bound to the 

total amount in each envelope, say 100 units, and the first envelope contains 80 

units, then, clearly, this is the highest amount, and the better decision is not to 

swap. If the first envelope contains 30 units, say, you have to estimate which is 

more probable for the second envelope: 15 units or 60 units, and then decide. 

This reasoning can also be applied to the case of unbound amount in the 

envelope: what is your information about the amount and how a probability 



distribution can be elicited in terms of this information? After looking at the 

amount of the first envelope, wich is the better decision: to swap or not to swap, 

considering the full information? 

More formally, let 9 and 28 be the amounts in the two envelopes, let X 
denote the value (not observed) in the selected envelope, and Y, the amount in 

the second envelope. Then either Y = X/2 or Y = 2X units. The paradoxical 

(and fallacious) argument says that your expected utility if you swap is 

1 X 1 5 
E(Y) = 2 2 + 2 2X = 4 X > X 

if X > 0. That is, swapping is recomended. However, exactly the same argument 

would have been available if you had picked the other envelope in the first place! 

Let us define the variable M = l{Y > X}. The fallacy consists in the fact 

that the actual expected value in the second envelope is 

E(Y) = E[E(Y IM, X)] 

= P(M = O)E(YIX,M =0) +P(M = I)E(Y[X,M = 1) 

~ E [ f I M = O] + ~ 2E[ 2X I M = 1] 

i E [20] + E[8] 

= ~ E[0 + 29] = E(X), 

so, the paradox does not exist, in that case. 

Suppose now that you have X = x in the selected envelope. Then the second 

envelope contains either x/2 or 2x units. Asswning a prior distribution to the 

unknown value 8, /e, we say that it is paradoxical if 

Ee[YIX = x] ~ x, 

that is, the better decision is swapping, independent of the observed value X = x . 

From this definition, it can be shown that a distribution with finite support 

cannot be paradoxical. A paradoxical distribution has to assign non-negligible 

probability to extreme values, in other words, has to be heavy-tailed. 

In this work, a complete mathematical characterization of the paradoxical 

distribution is given, by means of the regularly varying distributions. In Section 

2, definition and some well-known properties of the regularly varying distributions 

are presented without proof, cf. Feller [Fcl66}, Resnick [Res87]. The main result 

and propositions are presented in Section 3. 
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2 Regularly varying distributions 

Regularly varying funtions were initially studied, under the mathematical point of 

view, by Karamata [Kar30, Kar33], and since then, after the Feller's work [Fel66], 

have been extensively used in probability theory and statistical models for extreme 

values. 

A funtion, U: R+ _, R, is said to be regularly varying (in +oo) with index p 

if it holds: 
I' U(tx) _ P 

r~¾ U(x) - t' (1) 

for all t > 0, and denoted U E RVp, The number p is named the variation 

exponent. If p = 0, we say that function U is slowly varying. Denoting, generically, 

by L(x) a slowly varying funtion, it is immediate that a regularly varying funtion 

with index p can be expressed as xP L(x), by defining L(x) = U(x)/xP. 

Clearly, a regularly varying function not need to be a probability density, unless 

p ~ -1. In this work, we are interested in probability distributions whose survival 

function is regularly varying. An example is the family 

, X > 1, 0 > 0. 

The o-stable distributions, 0 < o < 2, arc regularly varying, since that 

1- F(x) ~ cx-0 
, X --t 001 C > 0, 

and , in particular, the Cauchy distribution, with density f(x) = (ir(l + x2))-1, 

satisfies 

where the relation ~ between two functions indicates that the ratio between them 

tends to 1, when x--, oo. 

The normal distribution, e.g., is not regularly varying, since the survival func­

tion decays exponentially, and then the limit (1) equals zero, for all t E R, t > 1. 

For simplicity, we will use the following formal notation: 

u;(x) = {"' tk U(t)dt. 

The following result says that if U is regularly varying then the latter funtions 

are assymptotically related to U as U were a power function of x, that is, for 

integration purposes, a regularly varying funtion in RVP behaves a.ssymptotically 

like xP. 
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Theorem 1 (Karamata's theorem) {a) If p < -1, then U E RVp implies that 

U<i(x) exists, Uo E RVp+l , and 

. x U(x) 
l1m -U. ( ) = -(p+ 1). 

z-oo Q X 

Conversely, if U0(x) exists and 

. x U(x) 
hrn u·•( ) = .,\ E (O,oo} x-oo O X 

then U E RV_.i.-1-

(b) If p 2:: -1, then U E RVp implies that Uo E RVp+1 and 

. x U(x) 
hm -U,() =p+l. x-oo OX 

Conversely if U satisfies 

. x U(x) 
hm -,--,-----() = .,\ E ( 0, oo} 

.:z:-oo uo X 

then U E RV.i.-1-

The proof of this result can be found in Resnick [Res87). In Feller [Fel66) an 

extension of Karamata's theorem to higher moments is presented. 

Part (a) of the theorem can be applied to the truncated first moment of an 

absolutely continuous probability distribution F(x), replacing U(x) by the density 

f(x). 

The same result is obtained to a general distribution F(x) defining 

With this notation, observe that Zci = 1 - F is the survival funtion of the 

distribution. In the present work, we consider F concentrated in (0, oo ). 

3 Characterization of paradoxical distributions 

From Section 1, we have the following definition. 

Definition 2 A distribution f e is said paradoxical if 

Ee[YIX = x) 2:: x, 

where e, Y , X are as in Section 1. 

4 



Lemma 3 For a given density, fa, be paradoxical it~ a sufficient and necessary 

condition 

4/e(x) ?: fa(x / 2) for all x > 0. 

Proof. With the notation of Section 1, we have 

E (Y IX= x) = P (M = 0IX = x)E(YI X = x,M = 0) 

+P(M = llX = x)E(Y IX= x,M = 1) 

then 

= P(M = 0)J(x IM= 0) x P(M = l)f(x IM= 1) 
2 

f(x) 2 + f(x) x 

1 l x l 1 

2 f(x) he(x) 2 + 2 f(x) fe(x)2x 

1 (1 1 x I ) 
½ ½ fe(x/ 2) + ½ fe (x) 2 2 /e(x/2) 2 + 2 fe(x) 2x 

fe(x/2) 
E(Y I X= x) ?: x <=> fe(x) :S 4, 

independently of the observed value x. 

(2) 

q.e.d. 

The following arc examples of such densities: 

1. /(x)=c log(l+x)/(l+x)2 

2. f(x) = c log(log(e + x))/(e + x)2 

3. f(x) = c/(1 + x312 ) 

4. f(x) = cexp(log0 (1 + x))/(1 + x)2, with a E (0, 1) 

Next results characterize paradoxical distributions as regularly varying distri­

butions for all x, but in a finite interval. The first proposition guarantees the 

construction of paradoxical distributions from a regularly varying distribution, 

redefining it, if needed, in a finite interval, in order to satisfy inequality (2). 

Proposition 4 Given f E RVp, if p > -2 then there exists xo > 0 such that f 

satisfies (2) for all x > Xo-
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Proof. 

If/ E RVp, then U(x) := xf(x) E RVp+I· By definition, 

lim U(2x) = 2P+I > rl 
z-oo U(x) 

since that p > -2. Then, there exists xo > 0 such that 

U{2x) 
2

_1 
U(x) > for all x > xo 

that is, 

2x/{2x) > r 1xf(x) ~ 4/(2x) > f(x) for all x > xo 

q.e .d. 

Theorem 5 Let f be a p.d.f. on (0, oo) satisfying (e). Then there exist Junctions 

91 ,92 E RVp, with -2 < p < -1, such that 91 $ f $ 92· 

Proof. 

Let us suppose, at first, that there exists xo > 0 such that J satisfies the 

equality in (2), for all x > xo. 

Defining U(x) := xf(x), observe that given k > 0, for all x > xo, it holds 

U(kx) = U(2x) U(kx) U(k2x) = U(k2x) = U(k4x) = = =· (k) 
U(x) U(x) U(2kx) U(2x) U(2x) U(4x) .. · constnnt · c 

In particular 
. U(kx) 

l1m -U() = c(k). 
r-oo x 

Then, for x, y > 0 and t > xo, 

U(xyt) U(xyt) U(xt) 
U(t) = U(xt) U(t) ' 

and letting t-. 001 

c(xy) = c(x)c(y). 

So, c satisfies Hamel equation and is of the form c(k) = kP. Since that 

1 
c(k) = k' 

(3) 

(4) 

for k integer power of 2, k = 2;, i E N, for the condition on J, it follows that 

c(k) = 1/k. 
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From 

x >xo (5) 

we conclude that U E RV-1 and then f E RV-2. 

In the case 4/(2x) ~ f(x), we can find a lower bound to J, 91 E RVp, with 

p> -2. 

By other side, the survival function .F(x) = 1-F(x) varies dominatedly, since 

that 
.F(2x) 
F(x) < 1, for all x > 0. 

By a known result, cf. Feller [Fel661, there exist constants A, p and xo such 

that 
P(tx) p 
p"(;f < At , for all x > xo, t < 1. 

Combining those inequalities, it is straightforward to show that there is p $ 0 

such that 
F(tx) p 
F(x) <At , for all x > xo, t > 0. 

From this follows that .F is dominated by a regularly varying function with index 

p S 0. 

So, f is dominated by a regularly varying function, 92, with index p- 1 $ -1. 

q.c.d. 

Theorem 6 Let X be random variable with density function f such that supp(!) C 

(0, oo). If J is paradoxical, then EX= oo. 

Proof. 

By Theorem 5, if f is paradoxical, then there is 9 E RVp, with p > -2, such 

that 9(x) S J(x). 

By Karnmata's theorem, 90(x) is regularly varying with index p+ 1 > -1. So, 

fr,(x) ~ 9o(x) ~ xP+I , with p + 1 > -1. 

Then g0 is not integrable and 

EX= fa00 

fo(x)dx ~ fa00 

9o(x)dx = oo. 

q.e.d. 
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